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Chapter 3

Splashback in symmetron
gravity

�e splashback radius rsp has been identi�ed in cosmological N -body simulations as
an important scale associated with gravitational collapse and the phase-space distribu-
tion of recently accreted material. We employ a semianalytical approach to study the
spherical collapse of dark ma�er halos in symmetron gravity and provide, for the �rst
time, insights into how the phenomenology of splashback is a�ected by modi�ed grav-
ity. �e symmetron is a scalar-tensor theory which exhibits a screening mechanism
whereby higher-density regions are screened from the e�ects of a ��h force. In this
model, we �nd that, as over-densities grow over cosmic time, the inner region becomes
heavily screened. In particular, we identify a sector of the parameter space for which
material currently si�ing at rsp has followed, during the collapse, the formation of this
screened region. As a result, we �nd that for this part of the parameter space the splash-
back radius is maximally a�ected by the symmetron force, and we predict changes in
rsp up to around 10% compared to its general relativity value. Because this margin is
within the precision of present splashback experiments, we expect this feature to soon
provide constraints for symmetron gravity on previously unexplored scales.

Omar Contigiani, Valeri Vardanyan, and Alessandra Silvestri
2019, Physical Review D, 99, 064030
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3.1 Introduction

Gravity, one of the fundamental forces of nature, plays a crucial role in inferring our
model of the cosmos as well as all the precision constraints placed on fundamental
physics through cosmology. �e theory of general relativity (GR), introduced by Ein-
stein a century ago (Einstein, 1916), provided a coherent theoretical framework within
which to study all gravitational phenomena. While it is arguably one of the most suc-
cessful theories of modern physics, having passed a host of empirical phenomena, there
remain regimes of curvature and scale where GR has yet to be accurately tested. Its the-
oretical and phenomenological limitations are being fully explored, with an endeavor
which is carried out at virtually all energy scales, ranging from the ultraviolet prop-
erties of the theory, down to the energy scale of H0, associated to the present-day
expansion rate of the Universe (Riess et al., 1998).

Upcoming large-scale structure (LSS) surveyswill provide unprecedented constraints
on gravity on cosmological scales, allowing one to discriminate among many theories
alternative to GR. �e phenomenology of theories of modi�ed gravity (MG) on lin-
ear cosmological scales is fairly well understood, and it is commonly characterized in
terms ofmodi�cations in the relation betweenma�er density contrast and gravitational
potentials (Zhao et al., 2010; collaboration, 2016; Pogosian and Silvestri, 2016). On the
other hand, it is well known that non-linear mechanisms in MG theories “screen away”
the e�ects of additional degrees of freedom in high-density regions. �is ensures that
any ��h force is suppressed and MG reduces to GR in regions where it has been tested
with remarkable accuracy (Will, 1993).

A natural regime of interest is the intermediate range, between the screened and
unscreened regimes, e.g. the regions of space at the boundaries of dark ma�er halos.
To this extent, a feature that is gaining prominence is the so-called splashback, which
corresponds to an observable steepening of the dark ma�er halo density pro�le close
to the boundary (Diemer and Kravtsov, 2014). Locally, the position of this steepen-
ing contains interesting information about the clustering of dark ma�er shells, and it
can be understood as the dividing radius of single-stream and multi-stream sectors of
the dark ma�er phase space. �is feature has already been noticed in the self-similar
spherical collapse framework developed and studied in Fillmore and Goldreich (1984)
and Bertschinger (1985), and generalized to three-dimensional collapse in Lithwick and
Dalal (2011). Self-similarity, however, is fully operational in a universe without a char-
acteristic scale, such as the Einstein-de Si�er (EdS) universe with⌦m = 1. Even though
realistic applications of the same principle to a⇤CDM universe are possible (Shi, 2016),
in this chapter, we will focus on the collapse in the EdS scenario and will leave more
realistic scenarios for future work.

�e pro�les of the largest dark ma�er halos in the Universe, where galaxy clusters
reside, can be mapped by measuring the deformation of background sources (Kaiser
and Squires, 1993; Umetsu et al., 2011). �is technique, known as lensing, has been
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used to measure the splashback feature around clusters (Umetsu and Diemer, 2017;
Contigiani et al., 2019). It should be noted, however, that the most stringent constraints
are obtained using the distribution of subhalos traced by the cluster galaxy members
(More et al., 2016; Baxter et al., 2017; Chang et al., 2018; Shin et al., 2018). In this case,
the interpretation is nevertheless not straightforward and an accurate comparison with
N -body ⇤CDM simulations is required.

In this chapter, we consider the splashback radius inMG scenarios, investigating the
microscopic e�ects of alternative theories of gravity on the dark ma�er shells accreting
into the halo. Since we aim to gain insight on the physical details, we do not resort to
numerical simulations but rather employ a semianalytical method based on the frame-
work of self-similar spherical collapse of Fillmore and Goldreich (1984). We focus on
the class of theories of gravity that display the symmetron screening mechanism (Hin-
terbichler and Khoury, 2010). While we present an overview of the symmetron gravity
in the main text, let us mention here that our analysis can be easily extended to other
types of screening mechanisms, e.g. to Chameleon screening exhibited by f(R) mod-
els (Capozziello et al., 2003; Carroll et al., 2004), in which the density dependence is
explicitly in the scalar �eld mass, rather than the �eld couplings.

We have organized our presentation as follows. In Sec. 3.2 we introduce the self-
similar density pro�le and present the relevant equations of motion for the collapsing
shells. In Sec. 3.3 we discuss the basics of symmetron gravity. In Sec. 3.4 we present
our numerical methods and demonstrate the e�ect of the symmetron force on the phase
space of the dark ma�er halo and the shi� in the splashback radius.1 Finally, we discuss
the implications of our �ndings and suggest potential further studies in Sec. 3.5.

3.2 Density pro�le

In order to study the motion of accreting material onto an overdensity, we �rst need
to specify a ma�er density pro�le. In this work, we employ the so-called self-similar
approximation in the problem of spherical collapse. In this context, the idea of self-
similarity was introduced for the �rst time by Fillmore and Goldreich (1984), in which
it was shown that around EdS backgrounds, where the scale factor scales as a power
law of cosmic time, a(t) / t

2/3, the spherical collapse equations admit self-similar and
self-consistent solutions.

�e material surrounding a scale-free perturbation initially coupled to the Hubble
�ow eventually reaches turnaround and collapses onto a central overdensity. We de-
note byR(t) andM(r, t) the position of the turnaround radius at a time t and the mass
contained within the radius r, respectively. �e mass within the turnaround radius can

1In the interest of reproducibility we make our numerical codes available at h�p://github.com/contigiani/
sym-splash.

http://github.com/contigiani/sym-splash
http://github.com/contigiani/sym-splash
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be wri�en as a function of scale radius as:

M(R, t) / a(t)s, (3.1)

where the parameter s is referred to as the accretion rate. In this model, M(R, t) and
R(t) are related to each other through

4⇡

3
R(t)3⇢b(t) =

✓
4

3⇡

◆2

M(R, t), (3.2)

where ⇢b(t) is the EdS background density at time t. �is additionally implies that the
position R as a function of time also depends on s:

R(t) / a(t)1+s/3
. (3.3)

Notice that s and the mass of the present-day perturbation are the only free parameters
of this model. In this work, we choose a �xed value of s = 1.5 for the accretion
rate, known to be representative for the low-redshi�Universe in numerical simulations
(Correa et al., 2015; Diemer and Kravtsov, 2014).

During spherical collapse, Gauss’s law ensures that the trajectory for each shell of
material is in�uenced only by the mass contained within it. �e equation of motion for
each shell can be wri�en as

d
2
r

dt2
= �GM(r, t)

r2
, (3.4)

where the le�-hand side is the Newtonian force FN (r) proportional to Newton’s grav-
itational constant G.

While before turnaround the mass within a shell is manifestly constant, a�erward,
this is not true; as multiple shells start orbiting the halo, their trajectories start inter-
secting. �is phenomenon is known as shell crossing, and it is the principal reason
why integrating Equation (3.4) is not straightforward.

If we label each shell of material by its turnaround time t⇤ and radius r⇤, such that
R(t⇤) = r⇤, the trajectory for each shell is found to be independent of these quanti-
ties when self-similarity is satis�ed. �is can be veri�ed by rewriting the equation of
motion for the given shell in terms of the rescaled variables

⇠ =
r

r⇤
, ⌧ =

t

t⇤
; (3.5)

and by enforcing the mass pro�le M(r) to be of the form:

M(r, t) = M(R, t)M(r/R). (3.6)
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Notice that, from Equation (3.3) it follows that the rescaling of the local turnaround
radius ⌅ = R(t)

r⇤
can be also wri�en as a function of ⌧ alone:

⌅(⌧) = ⌧
2/3+2s/9

. (3.7)

�e system is then evolved through the following self-similarity equations for ⇠(⌧)
and M (⇠/⌅):

d
2
⇠

d⌧2
= �⇡

2

8

⌧
2s/3

⇠2
M
✓

⇠

⌅(⌧)

◆
, (3.8)

M(y) =
2s

3

Z 1

1

d⌧

⌧1+2s/3
H

✓
y � ⇠(⌧)

⌅(⌧)

◆
, (3.9)

whereH(. . . ) is the Heaviside step function, and the turnaround initial conditions for
⇠(⌧) are ⇠(⌧ = 1) = 1, d⇠/d⌧(⌧ = 1) = 0. Notice that, because these two equations are
coupled to each other, they should be solved jointly to obtain self-consistent solutions
for the orbits and the mass pro�le. �is is done by starting from an initial guess for
M(y) and then evaluating numerically the trajectories ⇠(⌧) using Equation (3.8). �e
corresponding M(y), evaluated using Equation (3.9), is then taken as an initial guess
for the next iteration. �is is repeated until convergence is reached and a �nal result
for M(r, t) is obtained. �e corresponding density pro�le is then simply

⇢(r, t) =
1

4⇡r2
dM

dr
(r, t), (3.10)

and it is shown in Figure 3.1. Notice in particular that its time-dependence is com-
pletely described by ⇢b(t) and R(t).

3.3 Symmetron gravity
In this section, we provide a brief overview of symmetron gravity and introduce the
framework needed to study its e�ects on spherical collapse.

We consider a scalar-tensor theory of the form

S = S' + SM (g̃µ⌫ , ) , (3.11)

with

S' =

Z p
�g d

4
x

"
M

2
p

2
R� 1

2
rµ

'rµ'� V (')

#
, (3.12)

Mp being the Planck mass, and SM being the action for ma�er �elds. �e scalar �eld
' couples to the Einstein frame metric gµ⌫ with Ricci scalar R, while ma�er �elds
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Figure 3.1: Prescription for the spherical halo density pro�le. �e red do�ed line is a
smoothed version of the self-consistent pro�le which removes the non-physical sharp
caustic.



Chapter 3. Splashback in symmetron gravity 51

(collectively represented by  ) couple to the Jordan frame metric g̃µ⌫ . �e two metrics
are assumed to be related by the transformation

g̃µ⌫ = A
2(')gµ⌫ . (3.13)

Notice that such model is fully speci�ed by the functions A(') and V ('). Varying the
action with respect to ' gives us the equation of motion,

⇤' = V,' �A
3(')A,'(')⇢ ⌘ Ṽ,'('), (3.14)

where ⇢ is the trace of the ma�er stress-energy tensor, equal to the local ma�er density,
and Ṽ (') is an e�ective potential. �e ��h force per unit mass exerted by the �eld '
and experienced by a ma�er test particle can then be wri�en as

F' = �r logA('). (3.15)

In this chapter, we will focus on a realization of such a theory, namely the sym-
metron model speci�ed by the functions

V (') = �1

2
µ'

2 +
1

4
�'

4
, (3.16)

A(') = 1 +
1

2

'
2

M2
, (3.17)

and e�ective potential:

Ṽ (') =
1

2

⇣
⇢

M2
� µ

2
⌘
'
2 +

1

4
�'

4
. (3.18)

In this parametrization, the symmetron naturally assumes the form of an e�ective
�eld theory with '! �' symmetry.

In high-density regions, where the condition

⇢ > ⇢ssb ⌘ M
2
µ
2 (3.19)

is satis�ed, the e�ective potential Ṽ (') has only one minimum in ' = 0 and the �eld is
driven toward it, resulting in a null ��h force. In other words, high-density regions are
screened. In low-density environments, on the other hand, the minimum is not located
at zero. For example, for ⇢ = 0 the vacuum expectation value is '0 = µ/

p
�.

�e ��h force can be constrained by local tests of gravity; to see in detail how local
limits translate into bounds on the mass scaleM and the Mexican hat parameters µ,�
we refer the reader to Hinterbichler and Khoury (2010), for a general overview, and to
the introduction of O’Hare and Burrage (2018), for a more recent analysis.
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In an EdS background, the average ma�er density as a function of redshi� z is

⇢b =
1

6⇡Gt2
/ (1 + z)3. (3.20)

As the Universe expands, the symmetron can undergo spontaneous symmetry break-
ing (SSB) when ⇢b(zssb) = ⇢ssb. For more details about the cosmological evolution of
the symmetron �eld and the allowed expansion histories, we refer the reader to Hin-
terbichler et al. (2011) and Bamba et al. (2013). Let us stress, however, that we are not
interested in the possibility of using the �eld ' to drive the late-time expansion of
the Universe, but we are only interested in the additional ��h force and its e�ects on
spherical collapse.

In this chapter, we will work in terms of the dimensionless �eld � = '/'0 and
symmetron parameters composed by the average ma�er density at symmetry breaking
⇢ssb, the vacuum Compton wavelength

�0 =
1p
2µ

, (3.21)

and the dimensionless coupling

� =
'0Mp

M2
. (3.22)

Using these parameters, the ��h force sourced by the symmetron �eld can be wri�en
as

F' = �16⇡G�2
�
2
0⇢ssb �r�. (3.23)

3.4 Spherical collapse with the symmetron
Having introduced the symmetron, let us now go back to the original goal of this chap-
ter, i.e. to study spherical collapse in symmetron gravity with a particular focus on
splashback.

�e splashback radius is commonly de�ned as the point where the density pro�le
⇢(r) is at its steepest. While this steepening is noteworthy because it can be detected
as a departure from an equilibrium pro�le, this de�nition is clearly not suited for our
study, in which we assume a prede�ned density pro�le. Fortunately, the splashback
radius is also known to be connected to the apocenter of recently accreted material
and the location of the latest caustic visible in the density pro�le. Here we study the
e�ects of the symmetron force on splashback by using this la�er de�nition.

Our simulation is based on a system of equations that includes the spherical collapse
equations, as discussed in Sec. 3.2, coupled to the equation for the �eld pro�le of the
symmetron �eld, discussed in Sec. 3.3. We start by presenting our numerical method to
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compute both the symmetron �eld pro�le and the additional ��h force for the assumed
density pro�le. We then proceed to integrate the shell equation to predict the fractional
change in the splashback position in the presence of the symmetron force.

3.4.1 Field pro�le
Assuming the temporal evolution of the �eld to be very fast compared to the other
timescales of the problem, i.e. the Hubble timescale and that of the clustering of ma�er,
the dimensionless �eld pro�le �(r) sourced by a density pro�le ⇢(r, t) satis�es the
following equation:

d
2
�

dr2
+

2

r

d�

dr
=

1

2�20

✓
⇢(r, t)

⇢ssb
� 1

◆
�+ �

3

�
. (3.24)

�is quasistatic approximation is common in the literature (Davis et al., 2012; Clampi�
et al., 2012; Brax et al., 2012) and has been tested in the context ofN -body simulations
(Llinares and Mota, 2014; Noller et al., 2014). In order to provide a rough, order of
magnitude justi�cation for this assumption, let us just mention that the timescale as-
sociated with the �eld dynamics in vacuum is given by ⇠ �0/c. It is clear that in order
for the symmetron �eld to be relevant for the dynamics of the spherical collapse this
�0 should be of the same order of magnitude as the scale of the cluster itself. �e la�er,
of course, is several orders of magnitude smaller than c/H0.

�e static symmetron equation of motion (3.24) is a nonlinear elliptical boundary
value problem, for which we set the standard boundary conditions of vanishing spa-
tial gradient of the �eld at r = 0 and r ! 1. We use a one-dimensional version of
the Newton-Gauss-Seidel relaxation method for the numerical integration of the equa-
tion. �is is a standard method used for obtaining the scalar �eld pro�les in N -body
simulations with modi�cations of gravity mentioned above.

In practice, we discretize our one-dimensional static symmetron equation of motion
on a regular grid of size h and use a second order discretization scheme for all the
derivatives.2 �e resulting equation takes the form

L[�i+1,�i�1;�i] = 0, (3.25)
where

L[�i+1,�i�1;�i] ⌘ DK[�i+1,�i�1;�i]�DP[�i, ⇢i] (3.26)
contains the discretization of the Laplace operator

DK ⌘ �i+1 + �i�1 � 2�i

h2
+

2

ri

�i+1 � �i�1

2h
(3.27)

2We have tested some outputs of our integrator against the results of the version in which higher order
discretization schemes are employed. For our particular problem, we did not encounter signi�cant di�erences
in performance of the integrator and performed themain analysis with the versionwhich employs the second
order scheme.
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and e�ective potential:

DP =
1

�
2
0

✓✓
⇢i

⇢ssb
� 1

◆
�i + �

3
i

◆
. (3.28)

�e basic idea of the relaxation methods is to �nd a �eld pro�le from this equation
which is closer to the real solution than a randomly chosen initial guess. �is step is
iterated over multiple (improved) guesses labeled �n(i) until convergence is reached.

At a given step, we de�ne an improved (new) �eld pro�le:

�
new(i) = �n(i)�

L(�(i))
@L(�(i))/@�(i)

����
�(i)=�n(i)

. (3.29)

�en, we use a part of this new � as the �eld pro�le for our next relaxation iteration,

�n+1(i) = !�
new + (1� !)�n, (3.30)

where 0 < ! 6 1 is a weight parameter with, in principle, a problem-dependent
optimal value.

We employ two intuitive convergence diagnostics, in which at each step we ter-
minate the iteration if a certain parameter is within a prede�ned threshold. �e �rst
parameter is the residual function,

R1 ⌘
sX

i

L[�(i+ 1),�(i� 1);�(i)]2, (3.31)

and the second one is the all-mesh average of the fractional change in the �eld pro�le

R2 ⌘
sX

i

(�new(i)� �old(i))2. (3.32)

To validate our integrator and convergence thresholds, we compare the numerical
solution to a known analytic solution. In our case, this known solution is an exact
tanh(r) �eld pro�le, for which the corresponding density pro�le was recovered using
Equation (3.24).

When solving for the density pro�les plo�ed in Figure 3.1, we numerically evaluate
the equation of motion in the range [0, 2] for r/R(t), where the density pro�le for
r � R(t) is assumed to be constant. We make sure that the arbitrary choice of the
upper limit has no e�ect on our results by testing larger values.



Chapter 3. Splashback in symmetron gravity 55

Fi
gu

re
3.
2:

E�
ec
ts
of

th
e
sy
m
m
et
ro
n
fo
rc
e
on

th
e
sp
la
sh
ba
ck

lo
ca
tio

n
fo
r
�
=

3,
z
ss
b
=

2,
�
0
/
R
(t

0
)
=

0.
05
.O

n
th
e
le
�

si
de
,w

e
sh
ow

th
e
ph

as
e-
sp
ac
e
di
st
rib

ut
io
n
of

sh
el
ls
ar
ou

nd
a
sp
he
ric

al
ly

sy
m
m
et
ric

ha
lo
,w

he
re

th
e
sh
el
ls
ar
e
co
lo
rc

od
ed

by
th
ei
r
tu
rn
ar
ou

nd
re
ds
hi
�.

�
e
do

�e
d
lin

e
sh
ow

s
ho

w
th
is
di
st
rib

ut
io
n
is
a�

ec
te
d
by

th
e
pr
es
en
ce

of
th
e
sy
m
m
et
ro
n

fo
rc
e.
�

e
ar
ro
w
so

n
th
e
bo

�o
m

po
in
tt
o
th
e
in
fe
rr
ed

sp
la
sh
ba
ck

ra
di
us

in
th
e
tw

o
ca
se
s.
O
n
th
e
rig

ht
si
de
,w

e
di
sp
la
y
th
e

ra
tio

be
tw

ee
n
th
e
sy
m
m
et
ro
n
an
d
th
e
N
ew

to
ni
an

fo
rc
e
pr
o�

le
s,

F
S

F
N
,f
or

di
�e

re
nt

in
st
an
ts
in

tim
e.

A
th

ig
h
re
ds
hi
�,

w
he
n

th
e
in
ne
rm

os
tm

at
er
ia
li
sa

cc
re
te
d,
th
e
sy
m
m
et
ro
n
fo
rc
e
is
te
n
tim

es
sm

al
le
rt
ha
n
its

pe
ak

va
lu
e
to
da
y.



56 Chapter 3. Splashback in symmetron gravity

3.4.2 Splashback
Once the symmetron �eld is found as a function of time, the present-day phase-space
distribution of recently accreted material can be obtained by integrating numerically
the equation of motion (3.4) with added ��h force (3.23) for di�erent collapse times.

We �nd that a�er imposing self-similarity the collapse equations can be wri�en
only as a function of three dimensionless symmetron parameters: the redshi� of sym-
metry breaking zssb, the dimensionless coupling �, and the ratio �0/R(t0) between
the vacuum Compton wavelength �0 and the present-day turnaround radius R(t0).
An important combination of these parameters is

f = (1 + zssb)
3
�
2 �

2
0

R2(t0)
, (3.33)

which explicitly sets the strength of the symmetron force according to Equation (3.15).
From our testing, we found that values �0/R(t0) 2 [0.02, 0.1] o�er nontrivial cases.

For � ⇠ R(t0)we always obtain thin-shell-like solutions, while for � ⌧ R(t0) the �eld
is heavy and simply relaxes onto the minimum of the potential Ṽ (�) in Equation (3.18).

In Figure 3.2 we illustrate our method and show how the symmetron force modi�es
the phase-space con�guration of the latest accreted orbits (le�-side plot). We �nd that
the splashback position is signi�cantly a�ected for parameter values f ⇠ 1, zssb ⇠ 2
and �0/R(t0) ⇠ 0.1. �ese values imply M . 10�3

Mp, which is in agreement with
local tests of gravity (Hinterbichler and Khoury, 2010).

From the same �gure (right-side plot), it is clear that the innermost regions of the
overdensity are screened from the e�ects of the ��h force at all times, and this becomes
relevant in the outer regions only for z ⌧ zssb. Past this point, the force pro�le slowly
transitions from a thick-shell- to a thin-shell-like behavior, in which the force gets pro-
gressively concentrated around the surface of the screened region (Taddei et al., 2014).
Due to the sudden drop in density associated with splashback, this surface is delimited
by the splashback radius.

A systematic exploration of the symmetron e�ects on this feature as a function of
all parameters is presented in Figure 3.3, which represents our main result.

A clear trendwith zssb is visible. Notice that the fractional change on the splashback
position has an optimal peak as a function of zssb that is independent of f . If we call
zsp the accretion redshi� of the shell currently si�ing at the splashback position a�er
its �rst pericenter, i.e. the splashback shell, we see that the e�ect is maximized when
zsp ' zssb. �is is easily explained by studying the pro�le of the ��h force over time.
For zsp � zssb, the selected shell collapses when the symmetron is in its symmetric
phase and the material spends the rest of its trajectory in a screened region, away from
the e�ects of the ��h force; for zsp ⌧ zssb, the thin shell has had time to form before
zsp, and the shell feels the e�ects of the ��h force only during a small fraction of its
trajectory. Between these two limiting cases, there is an e�cient zssb for which the
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splashback shell has time to follow the formation of the thin shell, and it is optimally
positioned near the peak of the force pro�le for most of its trajectory. In our �gure, we
show how this peak still has a dependence on �0, introduced by the presence of this
factor on the symmetron equation of motion (3.24).

To conclude this section, we point out that the smoothness of the density pro�le
as plo�ed in Figure 3.1 has li�le impact on our results and no impact on the trends
discussed above. Di�erences between the two prescriptions exist only for �0 ⌧ R(t0),
when the �eld pro�le becomes susceptible to the small-scale features of the pro�le.
However, since we expect the sharp caustic to be smoothed by gravitational instabil-
ities, for the main results, we chose not to use the discontinuous pro�le and assumed
instead its smoothed version. Notice also that considering such high-resolution sce-
narios would introduce additional caveats (e.g. the presence of substructure) that are
not the focus of this work.
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3.5 Discussion and conclusion

In this chapter, we have explored how symmetron gravity a�ects the splashback feature
at the edges of cosmological halos. In our approach, we assume a self-similar mass
distribution motivated by spherical collapse in an EdS Universe, where the shape of the
spherically symmetric ma�er distribution is assumed to be only a function of r/R(t).
�is allows us to easily solve for the corresponding symmetron ��h force and estimate
its e�ects on the splashback feature by studying the changed phase-space distribution
of recently accreted shells.

�emain limitation of our study is the lack of a fully consistent framework in which
the density pro�le, the turnaround physics, and the phase-space distribution are solved
for in conjunction with the newly introduced symmetron equation of motion. For ex-
ample, we would expect a consistent framework to take into account the back-reaction
of the scalar �eld on the density pro�le.

While deriving self-consistent solutions is outside the scope of this chapter and
more suited to N -body simulation studies, we �nd it useful to discuss the impact of
our assumptions on the results. Changes to the turnaround physics are commonly
studied through the use of di�erent approximations, like a scale-dependent Newton’s
constant (Schaefer and Koyama, 2008; Brax et al., 2010; Hu et al., 2018; Nojiri et al., 2018;
Lopes et al., 2018). In our case, if we maintain the assumptions of self-similarity and
power-law accretion in Equation (3.1), the main change to our formalism will come in
the form of upgrading the numerical constant appearing in Equation (3.2) to a function
of the perturbation scale and cosmic time.

Previous works have estimated these corrections to be of the order of a few percent-
age points at z ' 0; see (Taddei et al., 2014) for results in symmetron gravity and (Lopes
et al., 2018) for similar results in f(R) theory. In particular, we expect our assumption
to �rst break at a redshi� z such that the condition F'(r) ⇠ FN (r) is satis�ed at the
turnaround radius r = R(t). In our analysis, however, we have seen that the e�ects
on splashback are maximized when the collapse redshi� of the splashback shell zsp is
equivalent to this transition redshi�. A�er this point, the splashback shell is con�ned
in the inner region, and we expect its trajectory to be una�ected by the turnaround
physics. �erefore, we consider our results around the peak of Figure 3.3 to be robust
against this assumption. For the same reason, however, we expect to lose predictability
for higher values of zssb, since the initial condition of the splashback shell will di�er
from what we have assumed.

Notice that the argument presented above also implies that our results can be ex-
tended to a standard ⇤CDM scenario. �e present-day splashback shell is expected to
have collapsed in the ma�er-dominated era and to have followed a trajectory mostly
una�ected by the late-time expansion, especially for low values of the accretion rate s
like the one considered here (Shi, 2016).

E�ects of modi�ed gravity on the structure of dark ma�er halos are usually pre-
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sented in the form of changes in the small-scale power spectra (Cui et al., 2010; Davis
et al., 2012; Li et al., 2013; Brax et al., 2012) and two-point correlation functions (Lom-
briser et al., 2012) or the whole phase-space distribution (Zu et al., 2014; Lam et al.,
2012). In this analysis, we focused instead on a particular scale, the splashback radius,
and showed that up to a 10% change can be induced (Figure 3.3). It should be pointed
out that Adhikari et al. (2018) was the �rst work to explore howmodi�ed gravity a�ects
the splashback position. We stress, however, that our work di�ers from that of its au-
thors in three major aspects. First, here, we focus on symmetron gravity which displays
a di�erent screening mechanism from the chameleon or k-mou�age explored in (Ad-
hikari et al., 2018) . Second, while their results based onN -body simulations represent
more realistic predictions, they do not allow for a simple exploration of the theory pa-
rameter space. �ird, with our semianalytical approach, we are able to gain insight by
obtaining quantitative results as a function of multiple theory parameters and provide
an explanation for the visible trends. All this said, it also should be mentioned that
the quantitative estimation of the modeling uncertainties will still resort on N-body
simulations. �is is an interesting aspect, and we leave its systematic investigation to
a future work.

Observationally, splashback can be measured predominantly around galaxy clus-
ters,å for which the present-day turnaround radius R(t0) is of the order of a few Mpc.
Our results, therefore, imply that this feature can be used to constrain ��h forces with
vacuum Compton wavelength �0 just below the Mpc scale. Because measurements of
splashback in the galaxy distribution around clusters have already achieved a precision
below the size of our predicted e�ect (More et al., 2016; Baxter et al., 2017; Chang et al.,
2018; Shin et al., 2018), we expect to soon be able to constrain not only the symmetron,
but other ��h force models on similar scales.

Note in particular that, while other works have explored the possibility of con-
straining symmetron gravity on Mpc scales (Hammami and Mota, 2017; Gronke et al.,
2015), the range considered here for �0 is unconstrained for this model. �us, we ex-
pect a measurement based on splashback to naturally complement other results based
on laboratory experiments (Burrage et al., 2016; Brax et al., 2018), stellar and compact
astrophysical objects (Jain et al., 2013; Brax et al., 2014) or galactic disks and stellar
clusters (O’Hare and Burrage, 2018; Llinares, 2018; Desmond et al., 2018).

As the physics of splashbackmatures into a new cosmological observable, we expect
it to play a powerful role in testing modi�cations of gravity, complementary to already
established techniques such as those for large-scale structure.
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