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Chapter 6

Learning how to surf: studies
in gravitational-wave
cosmology

We investigate the relationship between the large-scale structure of the Universe and
the gravitational wave (GW) signals emi�ed by merging binaries of astrophysical ori-
gin. We �rst study the e�ects of gravitational lensing on the observed population. By
making minimal assumptions about the distribution of intrinsic properties, we show
that lensing e�ects leave a recognizable signature on the observed rates and that they
are prominent mainly at low inferred redshi�s. We then consider the spatial cross-
correlation of galaxy catalogs with either an unresolved GW background or catalogs of
resolved GW sources. �e �rst signal can constrain the evolution of the emi�ing pop-
ulation over cosmic time, while the second can be used to constrain the propagation of
tensor metric perturbations. Our results suggest that galaxy surveys and GW signals
will be powerful probes for both the astrophysical properties of the merging popula-
tion and cosmology. Using mock data based on a simpli�ed model, we show how our
predictions can be re-scaled to multiple instrumental con�gurations. We �nd that a
higher spatial resolution improves constraints across the board, but accurate distance
measurements are essential for cosmological applications.

Omar Contigiani
2020, Monthly Notices of the Royal Astronomical Society, 492, 3359

Guadalupe Cañas-Herrera, Omar Contigiani, and Valeri Vardanyan
2021,�e Astrophysical Journal, 918, 20
2020, Physical Review D, 102, 043513



134 Chapter 6. Learning how to surf: studies in gravitational-wave cosmology

6.1 Introduction
Gravitational waves (GWs) are one of the most striking predictions of the General�e-
ory of Relativity (Einstein, 1916, 1918) and their direct detection by the LIGO-Virgo
collaboration (Abbo� et al., 2016) triggered a rapidly increasing interest in exploiting
this new �eld for cosmological information. In this chapter, we summarize three works
pushing toward this objective.

In Section 6.2 we discuss the consequences of gravitational magni�cation, i.e., the
enlargement of a source in the image plane of an observer due to the converging e�ect
of one or more gravitational lenses along the line of sight. For point-like EM sources,
this corresponds to an increase in brightness by a factor µ, which has been shown to
a�ect the bright end of the luminosity functions of high redshi� quasars and submil-
limeter galaxies (e.g. Negrello et al., 2010; Wyithe and Loeb, 2002). Similarly, the e�ects
of magni�cation on the GW signals emi�ed by merging binary compact objects in-
troduces a long and highly suppressed tail in the observed distribution (e.g. Dai et al.,
2017; Oguri, 2018; Smith et al., 2018). Recently, Broadhurst et al. (2018) claimed that a
considerable fraction of LIGO-Virgo events to date might belong to this tail and that
another sign of strong lensing, i.e., multiple images originating from the same source,
might have already been detected (Broadhurst et al., 2019). While this idea explains the
present-day tension with binary evolution models (see e.g. Dominik et al., 2012) that
predict lower masses than what is observed, the hypothesis is not favored by the data
(Hannuksela et al., 2019; Singer et al., 2019). Furthermore, the tension it tries to ex-
plain might also be alleviated through tweaks to stellar evolution models (Abbo� et al.,
2016). �e goal of Section 6.2 is to o�er general quantitative insights into the e�ects
of lensing on the expected rates of gravitational wave mergers and call a�ention to its
general low likelihood in light of the aforementioned claims.1

GWs alone are not particularly useful for general cosmological applications because
near future data will only provide rough estimates of the sky position and luminosity
distance to the source. However, they can serve as powerful cosmological probes when
combined with electromagnetic (EM) data, from which redshi�s can be extracted. �is
idea dates back to Schutz (1986), and in Section 6.3 and 6.4, we discuss in detail how
one can exploit the spatial correlation between the galaxies hosting GW events and the
galaxies observed by wide surveys for cosmological applications.

First, we study the cross-correlation signal between an unresolved GW background
(GWB) and galaxy catalogs, arguing why it represents the ideal observable to detect
and measure said background. In the past, the anisotropies of the astrophysical GWB
have been extensively studied (�rane et al., 2009) and, more recently, two independent
groups Cusin et. al. (Cusin et al., 2018, 2017) and Jenkins et. al. (Jenkins, Alexander C.
and Sakellariadou, Mairi, 2018; Jenkins et al., 2018) obtained discrepant predictions for

1In the interest of reproducibility, a Jupyter notebook o�ering a guided version of this section is available
at h�ps://www.github.com/contigiani/lensingGW.

https://www.github.com/contigiani/lensingGW
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the scale-dependent signal (Cusin et al., 2018; Jenkins et al., 2019b). �e main disagree-
ments are related to the shape of the angular power spectrum as well as the overall
amplitude of the signal. In this work, we explain how the di�erence in shape is re-
lated to the treatment of non-linear scales (see Section 6.3.1), whereas the di�erence
in amplitude is simply due to the chosen normalization. Apart from this necessary
clari�cation, we focus almost exclusively on the cross-correlation of the GWB with
galaxies and quantify its constraining power. We choose to work with this observ-
able for two main reasons. (1) the cross-correlation signal for di�use backgrounds is
expected to have a larger signal-to-noise ratio compared to the autocorrelation signal
and is likely to be detected earlier (Ando et al., 2014), (2) the autocorrelation signal of
the astrophysical GWB is susceptible to small scales and nearby structures, while the
cross-correlation signal GW is free from this problem.

Second, in Section 6.4, we explore ways to reconstruct the di�erence between mod-
els of modi�ed gravity and GR using resolved GW sources in combination with galaxy
catalogs. An altered friction term for GWs arises in extended models displaying a
redshi�-dependent gravitational coupling (Amendola et al., 2018; Belgacem et al., 2018)
and, as a result, the inferred luminosity distance to GW sources di�ers from the corre-
sponding EM luminosity distance. It should be noted that this interesting phenomenon
can already be loosely constrained today using multiple techniques, e.g. using the mul-
timessenger detection of GW170817 (Arai and Nishizawa, 2018; Lagos et al., 2019) or
features in the mass distribution of existing GW catalogs (Marı́a Ezquiaga, 2021). In ad-
dition to presenting our formalism, we also show how to jointly reconstruct the redshi�
evolution of modi�ed gravity e�ects and the bias of GW sources. �e reconstruction
method we make use of is based on Gaussian processes (GPs), a well-known hyper-
parametric regression procedure (Rasmussen and Williams, 2005).

Unless stated otherwise, our �ducial cosmology is based on the best �t results from
Planck 2018 (Aghanim et al., 2020). In our analysis, we use COLOSSUS (Diemer, 2018)
and Astropy (Robitaille et al., 2013; Price-Whelan et al., 2018) for cosmological calcu-
lations, sklearn (Scikit-learn, 2018) for the GP implementation, emcee (Foreman-
Mackey et al., 2013) as our posterior sampler and GetDist (Lewis, 2019) to plot the
�nal contours.
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6.2 Lensing boost

6.2.1 Formalism
�e value of the magni�cation µ for cosmological sources at various redshi�s z is mod-
eled by a probability function P (µ, z) which can be obtained numerically by perform-
ing ray-tracing simulations (e.g. Hilbert et al., 2007; Takahashi et al., 2011). To simplify
the notation, here we call P (µ) what is sometimes called dP

dµ
in the literature. �is

quantity measures the distribution of magni�cation for all possible images of a given
source and due to conservation of photons/gravitons on average we have null magni-
�cation,

hµi =
Z

dµ µP (µ, z) = 1. (6.1)

More details about how this distribution should be interpreted are available in appendix
A of Oguri (2018).

For this section, we will use a simpli�ed model of P (µ, z), calculated as the sum
of two components: weak and strong lensing. For the �rst, we assume a log-normal
distribution for the convergence  (as in, e.g. Taruya et al., 2002; Hada and Futamase,
2018) and derive the corresponding magni�cation probability density function using
the relation:

µ ' 1

(1� )2
. (6.2)

While this relation for µ and  is valid only in the limit of null shear |�| = 0, it has
been shown to accurately reproduce the weak lensing component of the magni�ca-
tion distribution (Takahashi et al., 2011), where  . 1. For the strong-lensing compo-
nent, we do not assume any relation between µ,, |�| and instead impose a power-law
P (µ, z) / µ

�3 for µ > 1, calibrated empirically using the lensing depths of Oguri
(2018). Finally, to simulate the demagni�cation tail, we assume a constant value for
µ < 1. We point out that we do not consider sources with z > 10 in this work.

For EM sources, the source �ux is ampli�ed by a factor µ in the presence of magni-
�cation. If the redshi� to the source is known and a cosmology is assumed, the result
is a mismatch between the inferred luminosity (L) and the intrinsic one (L⇤):

L
L⇤

= µ. (6.3)

If only the luminosity is known, then the result is a mismatch between the inferred and
actual luminosity distance to the source:

D(z) =
D(z⇤)p

µ
, (6.4)

where we call z and z⇤ the inferred redshi� and the true one, respectively. We also
refer to the corresponding luminosity distances as D and D⇤. �is case applies to
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Supernovae type IA (SNIa), a category of transient events known as standard candles
because they share the same intrinsic luminosity. �e Jacobians of the transformations
in Eqs. (6.3) and (6.4) are:

@L⇤
@L =

1

µ
, (6.5)

and
@z⇤
@z

=
D

0(z)

D0(z⇤)

p
µ. (6.6)

In the case of GWs, we limit ourselves to the inspiral phase of compact binary
mergers. In this phase, the gravitational wave strain amplitude as a function of time,
h(t), carries information about the source’s distance and the associated masses. �e
frequency evolution of the signal can be used to extract the redshi�ed chirp mass (an
e�ective combination of the masses involved in the merger):

ḟ / M(1 + z), (6.7)

while the amplitude is connected to the inverse of the luminosity distance:

h(t) / A (M(1 + z))

D(z)
, (6.8)

where A(�) is a function of the redshi�ed chirp mass alone. From this, it should be
clear that both M and D(z) can be extracted from the signal.

In the presence of magni�cation, the observed strain is multiplied by a factor pµ,
and the mismatch between the intrinsic properties (z⇤,M⇤) and the inferred ones
(z,M) is such that

D(z) =
D(z⇤)p

µ
, (6.9)

and
M = M⇤

1 + z⇤
1 + z

. (6.10)

For µ > 1 this implies that distant events are assumed to be closer and more mas-
sive than they actually are, just like magni�ed electromagnetic sources are assumed
brighter. An essential di�erence between the two, however, is that the dependence on
magni�cation is signi�cantly weaker for the GW merger parameter M compared to
the luminosity L,

M
M⇤

=
1 + z⇤
1 + z

/ µ
s(z)

, (6.11)

with s(z) < 0.5 for any z < z⇤ and s(z) ! 0.5 for increasing z. �is can be easily
shown by combining Eq. (6.9) and (6.10), together with the fact that the luminosity
distance can be expressed, in a �at background, as the product of (1 + z) and a strictly
increasing function of z (comoving distance).
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To conclude this section, it is useful to point out that the Jacobian of the transfor-
mation (M, z) $ (M⇤, z⇤) can be wri�en as

@M⇤
@M

@z⇤
@z

=
D

0(z)

D0(z⇤)

1 + z

1 + z⇤

p
µ. (6.12)

Rates

We write the observed rate of merger events per unit redshi� and unit chirp mass as:

r
(GW )(M, z) =

R(M, z)

1 + z
E(GW )
L

(M, z), (6.13)

where R is the intrinsic rate in the source frame, and EL the lensing boost. Here, we
separate the rate into two components:

R(M, z) = R(M)R(z), (6.14)

and, for the redshi�-dependent part, we assume a rate which is proportional to the
product of the comoving volume boosted by a factor (1 + z)� :

R(z) / dVc

dz
(1 + z)� / d

2
L
(z)

E(z)
(1 + z)��2

, (6.15)

where we use a standard ⇤CDM cosmology with E(z) =
p

0.3(1 + z)3 + 0.7. �is
power-law behavior is expected if the merger rate of compact binary objects traces the
star formation history (Madau et al., 1998) at low redshi� (Dominik et al., 2013). In this
toy model, we also invert the sign of the power-law index � = 2.3 at z = 2, in order
to simulate a peak in the star formation rate.

Similar expressions can also be wri�en for the rates of SNIa and the number counts
of quasars:

r
(SN)(z) =

R(z)

1 + z
E(SN)
L

(z), (6.16)

n
(Q)(L, z) = N(L)E(Q)

L
(L, z). (6.17)

Even though we assume that the intrinsic luminosity function of quasars N(L) is not
redshi� dependent, lensing e�ects introduce this dependence in the observed n(L, z).
�e lensing boost factors can then be wri�en as:

E(GW )
L

=

Z
d (M⇤/M)

R(M⇤)

R(M)
W

(GW )(M⇤/M, z), (6.18)

E(SN)
L

=

Z
dD⇤

R(z⇤)

R(z)
W

(SN)(D⇤/D, z), (6.19)
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E(Q)
L

=

Z
d log10 (L⇤/L)

N(L⇤)

N(L) W
(Q)(L⇤/L, z), (6.20)

where we have introduced the weight functions WX , quantifying the contribution to
the observed rates at z,M,L from lensed events. �eseweight functions can bewri�en
as the product of the following terms.

• A lensing term. For each z⇤,M⇤ and L⇤, there is an associated lensing proba-
bility. For GW and SN, this is P (µ, z⇤) because the measured redshi� z, inferred
from the luminosity distance, is di�erent from the source redshi� z⇤. �is proba-
bility isP (µ, z) for the Q case because it is measured directly. For µ > 3, we have
P (µ, z⇤) > P (µ, z), meaning that we expect strong lensing to be particularly ef-
�cient for standard candles/sirens. Furthermore, because the expressions above
are not wri�en as integrals in µ, this term also contains a probability volume, e.g.
dµ/dz⇤ for the SN case.

• A comoving volume term for the GW and SN cases. �is is due to our assumption
thatR(z) / dVc. Because lensing introduces contributions from a redshi� range
di�erent from the observed z, a term dVc(z⇤)/dVc(z) is present.

• A redshi� evolution term for SN and GW. Similar to the previous case, except
due to the assumed power-law dependence of R(z). �is term also accounts for

the di�erent redshi�ed rates and is equal to
⇣

1+z⇤
1+z

⌘��1
.

• A Jacobian term. As introduced in the previous section, the lensing transfor-
mation from intrinsic to observed quantities introduces an additional Jacobian
factor.

In the next section, we study the impact of lensing magni�cation on the inferred
chirp mass and redshi� values and compare these results to the EM cases. We will
work with the arguments of the integrals wri�en above and, for ease of readability, we
will also normalize these functions w.r.t. their value at null magni�cation (µ = 1). In
particular, we chose not to focus extensively on the results of the integral E(GW )

L
, since

it strongly depends on the assumed mass function R(M). For accurate rates, we refer
the reader to previous works (e.g. Dai et al., 2017; Oguri, 2018; Broadhurst et al., 2018;
Ng et al., 2018).
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6.2.2 Observational consequences

Weight functions

On the right side of Fig. 6.1, we plot the contribution of di�erent intrinsic chirp masses
to the integral in Eq. (6.18), while on the le�-side we plot the equivalent result for light.
�ese functions correspond to W

(GW ) andW
(Q).

�e �rst obvious conclusion is that magni�cation a�ects the inferred rates of GW
mergers more e�ciently than EM sources at both high and low redshi�. �is is mainly
because GW lensing gives access to a broader volume at higher redshi�, corresponding
to a higher Jacobian factor and signi�cantly stronger lensing probabilities. �ese e�ects
are the main discriminant between the two cases and are dominant at low redshi�.

We note, however, that the GW weights are still low. If we focus on a LIGO-like
source (z ⇠ 0.15), we see that, to have rates at massM dominated by events atM⇤ ⇠
M/3, the mass function R(M) should span roughly 7 orders of magnitude between
M⇤ and M. While this is possible, we point out that this roughly corresponds to a
doubly-exponential tail, with

R(M) / e
�e

M/M0 (6.21)

and M0 = M⇤. �is conclusion is mostly independent of our assumed mild redshi�
evolution.

Despite the lower lensing weights for the EM case, we also show that a typical
Schechter function N(L) / exp(�L/L⇤)/L (Schechter, 1976) is able to introduce a
signi�cant contribution from highly magni�ed sources at high z.

Lensing tail

In Fig. 6.2 we show the expected lensing tail of a truncated power-law distribution
R(M) / M�n for a few choices of n. Events measured with a chirp-mass larger than
the cut-o� value M > Mco must be magni�ed mergers with intrinsic redshi� z⇤ > z

and intrinsic chirp-mass M⇤ < M.
�e prominence of this tail for a steep mass function (large n) and low redshi�

z explains why a source distribution can be designed to produce a large number of
lensed events (Broadhurst et al., 2018). It is useful to stress here that the main reason
behind this is not the larger volume available to be lensed, but the fact that higher red-
shi� events contributing to the low redshi� rates are both more likely to be lensed and
are also necessarily located on a more abundant portion of the mass function. �is is
because the mapping (M, z) $ (M⇤, z⇤) depends only on µ. Despite the main advan-
tage of amplifying the lensing tail compared to the naive expectation, this mechanism
has the drawback of being e�cient only for events with low z. For example, the shape
of the z = 5 lensing tail is less sensitive to the details of the mass function.
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Figure 6.2: �e shape of the lensing tail for truncated power-law distributions. �e
�gure shows the observed rate r(M) for an intrinsic chirp-mass function R(M) /
M�n truncated at Mco. �e observed rate for M > Mco must therefore be due to
lensed events. �e dependence on n is more striking for low inferred redshi�s z due to
how the intrinsic chip masses are distributed in the volume at z⇤ > z. See Section 6.2.2
for more details.
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Here we do not assume a lower limit for the valuesM⇤, and the integrals are trun-
cated because we impose z⇤ < 10. While this choice is unrealistic, it is possible to
verify that se�ing a lower limitM⇤ > 5 M� (1) does not a�ect the quantitative results
of Fig. 6.2 for n < 10 andM > 20 M�, and (2) has no impact on the qualitative results
discussed in this section for all values of n.

Luminosity distance

Another consequence of the dependence of the observed massM on the magni�cation
µ is the broadness of the peak in Fig. 6.1. �e standard deviation of this distribution
can be interpreted as an uncertainty in the measured M, and, for an individual event,
it can be pre�y substantial: its value grows from 1 to about 7 percent between z = 1
and z = 5. �e primary source of this sca�er is the convergence distribution discussed
in Section 6.2.1, and it is not particularly a�ected by our chosen source redshi� de-
pendence R(z). For a �at mass function, no signi�cant bias is observed in this redshi�
range, meaning that the contributors to an event of observed chirpmassM and redshi�
z are expected to have, on average, the same intrinsic properties.

�is sca�er also introduces an intrinsic error on the luminosity distance estimate
to a source. For a �at mass function, we �nd a spread of 2.5 percent at z = 0.15 and
10 percent at redshi� z = 5, which is consistent with results from previous works
(e.g. Holz and Linder, 2005; Kocsis et al., 2006; Sathyaprakash et al., 2010; Oguri, 2016).
However, this value should be compared to the present-day observational uncertainty
in D(z) of about 25 percent, dominated by the poorly constrained detector e�ciency.

One can also �nd that in the presence of a steep mass function, the inferred D(z)
is substantially more biased compared to the inferred M. �is is because D⇤ and M⇤
scale di�erently with µ (Eq. 6.9 and 6.11).

6.2.3 Comparison to observations
LIGO-Virgo is expected to reach its design sensitivity in a few years. �e expected
statistical sample of mergers, made of hundreds or thousands of events, will allow a
complete reconstruction of the chirpmass distribution of the underlying populations. If
the intrinsic distribution is extremely peaked, the observed one might be contaminated
by highly lensed events with biased luminosity distances and chirp masses. However,
not only this scenario is in con�ict with the expectation from current stellar evolution
models (see e.g. Belczynski et al., 2016, 2017), but we have shown here that this would
leave an easily recognizable signature in the LIGO rates due to (1) the wide range of
probed masses at low redshi� (Martynov et al., 2016) and (2) the �atness and low values
of the lensing e�ciency as a function of chirp mass (see Fig. 6.1).

As an example, the contribution to mergers with an observed M ⇠ 30 M� and
z ⇠ 0.15 � 1 (D ⇠ 700 � 1000 Mpc) from events with lower M is suppressed by
a factor ⇠ 106 � 104. No ma�er how these lensed events are distributed in intrinsic
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chirp mass, the non-lensed events with similar properties should be both abundant and
isolated from the highly suppressed lensing tail. Note that these properties roughly
correspond to the 12 mergers detected during the �rst and second observing run of
LIGO-Virgo (Abbo� et al., 2019). �is implies that the absence of a larger number of
events at M < 10 M� (to which the detector is sensitive) suggests that the observed
events are not lensed.

6.3 �e astrophysical background

6.3.1 Formalism
Autocorrelation

In this section, we discuss the autocorrelation signal of the anisotropic GWB.�is sig-
nal and the shot-noise contamination have been extensively studied in previous works
(Jenkins, Alexander C. and Sakellariadou, Mairi, 2019; Jenkins et al., 2019a; Cusin et al.,
2019). Here, we review the main modeling aspects and describe some particularities.

Our starting point is the de�nition of the dimensionless energy density of GWs per
unit solid angle from a given direction of the sky r̂. We model this signal as

⌦GW(r̂) ⌘
Z

dr r
2K(r)n(~r), (6.22)

where n(~r) is the galaxy density �eld in comoving coordinates~r, andK is the GW ker-
nel that encodes the average contribution of a galaxy to ⌦GW as a function of comov-
ing distance r. In practice, this includes information about the star formation history
of the Universe and the properties of the emi�ing binary population. It is instructive
to rewrite Eq. (6.22) in terms of the galaxy overdensity �g(~r) ⌘ n(~r)/n̄(r) � 1, with
n̄(r) being the average number density of galaxies, de�ned as n̄(r) ⌘

R
d2r̂n(~r)/4⇡.

With this notation we have

⌦GW(r̂) =

Z
dr r

2K(r)n̄(r) (�g(~r) + 1) . (6.23)

From this point, the angular power spectrum of the anisotropic GWB C
GW
`

can be
calculated to be

C
GW
`

= 4⇡

Z
kmax

kmin

dk

k
|�⌦`|2P(k) +B

GW
`

. (6.24)

Here �⌦`(k) is given by

�⌦`(k) =

Z
dr r

2K(r)n̄(r)Tg(k, r)j` (kr) , (6.25)
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where Tg is the synchronous gauge transfer function relating the galaxy power spec-
trum to the primordial one P(k) = As (k/k⇤)

ns�1, and j` is the spherical Bessel func-
tion of order `. Note that the galaxy bias is implicitly absorbed in Tg . Note also that
in Eq. (6.25) we neglect relativistic corrections, as they are generally found to be below
cosmic variance (Bertacca et al., 2019).

�e termB
GW
`

in the power spectrum is the shot-noise bias term introduced by the
spatial and temporal shot-noise in the distribution of the individual events forming the
GWB. Following Jenkins, Alexander C. and Sakellariadou, Mairi (2019), we write the
shot-noise contribution in the kHz band as

B
GW
`

=

Z
dr K2(r)n̄(r)r2


1 +

1 + z(r)

R(r)TO

�
. (6.26)

Because of the low event rate in this frequency range, this noise contribution is in-
versely proportional to the average number of events per galaxy, wri�en as the aver-
age redshi�ed event rate R(r)/(1+ z)multiplied by the observing time TO . However,
because the duration of the inspiral phase in the mHz band is much larger than any
reasonable observing time, the contribution of the term 1/(R(r)T0) is negligible in
this case.

�e GWB discussed here is an integrated signal. Because of this, the low-redshi�
objects might signi�cantly contribute to the GWB. Indeed, the astrophysical models of
Cusin et al. (2019) suggest that the combination

K̃(r) = K(r)n̄(r)r2 (6.27)

is not decaying to negligible values close to redshi�s z ⇠ 0. �is introduces two com-
plications in the modelling.

�e �rst is connected to the shot noise. To highlight this, we rewrite Eq. (6.26) as

B
GW
`

=

Z
dr

K̃2(r)

n̄(r)r2


1 +

1 + z(r)

R(r)TO

�
. (6.28)

�is expression shows that the shot-noise has a divergent expression due to low-redshi�
(low-r) contributions. �is divergence can be suppressed if local events are excluded
from the background to obtain a well-behaved prediction for the autocorrelation signal.
�is is equivalent to se�ing a lower limit in the integral above di�erent from zero.

Second, there is a complication derived from the scale-dependent part of the angular
power spectrum (the �rst term in Eq. (6.24)), which is expected to receive non-negligible
contributions from small, highly non-linear scales. To get some intuition about this
feature, let us simplify our expression for the GWB angular power spectrum by using
the so-called Limber approximation

j`(x) !
r

⇡

2↵
�D (↵� x) , (6.29)
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where �D is the Dirac delta-function and ↵ ⌘ ` + 1/2. Using this in Eq. (6.25) and
neglecting the bias term we obtain

C
GW
`

⇡ 2⇡2

↵

Z
kmax

kmin

dk

k3
K̃2
⇣
↵

k

⌘
S2
⇣
k,
↵

k

⌘
, (6.30)

S(k, r) ⌘ Tg(k, r)P(k)1/2. (6.31)

What Eq. (6.30) demonstrates is that K̃(r) acts as a modi�ed kernel and selects a
particular domain in the k-integral. �is causes small scales to contribute signi�cantly
to C

GW
`

, unless K̃ is vanishing at the lower end of its argument or S̃2
/k

3 is falling
fast enough at large values of k. As the modeling of the galaxy power spectrum at
non-linear scales is highly uncertain, this feature signals a potential danger of using
the autocorrelation signal as a probe of the GW merger history or cosmology.

Cross-correlation with galaxy clustering

�is subsection introduces themain concepts necessary formodeling the cross-correlation
signal and discusses its advantages. First of all, we de�ne the observed overdensity of
galaxies in the given direction r̂ per unit sold angle as

�(r̂) =

Z
dr Wi(r)�g(~r), (6.32)

where Wi(r) is the probability density function of the galaxies’ comoving distances
(also referred to as the window function) and �g(~r) is the galaxy overdensity de�ned
earlier. Using Eq. (6.32), the angular power spectrum of this �eld, CGC

`
, can be shown

to be
C

GC
`

= 4⇡

Z
dk

k
|�`(k)|2P(k) +

1

ni

, (6.33)

where �`(k) is given by

�`(k) =

Z
dr Wi(r)Ti(k, r)j`(kr). (6.34)

Ti(k, r) is the transfer function for the galaxy overdensity in the selected redshi� range
Wi(r), j`(kr) is the spherical Bessel function of order ` and ni is the average number
of galaxies per steradian, also dependent on the speci�c redshi� selection Wi(r). �is
�nal quantity appears in the second term in Eq. (6.33) and dictates the size of the shot-
noise component of the power spectrum. In total, the spectrum C

GC
`

as a function
of scale ` is also sometimes referred to as the galaxy clustering (GC) angular power
spectrum.
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Using Eqs. (6.25) and (6.34), one can derive the angular power spectrum of the cross-
correlation C

⇥
`
of the GWB and the GC maps, given by Eq. (6.22) and (6.32). �is is

C
⇥
`

= 4⇡

Z
dk

k
�⌦

⇤
`
(k)�`(k)P(k) +B`, (6.35)

where the shot-noise contribution B`, derived in Appendix 6A, can be shown to be

B` =

Z
dr Wi(r)K(r). (6.36)

With these expressions in mind, we can now discuss how the cross-correlation signal
can address the modeling challenges presented in the previous section.

To address the �rst one, we notice that, while the 1/r2 divergence is still present in
the integral in Eq. (6.36), this integral is generally well behaved if the window function
Wi(r) decays fast enough at small redshi�s. Notice that this is impossible to do in the
equivalent expression for the autocorrelation in Eq. (6.26).

With respect to the second issue related to the small-scale dependence of the signal,
we write the equivalent of Eq. (6.30) for the cross-correlation,

C
⇥
`

⇡ 2⇡2

↵

Z
kmax

kmin

dk

k3
Wi

⇣
↵

k

⌘
K̃
⇣
↵

k

⌘
S2
⇣
k,
↵

k

⌘
. (6.37)

BecauseGC surveys allow for redshi�-selection of the sources, theGCwindow function
Wi(r) can be taken to be peaked at some non-zero redshi� and quickly decaying for
larger or smaller values of r. Eq. (6.37) proves that this behavior cuts o� the contribution
from very large and very small scales.

6.3.2 Forecast
Model set-up

In this section, our primary goal is to explore the sensitivity of the cross-correlation
signal to various parameters and estimate its information content. To this end, we
model the signal using simple but representative assumptions about the GW and GC
maps. �is allows us to derive an upper limit on the constraining power by assuming
the minimum theoretical uncertainty due to cosmic variance.

We base our model for K̃(r) on the physically motivated one of Cusin et al. (2019),
by noting that their functionA(z) is the analogue of our K̃(r) in redshi� space. In this
reference, in particular, it is shown that A(r) is a slowly-evolving function of redshi�
and has a similar shape over a wide range of frequencies and assumptions about the
source population (see their �gures 19 and 13). �us, we model the kernel as

K(r) =
K0

2n̄(r)r2
{tanh [10(z⇤(r)� z(r))] + 1} , (6.38)
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where K0 is the amplitude of the kernel, z⇤ is a cut-o� redshi�, and n̄(r) ⇡ 10�1

Mpc�3 is the average comoving galaxy number density estimated using Figure 4 of
Schaye et al. (2015). We do not implement a redshi� dependence for this quantity
because its value is relevant only for the shot-noise component of the cross-correlation,
found to be negligible in the cases considered here. In our �ducial model, we assume
z⇤ = 1 as the astrophysical kernel K(r)n̄(r)r2 is expected to decay around that value
in redshi�. Notice that, while K0 should be dimensionful, its units are irrelevant to
us because the cross-correlation signal is proportional to its value. For the rest of the
section, we call K�d

0 the �ducial value of this quantity.
In the next subsections, we study the cross-correlation between the GWB modeled

above and two galaxy catalogs centered at di�erent redshi�s. �e two window func-
tions,W1 andW2, are assumed to be Gaussian distributions centered at z̄ = {0.5, 1.5}
and with widths of �z = {0.18, 0.6}. �ese values are picked so that the two selections
overlap with the constant portions of K̃(r).

Moreover, we model the transfer functions in Eqs. (6.34) and (6.25) by using a linear
bias approximation (valid for large scales):

Ti(k) = biTm(k, r), (6.39)

and
Tg(k, r) = bGWTm(k, r), (6.40)

where Tm(k, r) is the transfer function for cold dark ma�er, and the bX are known
as bias parameters. When varying our model, we freeze the bias of both galaxy cat-
alogs since it can be extracted from their clustering autocorrelation signal alone. On
the contrary, we treat the GW bias bGW as a free parameter, and we assume it to be a
constant over redshi�. While this is not necessarily true, in the absence of shot-noise,
only the combination bGWK̃(r) appears in the signal. �is implies that a more complex
model can always capture any redshi� dependence through the function K̃(r). Note,
however, that breaking the degeneracy between the linear bias of the GW population
and the amplitude of the astrophysical kernelK(r) requires a full understanding of the
GWB kernel and all ingredients (Scelfo et al., 2018b).

We focus on the mHz frequency band for the rest of the analysis and assume that
low-redshi� events (below r = 150 Mpc) can be �ltered. As discussed in the previ-
ous sections, these assumptions are essential to obtain a well-behaved signal not over-
whelmed by noise. For reference, under these assumptions, we get the following rela-
tive noise values at ˆ̀= 10:

B
GW
ˆ̀

C
GW
ˆ̀

⇡
Bˆ̀

C
⇥
ˆ̀

⇡ 10�4
. (6.41)

�is value is derived using the inspiral time of a solar mass black hole binary starting
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from 1 mHz (Blanchet et al., 1995), an observing time of 1 year and a merger rate of
10�5 per year.

�e codes used in this section are made publicly available on h�ps://github.com/
valerivardanyan/GW-GC-CrossCorr. To calculate the ma�er power-spectra we use the
⇤CDM limit of EFTCAMB (Hu et al., 2014; Raveri et al., 2014).

Constraining K(r)

�e main goal of this section is to understand the constraining power of the cross-
correlation signal by studying how precisely the astrophysical model can be inferred
from a noisy C` measurement.

In our analysis, we focus on the best-case scenario of cosmic-variance limited un-
certainties as derived in Appendix 6B and use a simple proxy for the overall signal-to-
noise ratio of the cross-correlation, de�ned as

✓
S

N

◆2

⌘
`maxX

`=`min

�
C

⇥
`

�2

VarC⇥
`

. (6.42)

Let us note that in our setup, the GC signal dominates over the GC shot noise, imply-
ing that Eq. (6.42) is indeed the theoretical limit for uncertainties. In the presence of
multiple, independent window functions, we simply sum the relative signal-to-noise
expressions in quadrature.

We compute the cross-correlation power spectra, given in Eq. (6.35), using the
model presented in Section 6.3.2, and a�empt to recover the model parameters from
a noisy realization. To explore the inferred constraints as a function of angular reso-
lution and S/N levels, we do this in several multipole ranges of ` with `min = 2 and
varying `max.

�e parameters of interest in our analysis are the amplitude of the GWB kernel
K0 and the turnover redshi� z⇤. In addition to these, we also explore the bias bGW

and ⌦m to see if variations in Tg(k, r) can a�ect the inferred K(r), and to explore the
possible degeneracies between the GWB model and cosmology. To include the e�ects
of varying ⌦m we have precomputed the dark ma�er transfer functions for a grid of
⌦m values and have inferred the results for the intermediate values through nearest-
neighbor interpolation. We have employed a Gaussian likelihood function on C` with
diagonal covariance matrix given through Eq. (6.77), and the prior ranges shown in
Table 6.1. Note that since we expectK0 to be degenerate with bGW, we do not varyK0

itself, but rather vary the combination bGWK0.
�e main results of the analysis are summarised in Fig. 6.3, where we show the

expected constraints on the parameters of interest as a function of the maximum mul-
tipole included in the analysis. We also o�er the corresponding cosmic-variance-only
signal-to-noise ratios.

https://github.com/valerivardanyan/GW-GC-CrossCorr
https://github.com/valerivardanyan/GW-GC-CrossCorr
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Figure 6.3: Constraints on the GWB parameters (bGWK0, z⇤) and cosmology (⌦m) ob-
tained using the cross-correlation signal with two window functions as a function of
the maximum multipole included in the analysis. Cosmic-variance limited measure-
ments are assumed for all the constraints, so these should be understood as the best-
case scenario results. Larger values of the signal-to-noise ratio (S/N) correspond to
be�er angular resolution (see Eq. 6.42). We have explored the e�ect of ⌦m on these
constraints by either �xing its value (top panel), or se�ing a Planck-2018-like Gaus-
sian prior (bo�om panel). Remarkably, the combination bGWK0 can be constrained
even with very limited angular sensitivity. �e turnover location z⇤ is practically un-
constrained for `max . 50, and ⌦m is prior dominated for these multipoles. In case
of `max & 50 all the relevant parameters are tightly constrained, and for `max ⇠ 100
the constraints are at the level of a few percent. Notably, the cosmology (mimicked by
varying⌦m in our analysis) canmatch and surpass the CMB results only in case of high
angular resolution/signal-to-noise. For reference, `max = 100 roughly corresponds to
2 degrees.
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Parameter Fiducial value Prior
bGWK0 1 [0.01, 100]
bGW 1 [0.1, 10]
z⇤ 1 [0.5, 1.5]
⌦m 0.32 G(0.32, 0.013)

Table 6.1: Prior ranges of the sampled parameters. For ⌦m we use a Planck-2018
inspired Gaussian prior.

Let us �rst have a look at the top panel of the �gure, which corresponds to a �xed
⌦m value. As we see, bGWK0 is constrained and, notably, this is true even in the lim-
ited multipole range corresponding to `max = 10. �is is expected, as a clear signal
detection is associated with a measurement of its amplitude. On the other hand, less
encouraging are the results for the turnover redshi� z⇤, which can be constrained only
for `max & 50 or, equivalently, an S/N of ⇠ 33. In the bo�om panel of the �gure, we
now impose a Gaussian prior on⌦m, with its variance being comparable to the Planck-
2018 constraint on ⌦m. While the z⇤ results are not a�ected, the uncertainties on the
amplitude are now slightly in�ated due to a degeneracy between ⌦m and bGWK0.

Let us now fully concentrate on the two limiting angular sensitivities in our anal-
ysis. �e turn-over redshi� z⇤ is unconstrained for the low-resolution case, while it is
tightly constrained for the case of `max = 100. �e dark ma�er abundance⌦m is prior
dominated for the low-resolution case, while it beats the prior in the high-resolution
scenario.

Before turning to the next section, we want to mention that the results presented in
this section depend on the precise details of the GC window functions and GWB detec-
tion, and more accurate results can only be obtained by performing a realistic forecast
with exact survey/detector speci�cations. While we leave a more detailed investigation
for future research, our results suggest that a cosmic-variance limited measurement of
the GWB anisotropies down to ` ⇠ 100 can tightly constrain the redshi� evolution of
the GW kernel K̃.

6.4 Resolved events

6.4.1 Formalism
Gravitational wave propagation

In GR, the amplitude of GWs on top of Friedmann-Lemaitre-Robertson-Walker (FLRW)
background evolves according to

h
00
↵
+ 2Hh

0
↵
� ~r2

h↵ = 0, (6.43)
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where h↵ denotes the amplitude of either polarization (↵ 2 [⇥,+]), primes denote
derivatives with respect to the conformal time, andH is the conformal Hubble function.
In this equation, the prefactor of the Laplacian term controls the propagation speed,
which we have set to coincide with the speed of light in c = 1 units.

�e second term is the standard cosmic friction term and its impact, combined with
conservation of gravitons, causes the strain amplitude to decay as h↵(z) / D

�1
L (z),

with DL being the FLRW luminosity distance:

DL(z) = (1 + z)

Z
z

0

dz̃

H(z̃)
, (6.44)

where the Hubble functionH(z) is given in terms of the Hubble constantH0, present-
day dark ma�er abundance ⌦m and dark energy abundance ⌦DE(z) as

H(z) = H0

⇥
⌦m(1 + z)3 +⌦DE(z)

⇤
. (6.45)

�roughout this section we assume a constant equation of state w0 for dark energy,
such that its energy density is given by

⌦DE(z) = (1�⌦m)(1 + z)3(1+w0). (6.46)

�e standard ⇤CDM cosmology corresponds to w0 = �1.
It is now established that modi�cations of GR can a�ect the propagation of GWs.

�e important e�ect for us is the modi�ed friction term with respect to the GR expec-
tation in Equation (6.43),

h
00
↵
+ [2 + ↵M (z)]Hh

0
↵
� ~r2

h↵ = 0, (6.47)

where we have introduced an additional function ↵M modelling this change. Once
again, we imposed the GW speed to be unity as suggested by observations. �e mod-
i�ed friction term introduces a new scaling h↵(z) / 1/DL,GW(z), with DL,GW(z) 6=
DL(z) for non-zero ↵M (z). �e luminosity distance to GW events can be wri�en as:

DL,GW

DL,EM
(z) = exp

⇢
�1

2

Z
z

0
dz̃

↵M (z̃)

(1 + z̃)

�
. (6.48)

In this work, we assume that the luminosity distance for EM sources DL,EM is unaf-
fected and is equal to the expression in Equation (6.44). �e function ↵M corresponds
to the running of the e�ective Planck mass, i.e.,

↵M =
d log(Me↵/MP)2

d log a
, (6.49)

whereMP is the Planck mass andMe↵ is its e�ective value at redshi� z = 1/a�1. �is
function encodes information about extensions of GR such as scalar-tensor theories
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that predict the existence of a gravitational scalar degree of freedom non-minimally
coupled to curvature (Horndeski, 1974; Bellini and Sawicki, 2014). �is scalar degree
of freedom can also propagate as a scalar wave. Still, its e�ects are expected to be
suppressed on Earth, where local tests of gravity place tight constraints on deviations
from GR (see e.g. Berto�i et al., 2003). However, notice that this restoration of the GR
limit does not impact the e�ect discussed here, Eq. (6.48) is an integrated e�ect, and
the impact of the local region of observation is minimal. More broadly, it should be
noted that this modi�ed friction term is also a natural prediction of quantum gravity
(Calcagni et al., 2019) and non-local modi�cations of gravity (Dirian et al., 2016).

From an e�ective �eld theory point of view, ↵M (z) is a free function of order unity.
However, in practical studies of modi�ed gravity and dark energy, ↵M is o�en assumed
to take simple parametric forms. �e main guiding principle is the assumption that its
e�ects should be negligible in the early universe, which prompts to choose ↵M (z) to
be proportional either to the dark energy abundance or simply to some power of the
scale factor a.

Such parametrizations make it possible to �nd a closed form expression for the
ratio in Equation (6.48) and have inspired a widely used parametrization of the ratio as
a monotonic deviation which goes to 1 at present day (Belgacem et al., 2018)

DL,GW

DL,EM
(z) = ⌅0 +

1� ⌅0

(1 + z)n
. (6.50)

In this expression, ⌅0 and n are two constant parameters typically ⇠ 1.

Angular power-spectra

We consider GW mergers with a distribution in redshi� wri�en as

nGW(z) =
n0

1 + z
, (6.51)

wheren0 corresponds to the comoving number density of observed events as a function
of redshi�, and the term (1 + z) takes into account the cosmological time dilation. In
our analysis for this section, we use a constant value of n0 ⇡ 3⇥ 10�6

h
3Mpc�3 (with

h denoting here the usual normalized Hubble constant), motivated by current LIGO
constraints (Abbo� et al., 2020).

For a given selection of sources along the line of sight, the average number of pro-
jected sources can be wri�en using the comoving distance �(z):

n̄gw =

Z 1

0
dz
�
2(z)

H(z)
S(z)nGW(z). (6.52)

�e function S encodes the selection, and the sca�er due to observational errors.
In this section, simple bins in a range [DL,min, DL,max] are used and we assume a log-
normal distribution with �xed sca�er �lnD for the individual sources (Oguri, 2016). In
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this case, S can be wri�en as:

S(z) =
1

2
[xmin(z)� xmax(z)] , (6.53)

with

xmin(z) = erfc


lnDL,min � lnDL,GW(z)p

2�lnD

�
, (6.54)

and similarly for xmax. Including this e�ect makes S resemble a top-hat function with
damping tails dictated by �lnD .

�e angular power spectrum of these sources can be wri�en using the Limber ap-
proximation

CGW(`) =

Z 1

0
dz

H(z)

�2(z)
W

2
GW(z)b2GW(z)P

✓
`+ 1/2

�(z)
, z

◆
, (6.55)

where P (k, z) is the ma�er power-spectrum at redshi� z and comoving scale k, bGW

is the bias of the GW sources, and the window function can be wri�en as

WGW(z) =
�
2(z)

H(z)

nGW(z)

n̄GW
S(z). (6.56)

For the purpose of illustration, we will make use of a few simple parametrization
for the GW bias. We will consider either a constant bias bGW with a value of order
unity or a more complex form:

bGW(z) = b0

✓
1 +

1

D(z)

◆
, (6.57)

whereD(z) represents the growth factor. �e �rst model, with its low constant value,
mimics a PBH origin for the mergers (Bird et al., 2016; Raccanelli et al., 2016), while
the second mimics the stellar evolution case by tracking the galaxy linear bias (Oguri,
2016).

Similarly to the GW population, we again assume a constant comoving number
density of galaxies. �roughout our analysis we �x

ngal(z) = 10�3
h
3Mpc�3

, (6.58)

and we write the autocorrelation signal of galaxies under the Limber approximation as

Cgal(`) =

Z 1

0
dz

H(z)

�(z)2
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2
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◆
. (6.59)
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In this expression the de�nition of Wgal is the same as WGW used in the previous
section except for using ngal(z), a di�erent selection function, and bgal(z) is the linear
galaxy bias. In our analyses, we assume a known galaxy bias in the form of

bgal(z) = 1 +
1

D(z)
. (6.60)

In general, this function is expected to be accurately measured from the galaxy auto-
correlation signal alone.

In this section, we employ a top-hat selection function forWgal, which assumes no
uncertainty in galaxy redshi� estimates. �is choice mimics a spectroscopic galaxy sur-
vey or a general redshi� survey with negligible uncertainties. As an example, another
choice commonly found in the literature is a Gaussian distribution N (z,�gal), where
�gal should be much larger than the expected redshi� uncertainty for each galaxy.

By combining the distribution of GW sources and galaxies, one can construct a
cross-correlation map. In our formalism, we write the cross-correlation between a GW
bin i and a galaxy bin j (fully speci�ed by their respective window functions) as:

C
ij

⇥ (`) =

Z 1

0
dz

H(z)

�2(z)
W
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GW(z)W j

gal(z)⇥ bGW(z)bgal(z)P

✓
`+ 1/2

�(z)
, z

◆
. (6.61)

Note that this signal is di�erent from the GWB cross-correlation of Eq. (6.35) from the
previous section.

We conclude this subsection by pointing out that the power spectra in Equations
(6.59), (6.55) and (6.61) do not include relativistic terms and do not capture the e�ects of
evolution and lensing bias (see e.g. Scelfo et al., 2018a, 2020, for a detailed treatment).
Speci�cally, while the lensing bias should be negligible compared to the luminosity
distance uncertainties at the redshi�s considered here (see Section 6.2), the same is not
true for relativistic e�ects. �erefore, we choose not to consider small values of ` in the
analysis of this section since the signal at these large angular scales is largely dictated
by them.

Constraining the propagation

�e primary goal of the subsection is to demonstrate how to reconstruct the properties
of GW propagation and source clustering as a function of redshi�. We show how to
recover an assumed �ducial model using mock angular power spectra with cosmic-
variance or shot-noise limited uncertainties.

Our methodology hinges on the fact that by cross-correlating a GW luminosity
distance bin with multiple galaxy redshi� bins, we can determine the redshi� of the
GW sources bymatching the clustering properties of the two at the true redshi� (Oguri,
2016; Bera et al., 2020).
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Figure 6.4: �e cross-correlation signal between GW sources at z = [0.9, 1.1]
(shaded area) and galaxies at di�erent redshi�s (zgal). If the luminosity distance ra-
tioDL,GW/DL,EM(z) in Equation (6.50) is di�erent from its GR assumption (⌅0 6= 1),
the location of the predicted cross-correlation peak is also a�ected.
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We demonstrate this idea in Figure 6.4, where we have considered GW sources
located at redshi� [0.9, 1.1] in a GR cosmology where DL,GW(z) = DL,EM(z). �is
�gure shows the expected cross-correlation signal between the angular distribution of
these sources and the angular distribution of galaxies located at various redshi�s. As
expected, in GR (⌅0 = 1), the signal peaks inside the correct redshi� range (shaded
area). However, as we depart from the GW luminosity distance relation, the location
of this peak is a�ected.

6.4.2 Forecast
Model set-up

In this section, we describe the recipe used to generate the mock angular power spec-
tra (Cgal, CGW, and C⇥) that are fed into our reconstruction pipeline together with
their error covariance matrix. �ese angular power-spectra are extracted from the au-
tocorrelation and cross-correlation maps representing the sky distribution of galaxies
and GW sources when describing actual data. �e recipe has three main ingredients:
the details of the �ducial model, a description of the instrumental con�guration and a
de�nition of the dominant source of error.

�e �rst ingredient is the �ducial model. Our decision in this case is based on the
results of Baker and Harrison (2021), where present-day constraints on the function
↵M appearing in Equation (6.48) are presented. As shown in Belgacem et al. (2019), the
results of the ↵M / a parametrization found in that work can be mapped to the ⌅(z)
function in Equation (6.50). Using this transformation, we �nd that the 3� upper limit
roughly corresponds to

⌅0 . 1.4, (6.62)

with n = 1. �us, we assume a �ducial model with ⌅fid
0 = 1.4 and n

fid = 1, repre-
senting the limit of our present understanding.

�e second ingredient of our forecast is the instrumental con�gurations. �e size
of our data vector is given by the number of multipoles ` and window functions that
we include in our analysis. Since both are primarily dictated by observational consid-
erations, in this work, we assume an optimistic combination of a network of three Ein-
stein Telescopes (Maggiore et al., 2020b; Hall and Evans, 2019) capable of a log-sca�er
in measured DL,GW of �lnD = 0.05, and a high-z redshi� survey with extensive sky
coverage and negligible redshi� uncertainties (such as, e.g., the Square Kilometer Ar-
ray, Weltman et al., 2020).

�e range of angular scales that we consider is limited by two factors. On small
scales, large multipoles (` > 100) are excluded due to the angular resolution of about
1 degree expected for our GW detector con�guration of choice (Hall and Evans, 2019).
On large scales, we do not explore values of ` < 10 because our modeling does not
consider the relativistic e�ects dominating the signal at these scales. Nevertheless, we
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Parameter Prior
Node amplitudes [0, 11] (Uniform)

Correlation length (L) [1, 10] (Uniform)
⌦m 1% (Gaussian)
h 1% (Gaussian)
w0 5% (Gaussian)

Table 6.2: Summary of the priors imposed before reconstructing bGW/bgal (z) and
DL,GW/DL,EM (z) using 4 nodes each. �e GP hyper-parameters (i.e., the 2 correla-
tion lengths and the 4⇥ 2 amplitudes) are explored independently. �e �ducial model
is given by ⌅0 = 1.4, n = 1,⌦m = 0.31, h = 0.67, w0 = �1.

stress that these multipoles contribute relatively li�le information compared to larger
multipoles since they are dominated by cosmic variance.

Our window functions are distributed in the redshi� range [0.1, 3]. We assume
Ngal = 12 galaxy bins equally spaced in redshi�, and NGW = 8 GW luminosity dis-
tance bins equally spaced in DL,GW. We mention in particular that this choice is not
completely arbitrary. �e number of GW bins is motivated by forcing well-de�ned bins
such that their width is at least three times the luminosity distance uncertainty �lnD

that we have assumed. Furthermore, we have also veri�ed that the exact number of
galaxy bins does not dominate our results as long as Ngal > NGW.

As for the last ingredient, we assume cosmic-variance or shot-noise limited uncer-
tainties. In this case, we can write the covariance matrix of the autocorrelation and
cross-correlation signals de�ned in Equations (6.55), (6.59) and (6.61) as the following:

Cov
⇥
C

ij(`)Cmn(`0)
⇤
=

�``0

(2`+ 1)fsky
⇥
⇣
C̃

im
C̃

jn + C̃
in
C̃

jm

⌘
, (6.63)

where the indices i, j,m, n can represent both galaxy or gravitational wave bins. �e
terms C̃im contain the shot-noise contribution when they represent the autocorrela-
tions in the same bin:

C̃
im(`) = C

im(`) +
�im

n̄
, (6.64)

where n̄ is the average density of projected objects from Equation (6.52). In this work,
we assume a survey covering a sky fraction equal to fsky = 0.5.

Gaussian Processes

Similarly to what was done in subsection 6.3.2, we try to recover our assumed param-
eters. �e main di�erence, in this case, is that we focus on the posteriors of bGW(z)
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and DL,GW/DL,EM(z) according to a Gaussian Process (GP) reconstruction. Our pri-
ors in Table 6.2 are imposed both on physical parameters (⌦m, w0, H0) and also on the
GP parameters. We consider a certain number of redshi� nodes for the two functions,
referred to as training nodes with a slight abuse of terminology. �e amplitudes of the
nodes are free and, given a node con�guration, we consider GPs which pass through
all of these nodes exactly. To render our scenario computationally feasible and not
consider many functions for each node con�guration, we use the GPs regressor of the
python package sklearn to output the best �t and use this as our function.

Our use of GPs can be thought of as a binning of the functions of interest in redshi�
space, and imposing a certain prior correlations between the bins. �ese correlations
are speci�ed by the GP kernel function, which in our case is chosen to be

(zi, zj ; L) / exp

(
�1

2

✓
|zi � zj |

L

◆2
)
, (6.65)

where L is the so-called correlation length. �is kernel is �exible enough for our pur-
poses, and we do not expect the detailed choice to have any signi�cant impact on our
results. For computational purposes, we generate the GPs using a baseline around
DL,GW/DL,EM (z) = 1. �is baseline makes the GPs reconstruction to e�ciently re-
turn to DL,GW/DL,EM (z) = 1 when not pushed toward other values by the training
nodes. For the functionDL,GW/DL,EM(z)we also arti�cially impose the physical con-
straint DL,GW/DL,EM(z = 0) = 1 (see Eq. 6.48).

For the setup described in this subsection, we �nd a total SNR of the GW-gal and
GW-GW angular power-spectra of⇠ 37. �is value is dominated by the GW-gal cross-
correlations since the GW-GW autocorrelations are not well measured (SNR. 6). To
generalize our choices, in section 6.4.2 we expand on how di�erent combinations of
instrumental speci�cations can a�ect the precision of the reconstruction.

Results

�e results of our Gaussian process reconstruction of the bias b(z) and luminosity dis-
tance ratio DL,GW/DL,EM(z) is presented in Figure 6.5. In the same �gure, we also
compare these constraints to di�erent theoretical models. In the case of the luminosity
distance ratio, we use the parametrization

↵M (z) = ↵0


H0

H(z)

�2
, (6.66)

where we use the Equation (6.45) with w0 = �1 to obtain the plo�ed lines (Bel-
gacem et al., 2019). On the other hand, for bGW/bgal (z) we plot the lines correspond-
ing to constant values of bGW (z), while keeping the galaxy bias �xed to the expres-
sion in Equation (6.60). As expected, we observe how the �ducial models for both
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Figure 6.5: Con�dence intervals (68%, in black, and 95%, in lighter grey) of the jointly
reconstructed functions DL,GW/DL,EM (z) and bGW/bgal (z). Together with the as-
sumed �ducial model, we also plot the expectation for di�erent models (see text for
more details). �e vertical lines mark the �xed location of the nodes used in the GP
reconstruction.
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DL,GW/DL,EM (z) and bGW/bgal (z) are well encoded within the reconstructed con�-
dence contours in both panels of Figure 6.5. �e constraints at higher redshi� (z ⇡ 3)
for both reconstructions are broader. �is is an e�ect that could not be seen if a para-
metric function was used for DL,GW/DL,EM (z), for instance, as the parametrization
would have �xed the behavior similarly at low and higher redshi�s.

In principle, the output of our sampling can also be used to reconstruct the function
↵M (z) by calculating the numerical derivative of DL,GW/DL,EM (z). For this paper,
however, we chose not to do this. �e kernel in Equation (6.65) can be interpreted as
a smoothness prior, and the value of ↵M (z) is directly a�ected by it. Because of this,
if one is interested in inferring ↵M (z), GPs should be used to sample this function
directly.

�e constraining power of our method crucially depends on several observational
speci�cations. �e most relevant parameters are (1) the angular sensitivity, speci�ed
by the maximum multipole `max of the angular power spectra; (2) the number of GW
sources, which is speci�ed by the comoving number density nGW; and (3) the precision
of the GW luminosity distance measurements �lnD . In the case of nGW, we adjust the
value of n0 in Equation (6.51) as a way to explore di�erent values of the total number
of observed GW events, N = 4⇡fskyn̄GW. �is, in principle, should include selection
e�ects not captured by our formalism. Obviously, for a given experimental con�gura-
tion, the mentioned three variables are not independent, but it is still interesting to �nd
the dependence of our results on each one of them separately. �is allows us to reach
conclusions without relying on speci�c experiments and to suggest potential design
guidelines for future GW detectors.

To a�ain such insights, in this subsection, we consider constraints on the paramet-
ric expression in Equation (6.50), as well as the parametric GW bias given by Equa-
tion (6.57). For simplicity, we �x n = 1 and only constrain the parameter ⌅0.

When varying `max and N , we keep the rest of the con�guration (including the
luminosity distance binning) �xed. Each case of �lnD , on the other hand, is accom-
panied by an adjustment in the number of luminosity distance bins. �is is done to
be consistent with our binning strategy, namely that the luminosity distance width of
each bin is at least O(3) times wider than �lnD .

Our results are summarized in Figure 6.6, where we plot the anticipated uncertain-
ties in ⌅0 (upper panel) and b0 (lower panel) as a function of the SNR of the cross-
correlation in Equation (6.61).

For a �xed �lnD , the constraining power on⌅0 and b0 is almost entirely determined
by the cross-correlation SNR. �is fact suggests that no ma�er how the given SNR is
realized (either by increasing the number of sources or by improving the angular sensi-
tivity), the expected constraints will be the same. �is implies that the results presented
in this section can be easily scaled to di�erent con�gurations. Unsurprisingly, we �nd
that the constraints scale as 1/SNR.

�e situation is somewhat di�erent for the case of varying �lnD (and the number of
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Figure 6.6: Scaling of the observed constraints with the cross-correlation SNR. Using
a parametrized model for bGW/bgal (z) and DL,GW/DL,EM (z) we explore the con-
straining power of our method as a function of the number of observed GW sources
N = [0.7, 4, 7, 13, 20] ⇥ 104, angular resolution `max = [20, 40, 60, 80, 100] and lu-
minosity distance uncertainty �lnD = [0.5, 0.3, 0.2, 0.075, 0.05]. As visible from the
�gure, the data SNR completely captures the e�ect on the observed uncertainties �b0

and�⌅0 in the �rst two cases. In the case of �lnD , we observe that the increase in con-
straining power forDL,GW/DL,EM (z) is steeper due to the larger number of window
functions that we can build to sample DL,GW (z).
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luminosity distance bins). �e constraints on the bias still follow the same form (see the
lower panel), but the scaling of the ⌅0 constraints, on the other hand, is much steeper
than in the cases of varying `max and nGW, roughly 1/SNR3. �is fact can be qual-
itatively understood by remembering the importance of the relative positions of GW
and galaxy window functions demonstrated in Figure 6.4. Sampling this relation with
a higher number of window functions increases the precision of our reconstruction.

�e results presented in this section quantify the importance of accurate luminosity
distance measurements and demonstrate the bene�t that smaller values of �lnD can
bring to a binned approach.

6.4.3 Comparison with previous works

Our formalism, based on binned angular power-spectra and sky maps, is optimal for
many sources with no known counterpart. Its main advantages are related to the sim-
ple modeling of the theoretical signals and their data covariance matrix. Because no
reconstruction of the underlying density �eld is necessary, the predictions display a
clear separation of scales. For example, the angular scales that we have considered hare
are all within the linear regime (k . 0.1Mpc�1). Furthermore, because this formalism
is well established, our shot-noise limited covariance matrix can be easily generalized
to include additional sources of (co-)variance.

Although a comprehensive comparison between multiple approaches is outside the
scope of this work, it is worth discussing how our results compare to others found in
the literature. However, we preface this by saying that one-to-one comparisons are
o�en complicated either by signi�cantly di�erent assumptions or the impossibility of
directly translating these assumptions from one prescription to another. Despite this,
here, we draw a parallel between our method and two other methods.

�e �rst method is the one used in Mukherjee et al. (2020), which has also been
shown to be extremely successful in measuring both bGW (z) and DL,GW (z) using
parametric models. Similarly to this work, the information is also extracted from the
cross-correlation with redshi� sources, but no binning of the GW data is performed.
In this case, we have veri�ed that such methods perform signi�cantly be�er than our
map-based approach in the case of a low number density of GW sources and large
uncertainty in themeasuredDL,EM (z). �ese features, in particular, make it especially
useful for near-future samples of a few tens of objects.

�e second promising method to measure DL,GW (z) proposed in the literature is
o�ered by GW sources with known counterparts. Such observations give direct access
toDL,GW as a function of redshi� and can be combined with similar measurements in
the EM spectrum to obtainDL,GW/DL,EM (z). �e analysis of Belgacem et al. (2020) is
based on this methodology and, similarly to ours, also employs GPs to reconstruct this
ratio from an Einstein Telescope sample with⇠ 102 sources. Ultimately, we expect this
counterpart-based formalism and the one described in this work to be complementary:
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a direct measure of DL,GW (z) can be used to break the degeneracy between the bias
and luminosity distance reconstruction. However, we do not a�empt to combine the
two methods here because the fraction of events with known counterparts that will
be observed is heavily dependent on both the GW source distribution and multiple
instrumental setups.

6.5 Conclusions
In Section 6.2 we have explored the impact of gravitational lensing on the soon to be
measured merger rates of GW mergers. �ese results o�er guidance when interpret-
ing magni�cation e�ects and are intentionally agnostic regarding detector or source
population. �e main result is that the presence of a lensed population in an observed
sample is easily recognizable. �is conclusion hinges only on the weak dependence of
the inferred binary properties on the factor µ and provides a general explanation for
the established result that lensing contamination for luminosity-limited GW events are
low for a wide range of detectors and source populations (e.g. Sereno et al., 2010; Ding
et al., 2015; Ng et al., 2018; Oguri, 2018).

In Section 6.3 we have quanti�ed for the �rst time the need for high-resolution GW
detectors to extract the total information content of the GWB of astrophysical origin.
In particular, we have shown that both a high angular resolution and a high signal-to-
noise ratio (` ⇠ 100, S/N ⇠ 70) are required to recover both the ma�er abundance⌦m

and features of the kernel K(r) as a function of redshi�. Note, in particular, that these
requirements exceed the angular resolution of present-day and near-future detectors
(roughly ` . 10, and even ` . 4 for LISA (Ungarelli and Vecchio, 2001; LIGO Scien-
ti�c collaboration and VIRGO collaboration, 2019)). While this is not the priority of
currently proposed third-generation detectors (Maggiore et al., 2020a), it is worth not-
ing that the advantages of high-resolution gravitational-wave astronomy are numerous
and not limited to the study of this anisotropic background (Baker et al., 2019). Further-
more, the case for studying the cross-correlation is strengthened by noticing that the
anisotropies of the GWB in the kHz band will most probably �rst be measured through
cross-correlation with galaxy surveys. �e galaxy map provides a guiding pa�ern look
into the noisy GW data and therefore enhances the SNR.

Finally, the work presented in Section 6.4 shows that the combination of GW re-
solved events and the clustering of galaxies is expected to improve our current knowl-
edge of the physics of GW mergers and GW propagation. We have discussed how to
reconstruct these properties as a function of redshi� in a generic way and highlighted
the need for accurate and precise measurements of DL,GW. �is will require control
over the instrument calibration uncertainties (Cahillane et al., 2017), but also the degen-
eracy between the inclination of the source and its luminosity distance (Ghosh et al.,
2016). In the future, we aim to apply our current analysis pipeline to the next generation
of large-scale structure surveys and incoming GW observations.
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Given the promising nature of our results, we believe that the cross-correlation
between GW and galaxy catalogs has the potential to be a robust observational probe
in the era of multimessenger cosmology.

Appendices

6A Shot-noise for the background cross-correlation
signal

We follow (Jenkins, Alexander C. and Sakellariadou, Mairi, 2019) and evaluate the shot-
noise contribution to the observed cross-correlation signal C⇥

`
in terms of the shot-

noise contribution to the covariance between the observed maps ⌦(r̂) and�(r̂0). Our
starting point is

B` =

Z
d
2r̂P`(r̂ · r̂0)Cov[⌦(r̂),�(r̂0)]SN. (6.67)

By keeping in mind that K̃(r) = r
2K(r)n̄(r) and that �g(~r) = (n(~r)� n̄(r)) /n̄

we use the de�nitions in Eqs. (6.22), (6.32) to write:

Cov[⌦(r̂),�(r̂0)]SN =

Z
dr

Z
dr

0 r
2

n̄
⇥ Cov[K(r)n(~r),Wi(r

0)n(~r0)]SN. (6.68)

As a side note, we point out that this expression is a stretch of notation since, for-
mally, the quantities K(r)n(~r) and W (r)n(~r) represent the mean values of the vari-
ables that we are trying to correlate. To proceed, we notice that W (r)n(~r) is propor-
tional to the number density of galaxies visible in the galaxy survey and thatK(r)n(~r)
is proportional to the number density of GW events around an in�nitesimal volume
centered in ~r. �is is con�rmed by the formalism used in the references mentioned
above, (Jenkins, Alexander C. and Sakellariadou, Mairi, 2019) and (Cusin et al., 2018),
to predict a realistic K(r).

In a �nite volume �Vi we write down the number of GW mergers as

⇤i =
NiX

k

�k, (6.69)

whereN is the number of galaxies present in this volume and the �j-s are the number
of events for each galaxy. If we assume that N and �k are Poisson distributed, ⇤i

follows a compound Poisson distribution with variance

Var[⇤i] = h⇤2
i
i � h⇤ii2 = hNii

�
h�i+ h�i2

�
. (6.70)
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If we call f the fraction of galaxies in the volume �Vj visible in the galaxy survey
we also derive:

Cov[fNj ,⇤i] = fhNih�i�ij , (6.71)

where �ij is the Kronecker delta. By going back to the continuous case, we obtain the
following result:

Cov[K(r)n(~r),Wi(r
0)n(~r0)]SN = n̄(r)Wi(r)K(r)�3(~r�~r0). (6.72)

Finally, by plugging everything into Eq. (6.67), we obtain the result shown in the
main text:

B` =

Z
dr Wi(r)K(r). (6.73)

6B Cosmic variance of the background
cross-correlation signal

Assume we have twomaps on the sky, corresponding to the GWB and GC anisotropies.
�e angular decomposition coe�cients aGW

`m
and aGC

`m
are assumed to be Gaussian ran-

dom variables with zero mean, and eachm-mode is drawn from the same distribution.
�e relevant angular power spectra are de�ned as

C
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`
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, C
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`

⌘ Var
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a
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`m

⇤
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`

⌘ Var
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a
GC
`m

⇤
. (6.74)

It is then trivial to construct an unbiased estimator of the cross-correlation power spec-
trum as

d
C

⇥
`

=
1

2`+ 1

+`X

m=�`

a
GW
`m

a
GC
`m

. (6.75)

�e variance of this estimator can then be shown to be
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. (6.76)

In summary, we have

VarC⇥
`

=
C

GW
`

C
GC
`

+
�
C

⇥
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�2

2`+ 1
, (6.77)
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where we have used the Gaussianity of a`m’s. Making the aGC
`m

! a
GW
`m

replacement
turns this expression into

VarCGW
`

=
2
�
C

GW
`

�2

2`+ 1
, (6.78)

which, of course, recovers the usual cosmic variance result.
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Albert Einstein. Über Gravitationswellen. Sitzungsberichte der Königlich Preußischen
Akademie der Wissenscha�en (Berlin), Seite 154-167., 1918.

Daniel Foreman-Mackey, DavidW. Hogg, Dustin Lang, and Jonathan Goodman. emcee:
�e MCMC Hammer. Publ. Astron. Soc. Pac., 125:306–312, 2013. doi: 10.1086/670067.

Archisman Ghosh, Walter Del Pozzo, and Parameswaran Ajith. Estimating parameters
of binary black holes from gravitational-wave observations of their inspiral, merger
and ringdown. Phys. Rev. D, 94(10):104070, 2016. doi: 10.1103/PhysRevD.94.104070.

R. Hada and T. Futamase. Forecasts of cosmological constraints from Type Ia super-
novae including the weak-lensing convergence. arXiv e-prints, October 2018.

Evan D. Hall and Ma�hew Evans. Metrics for next-generation gravitational-wave
detectors. Classical and �antum Gravity, 36(22):225002, November 2019. doi:
10.1088/1361-6382/ab41d6.



Bibliography 173

O. A. Hannuksela, K. Haris, K. K. Y. Ng, S. Kumar, A. K. Mehta, D. Keitel, T. G. F. Li, and
P. Ajith. Search for Gravitational Lensing Signatures in LIGO-Virgo Binary Black
Hole Events. ApJ, 874(1):L2, Mar 2019. doi: 10.3847/2041-8213/ab0c0f.

Stefan Hilbert, Simon D. M. White, Jan Hartlap, and Peter Schneider. Strong lensing
optical depths in a ⇤CDM universe. MNRAS, 382(1):121–132, Nov 2007. doi: 10.
1111/j.1365-2966.2007.12391.x.

Daniel E. Holz and Eric V. Linder. Safety in numbers: Gravitational lensing degradation
of the luminosity distance–redshi� relation. �e Astrophysical Journal, 631(2):678–
688, oct 2005. doi: 10.1086/432085.

Gregory Walter Horndeski. Second-order scalar-tensor �eld equations in a four-
dimensional space. Int. J.�eor. Phys., 10:363–384, 1974. doi: 10.1007/BF01807638.

Bin Hu, Marco Raveri, Noemi Frusciante, and Alessandra Silvestri. E�ective Field�e-
ory of CosmicAcceleration: an implementation in CAMB. Phys. Rev., D89(10):103530,
2014. doi: 10.1103/PhysRevD.89.103530.

Alexander C. Jenkins, Mairi Sakellariadou, Tania Regimbau, and Eric Slezak.
Anisotropies in the astrophysical gravitational-wave background: Predictions for
the detection of compact binaries by LIGO and Virgo. Phys. Rev., D98(6):063501,
2018. doi: 10.1103/PhysRevD.98.063501.

Alexander C. Jenkins, Joseph D. Romano, and Mairi Sakellariadou. Estimating the an-
gular power spectrum of the gravitational-wave background in the presence of shot
noise. 2019a.

Alexander C. Jenkins, Mairi Sakellariadou, Tania Regimbau, Eric Slezak, Richard
O’Shaughnessy, and Daniel Wysocki. Response to Cusin et al’s comment on
arXiv:1810.13435. 2019b.

Jenkins, Alexander C. and Sakellariadou, Mairi. Anisotropies in the stochastic
gravitational-wave background: Formalism and the cosmic string case. Phys. Rev.,
D98(6):063509, 2018. doi: 10.1103/PhysRevD.98.063509.

Jenkins, Alexander C. and Sakellariadou, Mairi. Shot noise in the astrophysical
gravitational-wave background. 2019.

Bence Kocsis, Zsolt Frei, Zoltan Haiman, and Kristen Menou. Finding the electromag-
netic counterparts of cosmological standard sirens. �e Astrophysical Journal, 637(1):
27–37, jan 2006. doi: 10.1086/498236.

Macarena Lagos, Maya Fishbach, Philippe Landry, and Daniel E. Holz. Standard sirens
with a running Planck mass. Phys. Rev. D, 99(8):083504, April 2019. doi: 10.1103/
PhysRevD.99.083504.



174 Bibliography

Antony Lewis. GetDist: a Python package for analysing Monte Carlo samples. 2019.

LIGO Scienti�c collaboration and VIRGO collaboration. Directional limits on persis-
tent gravitational waves using data from Advanced LIGO’s �rst two observing runs.
Phys. Rev. D, 100(6):062001, September 2019. doi: 10.1103/PhysRevD.100.062001.

P. Madau, L. Pozze�i, and M. Dickinson. �e Star Formation History of Field Galaxies.
ApJ, 498:106–116, May 1998. doi: 10.1086/305523.

Michele Maggiore, Chris Van Den Broeck, Nicola Bartolo, Enis Belgacem, Daniele
Bertacca, Marie Anne Bizouard, Marica Branchesi, Sebastien Clesse, Stefano Fo�a,
Juan Garcı́a-Bellido, Stefan Grimm, Jan Harms, Tanja Hinderer, Sabino Matarrese,
Cristiano Palomba, Marco Peloso, Angelo Ricciardone, and Mairi Sakellariadou.
Science case for the einstein telescope. Journal of Cosmology and Astroparticle
Physics, 2020(03):050–050, mar 2020a. doi: 10.1088/1475-7516/2020/03/050. URL
h�ps://doi.org/10.1088%2F1475-7516%2F2020%2F03%2F050.

Michele Maggiore et al. Science Case for the Einstein Telescope. JCAP, 03:050, 2020b.
doi: 10.1088/1475-7516/2020/03/050.

Jose Marı́a Ezquiaga. Hearing gravity from the cosmos: GWTC-2 probes general rela-
tivity at cosmological scales. arXiv e-prints, art. arXiv:2104.05139, April 2021.

D. V. Martynov, E. D. Hall, B. P. Abbo�, R. Abbo�, T. D. Abbo�, C. Adams, R. X. Ad-
hikari, R. A. Anderson, S. B. Anderson, K. Arai, and et al. Sensitivity of the Advanced
LIGO detectors at the beginning of gravitational wave astronomy. Phys. Rev. D, 93
(11):112004, Jun 2016. doi: 10.1103/PhysRevD.93.112004.

Suvodip Mukherjee, Benjamin D. Wandelt, and Joseph Silk. Testing the general theory
of relativity using gravitational wave propagation from dark standard sirens. 12 2020.
doi: 10.1093/mnras/stab001.

Ma�ia Negrello, R. Hopwood, G. De Zo�i, and et al. �e Detection of a Population of
Submillimeter-Bright, Strongly Lensed Galaxies. Science, 330(6005):800, Nov 2010.
doi: 10.1126/science.1193420.

K. K. Y. Ng, K. W. K. Wong, T. Broadhurst, and T. G. F. Li. Precise LIGO lensing rate
predictions for binary black holes. Phys. Rev. D, 97(2):023012, January 2018. doi:
10.1103/PhysRevD.97.023012.

Masamune Oguri. Measuring the distance-redshi� relation with the cross-correlation
of gravitational wave standard sirens and galaxies. Phys. Rev. D, 93(8):083511, Apr
2016. doi: 10.1103/PhysRevD.93.083511.

https://doi.org/10.1088/1475-7516/2020/03/050


Bibliography 175

Masamune Oguri. Measuring the distance-redshi� relation with the cross-correlation
of gravitational wave standard sirens and galaxies. Phys. Rev. D, 93(8):083511, 2016.
doi: 10.1103/PhysRevD.93.083511.

Masamune Oguri. E�ect of gravitational lensing on the distribution of gravitational
waves from distant binary black hole mergers. MNRAS, 480(3):3842–3855, Nov 2018.
doi: 10.1093/mnras/sty2145.

A. M. Price-Whelan et al. �e Astropy Project: Building an Open-science Project and
Status of the v2.0 Core Package. Astron. J., 156(3):123, 2018. doi: 10.3847/1538-3881/
aabc4f.

Alvise Raccanelli, Ely D. Kovetz, Simeon Bird, Ilias Cholis, and Julian B. Munoz. De-
termining the progenitors of merging black-hole binaries. Phys. Rev. D, 94(2):023516,
2016. doi: 10.1103/PhysRevD.94.023516.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). �e MIT Press, 2005. ISBN
026218253X.

Marco Raveri, Bin Hu, Noemi Frusciante, and Alessandra Silvestri. E�ective Field�e-
ory of Cosmic Acceleration: constraining dark energy with CMB data. Phys. Rev.,
D90(4):043513, 2014. doi: 10.1103/PhysRevD.90.043513.

�omas P. Robitaille et al. Astropy: A Community Python Package for Astronomy.
Astron. Astrophys., 558:A33, 2013. doi: 10.1051/0004-6361/201322068.

B. S. Sathyaprakash, B. F. Schutz, and C. Van Den Broeck. Cosmography with the
Einstein Telescope. Classical and �antum Gravity, 27(21):215006, Nov 2010. doi:
10.1088/0264-9381/27/21/215006.

Giulio Scelfo, Nicola Bellomo, Alvise Raccanelli, Sabino Matarrese, and Licia Verde.
GW\times$LSS: chasing the progenitors of merging binary black holes. JCAP, 09:
039, 2018a. doi: 10.1088/1475-7516/2018/09/039.

Giulio Scelfo, Nicola Bellomo, Alvise Raccanelli, Sabino Matarrese, and Licia Verde.
Gwxlss: chasing the progenitors of merging binary black holes. Journal of Cosmology
and Astroparticle Physics, 2018(09):039–039, sep 2018b. doi: 10.1088/1475-7516/2018/
09/039.

Giulio Scelfo, Lumen Boco, Andrea Lapi, and Ma�eo Viel. Exploring galaxies-
gravitational waves cross-correlations as an astrophysical probe. JCAP, 10:045, 2020.
doi: 10.1088/1475-7516/2020/10/045.



176 Bibliography

Joop Schaye et al. �e EAGLE project: Simulating the evolution and assembly of galax-
ies and their environments. Mon. Not. Roy. Astron. Soc., 446:521–554, 2015. doi:
10.1093/mnras/stu2058.

P. Schechter. An analytic expression for the luminosity function for galaxies. ApJ, 203:
297–306, January 1976. doi: 10.1086/154079.

Bernard F. Schutz. Determining the Hubble Constant from Gravitational Wave Obser-
vations. Nature, 323:310–311, 1986. doi: 10.1038/323310a0.

Scikit-learn. Scikit-learn 0.19.1 documentation: Gaussian Processes. h�p://scikit-learn.
org/stable/modules/gaussian process.html, 2018. Accessed: 10-06-2019.

M. Sereno, A. Sesana, A. Bleuler, P. Jetzer, M. Volonteri, and M. C. Begelman. Strong
Lensing of Gravitational Waves as Seen by LISA. Physical Review Le�ers, 105(25):
251101, December 2010. doi: 10.1103/PhysRevLe�.105.251101.

L. P. Singer, D. A. Goldstein, and J. S. Bloom. �e Two LIGO/Virgo Binary Black Hole
Mergers on 2019 August 28 Were Not Strongly Lensed. arXiv e-prints, October 2019.

Graham P. Smith, Mathilde Jauzac, John Veitch, Will M. Farr, Richard Massey, and
Johan Richard. What if LIGO’s gravitational wave detections are strongly lensed by
massive galaxy clusters? MNRAS, 475(3):3823–3828, Apr 2018. doi: 10.1093/mnras/
sty031.

R. Takahashi, M. Oguri, M. Sato, and T. Hamana. Probability Distribution Functions of
Cosmological Lensing: Convergence, Shear, and Magni�cation. ApJ, 742:15, Novem-
ber 2011. doi: 10.1088/0004-637X/742/1/15.

A. Taruya, M. Takada, T. Hamana, I. Kayo, and T. Futamase. Lognormal Property of
Weak-Lensing Fields. ApJ, 571:638–653, June 2002. doi: 10.1086/340048.

Eric �rane, Stefan Ballmer, Joseph D. Romano, Sanjit Mitra, Dipongkar Talukder,
Sukanta Bose, and Vuk Mand ic. Probing the anisotropies of a stochastic
gravitational-wave background using a network of ground-based laser interferome-
ters. Phys. Rev. D, 80(12):122002, December 2009. doi: 10.1103/PhysRevD.80.122002.

Carlo Ungarelli and Alberto Vecchio. Studying the anisotropy of the gravitational wave
stochastic background with lisa. Phys. Rev. D, 64:121501, Nov 2001. doi: 10.1103/
PhysRevD.64.121501. URL h�ps://link.aps.org/doi/10.1103/PhysRevD.64.121501.

A. Weltman et al. Fundamental physics with the Square Kilometre Array. Publ. Astron.
Soc. Austral., 37:e002, 2020. doi: 10.1017/pasa.2019.42.

J. S. B. Wyithe and A. Loeb. Magni�cation of light from many distant quasars by grav-
itational lenses. Nature, 417:923–925, June 2002. doi: 10.1038/nature00794.

http://scikit-learn.org/stable/modules/gaussian_process.html
http://scikit-learn.org/stable/modules/gaussian_process.html
https://link.aps.org/doi/10.1103/PhysRevD.64.121501

