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Chapter 1

Introduction

1.1 The modern Universe

Humanity’s fascination with the cosmos is a pervasive theme of our shared history. The
perfect illustration of this is religion, which aims to describe the origin of everything
and its relation to our personal experience. In this context, creation myths are the
first cosmogonies, i.e. models concerning the origin of the Universe, and most have
humanity in a fundamentally privileged role, sometimes as the natural endpoint of
cosmic history. In contrast, the development of cosmology, i.e. the scientific study of
the origin and evolution of the Universe, has been a process of continuous abstraction
from our personal experience and has proved to be a clear rejection of our unique
position. What we have designed is an indifferent Universe, where we deliberately
do not represent a privileged observer. For the most part, this undertaking has been
a humbling and painful process. Consider, for example, Giordano Bruno, who was
famously burned at the stake in the year 1600 for claiming that other stars might be
other suns and that other worlds orbit around them. Nonetheless, modern cosmology
is also a great example of our hubris. We are not concerned with making statements
about us, here and now, but we aspire to explain everything that was and will ever be,
to derive laws which we can genuinely call Universal.

This outward journey is not only conceptual but also profoundly empirical. Our
depiction of the Universe started small, but over time has expanded towards scales that
are now barely imaginable. One parsec, originally designed to study the motion of the
furthest objects, is now a unit too small for most cosmologists, who are accustomed
to units of the order of mega- or giga-parsecs, Mpc and Gpc, respectively. Similarly,
it is remarkable that in only one century, we have gone from discussing if there are
other galaxies, referred to as island universes (Shapley and Curtis, 1921), to debating
if there is a string theory multiverse (Carr and Ellis, 2008). From a purely scientific
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perspective, what lead to these developments are two kinds of advancements. The first
kind is technological advancements. For example, it is not by chance that Tycho Brahe,
Johannes Kepler, and Galileo Galileo were the first to study the Solar System. These
people first had the opportunity to look at the sky using large measuring instruments
and powerful lenses, able to focus a large amount of light onto their small iris. Without
telescopes and sextants to accurately measure the motion of the wandering stars, i.e.
planets, we would never know of the Solar System’s existence. The second kind is
theoretical advancements, and their importance in this process of abstraction cannot
be understated. The way we view the world is based on the way we model it. As an
example of this, Isaac Newton’s law of Universal gravitation, capable of explaining the
motion of objects on Earth and in the Solar System alike, now almost sounds like a
misnomer. Albert Einstein’s theory of general relativity is what we see today as the
Universe’s law of gravitation because it can describe virtually every phenomenon in
its purview. It has been successfully applied to atom interferometry (Rosi et al., 2014),
the structure of black holes (Schwarzschild, 1916), and, most notably for this thesis, the
evolution of the Universe itself (Friedmann, 1922).

Gravity is the most relevant force on the largest scales because it cannot be screened
away, and its range is formally infinite. This fact is astonishing, given its relative weak-
ness. For example, the typical strength of the gravitational pull on an electron, quan-
tified by the gravitational coupling constant o =~ 10745, is meager compared to its
electromagnetic counterpart, the fine structure constant & ~ 1/137. Because of the
importance of gravity for cosmological applications, it is not surprising that the lead-
ing framework used in the field is based on general relativity. According to the current
view, this theory represents the playground hosting a tug of war between two ingredi-
ents, dark matter and dark energy. These two components have opposite effects: one
enhances structure through gravitational collapse, while the other pushes things apart
and destroys structure. The first, dark matter, has dominated the evolution of the Uni-
verse for most of its existence thus far, but the second, dark energy, is now winning, and
it is expected to eventually lead to the disintegration of all of the Universe’s structure.
In this process, “normal” matter, i.e. what forms everything we see and touch, is noth-
ing more than a witness. In a humbling twist of fate, these baryons are only 1/6th of the
Universe’s matter content according to the latest measurements (Planck Collaboration,
2020), and in our model of the largest scales, they represent a nuisance element with a
relatively complex phenomenology. Despite being on the sidelines, the signals emitted
by this form of matter act as tracers and provide the primary justification behind the
model described above.

1.1.1 General relativity

First proposed in 1915, the theory of general relativity is what is called a metric the-
ory of gravity (Einstein, 1916). It describes spacetime through a dynamical object, the
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metric g,,,,, detailing its curvature. The evolution of this quantity is connected to the
energy content of the system, specified by the energy-momentum tensor 7},,,, and their
relationship is formalized by Einstein’s field equations:

Gu + Aguy = &1}, (1.1)

In this expression, G, is called the Einstein tensor, a quantity derived from the metric
itself. In addition to this, notice the presence of two constants: , needed to match the
units of G, and T},,,, and A. The latter is called the cosmological constant, and it has
important implications for cosmology that will be discussed later.

Here, we want to highlight two predictions of general relativity that are particu-
larly relevant. The first is the accurate prediction of the bending of light in the presence
of a massive object along the line of sight. Thanks to the first observation of this phe-
nomenon by Arthur Eddington in 1919 (Dyson et al., 1920), gravitational lensing was
quickly established as an experimental fact, and, over the years, it became a robust ob-
servable that is still used to this day. In this theoretical framework, this unusual behav-
ior has an obvious explanation: because photons are expected to follow the geodesics
defined by the metric g,,,, the curvature induced by the presence of matter naturally
results in a perturbed light path. The second relevant prediction to be highlighted is the
existence of gravitational waves. Because the metric is dynamical, perturbations on top
of a background profile can propagate after being generated by accelerating compact
masses. The measurement of the decaying orbit of a binary pulsar due to the energy
deposited in this fashion (Taylor and Weisberg, 1982) represented the first indirect ob-
servation of gravitational waves and, similarly to the lensing case, it quickly ushered
in the birth of a new field. After a few decades, the interest in this science eventu-
ally resulted in the direct detection of these tiny spacetime ripples by the LIGO-Virgo
consortium in 2015 (LIGO Scientific Collaboration and Virgo Collaboration, 2016).

When applied to the Universe as a whole, Einstein’s field equations are solved under
two simple assumptions: the system should have no preferred observer, and it should
evolve over time. The first statement is known as the Copernican principle, and it is
understood today as an axiom about symmetries. Over large scales, it implies spatial
isotropy and homogeneity. In contrast, the second statement is an observational fact
about the broken time-symmetry, and it is justified by the early discovery of the Uni-
verse’s expansion by Edwin Hubble (Hubble, 1929). In practice, the combination of
these two assumptions translates into a form for the metric g,,,,. In terms of the line
element ds, we write:

ds? = g, detde” = —dt? + a®(t)6;;da'da’ . (1.2)
o J

This is known as the Friedmann-Lemaitre—Robertson—-Walker metric, and it describes
spatially flat hypersurfaces parametrized by the coordinates z%,i = 1,2, 3. The distance
between two comoving observers expands over time according to the scale parameter
a(t), usually defined such that a = 1 is the present-day ¢ = ¢ and a = 0 represents the
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start of the Universe, t = 0. An important consequence of the Universe’s expansion is
the change in the frequency of a monochromatic wave. Its main application is that if the
rest-frame wavelength of a light source or spectral feature is known, its shift towards
redder frequencies due to cosmic expansion indicates when its light was emitted. This
cosmological Doppler shift is a multiplicative factor in wavelength, and it is written in
terms of the redshift z. Its connection to the scale factor can be expressed as

(1+2)= é (1.3)

and represents the main way through which we can map cosmological distances using
electromagnetic spectra. A second important consequence of the Universe’s finite age
and isotropic recession is the existence of a horizon for every observer. Because light
travels a finite amount of space in the Universe’s lifetime, this naturally determines the
size of casually connected patches. In other words, there is a maximum distance that
a ray of light could have originated from before reaching said observer. According to
the leading model, the value of this horizon is about 14.4 Gpc and can be obtained by
integrating the trajectory of a photon moving at the speed of light ¢ in the metric of
Equation (1.2):

o cqt!

By changing the integration limits, the expression above can also define a measure of
distance between two arbitrary instants in cosmic time. If evaluated between today
and an arbitrary time {, it is called comoving distance, but in an expanding Universe,
this definition of distance to the past is not unique. Two other definitions are com-
monly used in cosmology, the luminosity distance Dy, and the angular diameter dis-
tance D 4. Historically, the first is defined based on the energy flux of photons, and
the second is based on the angular size of objects in the sky. In the first case, the ad-
ditional energy change due to cosmological redshift must be accounted for, resulting
in D (t) = x(t)/a(t). In the second case, the angular diameter distance is different
from the comoving distance because of the evolution of the comoving grid defined by
the metric in Equation (1.2). An object of fixed physical size is measured differently by
comoving grids at different times and, because of this, the angular distance is defined

as DA (t) = a(t)x(t).

1.1.2 Dark energy

In the late 1990s, the discovery of the Universe’s accelerated expansion proved the exis-
tence of an additional component besides matter and radiation (Riess et al., 1998; Perl-
mutter et al., 1999). This discovery came initially as a surprise, as such acceleration is
possible only in a Universe dominated by an exotic constituent with negative effective
pressure. Over time, however, what we now call dark energy quickly became accepted
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as an observational fact thanks to numerous supporting observations. Broadly speak-
ing, the evidence can be divided into two groups: one related to its role in shaping the
expansion of the Universe, that led to its discovery, and the other pertaining to its part
in shaping the distribution of structure in the Universe, that appeared only a few years
later (Springel et al., 2005; Eisenstein et al., 2005). Despite the general belief in its ex-
istence, however, very little has been discovered about dark energy apart from the fact
that it accounts for about 70 percent of the Universe’s present-day energy content.

Cosmological constant

In the context of general relativity, the simplest explanation for dark energy is the
cosmological constant appearing on the left-hand side of Equation (1.1). When moved
to the right-hand side, A can be interpreted as a zero-point energy in addition to the
energy-momentum content described by 7),,. If we assume that this constant is the
sole cause of the accelerated expansion, then its value in terms of the Planck length [p
is measured to be

A =289 x 1071223, (1.5)

with an uncertainty of a few percentage points. In general, an accelerated expan-
sion causes the energy density of matter and radiation to quickly dilute over time and
eventually results in a Universe completely dominated by the cosmological constant.
Asymptotically, this leads to a de-Sitter Universe where the scale factor can be written

as:
a(t) < exp ( ATCQt> . (1.6)

Under such exponential expansion, all structures made of matter are eventually pulled
apart until nothing remains. Despite this bleak outlook, it is important to stress that
this explanation for dark energy appears at first glance to be perfectly satisfactory: it is
a minimal solution, and it is consistent with data. Nevertheless, it would be deceiving
not to mention that it is also associated with two main theoretical concerns. The first
is due to its vacuum energy interpretation. In this case, the value of the cosmological
constant is expected to be connected to micro-physics. However, the extremely low A
needed to account for cosmic acceleration is so far removed from the scales associated
with known forces that the fine-tuning required for such cancellations casts significant
doubts on this interpretation. Currently, developments aimed at addressing this ques-
tion and quantifying its discrepancy are limited by our inability to frame gravity within
a quantum physics framework. The second issue linked to A is the suspicious timing
of the emergence of dark energy. The exact value of this constant determines when
this component becomes dominant in the history of time, and, in our Universe, it cor-
responds to the moment when dark matter begins to form complex structures through
gravitational collapse. If the value of A is arbitrary and not connected to cosmology, it
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seems quite coincidental that dark energy is only now taking over the Universe, after
the interplay of matter and radiation led to the variety of structures that we observe
today.

Both of these points can be addressed if one posits the existence of a multiverse. Ac-
cording to the anthropic principle, if multiple realizations of the Universe with different
fundamental constants are possible, only those where humanity can emerge should be
considered valid since we are, in fact, observing the Universe. This is a relatively new
and powerful idea, but it has not been thoroughly tested yet. From a practical perspec-
tive, it is unclear how such a theory could be falsifiable or, more simply, how to compute
the likelihood of humanity’s existence in the large parameter space of the Universe’s
constants. On a more fundamental level, what is troubling about this solution is that
it might take us back to when our models assumed that the cosmos was explicitly de-
signed to host humanity. This is a profoundly unsettling notion, especially for a science
that has been fighting this urge for most of its history.

Dynamical dark energy and modified gravity

In light of these concerns, it is not surprising that the attempts to address the nature
of dark energy as something beyond the cosmological constant have attracted great
interest. These efforts can be divided into two camps. On one side, the introduction
of a fluid with its energy density T/E,E capable of mimicking the effects of A. This
component is named dynamical dark energy, and its most straightforward realization
is quintessence, a scalar field with negative pressure (Caldwell et al., 1998). Models of
quintessence are noteworthy because they can address the coincidence problem in a
general way through so-called tracker solutions, where a scalar field follows the for-
mation of cosmic structure and its emergence today is guaranteed for a variety of initial
conditions (Zlatev et al., 1999). On the other side, the second set of widespread attempts
is based on modifying Einstein’s field equations. Because general relativity is the only
healthy metric theory of gravity describing a spin-2 massless field in four dimensions,
there are only a handful of ways it can be generalized. Of these ways, a class of models
that has been investigated extensively is the addition of an extra scalar force carrier. The
archetypal example of this class of solution is Brans-Dicke gravity, where the inverse
of the gravitational constant s appearing in Equation (1.1) is upgraded to a dynamical
degree of freedom (Brans and Dicke, 1961). This thesis discusses this and related gen-
eralizations and, for the purposes of this work, the main feature of these models is a
non-zero derivative of the Planck mass M p; usually a constant that is a function of «.

The most generic version of such scalar-tensor theories was already written down
by Gregory Horndeski in 1974 (Horndeski, 1974). This feat was possible thanks to the
requirement that the equations of motion should not contain derivatives of order higher
than second. Theories that do not respect this condition describe ghosts, i.e. fields with
Hamiltonian unbounded from below and, in general, any field interacting with a ghost
has an infinite decay rate as a consequence. Technically, this condition can be circum-
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vented by exploiting some caveats, but the freedom is still limited (Gleyzes et al., 2015).
From a practical point of view, the main constraints on scalar-field theories come from
the prediction of an extra force associated with the new degree of freedom, a.k.a. a
fifth force. Because no departure from general relativity has been detected at both lab-
oratory and solar-system scales (Will, 1993), a method to avoid these constraints must
be devised. These are called screening mechanisms and aim at reducing the impact
of the fifth force in regions of high density while keeping the effects of the extra de-
gree of freedom visible at cosmological scales. Screening in a dense environment is
achieved dynamically either by limiting the range of propagation of the force in these
regions (Vainshtein and chameleon mechanisms, Vainshtein, 1972; Khoury and Welt-
man, 2004), or by reducing the coupling of matter to this extra force carrier (symmetron
mechanism, Hinterbichler et al., 2011).

1.1.3 Dark matter

The second puzzle of modern cosmology is the nature of dark matter. Similar to its dark
energy counterpart, the presence of this component is necessary to explain a plethora
of observations, but the details of its nature are still unknown. As opposed to dark
energy, it should be noted that the existence of invisible material capable of interacting
only gravitationally has never been a controversial statement. For most of the history
of modern cosmology, however, it was assumed that this invisible material was simply
extinguished stars, cool dim gas or microscopic bodies akin to asteroids. Only in the
1990s, with the advent of early Universe observations, it became apparent that the
fraction of traditional matter formed in the primordial Universe was insufficient, and a
new, unfamiliar kind was needed.

Before the era of precision gravitational lensing, the existence of dark matter could
only be inferred through the motion of luminous matter in its gravitational potentials.
Pioneering observations of these phenomena, performed by Fritz Zwicky (Zwicky,
1933), Vera Rubin (Rubin and Ford, 1970) and many others, eventually became the pri-
mary justification behind the present-day paradigm of dark matter. Its fundamental
principles are simple: dark matter should be cold and non-interacting. These two prop-
erties are required to reproduce the observed distribution of structure in the Universe
and match simulated data. In this context, cold represents the opposite of relativistic.
Examples of relativistic species in the Universe are radiation and neutrinos, for which
the majority of the energy is in the form of momentum instead of rest mass. This re-
sults in high velocities that help relativistic particles stream away from gravitational
potentials and makes them unable to form small structures. In the case of dark mat-
ter, this suppression is not observed. The second property is connected to the fact that
dark matter appears to interact only through gravitational forces. The argument behind
this principle is also linked to the distribution of matter in the Universe. The existence
of additional interactions would lead to more compact structures since kinetic energy
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would be dissipated into random motion more efficiently than through gravitational
interactions alone. Once again, this phenomenon is not observed in the real Universe.

Finally, the non-interacting property of dark matter refers also to its inability to
interact with baryons. Because the standard model of particle physics is equipped with
weakly interacting particles, the idea that dark matter might actually be coupled to
the standard model with low interaction cross-sections is now the leading hypothesis
(Steigman and Turner, 1985). From a scientific point of view, models based on these
standard model extensions have proved to be easily falsifiable thanks to their precise
predictions. The methods used to test these predictions can be divided into three detec-
tion channels. The first channel is related to dark matter production. Particle colliders
could produce dark matter by annihilating standard model particles and then detect the
missing mass. The second channel is the reverse of this process, i.e. when dark matter
particles annihilate with themselves and result in standard model particle-antiparticle
pairs. Finally, the last channel is called direct detection. It is based on the ability of dark
matter to scatter off of an extensive reservoir of baryons and deposit energy into the
system. So far, multiple efforts to detect dark matter through all three of these methods
have been attempted with no success (Schumann, 2019) and the region of parameter
space allowed for these models has shrunk considerably. As a result, alternatives to
this mainstream approach have now begun to attract the community’s attention. Ex-
otic theories such as primordial black holes or light bosonic fields such as axions appear
promising. Still, the parameter spaces of these theories are also heavily constrained by
observations, and the predictive power of the remaining freedom is still under scrutiny.

1.2 The large-scale structure of the Universe

1.2.1 Linear perturbations

In cosmology, the distribution of matter takes the form of what is called the large-scale
structure of the Universe. Its emergence is a complex phenomenon, and it is studied in
multiple separate regimes using different techniques.

At the linear level, the matter density p is treated as a dimensionless perturbation
0 on top of a fluid of spatially constant density p(t), such that 6 = p/p — 1. This treat-
ment can also be extended to the other ingredients of our models: the background
metric in Equation (1.2) is perturbed by the gravitational potentials induced by this
matter distribution, and the dark energy fluid, if it exists, can also be described with its
own perturbations. These perturbed quantities are Fourier transformed both to inves-
tigate the dynamics as a function of spatial scale and because, at linear level, different
Fourier modes labeled by their Fourier vector k are independent. Furthermore, for an
isotropic Gaussian field, the distribution of these perturbed quantities can be described
by a single function, the power spectrum. For example, the Fourier transformed mat-
ter density contrast Jg is described by the matter power spectrum P(k), defined as an
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average over Fourier space:
(Ok0kr) = (2m)°P(k)8° (k — k), (1.7)

where 63(k) is the three-dimensional Dirac delta function. If we assume isotropyj it is
common to drop the vector index and simply refer to these modes as Jx.

A simple and instructive example of how these perturbations can be studied is the
equation governing the evolution of cold dark matter perturbations in a Universe dom-
inated by this component. If we consider scales below the size of the horizon, we are
able to recover the Newtonian dynamics limit and write down the evolution of pertur-
bations as:

S 4 HO, = 4rGa®poy, (1.8)

where 1 = a’/a is named the Hubble parameter, and the prime symbol indicates a
derivative with respect to conformal time 7 such that d¢t = a(7)d7. In this equation,
the right-hand side represents the mechanism through which gravity enhances over-
densities. The second term on the left side, on the other hand, is a friction term and
shows how the expansion of the Universe can affect the growth of structures. For ex-
ample, a matter-dominated Universe implies § o a, while in a de-Sitter Universe, the
growth is slowed to a halt. In a complete framework, the presence of nonlinearities
and multiple interacting components, e.g. dark matter and baryonic matter, need, of
course, to be considered. To make the importance of this first point clear, note that
Equation (1.8) is valid only in the limit § < 1, where terms of the order 62 or higher
are ignored. Outside of this linear regime, the growth of these massive perturbations
cannot be tracked with this equation. In terms of the wavelength k, this breakdown
roughly corresponds today to a scale of 0.1 Mpc ™", and it is said that such overdensities
have decoupled from the so-called Hubble flow. This gravitational collapse can happen
in three spatial directions and, depending on how many directions have been affected,
the resulting structures are referred to as walls, filaments, or nodes. This process is still
ongoing, and the combination of these formations creates the so-called cosmic web.

A crucial nonlinear aspect determining the Universe’s large-scale structure is the
fact that fully collapsed overdensities, known as halos, can also interact with each other.
In fact, today’s structures grow mainly through mergers, and smaller structures assem-
ble into larger ones. This process of hierarchical structure formation was first investi-
gated by William Press and Paul Schechter (Press and Schechter, 1974) and this research
direction has led to a widely used semi-analytical formalism still in use today to study
smaller scales. In simple terms, such halo models describe the Universe’s structure as
a superposition of collapsed spherical objects characterized only by their mass. This
approach has been highly successful thus far and has allowed us to predict the average
clustering of visible matter based on the statistical properties of dark matter. How-
ever, as we push to smaller scales and larger samples, its limited ability to model the
connection to visible matter and the additional properties that might affect its spatial
distribution have begun to show.
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1.2.2 Spherical collapse and the edge of halos

Today, knowledge of physics below the 10 Mpc scale is predominantly extracted from
numerical simulations, and the resulting computer-assisted studies can be used to de-
scribe the interaction of baryons with dark matter in a wide range of scales. Despite
this, semi-analytical and purpose-built models to study these same scales are still rel-
atively widespread. In this context, the objective is not to obtain accurate predictions
but to quickly gain insight into the mechanism behind the observable.

In the case of gravitational collapse, the seminal work of James Gunn and Richard
Gott, Gunn and Gott (1972), represents the first glimpse into the effects of self-gravity
in an expanding Universe. Like many subsequent models, this one is based on the evo-
lution of spherical shells of matter around a central overdensity. The setup is straight-
forward: the presence of an initial overdensity causes matter to move towards it and
eventually decouple from the Universe’s expansion, with the closest material collapsing
first. After this moment, the individual shells are stuck in a periodic motion of constant
expansion followed by re-collapse and, because multiple shells undergo this process at
different times, bubbles with opposite velocities continuously intersect each other. In
the real Universe, this simple picture is complicated by the existence of angular mo-
mentum. In this case, the virial theorem can account for the inherent instability of the
spherical solutions and quantify the size of the collapsed region.

Contrary to the basic assumption of most halo models, non-fully virialized halos
undergoing this process still exist today. Around such massive objects, we can identify
amulti-stream region dominated by orbiting material surrounded by a single-stream re-
gion dominated by infalling material. The mass profile in the first zone is a collisionless
equilibrium profile common to all collapsed structures, while the profile in the second
zone can be quickly derived from first principles. If we assume a time-independent
profile, the continuity equation of the collapsing material can be written in terms of
the density p, and velocity vector v:

V(psv) =0, (1.9)

where the radial component of the velocity vector for an asymptotically unbound stream
is fixed by conservation of energy:

2 _ 2GM (< r)
s r b)

v (1.10)
where M (< r) is the mass contained within each shell at radius r. In the proximity of
the halo, this quantity is dominated by the mass of the collapsed object. Hence, we can
consider it constant and neglect the self-gravity of the stream. Under this assumption,
these two equations combined imply p, o< 7~3/2.

Even though numerical simulations corroborate this result, the simple derivation
above has an evident shortcoming: it does not depend on nor predicts the amount
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of mass deposited on the halo since the incoming mass was neglected entirely. To
extend this simple calculation, semi-analytical shell models can characterize this phe-
nomenon and explore how the mass accretion rate shapes the transition between the
single-stream and multi-stream regions. The sudden drop in density associated with
the piling up of orbiting material leads to the formation of a constantly expanding,
ever-present halo edge. This feature is a general prediction of spherical collapse, but its
potential to study the physics of accretion has only been recently recognized (Diemer
and Kravtsov, 2014).

The splashback feature, as it is now called (More et al., 2015), has been the subject
of multiple theoretical studies in the last few years. Two factors can explain the popu-
larity of this research line: its existence highlights a limitation of the halo model, and
its phenomenology can be easily captured. This ability to truly describe nonlinear be-
havior instead of just reading it off of numerical simulations is particularly appealing
in the context of the modeling complexities associated with small scales. Finally, what
is perhaps more important is the fact that this interest has not been purely theoreti-
cal. This field thrived in the past few years thanks to wide galaxy surveys, capable of
accessing a sizable fraction of the visible Universe, and the precision of present-day
lensing measurements used to estimate the mass profile of halos.

1.3 Observations

1.3.1 Galaxies and baryons

Based on the conservation of entropy, we can retrace the expansion of the Universe
to a denser and hotter infant state (Lemaitre, 1931; Gamow, 1946). In this epoch, the
baryonic matter was completely ionized and coupled to photons. Due to the result-
ing radiation pressure, the baryons could not collapse onto the primordial dark matter
overdensities and moved instead in periodic motions called baryonic acoustic oscilla-
tions. As the Universe expanded, electrons and nuclei recombined, and baryons de-
coupled from radiation. At this point, these two components were free to evolve inde-
pendently: baryons started collapsing onto the primordial dark matter overdensities,
and light started streaming across the Universe, forming a cosmic relic we can still see
today, the cosmic microwave background. Although they might appear related, gravi-
tational collapse for baryons is not akin to its dark matter counterpart due to cooling,
i.e. the ability to transform gravitational potential energy in forms of energy other than
kinetic. For baryons, collapse assumes the form of a slow accretion process, and the
end product is the collection of dense gas at the center of dark matter overdensities.
Eventually, this gas fragments and stars are ignited, resulting in the birth of galaxies.
Because the dynamics of dark and baryonic matter are so intimately connected, the
distribution of galaxies in the Universe acts as a probe of the total matter distribution.
This is a powerful idea, but despite what might transpire from the initial description, the
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relationship between the two components is not purely one-directional. Feedback, i.e.
the backreaction of baryonic dynamics on the distribution and motion of dark matter,
is an important phenomenon, and nowadays, its effects are studied through hydro-
dynamical simulations capable of tracking both gravitational dynamics and baryonic
microphysics. To provide an example of this relationship, consider the fact that lumi-
nous matter can release a large amount of energy through, e.g. supernovae explosions
or the bright accretion disks of supermassive black holes. The energy deposited in
this fashion can then reshape the host dark matter halos and impact the relationship
between the luminosity of a galaxy and the mass of its host halo. When combined,
cooling and feedback are perfect examples of how cosmology can connect micro and
macro-scales: physics set by quantum mechanical interactions dictates the appearance
of our Universe on the largest scales.

Naturally, galaxies also follow the process of hierarchical structure formation, and,
in the case of the largest conglomerates, they assemble in so-called galaxy clusters or
groups. These objects inhabit the heaviest dark matter halos and can be detected in
the late Universe as overdensities of galaxies in the sky. The brightest one is usually
associated with the heaviest halo and is commonly referred to as the central galaxy.
Fainter galaxies, stuck in orbits surrounding it, are called satellite galaxies. For this
thesis, it should be mentioned that a diffuse hot ionized gas is also present in galaxy
clusters. This results in two main observables used to detect galaxy clusters: the X-
ray signal emitted through cooling and the signal generated by the cosmic microwave
background scattering off the ions, known as the Sunyaev-Zeldovich effect.

1.3.2 Gravitational lensing

The deflection of light paths in the presence of mass along the line of sight is the only
observable capable of providing a direct snapshot of the dark matter distribution of
cosmic structures. This thesis makes wide use of this technique and focuses exclusively
on weak-lensing. In this regime, the shape of distant objects is distorted by the presence
of matter, e.g. a cluster, and detecting this distortion corresponds to a direct measure
of the mass profile. The linearized lensing equation governing this phenomenon is:

0B = Adb, (1.11)

where 0+ 0 is the perturbed location in the image plane of the point located at 3+ 3
in the source plane, i.e. the plane that would be observed in the absence of lensing. The
Jacobian matrix A connects the two and it is derived from the so-called lensing po-
tential, an integral of the gravitational potential along the light-path. If A is constant
in the region surrounding 6, then it can be generically split into two constant quan-
tities: a spin two-field v = 1 + 9, called shear, and a scalar component x. At first
order, the scalar component quantifies magnification, i.e. the isotropic change in size
of an infinitesimal area, while the shear quantifies deformations. These effects can be
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seen if we consider a circle centered on 6. This shape is deformed into an ellipse with
imaginary ellipticity equal to

Y
€ =
11—k

~ 7, (1.12)

and its area is multiplied by a magnification factor

1 1
Cdet A (1—k)2— |y

M S~ 1+ 2. (1.13)
Because the absence of lensing corresponds to a value of 0 for both shear and conver-
gence, we have Taylor expanded around this value to obtain the approximate equations.
Notice that outside of this weak-lensing limit, e.g., if |y|, |x| ~ 1, the matrix A can be
singular. Points where this happens are called critical points, and in their vicinity, we
approach the strong lensing regime where multiple images are formed. The most fa-
mous example of this arises when a source, lens, and observer are collinear. In this
case, distant sources deformed into arcs, called Einstein rings, surrounding the central
mass.

In practice, galaxies are not simple circles, and shear in the weak lensing regime
is obtained by measuring the shapes of a large number of distant galaxies. This is a
sophisticated procedure since the image visible in the reduced data is a convolution of
the intrinsic galaxy ellipticity, the lensing effect, and a point-spread function, i.e. the
impact of the atmosphere and telescope optics. While the first represents an intrinsic
source of scatter and can only be defeated by averaging multiple galaxies, instruments
and observing conditions need to be optimized in order to minimize the unpredictability
of the last. The best results, for example, are obtained using space telescopes, for which
the effect of atmospheric diffraction is obviously not present.

1.4 This thesis

In studying the largest scales, the boundaries of collapsed structures offer a labora-
tory to examine the relationship between structure formation, cosmology, and galaxy
formation. Theoretical and technological advancements have allowed us to test our
hypotheses directly, but the field is still in its infancy, and additional knowledge is re-
quired before its true potential can be unleashed. In this thesis, we present four papers
aimed at transforming this field into a mature probe and showcasing how the dynam-
ical nature of the large-scale structure can be modeled and measured.

Chapter 2 presents the first constraints on the splashback feature around massive
galaxy clusters. This result is unique because the targeted lensing measurements con-
sidered here explore a mass range otherwise inaccessible. Chapter 3 presents the first
quantitative predictions of how the edge of halos is affected in the presence of modifi-
cations of gravity. A straightforward but not simplistic semi-analytical model is used
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to get a handle on the most critical parameters and connect this feature to the coinci-
dence problem. Chapter 4 brings forward two new splashback observables. The first
one is related to the correlation between a cluster splashback signal and the orientation
of its central galaxy. The second is a mass-size relation for dark matter halos accessible
thanks to the combination of lensing and galaxy profile measurements. By comparing
hydrodynamical simulations to their dark-matter-only counterpart, this chapter also
shows that the presence of baryons does not affect this feature. Chapter 5 is the cul-
mination of the previous two and presents a concrete measurement of the mass-size
relation used to constrain gravity models. Particularly noteworthy is the fact that this
measurement is based only on photometric data. Finally, Chapter 6 presents three unre-
lated projects performed during the writing of this thesis. The focus is the intersection
between gravitational-wave physics and the study of the large-scale structure of the
Universe. We explore how this new class of signals is affected by gravitational lens-
ing and cosmic expansion. Thanks to the direct connection to the metric, gravitational
waves can be used to test a new sector of alternative theories of gravity that would be
otherwise hard to constrain.
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Chapter 2

Weak-lensing constraints on
splashback around massive
clusters

The splashback radius ry, separates the physical regimes of collapsed and infalling ma-
terial around massive dark matter halos. In cosmological simulations, this location is
associated with a steepening of the spherically averaged density profile p(r). In this
work, we measure the splashback feature in the stacked weak gravitational lensing sig-
nal of 27 massive clusters from the Cluster Canadian Comparison Project with careful
control of residual systematics effects. We find that the shear introduced by the pres-
ence of additional structure along the line of sight significantly affects the noise at large
clustercentric distances. Although we do not detect a significant steepening, the use
of a simple parametric model enables us to measure both 75, = 3.57§ 7 comoving Mpc
and the value of the logarithmic slope = log p/ log  at this point, y(r,) = —4.37}2.

Omar Contigiani, Henk Hoekstra, and Yannick Bahé
2019, Monthly Notices of the Royal Astronomical Society, 485, 408



20 Chapter 2. Weak-lensing constraints

2.1 Introduction

In the concordance lambda cold dark matter (ACDM) model, collisionless dark matter
acts as the building block of cosmic structure, contributing about 25 percent of the total
energy density in the Universe and the majority of the total mass (Planck Collaboration,
2016). In this framework, gravity is the primary force behind the growth of structure
in the matter field and is able to form the present-day cosmic web from an almost
homogeneous initial state. Fully collapsed structures, known as halos, are thought to
grow both through mergers of smaller ones (hierarchical clustering) and continuous
infall of ambient dark matter (smooth accretion).

An intuitive understanding of this second mechanism is given by the study of spher-
ical collapse in an expanding Universe (see Gunn and Gott, 1972; Fillmore and Gol-
dreich, 1984, for some historic landmark results). Shells of material surrounding an
overdensity eventually decouple from the Hubble flow and start collapsing toward it.
As more shells orbit the halo, the wrapping in phase space of different streams results
in caustics visible in the density profile. Of particular interest is the region around
the outermost caustic, where the physical regimes of accreting and collapsed material
meet.

More recently, Diemer and Kravtsov (2014, DK14 from now on) studied the spher-
ically averaged density profile p(r) of these regions in dark matter only simulations
and have reported a change in slope compared to the collisionless equilibrium profile
(Einasto or NFW, Einasto, 1965; Navarro et al., 1997). More et al. (2015) argued that
the splashback radius r,, corresponding to the minimum logarithmic slope v(r) =
log p(r)/logr, could function as a physically motivated definition for the boundary of
dark matter halos. This role is usually assumed by proxies for the virial radius such
as T200m., defined as the radius inside which the average halo density is 200 times the
average matter density of the Universe p,,,. While this radius has a clear definition
based on analytical solutions of idealized virialization scenarios, the mass contained
within it, known as Msgg,, is an imperfect measure of the halo mass. This is because
it is subject to a pseudo-evolution caused by the redshift dependence of p,, (Diemer
et al.,, 2013). In contrast, because the caustic associated with splashback is connected
to the apocenter of recently accreted material, all the material within 7, is necessarily
collapsed material and should rightfully contribute to the halo mass.

At larger distances, the presence of correlated structure surrounding the halo is
expected to shape the density profile. Using the language of the halo model (see e.g.
Cooray and Sheth, 2002, for a review), this is a transition region from the 1-halo term
to the 2-halo term. DK14 have however reported that in the outermost regions (r <
97200m ), the 2-halo term based on the matter correlation function provides a worse fit
to simulations compared to a simple power law.

Because the slope of the density profile at r, is found to be, on average, a decreas-
ing function of the halo mass, DK14 first pointed out that large overdensities are the
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ideal target for the detection of this feature — i.e. measuring a significant departure
from the equilibrium profile. This makes galaxy clusters the ideal candidates since they
correspond to the most massive halos in the Universe. For this mass range, g, is ex-
pected to be located around 7200, at a cluster-centric distance of the order of a few
Mpec.

The splashback feature should also be present in the radial distribution of galaxies.
This was first detected by More et al. (2016) using the large sample of redMaPPer clus-
ters from Rykoff et al. (2014), and studied further in Baxter et al. (2017). However, these
studies find a discrepancy between the inferred splashback radius and the expected dis-
tribution of subhalos based on dark matter only simulations. Known physical processes
(e.g. tidal disruption and dynamical friction) are not expected to induce a mismatch be-
tween the galaxy and subhalo distributions at splashback scales and this deviation is
still unexplained. In particular, while the results have been shown to depend on the
details of the cluster finding algorithm (Zu et al.,, 2017; Busch and White, 2017), it is
still uncertain if this can fully explain the discrepancy (Chang et al., 2018).

Chang et al. (2018) studied a sample of redMaPPer clusters selected in Dark Energy
Survey year 1 data. For this large sample, they detected a splashback feature in the
galaxy distribution and from weak lensing measurements. The latter has the advantage
that the lensing signal probes the matter distribution directly (see e.g. Hoekstra et al.,
2013, for a review). The first attempt to detect the splashback feature using weak grav-
itational lensing was presented in Umetsu and Diemer (2017), who used a sample of 16
high-mass clusters in the Cluster Lensing and Supernova survey with Hubble (CLASH).
Unfortunately, the limited field of view (foV) of Suprime-Cam prevented precise mea-
surements in the outer regions, and as a result, Umetsu and Diemer (2017) could only
provide a lower limit on the splashback radius.

In this work, we provide a measurement' of splashback using weak lensing obser-
vations for a sample of 27 massive clusters of galaxies that were observed as part of the
Canadian Cluster Comparison Project (CCCP; Hoekstra et al., 2012). Hence our strat-
egy is similar to that employed by Umetsu and Diemer (2017), but we take advantage
of the fact that the CCCP observations were obtained using MegaCam, which has a
foV of 1 deg?, and enables us to measure the lensing signal beyond the splashback ra-
dius. The chaper is organized as follows: in Sec. 2.2 we present our dataset and describe
our lensing analysis, in Sec. 2.3 we show the results of our fit and the implications for
splashback, and in Sec. 2.4 we draw our conclusions. Throughout the chapter we em-
ploy a flat ACDM cosmology with Hy = 70 km s~ * Mpc™*, 2,,, = 0.3, £2, = 0.25 and
os = 0.80.

!In the interest of reproducibility we make our splashback code publicly available at https://github.com/
contigiani/splash/.


https://github.com/contigiani/splash/
https://github.com/contigiani/splash/
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2.2 Cluster lensing

In this section, we discuss how the sheared images of distant galaxies can be used to
constrain the matter distribution of clusters along the line of sight. After introduc-
ing our cluster sample, we present the weak lensing measurements and explain our
methodology, with a particular focus on systematic effects and noise estimation.

2.2.1 Sample characterization

Our dataset is based on CCCP, a survey targeting X-ray selected massive clusters at z <
0.5 introduced for the first time in Hoekstra et al. (2012) and re-analyzed in Hoekstra
et al. (2015, H15 from now on). The starting points of our analysis are the r-band
images of 27 clusters captured by MegaCam at the Canada-France-Hawaii Telescope
(CHFT). We exclude from the original CCCP images those corresponding to ongoing
mergers: Abell 115, Abell 222/3, Abell 1758, and MACS J0717.5+3745 because these
systems display a visible double peaked matter distribution for which two splashback
surfaces might intersect each other.

The objects are characterized by masses 3.8 < Mago,, /(104 M) < 26.4 and
cover a redshift range 0.15 < z < 0.55, with only six of them located at z > 0.3.
Table 2.1 reviews the sample and presents the quantities relevant for this work. For
more details about the cluster sample we refer the reader to Hoekstra et al. (2012), H15
for a description of the weak lensing analysis, and the companion paper Mahdavi et al.
(2013) for the analysis of X-ray observations.

In simulations, DK14 found a correlation between the splashback feature and the
halo mass. We, therefore, define a high-mass subsample of our clusters, containing
the 13 most massive objects. The average Mago,, of the sample and the subsample,
weighted by the signal-to-noise ratio (SNR), equal 1.7 and 2.0 x 10*® M, respectively.
We choose to employ the gas mass M, within 7599, reported by Mahdavi et al. (2013)
to define our high-mass threshold. This is because this value is found to be a robust
estimator of the weak lensing mass and its measurement is mostly independent of it
since it is based on a different physical mechanism. A weak dependence between the
two is left due to the lensing-based definition of r5¢q..

Targeted observations such as the ones discussed in this work currently represent
the most efficient approach to study clusters of virial mass around 10> M. In partic-
ular, such a sample cannot be obtained by present-day or near-future wide surveys, e.g.
DES (DES Collaboration, 2017) or the Kilo-Degree Survey (KiDS collaboration, 2017),
because massive halos are rare (i.e. < 1 per FoV) and targeted deep data result in a
higher SNR compared to wide surveys. For these reasons, the SDSS and DES studies of
More et al. (2016), Baxter et al. (2017) and Chang et al. (2018) are based instead on large
samples of low-mass clusters: 8649 clusters with (Mago,,) = 2.7 X 1014 Mg, for SDSS
(Miyatake et al., 2016) and 3684 clusters with (Mago,,) = 3.6 x 10'* M, for DES Y1.
In contrast, our dataset is much closer in nature to the CLASH sample used in Umetsu
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and Diemer (2017), also based on targeted observations. In particular, the mass of their
stacked ensemble, Msgom, = 1.9 x 101° Mg, matches ours. Nevertheless, we want to
mention one feature unique to CCCP: the FoV of MegaCam (1 x 1 deg) is significantly
larger than that of Suprime-Cam (34 x 27 arcmin), the instrument used for the CLASH
profile reconstruction at large scales (Umetsu et al., 2016). This is particularly suited
for our purposes since it allows us to better cover cluster-centric distances where the
splashback radius is located.

2.2.2 Tangential shear

In the weak lensing regime, the shear field is found by averaging the PSF-corrected
ellipticities of a sample of background sources. We follow H15 and use sources in the
magnitude range 22 < m, < 25. The lower limit reduces the presence of foreground
objects such as bright galaxies belonging to the clusters, which are abundant in the
central regions and are not sheared by the cluster’s mass distribution. Because this
operation is unable to completely remove cluster members, we chose to model the
residual contamination statistically, as explained in Sec. 2.2.3.

Shapes are measured using an improved KSB method (Kaiser et al., 1995; Luppino
and Kaiser, 1997; Hoekstra et al., 1998). The quadrupole moments of the galaxy images
are used to construct a polarization tensor e, which is then corrected for the point
spread function (PSF) of the observing instrument. In Sec. 2.2.3 we address this step in
more detail and mention the improvements we have implemented since H15. The shear
polarizability P” quantifies how the observed polarization of an individual galaxy is
related to the gravitational shear. For an ensemble of sources the shear components are
hence measured as a noise-weighted average, (e;/ P"Y}, where the individual weights
are written as (Hoekstra et al., 2000)

1

. @2.1)
(@) + (0/P) 1

w =

In this expression two sources of noise are included: the scatter introduced by the
intrinsic variance of galaxy ellipticities (¢?) and the uncertainty in the measured po-
larization o, due to noise in the imaging data. Following Hoekstra et al. (2000) we use

(e2)1/2 = 0.25.

For an isolated circular overdensity, the induced shear is purely tangential, i.e. the
deformation is parallel to the radial direction. In general, this shear component is re-
lated to the projected mass surface density X(R) as a function of the radial coordinate
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Figure 2.1: Lensing signal. The top panel shows the noise-weighted stacked signal of the
27 clusters in our sample as a function of comoving clustercentric distance, together
with a best-fitting NFW profile to the first five data points (see Sec. 2.2.2 for more
information). The arrow points to the inferred location of ry¢¢,,; in simulated galaxy
clusters the splashback feature is located around this position. The larger error bars
are the full 1o errors for the data points, while the inner error bars account only for
statistical uncertainty. The difference between the two is apparent only in the last few
data points. The bottom panel shows an estimate of the expected residual systematics
left after the corrections discussed in Sec. 2.2.3 are applied, expressed as a fraction of
the total uncertainty. These effects are found to be consistent with the error bars.
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R:
- A
() = B2 A, @2
A 11

In these expressions, the profile AX(R) is called excess surface density and the critical
density X, is a geometrical factor quantifying the lensing efficiency as a function of the
relative position of source and lens. The definition above applies for a lens at distance
Dy, shearing an ensemble of sources. () is the average of the quantity max [0, Dis/ D]
for each source, with Drg being the individual lens-to-source distance? and Ds the
distance to the source.

Because we work with single-band observations, we are unable to derive individual
photometric redshifts. Fortunately, a representative photometric redshift distribution
is sufficient to estimate (. This distribution is obtained for all clusters by magnitude-
matching the most recent COSMOS photometric catalog (COSMOS2015, Laigle et al.,
2016) to our source r-band magnitude range.

We point out that the measured average ellipticity is an estimator of the reduced

shear
i = 7i(R)
1= Y(R)/ X

However, because we are interested in constraining a feature located in a low-density
region, for our main analysis we will assume the first-order approximation g; ~ =;
when fitting a model. From our source catalogs we extract the tangential component
g¢(0;) in radial bins and estimate for each cluster the data covariance matrix as the sum
of two terms: the first accounts for statistical noise in the average ellipticity and the
second one takes into account the presence of additional shear introduced by uncorre-
lated structure along the line of sight. More details about the evaluation are presented
in Appendix 2A.

The top panel of Figure 2.1 presents the average noise-weighted signal of the full
cluster sample. The double error bars in the figure illustrate how the inclusion of the
second source of noise has an impact on the uncertainties at large scales. An indicative
NFW fit, obtained using the virial overdensity from Bryan and Norman (1998) at an
assumed redshift z = 0.25, is also shown. The position of 7200, for the best-fit model
is also indicated in the same figure.

(2.4)

?Note that Drs is negative for foreground sources.
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Figure 2.2: PSF correction improvements. Image simulations are used to quantify the
residual additive bias not captured by the correction obtained in H15. The circles show
how residual additive bias in the average shear (7;) was present in the presence of
simulated PSF anisotropy (e}SF # 0). In this work (filled points) we are able to nullify

this effect by boosting the KSB smear polarizability P¥™. See Sec. 2.2.3 for more details.
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2.2.3 Residual systematics

In this section, we address the effects of the corrections we have implemented to tackle
two systematic effects that are particularly important for our analysis: PSF anisotropy
and cluster member contamination. In particular, we estimate the amplitude of any
residual systematic effects as plotted in the bottom panel of Figure 2.1.

In the KSB method, the observed galaxy polarizations are corrected for PSF anisotropy
using

e —e;— » PImpr, (2.5)

J

where the smear polarizability P*™ quantifies how susceptible a source is to PSF distor-
tions and p; is the PSF anisotropy measured using point-like sources (see e.g. Hoekstra
et al., 1998).

The observed polarizations and polarizabilities are, however, biased because of noise
in the images. If unaccounted for, this leads to biased cluster masses. For the shear,

these corrections can be expressed in terms of a multiplicative and additive bias, ;2 and
b:

¥i = (L4 p)yi + 0. (2.6)

To ensure accurate mass estimates, H15 focused on the impact of multiplicative
bias. To do so, they used image simulations with a circular PSF to calibrate the bias as a
function of source SNR and size. However, the actual PSF is not round and H15, there-
fore, quantified the impact of an anisotropic PSF on the multiplicative bias correction.
The details of these simulations, based on galsim (Rowe et al., 2015), can be found in
section 2.2 and appendix A of H15. The galaxy properties are based on HST observa-
tions, resulting in images that match the cluster data. The PSF is modeled as a Moffat
profile, which is a good representation of ground-based data. Appendix A in H15 ex-
amines the impact of PSF anisotropy and revealed that about 4 percent of this source of
bias remains after correction (see their fig. A1). While the impact of this residual bias is
negligible, further study revealed that it can be reduced by empirically correcting the
smear polarizability for noise bias. We have increased P*™ by a factor of 1.065, such
that no residual additive bias remains visible, see Figure 2.2. We also verified that this
latest correction does not introduce significant trends with source characteristics. We
use the difference between the ensemble lensing signal measured before and after this
improvement as a (conservative) estimate of any unknown systematics affecting the
shape measurement method.

The second effect we account for is the presence of cluster members in our source
catalogs. Note that in this case, we have not updated the methodology from H15, but we
still report it here for completeness. If we assume that cluster members are randomly
oriented, as found by Sifon et al. (2015), their inclusion among our sources has the effect
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of diluting the measured shear. To correct for this, we multiply v (R) by a boost factor
B(R) defined as a function of the projected comoving distance R:

B(R) =1+ fcont(R)/fobs(R)~ (2.7)

The contamination term f.on: accounts for the decrease of the ellipticity average due to
the presence unsheared sources and, by comparison with blank fields, it is found to be
(1) a decreasing function of distance from the cluster center and (2) negligible beyond a
distance ry,y. An extra factor fops is also introduced to model the reduced background
galaxy counts due to obscuration by cluster members. This factor is computed by stack-
ing the cluster images with simulated blank fields and measuring how many simulated
sources are obscured.
The functions appearing in the boost factor are written empirically as

1 14 0.021 q 2.8)
= aqn .
fobs(R) 014 + (R/T500)2
1 1
Jeont(B) = 1o (R +Re Tt RC> ’ 29)

where ng and R, are fitted independently for each cluster and B(R) = 0 for R >
Tmax = 4(1 4+ z) Mpc.

To quantify the amplitude of residual systematics for this second correction, we
refer to H15, where a residual scatter of about 2 percent around the ensemble correction
was reported.

2.3 Splashback

In this main part of the chapter, we fit the observed weak lensing signal using the
spherical density profile presented in DK14. This profile is designed to reproduce the
expected flattening of the density profile at large radii due to the presence of infalling
material, as seen in numerical simulations.

2.3.1 Fitting procedure

The projected surface density profile X'( R) for a spherical lens with matter density p(r)

) Y(R) = 2/OO dr’ p (\/ 2 4+ RQ) , (2.10)
0

where we limit the integration range of the line of sight variable ' to [0, 40] Mpc for
our numerical calculations. We also verify that the chosen upper limit has no effect on
our results by repeating the analysis with a wider range [0, 80] Mpc. For cosmological
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overdensities, this profile can be connected to the lensing signal through Egs. 2.2 and
2.4.

In this section we use a model for p(r) first introduced by DK14 with the following
components: an Einasto profile pg;, (Einasto, 1965) to model the inner dark matter halo,
a transition term fi.ns(7) to capture a steepening effect at the halo edge and a power-
law pout(r) to model the distribution of infalling material in the outer regions. The
mathematical expressions are the following:

P(T) = pEin(T)ftrans (7') + Pout(T)Q (2.11)
PEn(T) = psexp (_2 Ki) - 1]) , (2.12)
« Ts
8 —/B
Jeeans(r) = |1+ <;) ] , (2.13)
Pout = PO (L)_ ) . (214)
ro

In DK14 the infalling term includes an offset corresponding to the average matter
density, but this is not present in our fitting function because the tangential shear in
Equation (2.2) is completely insensitive to it.

In its general form, this model depends on a large number of parameters. In order
to reduce its degrees of freedom we, therefore, choose to set strong priors on a few
parameters. As done in Baxter et al. (2017) and Chang et al. (2018) we do not fit both
po and 1g, but choose to fix one of them, as they are degenerate. We impose Gaussian
priors log(0.2) £0.1, log(6) + 0.2 and log(4) £ 0.2 on the logarithms of the exponents
log o, log 3, and log 7, respectively. The loose prior on the Einasto shape parameter o
is motivated by dark matter only simulations and its 1o interval covers the expected
scatter due to the redshift and mass distribution of our sample (Gao et al., 2008; Dutton
and Maccio, 2014), while for the exponents in the transition term the stringent priors
are centered on the values suggested by DK14. We also set a Gaussian prior on the
truncation radius r¢, 4 & 2, based on the same results. The location of the median
is based on the ryg,, inferred from our NFW fit and the selected standard deviation
covers the expected range due to the mass distribution of our sample. Finally, based on
previous measurements, we also set a minimum value of 1 for the outer slope s, and a
physically motivated minimum value of 0 for the density parameters ps and py.

A rescaling of the radial coordinate with an overdensity radius (e.g. 7200 is often
employed when fitting the profile described above. We also attempt to rescale our
coordinates with either 7500, Or 200:m, but due to the uncertainties on the individual
cluster profiles, no rescaling results in the splashback feature being constrained with
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higher precision. Despite this, we still attempt to remove the redshift dependence of
the average matter density of the Universe by using comoving coordinates.

We follow Umetsu and Diemer (2017) and do not include a miscentering term in our
tangential shear model. In general, a shift in position of the cluster centres reported in
Table 2.1 would cause a smoothing of the lensing profile in the central region. An esti-
mate of the area affected by such an effect can be obtained by considering the difference
between two independent estimators of the halo centre: the position of the brightest
cluster galaxy or the X-ray luminosity peak. Our sample is found to be well centered
(see M13) with the root mean square of the offset between the two o, = 33 kpc. For
the scales plotted in Figure 2.3 we therefore do not expect our data to be affected by
miscentering,.

A fit to input data 7;(R) with the covariance matrix defined in Sec. 2.2 is per-
formed by sampling the posterior distribution of the parameters [ps, r's, log v, 7, log 3,
log 7, po, S¢] using the Markov Chain Monte Carlo ensemble sampler emcee® (Foreman-
Mackey et al. 2013, based on Goodman and Weare 2010).

2.3.2 Interpretation

Figure 2.3 visually presents our results. The left-hand panel shows the best-fitting model
to the lensing signal, while the right-hand panel shows the posterior distribution of the
inferred profile. To better highlight the splashback feature we choose to focus on the
dimensionless logarithmic slope v = dlog p/dlogr = r/p dp/dr when plotting the
posterior of our model.

For both CCCP samples considered a minimum of the slope is identified. At larger
distances, the results are the least interesting. In these regions, the power-law term
becomes dominant and the value of the slope is set exclusively by the exponent s.. In
particular, its lower limit is artificially imposed by our prior.

What is more relevant to our study is the minimum value of the slope v(r) and its
location, i.e. the splashback radius rg,. The 68 percent credible intervals of both quan-
tities are indicated as shaded sections of the vertical and horizontal histograms. Our
measured 99.7 percent confidence interval of (7 ) for the full sample is [—10.9, —2.3],
meaning that we are unable to measure a significant departure from the slope expected
for an NFW profile (about —2.5). Despite this, we are still able to constrain the value of
both the splashback radius and the logarithmic slope at this point, g, = 3.5f(1):% Mpc
and y(ry) = —4.37]'2. We also highlight that the high-mass sample returns similar
constraints with only half the sample size, rg, = 3.574:3 and y(ry,) = —3.7107.

As a point of reference, we also show the expected profiles from a suite of zoom-in
hydrodynamical simulations of massive clusters (Hydrangea, Bahé et al.,, 2017). From
the full Hydrangea sample, we have selected the eight most massive clusters for this
comparison in order to obtain a sample with an average value of (Mag0,,) = 1.7 x 1015

Shttps://emcee.readthedocs.io/
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Figure 2.3: Splashback measurement. The left-hand panel shows the measured lensing
signal for our full sample and a subsample of the 13 most massive clusters as a function
of comoving clustercentric distance, together with the 68 percent confidence intervals
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from the DK14 fit. The right-hand panel shows the posterior of the three-dimensional

logarithmic slope for the same model. The histograms on the horizontal axis are the

distributions of the inferred position for the minimum of ~y (i.e. the splashback radius

Tsp), while the histograms on the vertical axis are the distributions of (). The solid

black lines refer to the NFW fit shown in Figure 2.1, while the dashed lines correspond

to predictions from hydrodynamical simulations of massive clusters (Hydrangea). The

amplitude of the Hydrangea and CCCP signals are different because we match the virial
mass of our observed sample at z 2 0.2 with simulated clusters at z = 0.
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Mg, similar to our dataset, but evaluated at z = 0 instead of z = 0.2. Note that the
amplitude of the signal plotted in Figure 2.3 is lower than the observed sample due the
evolution of the average matter density of the Universe. Our slope measurements are
found to be agreement with what is seen in simulations.

As done in Umetsu and Diemer (2017), we study the impact of the model parameters
on the predictions for rg, and y(rgp ) to verify that our dataset is informative and we are
not simply sampling our model priors. Of crucial importance is the truncation radius
r¢, which, in the original definition of the DK14 profile, explicitly sets the position of
the splashback feature.

Similarly to Umetsu and Diemer (2017), we also find that we are unable to fully
constrain this parameter. This can be seen in Figure 2.4, where we plot the posteriors
of three relevant parameters for two different choices of the 7; prior: the Gaussian
assumed in our main study and a flat prior in the range [0, 20] Mpc. While the posterior
for v(rsp) (middle row) is mostly unaffected by this choice, we obtain a looser upper
limit on the splashback radius (top panel) in the second case: rg, = 3.9'_"%:3. As visible
in the bottom-left panel, this is due to a clear correlation with r;.

We find no correlation between 7y, and r, for r; 2 10 Mpc. In this regime, the
location of the minimum of «(r) is controlled by the presence of the infalling term
pin(r) o 7% . Because the slope s. is relatively gentle, if r; is large enough the
truncation happens in a region dominated by the infalling material and cannot be con-
strained. Because the truncation is expected to be visible in the transition regime, our
Gaussian prior on r; effectively forces it to a physically motivated position and, from
the figure, we confirm that it does not introduce a biased posterior peak.

2.4 Conclusions

We have shown in this work that targeted weak lensing observations of massive clus-
ters can be used to measure the splashback feature and that particular care is required
when correcting for residual PSF contaminations, which should be well understood,
and estimating the data covariance matrix, which should take into account the pres-
ence of additional structure along the line of sight. Using a stack of 27 massive clusters
from CCCP we have fully constrained for the first time the splashback radius around
massive clusters, 7y, = 3.61'(1):?, and similar precision has also been achieved with as
little as 13 objects. We stress that, because of the purely gravitational nature of weak
lensing, minimal assumptions are required to interpret our signal.

In the last few years, the study of the physics of accretion at the outskirts of massive
dark matter halos has become observationally viable. Splashback offers a unique view
into the phase-space configuration of halos, which has not yet been explored in obser-
vations. In particular, the physics behind it appears to be remarkably uncomplicated
and semianalytical models of spherical collapse for cold dark matter are able to repro-
duce the expectations from N-body simulations (e.g. Adhikari et al., 2014; Shi, 2016).
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Figure 2.4: Impact of the prior on the truncation radius r on our results. The corner plot
presents the two-dimensional and marginalized posterior distributions for the DK14
parameter 7, the inferred splashback position 7, and logarithmic slope y(rgp). If,
instead of a Gaussian prior (dashed red line), a flat prior is assumed (dashed black line),
the parameter r; has no upper bound. This translates into weaker constraints on 7.
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The fact that these results are based only on the dynamics of collapsing dark matter in
an expanding Universe makes splashback a remarkable prediction of general relativity
and dark matter. More generally, its connection to the growth of cosmological struc-
tures makes it a test for ACDM. As an example, it has also been shown recently that
modifications of gravity have a significant impact on this feature (Adhikari et al., 2018).
As the first results are starting to appear in the literature, we argue that splashback so-
licits further investigation exactly because it is a falsifiable prediction of the current
paradigm.

We found that at the relevant scales a significant contribution to the lensing signal
is cosmic noise. In the near future, this term can be reduced significantly with larger
cluster samples. Looking further ahead, deep wide-area surveys such as Euclid (Laureijs
et al,, 2011) and LSST (LSST Science Collaboration et al., 2009) will provide unprece-
dented depth and survey area, and thus deliver the data required to study splashback
over a wider mass and redshift range.

Appendix

2A Noise covariance matrix

For each cluster we model the noise covariance matrix for the lensing signal as the sum
of two components:

C =C* 4 O, (2.15)

The first is a diagonal matrix accounting for the statistical error on the weighted
average of the measured ellipticities and the second quantifies the additional shear vari-
ance caused by the presence of cosmic structure between viewer and source (Hoekstra,
2003; Umetsu et al., 2011)

Cisy = 2n [ dt B (09(6.009(0,6)), @19
0

where P, (¢) represents the projected convergence power spectrum for the multipole
number /. For an angular bin 0 extending from 6_ to 6, g(l,0) is defined using the
Bessel functions of the first kind of order zero and one, Jy and J:

C[1—2m6_ ] O_A(6) [1—2In0, ] 0. (6,)
g“"’)‘{wwi—ezﬂ 7 ‘Lwi—ei] e

2 0
Tw(0E—07) /9 d¢ ¢log ¢Jo(1¢).

(2.17)
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Figure 2.5: Covariance matrix. Visualization of the two components of the covariance
matrix C = C®**" 1 C'* for the data points plotted in Figure 2.1. The diagonal ma-
trix (left) is the statistical error C****, the second one (right) is the component due to
uncorrelated structure along the line of sight, C'**. The top-left corner corresponds to
the first data point.

For a given cosmology, P,;(¢) can be evaluated using the Limber projection starting
from a source redshift distribution and a model for the nonlinear matter power-spectrum
(Kilbinger, 2015). For this work, this is done using CAMB* (Lewis, 2013) and HALOFIT
(Takahashi et al., 2012). As an example, the resulting covariance matrices for the aver-
age signal in Fig. 1 are presented in Figure 2.5.

A third term accounting for the intrinsic variance in a particular realization of
galaxy clusters should be added to the matrix in Equation (2.15). For massive clus-
ters in the considered redshift range, this term is found to be dominated by Poissonian
scatter in the number of halos contained within the correlated neighborhood (Gruen
et al., 2015). We neglect this term because in similar lensing analyses (e.g. Umetsu
et al.,, 2016; Miyatake et al., 2018) it is always found to be sub-dominant to statistical
and large-scale structure noise, especially on the scales of interest for this work.

*https://camb.info/
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Chapter 3

Splashback in symmetron
gravity

The splashback radius 7y, has been identified in cosmological N-body simulations as
an important scale associated with gravitational collapse and the phase-space distribu-
tion of recently accreted material. We employ a semianalytical approach to study the
spherical collapse of dark matter halos in symmetron gravity and provide, for the first
time, insights into how the phenomenology of splashback is affected by modified grav-
ity. The symmetron is a scalar-tensor theory which exhibits a screening mechanism
whereby higher-density regions are screened from the effects of a fifth force. In this
model, we find that, as over-densities grow over cosmic time, the inner region becomes
heavily screened. In particular, we identify a sector of the parameter space for which
material currently sitting at g, has followed, during the collapse, the formation of this
screened region. As a result, we find that for this part of the parameter space the splash-
back radius is maximally affected by the symmetron force, and we predict changes in
Tsp up to around 10% compared to its general relativity value. Because this margin is
within the precision of present splashback experiments, we expect this feature to soon
provide constraints for symmetron gravity on previously unexplored scales.

Omar Contigiani, Valeri Vardanyan, and Alessandra Silvestri
2019, Physical Review D, 99, 064030
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3.1 Introduction

Gravity, one of the fundamental forces of nature, plays a crucial role in inferring our
model of the cosmos as well as all the precision constraints placed on fundamental
physics through cosmology. The theory of general relativity (GR), introduced by Ein-
stein a century ago (Einstein, 1916), provided a coherent theoretical framework within
which to study all gravitational phenomena. While it is arguably one of the most suc-
cessful theories of modern physics, having passed a host of empirical phenomena, there
remain regimes of curvature and scale where GR has yet to be accurately tested. Its the-
oretical and phenomenological limitations are being fully explored, with an endeavor
which is carried out at virtually all energy scales, ranging from the ultraviolet prop-
erties of the theory, down to the energy scale of Hy, associated to the present-day
expansion rate of the Universe (Riess et al., 1998).

Upcoming large-scale structure (LSS) surveys will provide unprecedented constraints
on gravity on cosmological scales, allowing one to discriminate among many theories
alternative to GR. The phenomenology of theories of modified gravity (MG) on lin-
ear cosmological scales is fairly well understood, and it is commonly characterized in
terms of modifications in the relation between matter density contrast and gravitational
potentials (Zhao et al., 2010; collaboration, 2016; Pogosian and Silvestri, 2016). On the
other hand, it is well known that non-linear mechanisms in MG theories “screen away”
the effects of additional degrees of freedom in high-density regions. This ensures that
any fifth force is suppressed and MG reduces to GR in regions where it has been tested
with remarkable accuracy (Will, 1993).

A natural regime of interest is the intermediate range, between the screened and
unscreened regimes, e.g. the regions of space at the boundaries of dark matter halos.
To this extent, a feature that is gaining prominence is the so-called splashback, which
corresponds to an observable steepening of the dark matter halo density profile close
to the boundary (Diemer and Kravtsov, 2014). Locally, the position of this steepen-
ing contains interesting information about the clustering of dark matter shells, and it
can be understood as the dividing radius of single-stream and multi-stream sectors of
the dark matter phase space. This feature has already been noticed in the self-similar
spherical collapse framework developed and studied in Fillmore and Goldreich (1984)
and Bertschinger (1985), and generalized to three-dimensional collapse in Lithwick and
Dalal (2011). Self-similarity, however, is fully operational in a universe without a char-
acteristic scale, such as the Einstein-de Sitter (EdS) universe with (2,,, = 1. Even though
realistic applications of the same principle to a ACDM universe are possible (Shi, 2016),
in this chapter, we will focus on the collapse in the EdS scenario and will leave more
realistic scenarios for future work.

The profiles of the largest dark matter halos in the Universe, where galaxy clusters

reside, can be mapped by measuring the deformation of background sources (Kaiser
and Squires, 1993; Umetsu et al., 2011). This technique, known as lensing, has been
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used to measure the splashback feature around clusters (Umetsu and Diemer, 2017;
Contigiani et al., 2019). It should be noted, however, that the most stringent constraints
are obtained using the distribution of subhalos traced by the cluster galaxy members
(More et al., 2016; Baxter et al., 2017; Chang et al., 2018; Shin et al., 2018). In this case,
the interpretation is nevertheless not straightforward and an accurate comparison with
N-body ACDM simulations is required.

In this chapter, we consider the splashback radius in MG scenarios, investigating the
microscopic effects of alternative theories of gravity on the dark matter shells accreting
into the halo. Since we aim to gain insight on the physical details, we do not resort to
numerical simulations but rather employ a semianalytical method based on the frame-
work of self-similar spherical collapse of Fillmore and Goldreich (1984). We focus on
the class of theories of gravity that display the symmetron screening mechanism (Hin-
terbichler and Khoury, 2010). While we present an overview of the symmetron gravity
in the main text, let us mention here that our analysis can be easily extended to other
types of screening mechanisms, e.g. to Chameleon screening exhibited by f(R) mod-
els (Capozziello et al.,, 2003; Carroll et al.,, 2004), in which the density dependence is
explicitly in the scalar field mass, rather than the field couplings.

We have organized our presentation as follows. In Sec. 3.2 we introduce the self-
similar density profile and present the relevant equations of motion for the collapsing
shells. In Sec. 3.3 we discuss the basics of symmetron gravity. In Sec. 3.4 we present
our numerical methods and demonstrate the effect of the symmetron force on the phase
space of the dark matter halo and the shift in the splashback radius.! Finally, we discuss
the implications of our findings and suggest potential further studies in Sec. 3.5.

3.2 Density profile

In order to study the motion of accreting material onto an overdensity, we first need
to specify a matter density profile. In this work, we employ the so-called self-similar
approximation in the problem of spherical collapse. In this context, the idea of self-
similarity was introduced for the first time by Fillmore and Goldreich (1984), in which
it was shown that around EdS backgrounds, where the scale factor scales as a power
law of cosmic time, a(t) o t2/3, the spherical collapse equations admit self-similar and
self-consistent solutions.

The material surrounding a scale-free perturbation initially coupled to the Hubble
flow eventually reaches turnaround and collapses onto a central overdensity. We de-
note by R(t) and M (r, t) the position of the turnaround radius at a time ¢ and the mass
contained within the radius r, respectively. The mass within the turnaround radius can

!In the interest of reproducibility we make our numerical codes available at http://github.com/contigiani/
sym-splash.
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be written as a function of scale radius as:
M(R,t) x a(t)®, (3.1)

where the parameter s is referred to as the accretion rate. In this model, M (R, t) and
R(t) are related to each other through

R0 = (5 ) MR, 62)

where p;(t) is the EdS background density at time ¢. This additionally implies that the
position R as a function of time also depends on s:

R(t) o a(t)' /3. (3.3)

Notice that s and the mass of the present-day perturbation are the only free parameters
of this model. In this work, we choose a fixed value of s = 1.5 for the accretion
rate, known to be representative for the low-redshift Universe in numerical simulations
(Correa et al., 2015; Diemer and Kravtsov, 2014).

During spherical collapse, Gauss’s law ensures that the trajectory for each shell of
material is influenced only by the mass contained within it. The equation of motion for
each shell can be written as

d*r ~ GM(r,t)

e e (34)

where the left-hand side is the Newtonian force Fy () proportional to Newton’s grav-
itational constant G.

While before turnaround the mass within a shell is manifestly constant, afterward,
this is not true; as multiple shells start orbiting the halo, their trajectories start inter-
secting. This phenomenon is known as shell crossing, and it is the principal reason
why integrating Equation (3.4) is not straightforward.

If we label each shell of material by its turnaround time ¢, and radius r,, such that
R(t.) = 7., the trajectory for each shell is found to be independent of these quanti-
ties when self-similarity is satisfied. This can be verified by rewriting the equation of
motion for the given shell in terms of the rescaled variables

§=— T=o (35)
r

and by enforcing the mass profile M (r) to be of the form:

M(r,t) = M(R,t)M(r/R). (3.6)
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Notice that, from Equation (3.3) it follows that the rescaling of the local turnaround
R(t)

radius = = == can be also written as a function of 7 alone:

E(T) _ T2/3+25/9. (37)

The system is then evolved through the following self-similarity equations for £(7)

and M (¢/5):

d2§ 2 T25/3M< g )

a2 8 ¢ =(r)
< d
M(y) = %/1 7_1+—;/3H (?J - é&%) ; (3.9)

where H(...) is the Heaviside step function, and the turnaround initial conditions for
&(r)are&(r = 1) = 1,d¢/dr(7 = 1) = 0. Notice that, because these two equations are
coupled to each other, they should be solved jointly to obtain self-consistent solutions
for the orbits and the mass profile. This is done by starting from an initial guess for
M(y) and then evaluating numerically the trajectories £(7) using Equation (3.8). The
corresponding M (y), evaluated using Equation (3.9), is then taken as an initial guess
for the next iteration. This is repeated until convergence is reached and a final result
for M (r,t) is obtained. The corresponding density profile is then simply

(3.8)

1 dM
p(r,t) = mﬁ(h t), (3.10)

and it is shown in Figure 3.1. Notice in particular that its time-dependence is com-
pletely described by py(t) and R(t).

3.3 Symmetron gravity

In this section, we provide a brief overview of symmetron gravity and introduce the
framework needed to study its effects on spherical collapse.
We consider a scalar-tensor theory of the form

S =S+ Sur (G ), (3.11)

with
2

M. 1
So= [VEa e | LR 3V - V(o) (312)

M, being the Planck mass, and Sy; being the action for matter fields. The scalar field
 couples to the Einstein frame metric g,,, with Ricci scalar R, while matter fields
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Figure 3.1: Prescription for the spherical halo density profile. The red dotted line is a
smoothed version of the self-consistent profile which removes the non-physical sharp
caustic.
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(collectively represented by ¥) couple to the Jordan frame metric g,,,,. The two metrics
are assumed to be related by the transformation

Guv = AQ(‘P)Q#% (3.13)

Notice that such model is fully specified by the functions A(y) and V(). Varying the
action with respect to ¢ gives us the equation of motion,

Up=V,— Ag(SD)AW(QP)p

where p is the trace of the matter stress-energy tensor, equal to the local matter density,
and V(i) is an effective potential. The fifth force per unit mass exerted by the field ¢
and experienced by a matter test particle can then be written as

I
=

<p(§0)v (3.14)

F,=—-VlogA(yp). (3.15)

In this chapter, we will focus on a realization of such a theory, namely the sym-
metron model specified by the functions

1 1
V(p) = —5ne” + 720", (3.16)
1 ¢?
Alp) =1+ VER (3.17)
and effective potential:
¥ _ Ly 2\ 2, 1y 4
V(0) = 5 (305 — %) & + P (3.18)

In this parametrization, the symmetron naturally assumes the form of an effective
field theory with ¢ — —¢ symmetry.
In high-density regions, where the condition

P> Pssb = M2,u2 (3-19)

is satisfied, the effective potential f/(go) has only one minimum in ¢ = 0 and the field is
driven toward it, resulting in a null fifth force. In other words, high-density regions are
screened. In low-density environments, on the other hand, the minimum is not located
at zero. For example, for p = 0 the vacuum expectation value is o = 1/v/\.

The fifth force can be constrained by local tests of gravity; to see in detail how local
limits translate into bounds on the mass scale M and the Mexican hat parameters f, A
we refer the reader to Hinterbichler and Khoury (2010), for a general overview, and to
the introduction of O’Hare and Burrage (2018), for a more recent analysis.
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In an EdS background, the average matter density as a function of redshift z is

1

Po
As the Universe expands, the symmetron can undergo spontaneous symmetry break-
ing (SSB) when py(zssh) = pssp. For more details about the cosmological evolution of
the symmetron field and the allowed expansion histories, we refer the reader to Hin-
terbichler et al. (2011) and Bamba et al. (2013). Let us stress, however, that we are not
interested in the possibility of using the field ¢ to drive the late-time expansion of
the Universe, but we are only interested in the additional fifth force and its effects on
spherical collapse.
In this chapter, we will work in terms of the dimensionless field x = ¢/¢ and
symmetron parameters composed by the average matter density at symmetry breaking
Pssb, the vacuum Compton wavelength

Ao = —, (3.21)

and the dimensionless coupling

oM,
8= 72” (3.22)
Using these parameters, the fifth force sourced by the symmetron field can be written
as

F, = —167GB* 3pssp XV X- (3.23)

3.4 Spherical collapse with the symmetron

Having introduced the symmetron, let us now go back to the original goal of this chap-
ter, i.e. to study spherical collapse in symmetron gravity with a particular focus on
splashback.

The splashback radius is commonly defined as the point where the density profile
p(r) is at its steepest. While this steepening is noteworthy because it can be detected
as a departure from an equilibrium profile, this definition is clearly not suited for our
study, in which we assume a predefined density profile. Fortunately, the splashback
radius is also known to be connected to the apocenter of recently accreted material
and the location of the latest caustic visible in the density profile. Here we study the
effects of the symmetron force on splashback by using this latter definition.

Our simulation is based on a system of equations that includes the spherical collapse
equations, as discussed in Sec. 3.2, coupled to the equation for the field profile of the
symmetron field, discussed in Sec. 3.3. We start by presenting our numerical method to
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compute both the symmetron field profile and the additional fifth force for the assumed
density profile. We then proceed to integrate the shell equation to predict the fractional
change in the splashback position in the presence of the symmetron force.

3.4.1 Field profile

Assuming the temporal evolution of the field to be very fast compared to the other
timescales of the problem, i.e. the Hubble timescale and that of the clustering of matter,
the dimensionless field profile x(r) sourced by a density profile p(r,t) satisfies the
following equation:

x| 2dx 1 [(p(rt) 3
— 4 - = — -1 . 3.24
dr? + r dr 2)\% {( Pssb X+X (3.24)

This quasistatic approximation is common in the literature (Davis et al., 2012; Clampitt
et al., 2012; Brax et al.,, 2012) and has been tested in the context of N-body simulations
(Llinares and Mota, 2014; Noller et al., 2014). In order to provide a rough, order of
magnitude justification for this assumption, let us just mention that the timescale as-
sociated with the field dynamics in vacuum is given by ~ Ag/c. It is clear that in order
for the symmetron field to be relevant for the dynamics of the spherical collapse this
Ao should be of the same order of magnitude as the scale of the cluster itself. The latter,
of course, is several orders of magnitude smaller than ¢/ Hy.

The static symmetron equation of motion (3.24) is a nonlinear elliptical boundary
value problem, for which we set the standard boundary conditions of vanishing spa-
tial gradient of the field at » = 0 and » — 0o. We use a one-dimensional version of
the Newton-Gauss-Seidel relaxation method for the numerical integration of the equa-
tion. This is a standard method used for obtaining the scalar field profiles in N-body
simulations with modifications of gravity mentioned above.

In practice, we discretize our one-dimensional static symmetron equation of motion
on a regular grid of size h and use a second order discretization scheme for all the
derivatives.? The resulting equation takes the form

LXi+1, Xi—1:Xi] = 0, (3.25)
where
L[Xi+1, Xi-15 Xs] = Dk [Xi+1, Xi—13 X3] — Dp[xs: pil (3.26)
contains the discretization of the Laplace operator
_ Xit1 T Xi-1 = 2): " 2 Xit1 — Xi-1
- h? T 2h
2We have tested some outputs of our integrator against the results of the version in which higher order
discretization schemes are employed. For our particular problem, we did not encounter significant differences

in performance of the integrator and performed the main analysis with the version which employs the second
order scheme.

Dk (3.27)
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and effective potential:

1 i
Dp:—2(<p —1)X,»+X§>. (3.28)
Ab Pssb

The basic idea of the relaxation methods is to find a field profile from this equation
which is closer to the real solution than a randomly chosen initial guess. This step is
iterated over multiple (improved) guesses labeled x, (%) until convergence is reached.

At a given step, we define an improved (new) field profile:

L(x(#))
OL(x(i))/0x (1)

Then, we use a part of this new x as the field profile for our next relaxation iteration,

X"V (i) = xn (i) — (3.29)

X(1)=xn (%)

Xn+1(1) = WXV + (1 — w)xn, (3.30)

where 0 < w < 1 is a weight parameter with, in principle, a problem-dependent
optimal value.

We employ two intuitive convergence diagnostics, in which at each step we ter-
minate the iteration if a certain parameter is within a predefined threshold. The first
parameter is the residual function,

mz¢2qw+mmwnmm% (331)

and the second one is the all-mesh average of the fractional change in the field profile

mz¢2um@—www. (3.52)

%

To validate our integrator and convergence thresholds, we compare the numerical
solution to a known analytic solution. In our case, this known solution is an exact
tanh(r) field profile, for which the corresponding density profile was recovered using
Equation (3.24).

When solving for the density profiles plotted in Figure 3.1, we numerically evaluate
the equation of motion in the range [0,2] for r/R(t), where the density profile for
r > R(t) is assumed to be constant. We make sure that the arbitrary choice of the
upper limit has no effect on our results by testing larger values.
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3.4.2 Splashback

Once the symmetron field is found as a function of time, the present-day phase-space
distribution of recently accreted material can be obtained by integrating numerically
the equation of motion (3.4) with added fifth force (3.23) for different collapse times.

We find that after imposing self-similarity the collapse equations can be written
only as a function of three dimensionless symmetron parameters: the redshift of sym-
metry breaking zs,, the dimensionless coupling 3, and the ratio Ao/ R(¢o) between
the vacuum Compton wavelength )¢ and the present-day turnaround radius R(tg).
An important combination of these parameters is

2
f=0+ zssb)?’ﬁZ#iO), (3.33)

which explicitly sets the strength of the symmetron force according to Equation (3.15).

From our testing, we found that values Ao/ R(to) € [0.02, 0.1] offer nontrivial cases.
For A ~ R(t() we always obtain thin-shell-like solutions, while for A < R(t() the field
is heavy and simply relaxes onto the minimum of the potential f/( X) in Equation (3.18).

In Figure 3.2 we illustrate our method and show how the symmetron force modifies
the phase-space configuration of the latest accreted orbits (left-side plot). We find that
the splashback position is significantly affected for parameter values f ~ 1, zgqp ~ 2
and \g/R(ty) ~ 0.1. These values imply M < 1073M,, which is in agreement with
local tests of gravity (Hinterbichler and Khoury, 2010).

From the same figure (right-side plot), it is clear that the innermost regions of the
overdensity are screened from the effects of the fifth force at all times, and this becomes
relevant in the outer regions only for z < 24} Past this point, the force profile slowly
transitions from a thick-shell- to a thin-shell-like behavior, in which the force gets pro-
gressively concentrated around the surface of the screened region (Taddei et al., 2014).
Due to the sudden drop in density associated with splashback, this surface is delimited
by the splashback radius.

A systematic exploration of the symmetron effects on this feature as a function of
all parameters is presented in Figure 3.3, which represents our main result.

A clear trend with zggy, is visible. Notice that the fractional change on the splashback
position has an optimal peak as a function of zg, that is independent of f. If we call
Zsp the accretion redshift of the shell currently sitting at the splashback position after
its first pericenter, i.e. the splashback shell, we see that the effect is maximized when
Zsp ° Zssh. This is easily explained by studying the profile of the fifth force over time.
For zsp >> zesb, the selected shell collapses when the symmetron is in its symmetric
phase and the material spends the rest of its trajectory in a screened region, away from
the effects of the fifth force; for z,, < 241, the thin shell has had time to form before
Zsp, and the shell feels the effects of the fifth force only during a small fraction of its
trajectory. Between these two limiting cases, there is an efficient zy, for which the
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splashback shell has time to follow the formation of the thin shell, and it is optimally
positioned near the peak of the force profile for most of its trajectory. In our figure, we
show how this peak still has a dependence on )y, introduced by the presence of this
factor on the symmetron equation of motion (3.24).

To conclude this section, we point out that the smoothness of the density profile
as plotted in Figure 3.1 has little impact on our results and no impact on the trends
discussed above. Differences between the two prescriptions exist only for Ag < R(to),
when the field profile becomes susceptible to the small-scale features of the profile.
However, since we expect the sharp caustic to be smoothed by gravitational instabil-
ities, for the main results, we chose not to use the discontinuous profile and assumed
instead its smoothed version. Notice also that considering such high-resolution sce-
narios would introduce additional caveats (e.g. the presence of substructure) that are
not the focus of this work.
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3.5 Discussion and conclusion

In this chapter, we have explored how symmetron gravity affects the splashback feature
at the edges of cosmological halos. In our approach, we assume a self-similar mass
distribution motivated by spherical collapse in an EdS Universe, where the shape of the
spherically symmetric matter distribution is assumed to be only a function of r/R(t).
This allows us to easily solve for the corresponding symmetron fifth force and estimate
its effects on the splashback feature by studying the changed phase-space distribution
of recently accreted shells.

The main limitation of our study is the lack of a fully consistent framework in which
the density profile, the turnaround physics, and the phase-space distribution are solved
for in conjunction with the newly introduced symmetron equation of motion. For ex-
ample, we would expect a consistent framework to take into account the back-reaction
of the scalar field on the density profile.

While deriving self-consistent solutions is outside the scope of this chapter and
more suited to N-body simulation studies, we find it useful to discuss the impact of
our assumptions on the results. Changes to the turnaround physics are commonly
studied through the use of different approximations, like a scale-dependent Newton’s
constant (Schaefer and Koyama, 2008; Brax et al., 2010; Hu et al., 2018; Nojiri et al., 2018;
Lopes et al., 2018). In our case, if we maintain the assumptions of self-similarity and
power-law accretion in Equation (3.1), the main change to our formalism will come in
the form of upgrading the numerical constant appearing in Equation (3.2) to a function
of the perturbation scale and cosmic time.

Previous works have estimated these corrections to be of the order of a few percent-
age points at z ~ 0; see (Taddei et al., 2014) for results in symmetron gravity and (Lopes
et al., 2018) for similar results in f(R) theory. In particular, we expect our assumption
to first break at a redshift z such that the condition Fi,(r) ~ Fy(r) is satisfied at the
turnaround radius r = R(t¢). In our analysis, however, we have seen that the effects
on splashback are maximized when the collapse redshift of the splashback shell zy, is
equivalent to this transition redshift. After this point, the splashback shell is confined
in the inner region, and we expect its trajectory to be unaffected by the turnaround
physics. Therefore, we consider our results around the peak of Figure 3.3 to be robust
against this assumption. For the same reason, however, we expect to lose predictability
for higher values of 24, since the initial condition of the splashback shell will differ
from what we have assumed.

Notice that the argument presented above also implies that our results can be ex-
tended to a standard ACDM scenario. The present-day splashback shell is expected to
have collapsed in the matter-dominated era and to have followed a trajectory mostly
unaffected by the late-time expansion, especially for low values of the accretion rate s
like the one considered here (Shi, 2016).

Effects of modified gravity on the structure of dark matter halos are usually pre-
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sented in the form of changes in the small-scale power spectra (Cui et al., 2010; Davis
et al., 2012; Li et al., 2013; Brax et al., 2012) and two-point correlation functions (Lom-
briser et al., 2012) or the whole phase-space distribution (Zu et al., 2014; Lam et al.,
2012). In this analysis, we focused instead on a particular scale, the splashback radius,
and showed that up to a 10% change can be induced (Figure 3.3). It should be pointed
out that Adhikari et al. (2018) was the first work to explore how modified gravity affects
the splashback position. We stress, however, that our work differs from that of its au-
thors in three major aspects. First, here, we focus on symmetron gravity which displays
a different screening mechanism from the chameleon or k-mouflage explored in (Ad-
hikari et al., 2018) . Second, while their results based on N-body simulations represent
more realistic predictions, they do not allow for a simple exploration of the theory pa-
rameter space. Third, with our semianalytical approach, we are able to gain insight by
obtaining quantitative results as a function of multiple theory parameters and provide
an explanation for the visible trends. All this said, it also should be mentioned that
the quantitative estimation of the modeling uncertainties will still resort on N-body
simulations. This is an interesting aspect, and we leave its systematic investigation to
a future work.

Observationally, splashback can be measured predominantly around galaxy clus-
ters,a for which the present-day turnaround radius R(ty) is of the order of a few Mpc.
Our results, therefore, imply that this feature can be used to constrain fifth forces with
vacuum Compton wavelength A\g just below the Mpc scale. Because measurements of
splashback in the galaxy distribution around clusters have already achieved a precision
below the size of our predicted effect (More et al., 2016; Baxter et al., 2017; Chang et al.,
2018; Shin et al., 2018), we expect to soon be able to constrain not only the symmetron,
but other fifth force models on similar scales.

Note in particular that, while other works have explored the possibility of con-
straining symmetron gravity on Mpc scales (Hammami and Mota, 2017; Gronke et al.,
2015), the range considered here for )\ is unconstrained for this model. Thus, we ex-
pect a measurement based on splashback to naturally complement other results based
on laboratory experiments (Burrage et al., 2016; Brax et al., 2018), stellar and compact
astrophysical objects (Jain et al., 2013; Brax et al., 2014) or galactic disks and stellar
clusters (O’Hare and Burrage, 2018; Llinares, 2018; Desmond et al., 2018).

As the physics of splashback matures into a new cosmological observable, we expect
it to play a powerful role in testing modifications of gravity, complementary to already
established techniques such as those for large-scale structure.
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Chapter 4

The mass—size relation of
galaxy clusters

The outskirts of accreting dark matter halos exhibit a sudden drop in density delimiting
their multi-stream region. Due to the dynamics of accretion, the location of this physi-
cally motivated edge strongly correlates with the halo growth rate. Using hydrodynam-
ical zoom-in simulations of high-mass clusters, we explore this definition in realistic
simulations and find an explicit connection between this feature in the dark matter and
galaxy profiles. We also show that the depth of the splashback feature correlates well
with the direction of filaments and, surprisingly, the orientation of the brightest cluster
galaxy. Our findings suggest that galaxy profiles and weak-lensing masses can define
an observationally viable mass—size scaling relation for galaxy clusters, which can be
used to extract cosmological information.

Omar Contigiani, Yannick M. Bahé, and Henk Hoekstra
2021, Monthly Notices of the Royal Astronomical Society, 505, 2932
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4.1 Introduction

In the ACDM paradigm, structure in the Universe arises from the initial density per-
turbations of an (almost) homogeneous dark matter distribution. Due to gravitational
evolution, this leads to the appearance of collapsed structures, i.e. dark matter halos.
Some of the baryonic matter, following this process, cools down and settles at the cen-
ters of the gravitational potentials where it forms galaxies.

This mechanism has been studied through models of so-called spherical collapse
(Gunn and Gott, 1972; Bertschinger, 1985), whose main prediction is the existence of a
radius within which the material orbiting the halo is completely virialized. In general,
this virial radius depends on cosmology and redshift, but both in numerical simulations
and observations, fixed overdensity radii are widely used as proxies for this quantity.
An example of this is 7900, defined as the radius within which the average density is
200 times the average matter density of the Universe, pn. The corresponding enclosed
mass is known as Msggy,-

Halo mass functions constructed with these idealized definitions can capture the
effects of cosmology (Press and Schechter, 1974), the nature of dark matter (Angulo
et al., 2013), and dark energy (Mead et al., 2016) on the growth of structure. In the
real Universe, however, this picture is complicated by the triaxiality of halos (Dubinski
and Carlberg, 1991; Monaco, 1995) and the existence of clumpy (baryonic) substructure
(Bocquet et al., 2015).

Because the process of structure formation is hierarchical, massive halos contain
subhalos, some of which host galaxies themselves. The resulting clusters of galaxies
are the focus of this work. What makes these objects particularly unique is the fact
that they are not fully virialized yet. To this day, they are still accreting both ambient
material and subhalos through filamentary structures surrounding them (Bond et al.,
1996). Because of their definition, however, traditional overdensity definitions of mass
are not only affected by halo growth, but also by a pseudo-evolution due to the redshift
dependence of p,, (Diemer et al., 2013).

Diemer and Kravtsov (2014) and More et al. (2015) were the first to note that this
growth process leads to the formation of a sharp feature in the density profile that sepa-
rates collapsed and infalling material. This feature therefore defines a natural boundary
of the halo. The location of this edge, i.e. the splashback radius 4, has an obvious pri-
mary dependence on halo mass, but also a secondary dependence on accretion rate.
While this behavior can be qualitatively explained using simple semi-analytical mod-
els of spherical collapse, none of the analytical models currently proposed (Adhikari
et al., 2014; Shi, 2016) can fully describe its dependency on mass and accretion rate
(Diemer et al., 2017). Despite this, the corresponding definition of halo mass is partic-
ularly suited to define a universal mass function valid for a wide range of cosmologies
(Diemer, 2020a).

In this chapter, we try to bridge the gap between the theoretical understanding of
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the splashback feature and observational results, both past and future. The outer edge
of clusters has already been extensively measured through different tracers: the ra-
dial distribution of galaxies from wide surveys (More et al., 2016; Baxter et al., 2017;
Chang et al., 2018), but also their velocity distribution (Tomooka et al., 2020; Fong and
Han, 2021), and in the weak-lensing signal of massive clusters (Umetsu and Diemer,
2017; Chang et al., 2018; Contigiani et al., 2019a). Furthermore, forecasts have already
set expectations for what will be obtainable from near-future experiments (Fong et al.,
2018; Xhakaj et al., 2019; Wagoner et al., 2020). Despite the wealth of data and studies,
however, not many splashback observables have been proposed. The only robust ap-
plication of this feature found in the literature is related to the study of quenching for
newly accreted galaxies (Adhikari et al., 2020).

To achieve our goal, we make use of hydrodynamical simulations of massive galaxy
clusters, which we introduce in Section 4.2. We focus mainly on z = 0, but also make
use of snapshots at redshifts = = 0.474 and z = 1.017. In Section 4.3, we start our
discussion by introducing the physical interpretation of splashback and consider the
connection between the galaxy and dark matter distributions. We then continue in
Sections 4.4 and 4.5, where we explain how galaxy profiles and weak-lensing mass mea-
surements can be combined to construct a mass—size relationship for galaxy clusters.
Finally, we summarize our conclusions and suggest future developments in Section 4.6.

4.2 Hydrangea

The Hydrangea simulations are a suite of 24 zoom-in hydrodynamical simulations of
massive galaxy clusters (log;q Mz00m/Me between 14 and 15.5 at redshift z = 0) de-
signed to study the relationship between galaxy formation and cluster environment
(Baheé et al., 2017). They are part of the Cluster-EAGLE project (Bahé et al., 2017;
Barnes et al., 2017) and have been run using the EAGLE galaxy formation model (Schaye
et al., 2015), which is known to reproduce galaxy observables such as color distribution
and star formation rates. To better reproduce the observed hot gas fractions in galaxy
groups, the AGNAT?9 variant of this model was used (Schaye et al., 2015).

The zoom-in regions stretch to between 10 and 30 Mpc from the cluster center,
roughly corresponding to < 10r500,,. For the definition of the cluster center, in this
work, we choose the minimum of the gravitational potential. We note, however, that
this choice will not impact our conclusions since we will focus on locations around
T200m- The particle mass of m ~ 10° M, for baryons and m ~ 107 M, for dark matter
allows us to resolve galaxy positions down to stellar masses M, > 108 M, and total
masses My, > 107 M, respectively.

In Figure 4.1 we show the log-derivative of the stacked subhalo density n4(r) at
large scales. This is the result of a fit obtained using the model of Diemer and Kravtsov
(2014), and we refer the reader to the aforementioned paper and Chapter 2 of this thesis
for a detailed explanation of the model and its components. The choice to employ this
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Figure 4.1: The splashback feature visible in the average subhalo distribution of simu-
lated high-mass clusters. We extract the logarithmic slope by fitting a smooth profile
to the mean of the Hydrangea profiles rescaled by rz0o,. We perform this operation
both on the hydrodynamical simulations (Hydro) and their dark matter only counter-
parts (DMO). The minimum around 7999, marks the halo boundary, and this figure
highlights the lack of baryonic effects on the location or depth of this feature. The two
logarithmic slope profiles are consistent with each other at the 1 percent level.

profile is based on its ability to capture the sharp feature visible around 7590, which
is the focus of this work. We optimally sample its eight-dimensional parameter space
using an ensemble sampler (Foreman-Mackey et al., 2013).

In the same plot, we also include the stacked subhalo profile of the accompanying
dark matter only (DMO) simulations, initialized with matching initial conditions. The
two profiles match almost exactly, suggesting that baryonic effects do not alter this
feature to a significant extent (see also O’Neil et al., 2020). While not shown, we report
that the same conclusion can be reached by looking at the full matter distribution p(r)
in the two sets of simulations. Similarly, this feature is also visible in the number density
of galaxies, ny(r). Due to our focus on all three of these profiles, we choose not to work
with background subtracted quantities.

For reference, we present a full list of the simulated clusters used in this chapter and
their relevant properties, some of them defined in the following sections, in Table 4.1.
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Table 4.1: The Hydrangea clusters used in this chapter and their z = 0 properties. I 3
is the accretion rate measured between z = 0 and z = 0.297. The three splashback radii
Tsps Tfp, T:p refer to the splashback radius measured, respectively, in the dark matter,
galaxy, and subhalo distributions (see Section 4.3). For two clusters, CE-28 and CE-18,
the radius 7, is not used in this work because the dark matter distribution displays a
featureless profile at large scales. All quantities are in physical units.

Name Ip3 Mpom T"200m Tsp ngp T:;b
[10" Mo]  [Mpc] [Mpc] [Mpc]  [Mpc]
CE-0 0.8 1.74 1.74 2.98 2.72 2.60
CE-1 2.0 1.41 1.63 1.71 1.56 1.79
CE-2 0.5 1.41 1.63 2.36 3.27 2.36
CE-3 0.8 2.04 1.84 2.60 2.72 2.72
CE-4 2.8 2.19 1.89 1.63 1.87 1.79
CE-5 2.0 2.24 1.90 2.36 2.60 2.48
CE-6 1.1 3.31 2.16 2.60 2.48 2.60
CE-7 1.2 3.39 2.17 3.13 2.60 2.85
CE-8 1.8 3.09 2.12 2.26 2.48 2.06
CE-9 1.1 4.27 2.36 3.76 3.76 3.27
CE-10 0.8 3.55 2.21 3.13 3.13 2.98
CE-11 1.4 4.27 2.34 3.13 2.85 2.72
CE-12 0.1 5.13 2.49 3.43 3.76 4.13
CE-13 15 5.25 2.52 2.26 3.13 2.72
CE-14 21 6.17 2.66 2.60 2.72 2.48
CE-15 4.2 6.76 2.73 1.96 2.26 2.48
CE-16 2.7 7.59 2.84 1.42 4.13 3.43
CE-18 1.1 9.12 3.03 - 3.76 3.76
CE-21 3.7 12.30 3.34 2.36 2.85 2.60
CE-22 15 16.98 3.72 4.53 4.53 4.33
CE-24 15 15.49 3.61 3.27 3.27 4.33
CE-25 34 19.05 3.87 3.43 3.43 3.43
CE-28 1.9 21.88 4.06 3.94 3.27

CE-29 35 32.36 4.61 3.94 4.13 3.94
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4.3 Splashback

4.3.1 Definition

For halos that continuously amass matter, material close to its first apocenter piles up
next to the edge of the multi-stream region, where collapsed and infalling material
meets (Adhikari et al., 2014). A sudden drop in density, i.e. the feature visible in the
profiles of Figure 4.1, is associated with this process.

This intuitive picture leads to three characterizations of the splashback radius, de-
pending on the approach used to measure or model it:

1. The location of the outermost phase-space caustic.
2. The point of steepest slope in the density profile.
3. The apocenter of recently accreted material.

While these definitions have all been previously hinted at in the introduction, in this
section, we explicitly present them and discuss the connections existing between them.
This also justifies our adopted definition, based on the density profile.

The first definition is clearly motivated in the spherical case but fails once it is
applied to realistic halos. The presence of angular momentum and tidal streams from
disrupted subhalos (see e.g. Vogelsberger and White, 2011), smooth out this feature
and make its description murky. The second definition was the first suggested in the
literature. Introduced by Diemer and Kravtsov (2014), it is based on the study of dark
matter profiles in N-body simulations and has been linked to the first, more dynamical,
definition (Adhikari et al., 2014; Shi, 2016). The third was first suggested by Diemer
(2017), who showed that this location can be calibrated to the second one (Diemer
et al,, 2017) by choosing specific percentiles of the apocenter distribution.

To clarify the relationship between the outermost caustic and apocenter, it is ed-
ucational to use a self-similar toy model based on Adhikari et al. (2014) to show the
phase-space distribution of a constantly accreting halo with an NFW-like mass profile
(Navarro et al., 1997).

In the absence of dark energy, we follow the radial motion of particles,

M
g GM(snt) (j i t), (4.1)
r
between their first and second turnaround in the mass profile:
Srew (7/75)
M(r,t) = M(R,t)—77=. 4.2
0t = MO (R 42

We impose that the total mass evolves as M (R, t) o 12173 R oc $2(1+17/3)/3 and the
dimensionless NFW profile is defined as: f(x) = log(1+ «) — z/(1 4 ). In this set of
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equations, I" is the dimensionless accretion rate, R represents the turnaround radius,
and the scale parameter r; is defined by the infall boundary condition

dlog M 3r

(R) = (4.3)

dlogr e

This condition, combined with the turnaround dynamics, imposes that M (R, t) o (1+
2)~!" (Fillmore and Goldreich, 1984).

We point out that the dependence on the time-sensitive turnaround properties
M(R,t), R(t) can be factored out from the equations above, meaning that the entire
phase-space at all times can be obtained with a single numerical integration.

In Figure 4.2 we show the result of this calculation, denoting the location of the
outermost caustic as r,. The caustic is formed by the outermost radius at which shells
at different velocities meet (r/7g, = 1 in the plot) and the location of shells at apocenter
is defined by the intersection between the zero-velocity line and the phase-space dis-
tributions. From the figure, two things are noticeable: material at 7, has not reached
its apocenter yet, and the ratio between these two locations depends on the accretion
rate.

It is beyond the scope of this work to quantify this dependence since it depends
heavily on the mass profile inside 7g,. Qualitatively, however, the difference between
caustic and apocenter is easy to understand once the dynamical nature of this feature
is considered: the halo is growing in size, and while some material is now reaching its
apocenter, mass accreted more recently has the chance to overshoot it and form the
actual caustic. In a static picture, this would not be the case.

In realistic halos, this dependence on accretion rate is only one of many factors that
biases and adds scatter to the relationship between the halo boundary and apocenters.
Other factors include, e.g. nonspherical orbits and the presence of multiple accretion
streams. Despite this, Diemer (2017) has shown that there is a clear link between the
apocenter distribution and splashback. The percentile definition introduced there is
particularly suited to theoretical investigations, but its usefulness in the very low-I"
regime is still uncertain (Mansfield et al., 2017; Xhakaj et al., 2019), and it has not been
explored in the presence of modifications of gravity (Adhikari et al., 2018; Contigiani
et al., 2019).

For this work, we define the splashback radius as the location of the steepest slope
as defined by a profile fit. In Table 4.1 we report, for each cluster, this radius measured
in the distribution of galaxies, subhalos, and total matter (rf,, rg,, 7sp). The model is a
modified Einasto profile (Einasto, 1965) with the addition of a power-law to take into
account infalling material (Diemer and Kravtsov, 2014). Regarding the goodness of fit,
we find that up to and around rygg,, the standard deviation of the residuals is of order
10 percent. On the other hand, the presence of substructure superimposed on a shallow
density profile results in normalized residuals of order 50 percent in the outer regions.

To further justify our approach, we show in Figure 4.3 how this simple definition of
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Figure 4.2: The phase-space structure of accreting dark matter halos depends on the
accretion rate I'. We employ a toy model of spherical collapse to describe the multi-
stream region of NFW-like halos. The figure shows that the material at the outermost
caustic, rscp, is not necessarily at apocenter (where v = 0) and that the ratio of these
two radii is a function of accretion rate. For ease of readability, we have rescaled the

coordinates by rg,, and the velocity of collapsed material at this point.
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splashback radius is able to capture the phase-space boundary of different halos, even
when a sudden drop in density is absent. The main benefit of this definition is that
it avoids the arbitrariness of the apocenter definition, or the bias induced by multiple
caustics in the minimum slope definition (Mansfield et al., 2017). Its main caveats,
however, are that (1) it is computationally expensive since it requires high-resolution
simulations and a multi-parameter fit procedure, and (2) it might not apply to low-mass
clusters and galaxy groups. We leave this last question open for future investigations.

We wrap this subsection up by stressing that this definition of ‘the’ splashback ra-
dius is, like any other, useful only to study its correlation with other properties, or
quantify the impact of different physical processes. While the flexibility of the cho-
sen model is not surprising given the number of free parameters, the clear connec-
tion between the phase-space and the log-derivative in individual halos is a powerful
and seemingly general result. Ultimately, however, the observational results focus on
stacked projected density profiles, and so should the predictions.

4.3.2 Accretion

It is well established (Diemer and Kravtsov, 2014; More et al., 2015; Mansfield et al., 2017;
Diemer, 2020) that the location of the halo boundary correlates with the accretion rate

I — Alog Maoom
037 Alog(1+ 2)°

In this work, this ratio is calculated in the redshift range z = 0 to 2 = 0.293, since this
time interval roughly corresponds to one crossing time for all clusters considered here,
i.e. how long ago the material currently at splashback has been accreted (Diemer, 2017).
Although this choice is partially arbitrary, we have investigated the dependence of our
results on the redshift upper limit and we have verified that our main conclusions are
not affected.

The archetypical relation demonstrating this idea is plotted in Figure 4.4, where we
have also included the relations found in More et al. (2015), Diemer et al. (2017), and
Diemer (2020), to provide additional context. We find good agreement, even though a
perfect match is not necessarily expected. The Hydrangea clusters represent a biased
sample, selected to be mostly isolated at low redshift (Bahé et al., 2017). While the
effect of this selection on the accretion rate distribution is not fully known, we show
below that a connection between cluster environment and this quantity exists, and
the presence of mergers might therefore influence it. This is not surprising since a
connection between accretion and large-scale bias is already known (e.g. Fakhouri and
Ma, 2010).

We show this relationship explicitly in Figure 4.5 by using one of the parameters of
the profile model. As visible in the figure, the power-law index of material outside of
splashback correlates with the accretion rate. We find that this is true for both subhalos
and galaxies and that the difference between the two is consistent with sample variance.

(4.4)
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Figure 4.3: Fitting simulated subhalo profiles with a smooth model. In the top panels,
we show the radial subhalo distributions of two clusters (CE-16, left and CE-9, right),
together with the best-fit profiles used to reconstruct the log-derivative. In the bottom
panels, we show how the inferred location of the log-derivative minimum (vertical line)
identifies the phase-space edge of relaxed (left) and perturbed (right) galaxy clusters.
In the phase-space plots, the cluster on the left is formed by collapsed particles, while
the stream visible on the lower right is infalling material. The right panels demonstrate
how our approach is effective even in the presence of an ongoing merger when the
splashback feature is not visible as a sharp transition in the density profile.
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Figure 4.4: The splashback radius and its correlation with the accretion rate. The ratio
between the splashback radius and the 200m overdensity radius correlates with the
accretion rate. We show that this correlation exists for the clusters studied in this work
and compare it to the relations obtained in three other studies (see text for references).
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To try and explain this behavior, we use a fully consistent model of spherical col-
lapse introduced by Bertschinger (1985), which was also used in Contigiani et al. (2019).
The setup of this toy model is the same as what is shown in Equation (4.1), but with a
mass profile that also needs to be solved for. Starting from an initial guess for M (r,t) =
M(r/R(t)), orbits are integrated and their mass distribution is calculated. Iterating
this process multiple times returns a self-similar density profile and orbits consistent
with each other.

The result of this calculation is also shown in Figure 4.5. Because the mass-profile
prediction is not a power law, we plot a filled line displaying the range of logarithmic
slopes allowed between 7, and 2rg,. The fact that this prediction is not a function
of accretion rate implies that the correlation between the slope and the accretion rate
seen in the simulations is not purely dynamical, and suggests a connection between
the cluster environment and accretion rate.

We stress here that previous splashback works have mostly focused on stacked
halo profiles, for which the expectation of the spherically symmetric calculation shown
above is roughly verified, even in the presence of dark energy (Shi, 2016). We also
recover this result for our sample (see the star symbol in Figure 4.5), but we point out
that this is a simple conclusion. Because Newtonian gravity is additive, stacking enough
clusters should always recover the spherically symmetric result. Despite this, we also
note that results from the literature do not always agree with this prediction. However,
we do not linger on these discrepancies since (1) this was never the focus of previous
articles, and (2) different methods to extract the power law have been employed.

4.3.3 Anisotropy

This departure from the spherical case implies that anisotropies play a role in shaping
the accretion rate I". To study the impact of accretion flows on the cluster boundary, we
study 72 sky projections of the Hydrangea clusters (3 each, perpendicular to the x, y,
and z axes of the simulation boxes) and rotate them to align the preferred accretion
axes in these planes. For each projection, we define this direction § € (—n/2,7/2)
in two ways: (1) to capture the filamentary structure around the cluster between 2001
and 5799om, we divide the subhalo distribution in 20 azimuthal bins and mark the di-
rection of the most populated one, and (2) to capture the major axis of the BCG, we use
unweighted quadrupole moments of the central galaxy’s stellar profile within 10 kpc
from its center. The mean projected distributions according to these two methods are
presented in the left and right top panels of Figure 4.6, respectively.

Looking at the top-left panel of the figure, it is not surprising that filamentary struc-
tures of the cosmic web are visible around the central cluster - this is by construction.
Because of the higher contrast between outside and inside regions, the subhalo distri-
bution exhibits a sharper feature in the directions pointing toward voids (see central
panel of Figure 4.6). More surprisingly, however, these same traits are also noticeable in
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tion of accretion rate. Faster growing halos display a more concentrated distribution
of satellites outside of their boundary. This behavior seen in individual clusters is not

explained by simple models of spherical collapse (blue shaded area), but the average
profile (marked by a star) matches the expectation. This suggests that non-isotropic

processes shape this relation.



80 Chapter 4. The mass—size relation of galaxy clusters

=l
1 ra00m
central
galaxy
major axis
] f
§, —3 4 = void
5 filament
<
< -1
(@]
o
o
_2_
=31 —— minor axis
major axis
-4 T " ———————— y " — 1
0.2 1 5

Figure 4.6: The impact of filaments and accretion flows on the cluster’s edge. We rotate
the two-dimensional subhalo distributions of different clusters to align their accretion
axes. The top panels show the resulting mean distributions in a square region of size
57ra00m Obtained with two definitions of this direction: one based on the presence of
filaments outside rzom (left), and one based on the central galaxy’s major axis (right).
The first one better identifies the filamentary structures around the clusters, but the
second one is closer to what can be observed. In the bottom panels, we show how the
inferred 3-dimensional logarithmic slope inside the quadrants aligned with the accre-
tion direction (darker shade) differs from the profile outside (lighter shade). The results
from the bottom panel imply that the central galaxy’s major axis traces the direction
of infalling material.
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the mean distributions aligned according to the central galaxy’s axis (see lower panel).

This result implies that the distribution of stellar mass within the central 10 kpc of
the cluster contains information about the distribution of matter at radii which are a
factor 102 larger. In fact, the connection between the shape of the dark matter halo and
the ellipticity of the brightest cluster galaxy (BCG, which is also the central galaxy for
massive galaxy clusters) is known (Okumura et al., 2009; Herbonnet et al., 2019; Ragone-
Figueroa et al., 2020). And, similarly to other results (Conroy et al., 2007; De Lucia and
Blaizot, 2007), the Hydrangea simulations predict that the stellar-mass buildup of the
BCG is driven by the stripping of a few massive satellites after their first few pericenter
passages (Baheé et al., in preparation). Because these galaxies quickly sink to the center,
the material they leave behind is therefore a tracer of their infalling direction.

4.4 The mass-size relation

In our sample, we find that the splashback feature seen in the galaxy, subhalo, and total
matter profiles are all at the same location. The mean fractional difference between
any two of rfp, rfp, or T, is consistent with zero, with a mean standard deviation of
3 percent. We also verified that this statement is unaffected by cuts in subhalo mass
or galaxy stellar mass. Due to the limited size of our sample, the effects of dynamical
friction on the distribution of high-mass subhalos are not visible (Adhikari et al., 2016).

We emphasize, however that this does not mean that galaxy selection effects have
no impact on these quantities. For example, it is an established result, both in the
Hydrangea simulations (Oman et al., 2020) and in observations (Adhikari et al., 2020),
that the location of a galaxy in projected phase-space correlates with its color and star-
formation rate. This is because a red color preferentially selects quenched galaxies that
have been orbiting the halo for a longer time.

Until their first apocenter after turnaround, galaxies act as test particles orbiting the
overdensity as the halo grows in mass. In the standard cold dark matter paradigm, based
on a non-interacting particle, it is not surprising then that the edge formed in their
distribution is identical to the one seen in the dark matter profile. It should be noted,
however, that this is not necessarily true in extended models in which dark matter
does not act as a collisionless fluid. Due to their infalling trajectories, the distribution
of galaxies will always display a splashback feature, even if the dark matter profile does
not exhibit one.

In the cold dark matter scenario, our result implies that galaxies can be used to
trace the edge of clusters. We note, in particular, that this measurement has already
been performed several times using photometric surveys (Baxter et al., 2017; Nishizawa
et al., 2017; Chang et al., 2018; Ziircher and More, 2019; Shin et al., 2019). Furthermore,
due to the large number of objects detected, galaxy distributions obtained through this
method offer the most precise measurements of splashback. The accuracy of the results,
however, depends heavily on the details of the cluster finding algorithm (Busch and
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White, 2017; Shin et al., 2019).

With this in mind, we build an observational mass—size relation between the lo-
cation of this feature in the galaxy distribution (r,) and the mass enclosed within it
(Mg). In Figure 4.7 we present the correlation between the two for the Hydrangea
clusters. Because the splashback radius is roughly located at 720om (see Figure 4.4), this
relationship can be understood as a generalization of the virial mass-radius relation,
where we have introduced a dependence on accretion rate. Surprisingly, we find that
the dependence on [ 3 is well captured by a simple form:

@ o (14 Ips)”. (4.5)
o

While we do not constrain 3 precisely, we find that 5 = 1.5 provides an adequate fit
by reducing the total scatter from 0.25 dex to about half of this value. This choice of
exponent and functional form is supported by the model of self-similar collapse used
for Figure 4.5, where we find that a power-law § = 1.45 fits this relationship with
the same precision as the exponential functions calibrated to numerical simulations
shown in Figure 4.4. For a more extensive comparison with these predictions, we refer
the reader to Section 4.6.

The virial relation is a trivial connection between the mass and size of halos based
on an overdensity factor, but its observational power is limited by the fact that these
masses are usually extracted from parametric fits to weak-lensing profiles that do not
extend to the respective overdensity radii. Because of this, the overdensity masses have
a strong dependence on the assumed mass-concentration relation (see e.g. Umetsu et al.,
2020). The splashback feature, on the other hand, naturally predicts a mass-size relation
for galaxy clusters and does so without the need for external calibrations.

In Figure 4.7 we also plot the expected change in this relation to due modifications
of gravity. We use the symmetron gravity model of Contigiani et al. (2019) with param-
eters f = 1 and zg, = 1.5, and assume that the change affects only the splashback
radius and not the mass contained within it. The exact result depends on the theory
parameters, but the expected change in this relation is around 0.15 dex.

Experimentally, we argue that this relation can be probed using a combination
of galaxy density profiles (to extract r)) and weak lensing measurements. Aperture
masses (Clowe et al., 2000), in particular, can be used to extract in a model-independent
fashion the average projected mass within a large enough radius. If necessary, the aper-
ture mass can also be deprojected to obtain a low-bias estimate (Herbonnet et al., 2020).

4.5 Redshift evolution

So far, we have only considered the simulation predictions at z = 0. In this section,
we extend our analysis to higher redshifts by exploring two other snapshots of the
Hydrangea simulations at z = 0.474 and z = 1.017.
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Figure 4.7: The mass-size relation of galaxy clusters. In the top panel, we show how
the size of the cluster boundary seen in the galaxy distribution, rsgp, scales with its en-
closed mass, Mg, In the same panel we also show the median relation in Equation (4.5)
obtained for 5 = 0 and how modifications of gravity are expected to affect this relation
(blue dashed line, see text for more details). In this relation, a secondary dependence
on the accretion rate I 3 is a source of scatter that can be captured if 5 # 0. As visi-
ble in the residuals in the bottom panel, a simple power-law form well reproduces this
dependence. In the considered sample, we find that half of the total scatter (0.25 dex)
is due to the mass accretion rate distribution.
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At these higher redshifts, we find that the scatter in the splashback relation for
individual halos is large. This is visible in Figure 4.8, where we plot the equivalent
of Figure 4.4 for these two snapshots. We recover the general result of Diemer (2020)
that the average values of 74, /T200m and I should be higher at early times, but the
correlation between the two is completely washed out by 2 = 1. We connect this
to three causes: (1) The fixed time interval between the snapshots does not allow us to
reliably estimate I” at higher redshift when the crossing times are smaller. (2) The lower
number of resolved galaxies and subhalos means that the residuals of the individual
profile fits are larger around the virial radius. And finally, (3) the higher frequency of
mergers at high redshift means that the number of halos with profiles not displaying a
clear splashback feature increases.

We find that Equation (4.5) is still valid, even if our ability to constrain the scatter
at high redshift is impeded by the sample variance. Furthermore, we report that the
splashback overdensity M,/ TSP has a redshift dependence. Or, in other words, that the
logarithmic zero-point that was not specified in Equation (4.5) is a function of redshitt.
Not accounting for the I" dependence, our best fit values for the logarithm of the av-
erage overdensity log,,(Ms,/Mg) — 3logq(rsp/Mpc) are [13.3,13.8,14.1] + 0.3 at
redshifts [0, 0.5, 1].

Regarding the anisotropy in the splashback feature due to filamentary structures,
we report that this phenomenon exists also at high redshift. In Figure 4.9, we compare
the sky-projected subhalo profiles X5 (R) toward different directions, similarly to what
we have done for Figure 4.6. In this case, however, we explicitly discuss the connection
with observations by plotting directly the ratio of the density profiles inside quadrants
oriented toward and perpendicular to the two accretion directions, instead of focusing
on the result of the profile fits. The mean and variance of these ratios are calculated
assuming that the different projections are independent. We find that the orientation
of the major axis of the brightest cluster galaxy does not correlate with a splashback
anisotropy at z = 1. This is because, in most cases, the identification of a central,
brightest galaxy is not straightforward at this redshift. At early times, the future cen-
tral galaxy is still in the process of being created from the mergers of multiple bright
satellites located close to the cluster’s center of potential.

To conclude this section, we point out that in the region around 7200y, the differ-
ence between the profiles perpendicular and parallel to the central galaxy’s major axis
is about 10 percent at redshift z < 0.5. This departure is well within the precision of
galaxy profiles extracted from large surveys (e.g. Adhikari et al., 2020). Therefore, this
measurement might already be possible using such catalogs.

4.6 Discussion and conclusions

On its largest scales, the cosmic web of the Universe is not formed by isolated objects,
but by continuously flowing matter distributed in sheets, filaments, and nodes. For
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Figure 4.8: The splashback radius and its correlation with the accretion rate as a func-
tion of redshift. This plot is an extension of Figure 4.4 for redshifts z = 0.474 (orange
crosses) and z = 1.017 (light blue plus symbols). The ratio between the splashback
radius and the 200m overdensity radius should correlate with the accretion rate I", but
for the Hydrangea snapshot at z = 1.017 the large sample variance washes out this
correlation. Despite this, we still recover the expectation of previous results (plotted
lines), a larger average rsp /7200m at higher redshift.
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Figure 4.9: The impact of filaments and accretion flows on the outer density profile of
massive halos as a function of redshift. We plot the mean value and variance of the ratio
between the two-dimensional subhalo distributions in quadrants perpendicular (X', )
and parallel (X)) to the accretion direction defined through two tracers. This ratio is
closely related to what can be measured in observations. While the difference in profile
toward and away from filamentary structures is visible at all redshifts, the orientation
of the central galaxy is not a good tracer of the splashback anisotropy at high redshift.
This is because the central BCG is still forming and its orientation is not yet finalized.
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accreting (and hence non-virialized) structures such as galaxy clusters, the splashback
radius 7y, represents a physical boundary motivated by their phase-space distributions.
To exploit the information content of this feature, in this chapter we have introduced
and studied two observable quantities related to it.

First, we have shown that the full galaxy profile can be used to define a cluster
mass, i.e. the mass within rg,. This is an extension of the traditional approach of using
richness as mass proxy (see e.g. Simet et al., 2016). Because of the dynamical nature of
the equivalent feature in the dark matter profile, we conclude that, observationally, the
splashback feature in the galaxy profile defines the physical halo mass. Moreover, we
have shown here that the natural relation between the mass and size of halos according
to this definition (see Figure 4.7) can be used to constrain new physics at cluster scales.
Because this boundary is delimited by recently accreted material, we found that a ma-
jority of the scatter in this mass—size relation can be explained through a secondary
dependence on accretion rate I'.

Secondly, we have explored how this connection to the accretion rate might be
interpreted as a connection between the geometry of the cosmic web and how clus-
ters are embedded in it. The relation between the two is made explicit in Figures 4.5,
Figure 4.6, and Figure 4.9. In these figures, we have investigated how the cluster envi-
ronment affects both the halo growth and the stellar distribution of the central galaxy.
This information, combined with the scatter of the mass—size relation, can therefore be
used as a consistency check for any property that claims to select for accretion rate.

4.6.1 The role of simulations

In the last few years, the study of the splashback feature has evolved into a mature
field both observationally and theoretically. We use this section to discuss explicitly
the connection between the two, in light of this work and its connection to previous
endeavors.

In the context of splashback, simulations have guided the formulation of theoreti-
cal principles and hypotheses. However, as more measurements become viable, it be-
comes necessary to provide clear and powerful observables. Following this spirit, we
used high-resolution hydrodynamical simulations to explore directly the connection
between measurements based on sky-projected galaxy distributions and theoretical
predictions.

Our conclusions regarding the mass—-size relation and its redshift evolution are sim-
ilar to the results of Diemer et al. (2017) and Diemer (2020), which are based on more
extensive N-body simulations. For the sake of completeness, it important to note that,
in the same papers, it was also found that the splashback overdensity is not universal,
but has both a mild dependency on Msgg, and a strong dependency on cosmology,
especially at low redshift (z ~ 0.2). Due to our limited sample, we are clearly unable
to model these effects in this work. Nonetheless, we point out that our goal here is to
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construct a pure splashback scaling-relation based on galaxy profiles and weak lensing
mass measurements. Every other dependency, if present, should be captured either as
additional scatter or through different parameter values.

We also point out that these previous works are based on the apocenter definition of
splashback (see Section 4.3). In contrast, we defined the splashback radius as the point
of steepest slope according to a model fit to the density profiles of galaxy clusters.
While we do not necessarily expect the two definitions to differ, our choice is based on
its connection to observations, and the desire to highlight the fact that the splashback
radius is not only some abstract halo property but can be defined as a characteristic of
individual profiles, such as, e.g., the concentration parameter (Navarro et al., 1997).

An alternative method employed by other studies (Diemer and Kravtsov, 2014;
Mansfield et al., 2017; Xhakaj et al., 2019) to obtain a measure of s, makes use of the
minimum of the logarithmic slope in smoothed profiles. While this approach is much
faster than profile fitting when only r;, is of interest, it does not describe the full shape
visible in Figure 4.1. In particular, a model that captures the width of this feature is
necessary to define the slope of the outer region without an arbitrary choice of which
radial scales to consider. Because the model used here contains an asymptotic outer
slope, this definition is unique.

Our decision has, of course, its drawbacks. The versatility of the fitted model is
necessary to capture the variance of the individual profiles, but the resulting intrinsic
scatter is large and not the best suited to study tight splashback correlations (such as
Figure 4.4). At the same time, the large parameter space might also be seen by some
as a chance to study a multitude of correlations between different model parameters.
However, we resist this temptation, as inferences based on such correlations might say
more about the particular model employed than provide any physical information.

A subtler difference between our method to characterize splashback and other ones
present in the literature is related to the definition of spherical density profiles. Mans-
field et al. (2017) and Deason et al. (2020) found that the most successful method to
achieve a clear splashback feature for individual halos is to measure the median profile
along multiple angular directions. In light of the results of Figure 4.6, we argue that
the distribution of splashback as a function of direction is skewed by the presence of a
few dense filaments and hence the difference between a median and mean splashback
can be substantial. Therefore, we stress that future works should exercise caution when
employing such methods. The use of median profiles smooths substructure by focusing
on the halo boundary in the proximity of voids, but because this process is itself cor-
related with the halo growth rates (see Figure 4.5), the connection with observations is
not as simple as one might expect.
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4.6.2 Next steps

Because in this work we have focused only on high-mass objects (M ~ 1045 M),
a natural future step is to investigate if the results apply also in other regimes. For
example, a larger sample over a wide range of masses and redshifts is required to con-
firm the simple form of Equation (4.5) and verify if it applies to lower mass groups
(M ~ 10%35 My).

Exploring a wider range in mass, both in observations and simulations, can also be
used to confirm a key prediction: because the median accretion rate is expected to be a
function of mass and redshift (More et al., 2015), we expect the mass-size relation for
an observed halo sample to not necessarily follow a simple form.

Finally, we point out that our results encourage a concentrated effort toward under-
standing the relationship between cluster environment and splashback. What is dis-
cussed in Figures 4.5, 4.6 and 4.9 suggests that the connection between accretion-flows,
filaments, and cluster boundary is not a simple one. To better understand this process,
it will become necessary to complement the usual inside-out theoretical approaches to
splashback, that look at halos to define their boundaries, with outside-in approaches,
that connect the cosmic web to its nodes. In this context, the amount of splashback data
gathered by projects such as the Kilo Degree Survey (de Jong et al., 2013), Dark Energy
Survey (DES Collaboration, 2005), and, in the future, LSST (LSST Science Collaboration
et al., 2009) and Euclid (Laureijs et al., 2011) will provide a powerful probe for the study
of structure formation.
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Chapter 5

Dynamical cluster masses
from photometric surveys

Traditionally, the masses of galaxy clusters are measured using wide photometric sur-
veys in one of two ways: directly from the amplitude of the weak lensing signal or,
indirectly, through the use of scaling relations calibrated using binned lensing mea-
surements. Here, we build on a recently proposed idea and implement an alternative
method based on the radial profile of the satellite distribution. This technique relies on
splashback, a feature associated with the apocenter of recently accreted galaxies that
offers a clear window into the phase-space structure of clusters without the use of ve-
locity information. We carry out this measurement in the stacked satellite distribution
around a sample of luminous red galaxies in the fourth data release of the Kilo-Degree
Survey and validate our results using abundance-matching masses. To illustrate the
power of this measurement, we combine this dynamical mass measurement with lens-
ing mass estimates to robustly constrain scalar-tensor theories of gravity at cluster
scales. Our results exclude departures from General Relativity of order unity. Finally,
we conclude by rescaling our results and discussing how stage-IV photometric surveys
will use splashback to provide percentage level cluster masses at high redshifts.

Omar Contigiani and the KiDS collaboration
2021, Astronomy & Astrophysics (to be submitted)
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5.1 Introduction

Today the majority of ordinary matter, a.k.a. baryonic matter, is trapped inside the po-
tential wells of the large-scale structure of the Universe. The main constituent of this
invisible scaffolding is dark matter, and most of the mass in the Universe is concen-
trated in its fully collapsed overdensities, known as halos. At first order, the relation-
ship between dark matter structures and galaxies is simple, and the result of their joint
evolution is a tight relationship between the luminosity of a galaxy and the mass of the
dark matter halo it inhabits. Because halos are perturbations on top of a background of
constant density, their size is usually quantified in terms of overdensity masses. For ex-
ample, Mygon, is defined as the mass contained within a sphere of radius 790y, such that
the average density within it is 200 times the average matter density of the Universe

Pm(z)>
4 .
MZOOm = 200 x ?Pm(z)rzdoom~ (51)

Dark matter structures are not isolated, however, and the process of structure for-
mation is known to be hierarchical (Press and Schechter, 1974). This means that smaller
halos collapsed first and became subhalos once they were accreted onto larger struc-
tures. Unsurprisingly, baryonic matter also followed this process, which resulted in
today’s clusters of galaxies. These represent the largest halos in the Universe and they
are still accreting matter from the surrounding environment, i.e. they are not fully
virialized yet.

Observationally, the distribution of galaxies in the sky is divided into two popu-
lations: red and blue (Strateva et al., 2001). Red galaxies derive their color from their
aging stellar population, whereas blue galaxies display active star formation, and young
stars dominate their light. The exact mechanism behind quenching, i.e. the transition
from star-forming to “red and dead”, is still not fully understood (see e.g. Schaye et al.,
2010; Trayford et al., 2015), but it is known to be connected to both baryonic feedback
(see e.g. Somerville et al., 2008; Schaye et al., 2010) and interactions inside the dense
cluster environment (see e.g. Larson et al., 1980; Moore et al., 1996; van den Bosch et al.,
2008). An important consequence of this environmental dependence is the formation of
a red sequence, i.e. a close relationship between the color and magnitude of red galax-
ies in clusters. By calibrating this red sequence as a function of redshift, it is possible to
identify clusters in photometric surveys, even in the absence of precise spectroscopic
redshifts (Gladders and Yee, 2000).

In recent years, splashback has been recognized as a feature located at the edge of
galaxy clusters. The radius of this boundary, 7y, is close to the apocenter of recently
accreted material (see e.g. Adhikari et al., 2014; Diemer, 2017; Diemer et al., 2017) and
it is associated with a sudden drop in density. This is because it naturally separates
the single and multi-stream regions of galaxy clusters: orbiting material piles up in-
side this radius, while collapsing material located outside it is entering the cluster for
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the first time. In simulations and observations, the distribution of red satellite galaxies
and dark matter seem to trace this feature in the same fashion (Contigiani et al., 2021;
O’Neil et al., 2021), but a possible dependence on satellite properties is still mostly un-
explored (Shin et al., 2021). Nonetheless, the existence and detectability of this physical
feature have theoretical and observational implications for the study of the large-scale
structure of the Universe.

From a theory perspective, the splashback radius defines an accurate cluster mass
and sidesteps the issue of pseudo evolution due to an evolving py,(z) as a function of
redshift z (Diemer et al., 2013; More et al., 2015). Thanks to this property, this definition
can be used to create a universal mass function that is valid for a variety of cosmologies
(Diemer, 2020a). Moreover, the shape of the matter profile around this feature can also
be used to learn about structure formation, the nature of dark matter (Banerjee et al.,
2020) and dark energy (Contigiani et al., 2019).

Observationally, one of the most noteworthy applications of splashback is the study
of quenching through the measurement of the spatial distribution of galaxy populations
with different colors (Adhikari et al., 2020). While notable, this was not the first result,
and many other measurements preceded it. Published works can be divided into three
groups: those based on targeted weak lensing observations of X-ray selected clusters
(Umetsu and Diemer, 2017; Contigiani et al., 2019), those based on the lensing signal
and satellite distributions around SZ-selected clusters (see e.g. Shin et al., 2019), and
those based on samples constructed with the help of cluster-finding algorithms applied
to photometric surveys (see e.g. More et al.,, 2016; Collaboration, 2018). However, we
note that in the case of the last group, the results are difficult to interpret because the
splashback signal correlates with the parameters of the cluster detection method (Busch
and White, 2017).

In this work, we implement an application of this feature based on Contigiani et al.
(2021). The location of the splashback radius is connected to halo mass, and its measure-
ment from the distribution of cluster members can therefore lead to a mass estimate.
Because this distribution can be measured without spectroscopy, this means that we
can extract a dynamical mass purely from photometric data. In this chapter, we apply
this technique to a present-day photometric survey (see Section 5.2), but we also dis-
cuss future prospects. To avoid issues related to cluster-finding algorithms, we studied
the average distribution of faint galaxies around luminous red galaxies (LRGs) instead
of the targets identified through overdensities of red galaxies. If we consider only pas-
sive evolution, the observed magnitude of the LRGs can be corrected to construct a
sample with constant comoving density (Rozo et al., 2016; Vakili et al., 2019), and, by
selecting the brightest among them, we expect to choose the central galaxies of groups
and clusters.

We present our analysis in Section 5.3 and produce two estimates of the masses
of the halos hosting the LRGs in Section 5.4. The first is based on the splashback fea-
ture measured in the distribution of faint galaxies, while the second is based on weak
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lensing measurements. After validating these results with two alternative methods in
Section 5.5, we conclude our analysis by discussing our measurements in the context
of modified models of gravity. We limit ourselves to redshifts z < 0.55 here, but the
sample constructed in this manner also has implications for the higher redshift range
probed by future stage-IV photometric surveys (Albrecht et al., 2006) such as Euclid
(Laureijs et al., 2011) and the Legacy Survey of Space and Time (LSST, LSST Science
Collaboration et al., 2009). This is because at z ~ 1, central galaxies are still assem-
bling, and therefore, their identification can be uncertain. Section 5.5.2 discusses these
complications in more detail and explores how this method can be used to complement
the use of lensing to extract the masses of X-ray (Contigiani et al., 2019) or SZ selected
clusters (Shin et al., 2019).

Unless stated otherwise, we assume a cosmology based on the 2015 Planck data re-
lease (Collaboration, 2016). For cosmological calculations, we use the Python packages
ASTROPY (Price-Whelan et al., 2018) and corossus (Diemer, 2018). The symbols R and
rsp always refer to a comoving projected distance and a comoving splashback radius.

5.2 Data

This section introduces both the Kilo-Degree Survey (KiDS, de Jong et al., 2013) and
its infrared companion, the VISTA Kilo-degree INfrared Galaxy survey (VIKING, Edge
et al., 2013). Their combined photometric catalog and the sample of LRGs extracted
from it (Vakili et al., 2020) are the essential building blocks of this chapter.

5.2.1 KiDS$S

KiDs is a multi-band imaging survey in four filters (ugri) covering 1350 deg?. Its fourth
data release (DR4, Kuijken et al., 2019) is the basis of this chapter and has a footprint
of 1006 deg? split between two regions located in the north and south Galactic caps
(770 deg? after masking). The 50 mean limiting magnitudes in the ugri bands are,
respectively, 24.23, 25.12, 25.02, and 23.68. The mean seeing for the r-band data used
both as a detection band and for the weak lensing measurements is 0.7”. VIKING covers
the same footprint in five infrared bands, ZY JH K.

The raw data have been reduced with two separate pipelines, THELI (Erben et al.,
2005) for a lensing-optimized reduction of the r-band data, and AstroWISE (McFarland
et al., 2013), used to create photometric catalogs of extinction corrected magnitudes.
The source catalog for weak lensing analyses was produced from the THELI images
and lensfit (Miller et al., 2013; Fenech Conti et al., 2017; Kannawadi et al., 2019) was
used to extract the galaxy shapes.
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5.2.2 LRGs

The LRG sample presented in Vakili et al. (2020) is based on KiDS DR4. There, the red
sequence up to redshift = = 0.8 was obtained by combining spectroscopic data with
the griZ photometric information provided by the two surveys mentioned above. Fur-
thermore, using the near-infrared K; band from VIKING allowed for a clean separation
of stellar objects and considerably lowered the stellar contamination of the sample.

The color-magnitude relation that applies to red galaxies allows the redshifts of
LRGs to be calibrated to a precision higher than generic photometric redshifts (photo-
zs) resulting in redshift errors for each galaxy below o, < 0.02. For more details on
how the total LRG sample is defined and its broad properties, we direct the interested
reader to Vakili et al. (2020), or Vakili et al. (2019), a similar work based on a previous
KiDS data release.

Fortuna et al. (2021) further analyzed this same catalog and calculated absolute mag-
nitudes for all LRGs using LEPHARE (Arnouts and Ilbert, 2011) and EZGAL (Mancone
and Gonzalez, 2012). The first code corrects for the redshift of the rest-frame spec-
trum in the different passbands (k-correction), while the second corrects for the passive
evolution of the stellar population (e-correction). For this work, we used these (k+e)-
corrected luminosities as a tracer of total mass since the two are known to be highly
correlated (see e.g. Mandelbaum et al., 2006; van Uitert et al., 2015). Based on this, we
then defined two samples with different absolute r-band magnitude cuts, M, < —22.8
and M, < —23, that we refer to as all and high-mass samples. These are the 10 and
5 percentile of the absolute magnitude distribution of the luminous sample studied in
Fortuna et al. (2021), and the two samples contain 5524 and 2850 objects each.

Because the (k+e)-correction presented above is designed to create a redshift inde-
pendent sample, the expected redshift distribution of the LRGs should correspond to a
constant comoving density. However, when studying our samples (see Figure 5.1), it is
clear that this assumption holds only until 2 = 0.55. This suggests that the empirical
corrections applied to the observed magnitudes are not optimal. We stress that this dis-
crepancy was not recognized before because our selection amplifies it: we considered
the tail of a much larger sample (N ~ 10°) with a steep magnitude distribution, for
which a small error in the lower limit induced a large mismatch at the high-luminosity
end. We discard all LRGs above z = 0.55 and after fitting the distributions in Figure 5.1,
we obtained comoving densities n = 7.5 x 1076 Mpc =2 and n = 4.0 x 10~% Mpc 3
for the full and the high-mass samples respectively.
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50000

— n=7.5x10"%Mpc3 mmm All
——- N=4.0x10"% Mpc3 Il High-mass

dN/dz

Figure 5.1: The redshift distributions of the LRG samples studied in this chapter. As
visible in the figure, the distributions are consistent with the assumption of a constant
comoving density up to redshift z = 0.55, the maximum considered here. The empirical
selection criteria were explicitly designed to select for constant comoving density fail
for higher redshifts.
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5.3 Profiles

In this section, we discuss how we used the data introduced in the previous section to
produce two stacked signals measured around the LRGs: the galaxy profile, capturing
the distribution of faint red galaxies, and the weak lensing profile, a measure of the
projected mass distribution extracted from the distorted shapes of background galaxies.
We present these two profiles and the 68 percent contours of two separate parametric
fits in Figure 5.2. The details of the fitting procedure are explained in Section 5.4.

5.3.1 Galaxy profile

We expect bright LRGs to be surrounded by fainter satellites, i.e. we expect them to
be the central galaxies of galaxy groups or clusters. We focused in particular on the
distribution of red satellites as this is the most abundant population in galaxy clusters
and, due to their repeated orbits, they are known to trace dynamical features such as
splashback better (see e.g. Baxter et al., 2017). To obtain the projected number density
profile of these surrounding galaxies, we split the LRG samples in 7 redshift bins of size
0, = 0.05 in the range z € [0.2,0.55]. We then defined a corresponding KiDS galaxy
catalog for each redshift bin, obtained the background-subtracted distribution of these
galaxies around the LRGs, and finally stacked these distributions using the weights w;
defined below.

The KiDS catalogs used in this process were based on two redshift-dependent selec-
tions: in magnitude and color. The reason behind the first selection is simple: compared
to a flat signal-to-noise (SNR) threshold, a redshift-dependent magnitude limit does not
mix populations with different intrinsic magnitudes as a function of redshift (as sug-
gested by More et al., 2016). On the other hand, the color cut is more physical since
we are only interested in the distribution of red galaxies. Combining a color cut and
a magnitude cut means choosing a similar population across redshifts, even in the ab-
sence of k-corrected magnitudes for the KiDS galaxies. Finally, we point out that we
did not select the photo-zs of the KiDS galaxies as this is unnecessary.

For the highest redshift considered here, z;,.x, we limited ourselves to observed
magnitudes m, < 23, equivalent to a 10 SNR cut. We then extrapolated this limit to
other redshift bins by imposing

m, < 23 — 5log <%) , (5.2)
L%

where z; is the upper edge of the redshift bin considered, and dy,(z) is the luminos-
ity distance as a function of redshift. Afterward, we divided the galaxy catalogs into
two-color populations by following the method of Adhikari et al. (2020). Compared to
random points in the sky, the color distribution of KiDS galaxies around LRGs contains
two features: an overdensity of "red” objects and a deficit of "blue“ objects. Based on



Chapter 5. Dynamical cluster masses from photometric surveys 107

the red-sequence calibration of Vakili et al. (2020) and the location of the 4000 A break,
we identified the (¢ — ) — (r — 7) plane as the most optimal color space to separate
these two population at redshifts z < 0.55. The two classes can then be separated by
the line perpendicular to the segment connecting these two loci and passing through its
midpoint. We note that the (i-Z)-(r-¢) plane would be better suited for higher redshifts.

We used TREECORR (Jarvis et al., 2004; Jarvis, 2015) to extract the correlation func-
tions from the catalogs defined above

DD,
" DR,

where DD and DR are the numbers of LRG-galaxy pairs calculated using the KiDS
catalogs or the random catalogs, respectively. These randoms are composed of points
uniformly distributed in the KiDS footprint. We then produced covariance matrices
by dividing our survey area into 50 equal-areal jackknife regions to provide an error
on the binned radial signal. Because the signal is statistics limited, we can ignore the
negligible off-diagonal terms of this matrix. To support this statement, we point out
that due to the low number density of the sample (see Figure 5.1), the clusters do not
overlap in real space.

Formally, the correlation function written above is related to the surface overden-
sity of galaxies:

&i

1, (5.3)

Yi(R) = &(R) Xy, (5.4)
where Y ; is the average surface density of KiDS galaxies in the i-th redshift bin.
However, since we are interested in the shape of the profile and not its amplitude, we
did not take this into account when stacking the correlation functions ;. To optimize
the measurement, we use as weights w; the inverse variance of our measurement. This
corresponds to an SNR weighted average, where the SNR is, in our case, dominated by
the statistical error of the DD counts. Formally:

Zg(R) _ Yy wiki(R) (5.5)

2 D Wi
where Yy is a constant needed to transform the dimensionless correlation function
into the projected mass density. Because we decided to fit the combination Y, (R)/ %
directly, the value of this constant is unimportant.
The left side of Figure 5.2 presents our measurement of the galaxy profile around
the LRGs. As expected, the high-mass subsample has a higher amplitude compared to
the entire sample.

5.3.2 Weak lensing profile

The shapes of background sources are deformed, i.e. lensed, by the presence of matter
along the line of sight. In the weak lensing regime, this results in the observed ellipticity
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€ of a galaxy being a combination of its intrinsic ellipticity and a lensing shear. If
we assume that the intrinsic shapes of galaxies are randomly oriented, we can then
measure a coherent shear in a region of the sky by computing the mean of the ellipticity
distribution.

Consider a circularly symmetric matter distribution acting as a lens. In this case,
the shear is only tangential, i.e. the shapes of background galaxies are deformed only
in the direction parallel and perpendicular to the line in the sky connecting the source
to the center of the lens. Therefore, we can define the lensing signal in an annulus
of radius R as the average value of the tangential components of the ellipticities e(*).
Below, we describe the exact procedure we followed to measure this signal for the LRGs
samples using the KiDS source catalog extending up to redshift z = 1.2 (see also, Viola
et al,, 2015; Dvornik et al., 2017).

Based on the lensfit weights ws associated with each source, we defined lensing
weights for every lens-source combination,

—11\2
Wy = Ws (Z ) , (5.6)

crit, 1

where the two indices 1 and s are used to indicate multiple lens-source pairs if more
than one lens is considered. The second factor in the product above represents a lensing
efficiency contribution and, in our formalism, this quantity does not depend on the
source. It is calculated instead as an average over the entire source redshift distribution
n(z): .

N

? C (]. + Z1)2 2+6 dA(O, ZS)

where da (21, 22) is the angular diameter distance between the redshifts z; and z5 in
the chosen cosmology. Sources that belong to the correlated structure surrounding the
lens might scatter behind it due to the uncertainty of photo-zs. The gap between the
lens plane and the source plane in the expression above (6 = 0.2) is there to make sure
our signal is not diluted by this effect (see appendix A4 of Dvornik et al., 2017). The
additional factor (1+2)) in this expression is there because we are working in comoving
coordinates. Once all of the ingredients are computed, an estimate of the measured
lensing signal is given by:

(5.7)

(®)
. Zl,s €sWis Ecrit, 1 1

AX(R) R T

(5.8)

where the sums are calculated over every source-lens pair, and m is a residual multi-
plicative bias of order 0.014 calibrated using image simulations (Fenech Conti et al.,
2017; Kannawadi et al., 2019). This signal is connected to the mass surface density

Y m(R) and its average value within that radius, X', (< R).

AX(R) = Y¥u(< R) — Zn(R). (5.9)
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The covariance matrix of this average lensing signal was extracted through boot-
strapping, i.e. by resampling 10° times the 1006 1 x 1 deg? KiDS tiles used in the
analysis. This signal, like the galaxy profile before, is also statistics limited. Therefore
we have not included the negligible off-diagonal terms of the covariance matrix in our
analysis.

Finally, we note that we have thoroughly tested the consistency of our lensing mea-
surement. The average cross-component lensing signal is expected to be zero. To con-
firm that this is true for our results, we computed the expression in Equation (5.8)
using the cross-component €(*) instead of the tangential € and verified that its value
was consistent with zero. Similarly, we also confirmed that the measurement was not
affected by additive bias by measuring the lensing signal evaluated around random
points.

5.4 Four ways to measure cluster masses

This section discusses how we have obtained two independent measures of the total
mass contained in the LRG halos by fitting parametric profiles to the signals extracted
in the previous section. We measured two quantities: a dynamical mass and a lensing
mass. The first is connected to the splashback feature seen in the distribution of satellite
galaxies, while the second one is connected to the amplitude of the lensing signal (see
Figure 5.2).

5.4.1 Splashback mass

By fitting the galaxy distribution with a flexible model, it is possible to estimate the
total halo mass. The essential feature that such a three-dimensional profile, p(r), must
capture is a sudden drop in density around 79y, and its most important parameter is
the point of steepest slope, also known as the splashback radius ry,. Equivalently, this
can be defined as the radius where the function d log p/d log r reaches its minimum.

In general, the average projected correlation function can be written in terms of the
average three-dimensional mass density profile as:

Yy(R) _i/“’dAp(\/m), (5.10)
0

X0 X

In practice, we evaluated this integral in the range [0, 40] Mpc, but we have also con-
firmed that our results are not sensitive to the exact value of the upper integration
limit.

The specific density profile that we used is based on Diemer and Kravtsov (2014),
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Parameter Prior
a N(0.2,2)
g N(4,0.2)
B N(6,0.2)

r¢/(1 Mpc) | N(1,4)
Se [0.1,2]

Table 5.1: The priors used in the fitting procedure of Section 5.4. When fitting the data
in the left panel of Figure 5.2, we employ the model in Equation (5.11) with the priors
presented above. For some parameters, we impose flat priors in a range, e.g. [a, b], while
for others we impose a Gaussian prior N'(m, o) with mean m and standard deviation
0. We do not restrict the prior range of the two degenerate parameters p and rg.

and it has the following form:

p(?") = pEin(T)ftrans(T) + pout(r)a (5.11)

PEin(T) = psexp (2 Ki) — 1D , (5.12)
o Ts
8 —g/8

1+ (;) ] , (5.13)

Pout = P (i) o (5.14)

To

Sfirans (T) =

These expressions define a profile with two components: an inner halo and an in-
falling region. The term pgin(7) furans (1) represents the collapsed halo through a trun-
cated Einasto profile with shape parameter o and amplitude p; (Einasto, 1965). The pa-
rameters g, 3 in the transition function determine the maximum steepness of the sharp
drop between the two regions, and r; determines its approximate location. Finally, the
term pout(r) describes a power-law mass distribution with slope s, and amplitude p,
parametrizing the outer region dominated by infalling material. For more information
about the role of each parameter and its interpretation, we refer the reader to Diemer
and Kravtsov (2014), and previous measurements presented in the introduction (see e.g.
Contigiani et al., 2019, for more details about the role of the truncation radius 7).

To extract the location of the splashback radius for our two LRG samples, we fitted
this model profile to the correlation function data using the ensemble sampler EMCEE
(Foreman-Mackey et al., 2013). The priors imposed on the various parameters are pre-
sented in Table 5.1, and we highlight in particular that the range for « is a generous
scatter around the expectation from numerical simulations (Gao et al., 2008).

In clusters, it is possible for the location of the central galaxy to not correspond to
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the barycenter of the satellite distribution. This discrepancy is usually accounted for in
the modeling of the projected distribution in Equation (5.10), but we chose not to con-
sider this effect in our primary analysis. This is justified because the miscentering term
affects the profile within R ~ 0.1 Mpc, while we are interested in the measurement
around R ~ 1 Mpc (Shin et al., 2021), and the data do not require a more flexible model
to provide a good fit.

Finally, to transform the ry, measurements into a value for Mjpm, wWe used the
relations from Diemer (2020b), evaluated at our median redshift of Z = 0.44. Because
the splashback radius has a dependence on accretion rate, we used the median value
of this quantity as a function of mass as a proxy for the effective accretion rate of our
stacked sample. We note in particular that the additional scatter introduced by the
accretion rate and redshift distributions is expected to be subdominant given the large
number of clusters we have considered. We best fitting profiles and error intervals of
the inferred My, are shown in Figure 5.2.

5.4.2 Lensing mass

To extract masses from the lensing signal, we performed a fit using an NFW profile
(Navarro et al., 1996, 1997):
1 Maoom

)= )
pr) 47 F (ca00m) (T + 7200m/ C200m )2

where Mo, and 10, are related by Equation (5.1), ¢zoom is the halo concentration,
and the function appearing in the first term is defined as:

F(c)=In(1+4¢)—c¢/(1+c¢). (5.16)

(5.15)

From this three-dimensional profile, the lensing signal can be derived using Equa-
tions (5.9) and (5.10) by replacing X, with X,/ 5.

Because the mass and concentration of a halo sample are related, several mass-
concentration relations calibrated against numerical simulations are available in the
literature. We chose to fit an NFW profile because these mass-concentration relations
are usually given in terms of its parameters, and imposing such constraint increases
the precision of the measurement by forcing a strong prior on the shape of the profile.
Notice that we could have used the complex model of Equation (5.11) also for the lens-
ing measurement. However, the differences between the Einasto profile used there and
the NFW profile presented above are not expected to induce systematic biases at the
precision of our measurements (see e.g. Sereno et al., 2016). Although extra complexity
might not be warranted, particular care should still be taken when measuring profiles
at large scales, where the difference between the more flexible profile and a traditional
NFW profile is more pronounced. Consequently, we reduce the bias in our measure-
ment by fitting only projected distances R < 1.5 Mpc, where the upper limit is decided
based on the 7y, inferred by our galaxy distribution measurement.
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For the measurement presented in this section, we use the mass-concentration rela-
tion of Bhattacharya et al. (2013). However, because this relation is calibrated with nu-
merical simulations based on a different cosmology, we also fit the lensing signal while
keeping the concentration as a free parameter. This consistency check is particularly
important because halo profiles are not perfectly self-similar (Diemer and Kravtsov,
2015) and moving between different cosmologies or halo mass definitions might re-
quire additional calibration. We perform the fit to the profiles in the right panel of
Figure 5.2 using the median redshift of our samples, Z = 0.44. We find that statistical
errors dominate the uncertainties, and we do not measure any systematic effect due to
the assumed mass-concentration relation.

5.4.3 Supplementary mass measurements

In addition to the two mass measurements extracted from the galaxy and lensing pro-
files, we discuss the predictions we obtained from two additional methods. The first is
based on an abundance matching argument, while the second is based on the cluster-
ing properties of our LRG sample. We focus on these two methods to estimate masses
because, similarly to the main two methods, they can also be performed in the presence
of photometric data alone.

For the abundance-matching mass, we used the mass function of Tinker et al. (2008)
at the median redshift Z = 0.44 to convert the comoving densities from Figure 5.1 into
lower limits on the halo mass Mg,. To complete the process, we then extracted the
mean mass of the sample using the same mass function.

For the clustering mass, we used the large-scale distribution of our sample as a
proxy. Because the spatial correlation function of halos depends on their mass, we can
estimate the average mass of our cluster sample by extracting the bias of this popula-
tion with respect to the matter distribution of the Universe. To this end, we divided
the LRG sample into three equally populated redshift bins and computed the angu-
lar autocorrelation functions within a range of scales. For the lower limit, we used
R = 10 Mpc to make sure we considered only linear scales. For the upper limit, we
used # = 150 arcmin to satisfy the flat-sky approximation and to accurately account
for cosmic variance within the limited KiDS footprint. We converted between projected
radii and angular distances using our assumed cosmology and measured the autocorre-
lation function using the same procedure presented in Section 5.3.1. However, we did
take into account the off-diagonal terms of the covariance matrix in this case since the
uncertainties at large scales are dominated by sample variance.

Using the Limber approximation (Limber, 1953), the measured angular autocorre-
lation function of the i-th LRG bin can be written as

dAg(\/R2+A2,z), (5.17)

n;(2) i

O;(RIM) = /dz WbQ (Mzo(,m)/_oo
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where £(r, z) is the matter correlation function in terms of the comoving distance r
and redshift z, b(Maoom ) is the bias as a function of mass from Tinker et al. (2010), x(z)
is the comoving distance to redshift z, and n;(z) is the normalized redshift distribution
of the LRGs in the considered bin. This latter distribution was obtained by taking into
account the redshift uncertainties of the red-sequence calibration (see Section 5.2.2).
The clustering mass was measured by fitting this model to the three LRG bins assuming
a constant value of Mgy, throughout the entire redshift range.

We note that Vakili et al. (2020) has shown that the distribution of LRGs at the
scales considered in this section can be strongly affected by survey systematics, and
specific weights should be used when computing the clustering properties. We have
verified that the autocorrelation signals of our samples are unaffected by the use of
these weights. In general, fainter objects are more impacted by the varying depth intro-
duced by survey systematics since they can scatter in or out of the detection threshold.
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Technique Mioom (10™ Mg) sp (Mpc)

All High-mass All High-mass
Splashback 057 0% | 0777055 1 1.484+0.28 | 1.6+0.25
Lensing (fixed ¢) | 0.46 +0.03 | 0.62 4+ 0.05 | 1.40 £0.01 | 1.52 £ 0.02
Lensing (freec) | 0.44£0.05 | 0.54 £0.07 | 1.39£0.03 | 1.6 +0.04
Abundance 0.48 0.74 1.42 1.6
Clustering 241£0.94 | 2.62£1.18 — —

115

Table 5.2: The mass measurements performed in this chapter. This table summarizes
the discussion of Section 5.5 and the measurements presented in Figure 5.3 for our LRG
samples (all and high-mass). The quoted splashback radii are in comoving coordinates.
The abundance-matching measurements are provided without error bars as we have
not modeled the selection function of our LRGs. Since the clustering method is not
informative, we do not present a splashback radius estimate based on it. Most mea-
surements and conversions between Mg, and 7y, (see the end of Section 5.4.1 for
details) are computed using a model at the median redshift Z = 0.44, identical for both
samples. The bias measurements take into account a redshift-dependent clustering but
assume a constant halo mass.

5.5 Discussion

In this section, we compare and validate the measurements presented in the previous
one, see Figure 5.3 and Table 5.2 for a quick summary of our main conclusions. As
an example of the power granted by multiple cluster mass measurements from the
same survey, we also present an interpretation of these measurements in the context
of modified theories of gravity.

In Figure 5.3 and Table 5.2, we present the results of our two main mass measure-
ments combined with the two extra introduced in the previous subsection. All mea-
surements are in agreement, providing evidence that there is no significant correlation
between the selection criteria of our LRG sample and the measurements performed
here.

The first striking result is the varying degree of precision among the different mea-
surements. The lensing measurement is the most precise, even when the concentration
parameter is allowed to vary. In particular, the fact that the inferred profiles do not
exhaust the freedom allowed by error bars in the right-hand panel of Figure 5.2 implies
that our model prior is responsible for the strength of our measurement and that a more
flexible model will result in larger mass uncertainties. On the other hand, with splash-
back, we can produce a dynamical mass measurement without any knowledge of the
shape of the average profile and, more importantly, without having to capture the exact
nature of the measured scatter. In the end, the inferred average splashback mass of our
high-mass LRG sample has an uncertainty of around 50 percent. This is significantly
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higher than the lensing measurement but still considerably better than the clustering
measurement, consistent with zero mass. Our results show that the sparsity of high-
density peaks does not allow clustering to provide competitive mass constraints. This
is despite the naive expectation that the clustering of massive halos should depend only
on their overdensity, or, equivalently, that they are not affected by assembly bias (Sheth
and Tormen, 2004).

As a final note on our results, we point out that the difference between the masses
of the two samples (all and high-mass) is 20 for the lensing measurement, but it is
not even marginally significant for the splashback values (due to the large error bars).
As already shown in Contigiani et al. (2019), splashback measurements are heavily
weighted towards most massive objects. To produce a non-mass weighted measure of
the splashback feature, it is necessary to rescale the individual profiles with a proxy of
the halo mass. However, because the study of g, as a function of mass is not the focus
of this work, we leave this line of study open for future research.

5.5.1 Gravitational constants

In this section, we present how the combination of the lensing masses and splashback
radii measured in the section above can be used to constrain models of gravity. The
principle behind this constraint is the fact that, while General Relativity (GR) predicts
that the trajectories of light and massive particles are affected by the same metric per-
turbation, extended models generally predict a discrepancy between the two.

In extended models, the equations for the linearized-metric potentials (¢ and ¥,
see Bardeen, 1980) can be connected to the background-subtracted matter density p(x)
through the following equations (Amendola et al., 2008; Bertschinger and Zukin, 2008;
Pogosian et al., 2010),

V(P + W) = 81GE(z)p(x), (5.18)
V2@ = 4nGu(z)p(x). (5.19)

In the expressions above, the functions  and X, also known as Gatter/ G and Glight/ G
can be in principle a function of space and time (collectively indicated by x). We stress
that the symbol X/, previously used to refer to projected three-dimensional distributions
(Yg, Xm), has a different use in this context. These equations are expressed in terms of
@ and @ + ¥ because the trajectories of particles are affected by the first, while the
deflection of light is governed by the second. In the presence of only non-relativistic
matter, Einstein’s equations in GR reduce to @ = ¥ and we have X = 1 = 1.

The same type of deviation from GR can also be captured in the post-Newtonian
parametrization by a multiplicative factor v between the two potentials: ¥ = . If
u, X, and y are all constants, the three are trivially related:
po_ 147

= 5 (5.20)
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Under this same assumption, the ratio between the masses measured through lens-
ing and the mass measured through the dynamics of test particles (e.g. faint galaxies or
stars) can be used to constrain these parameters and the literature contains multiple re-
sults concerning these extended models. Solar System experiments have constrained ~y
to be consistent with its GR value (7 = 1) up to 5 significant digits (Bertotti et al., 2003),
but the current measurements at larger scales are substantially less precise. For kpc-
sized objects (galaxy-scale), stellar kinematics have been combined with solid lensing
measurements to obtain 10 percent constraints (Bolton et al., 2006; Collett et al., 2018),
while large-scale measurements (~ 10 — 100 Mpc) can be obtained by combining cos-
mic shear and redshift space distortion measurements to achieve a similar precision
(see e.g. Simpson et al., 2013; Joudaki et al., 2018). As for the scales considered in this
chapter, a precision of about 30 percent can be obtained by combining lensing masses
with either the kinematics of galaxies inside fully collapsed cluster halos (Pizzuti et al.,
2016) or the distribution of hot X-ray emitting gas (Wilcox et al., 2015). However, in this
case, the effects of the required assumptions (e.g. spherical symmetry and hydrostatic
equilibrium for the gas) are harder to capture. In all cases, no deviation from GR has
been measured.

As an example of the power of the measurements presented in Section 5.4, we
present here their implication for beyond-GR effects. On one hand, our lensing sig-
nal is a measurement of the amplitude Mgy, 1. of the lensing matter density p;, = pX.
On the other hand, the splashback radius 7y, depends on the amplitude of p;, x /X
and it is related to the splashback mass M3om, sp. We, therefore, focus on the ratio of
these two amplitudes measured in the high-mass sample:

g Maoom, 1.

—=——=08%£04 < =0.6 =0.8. 5.21
b)) MZOOm, sp E ( )

In high-density regions such as the Solar System, the expectation v = 1 must the
recovered with high precision. Hence, alternative theories of gravity commonly pre-
dict scale- and density-dependent effects, which cannot be captured through constant
values of ;1 and Y. Because rg, marks a sharp density transition around massive ob-
jects, it is more suited to test these complicated dependencies. To provide an example
of the constraints possible under this second interpretation, we followed Contigiani
et al. (2019) to convert the effects of an additional scale-dependent force (also known
as a fifth force) on the location of the splashback radius rp.

In the case of the symmetron gravity theory studied there (Hinterbichler et al.,
2011), the change in ry, introduced by the fifth force was obtained by integrating the
trajectories of test particles in the presence or absence of this force. In total, the theory
has three parameters: 1) the dimensionless vacuum Compton wavelength of the field
Ao/ R(to), that we fix to be 0.05 times the size of the collapsed object; 2) zssp, the
redshift corresponding to the moment at which the fifth force is turned on in cosmic
history, that we fix at zssg = 1.25; and 3) f, a dimensionless force-strength parameter
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that is zero in GR. The choices of the fixed values that we imposed are based on physical
considerations due to the connection of these gravity models to dark energy while
maximizing the impact on splashback. See Contigiani et al. (2019) for more details.

To match the expectation of the model to observations, we first converted the My,
lensing measurement into an expected splashback radius 7, 1, by reversing the proce-
dure explained at the end of Section 5.4.1 and then compared the measured ry;, to this
value. From the high-mass data, we obtained the following 1o constraints:

TspL = Tsp

P —0.074+0.20 = f<18. (5.22)
Tsp, L

The symmetron theories associated to zssg ~ 1 and cluster-sized objects correspond
to a coupling mass scale of the order of 10~ Planck masses, a region of the parameter
space which is still allowed by the solar-system constraints (Hinterbichler et al., 2011)
and which has not been explored by other tests (see e.g. O’'Hare and Burrage, 2018;
Burrage and Sakstein, 2018). In particular, the upper limit on f produced here directly
translates into a constraint on the symmetron field potential of Contigiani et al. (2019).!
Thus, our result shows that we can test the existence of scalar fields with quite weak
couplings and directly project these measurements into a broader theory parameter
space.

5.5.2 Future prospects

Our results show that the precision of the recovered splashback mass is not comparable
to the low uncertainty of the lensing measurements. Because of this, every constraint
based on comparing the two is currently limited by the uncertainty of the first. While
this chapter’s focus is not to provide accurate forecasts, we attempt to quantify how
we expect these results to improve with larger samples. In particular, we focus our
attention on wide stage-IV surveys such as Euclid (Laureijs et al., 2011) and LSST (LSST,
LSST Science Collaboration et al., 2009).

First, we investigate how our results can be rescaled. In the process of inferring
Maoom from rg,, we find that the relative precision of the first is always a multiple
(3 — 4) of the second. This statement, which we have verified over a wide range of
redshifts (2 € [0, 1.5]) and masses (Moo, € [10*2,10'5] My,), is a simple consequence
of the low slope of the Moy — 7, relation. Second, we estimate the size of a cluster
sample we can obtain and how that translates into an improved errorbar for 7,. LSST
is expected to reach 2.5 magnitudes deeper than KiDS and to cover an area of the sky
18 times larger (LSST Science Collaboration et al., 2009). Part of this region is covered
by the galactic plane and will need to be masked, but the resulting LRG sample will
reach up to z ~ 1.2 and cover a comoving volume about a factor 100 larger than what

However, we stress here that this constraint does not have implications for dark energy, as the model
considered there is not able to drive cosmic acceleration in the absence of a cosmological constant.
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is considered in this work. Because the selected LRGs are designed to have a constant
comoving density, we can use this estimate to scale the error bars of our galaxy profile
measurement. A sample N = 100 times the size would result in a relative precision in
s of about 1 percent, which translates into a measured Maom, With a few percentage
point uncertainty. This result is obtained by simply rescaling the error bars by a factor
\/N = 10, but notice that the effects do not rescale linearly for 7. This is still larger
than what is allowed by lensing measurements but can easily apply to high-redshift
clusters, for which fewer background sources are available.

We note that this simple rescaling sidesteps multiple issues. Here we consider three
of them and discuss their implications and possible solutions. 1) At high redshift, color-
identification requires additional bands, as the 4000 A break moves out of the LSST
grizy filters. 2) Even if we assume that an LRG sample can be constructed, the popula-
tion of orbiting satellites at high redshift might not necessarily be easy to identify as the
read sequence is only beginning to form. 3) Finally, with more depth, we also expect
fainter satellites to contribute to the galaxy profile signal, but the details of this popu-
lation for large cluster samples at high-redshifts are not known. For example, a simple
extrapolation of the observed satellite magnitude distribution implies that the number
of satellites forming the galaxy distribution signal might be enhanced by a factor 10,
but this does not consider, for example, the disruption of faint satellites.

In addition to the forecast for the galaxy profiles discussed above, we also expect a
measurement of g, with a few percentage point uncertainty directly from the lensing
profile (Xhakaj et al., 2020). This precision will only be available for relatively low
redshifts (z ~ 0.45), allowing a precise comparison of the dark matter and galaxy
profiles. This cross-check can also be used to understand the effects of galaxy evolution
in shaping the galaxy phase-space structure (Shin et al., 2021) and help disentangle the
effects of dynamical friction, feedback, and modified models of dark matter (Adhikari
et al., 2016; Banerjee et al., 2020).

5.6 Conclusions

In this chapter, we have used the splashback feature to measure the average dynam-
ical mass of halos hosting bright KiDS LRGs. We obtain a precision of 15 percent.
To support our result, we have also validated this mass measurement using a simple
abundance-matching argument and weak lensing masses (see Figure 5.3 and Table 5.2).
We also presented a fourth validation technique based on the linear clustering of ha-
los, but in this case, the low statistics of high-density peaks hindered the constrain-
ing power. Finally, as an application of the synergy between the strong lensing and
splashback masses, we have provided constraints on models of modified gravity (see
Equation 5.22).

The main achievement that we want to stress here is that these self-consistent mea-
surements are exclusively based on and validated with photometric data. The bright
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LRG samples employed here can be easily matched to simulations, offer a straightfor-
ward interpretation, and, in general, are found to be robust against systematic effects
in the redshift calibration (Bilicki et al., 2021). This is in contrast to other dynamical
masses presented in the literature: such measurements are based on expensive spec-
troscopic data (see e.g. Rines et al., 2016) and are found to produce masses higher than
lensing estimates (Herbonnet et al., 2020), an effect which might be due to systematic
selection biases afflicting these more precise measurements (Old et al., 2015).

Because the relation between rg, and halo mass depends on cosmology, this mea-
surement naturally provides a constraint on structure formation, although the preci-
sion is relatively low with current data. The predictions for splashback also have trends
with redshift, mass, and galaxy properties that are expected to be informative (Xhakaj
et al., 2020; Shin et al., 2021). By comparing splashback and lensing masses, we were
able to constrain the effects on r, of deviations from GR in a relatively straightforward
manner. In this case, the interpretation of the difference between dynamical mass and
lensing mass is not a simple rescaling, but it is connected to the full trajectory of the
infalling material. By performing this measurement as a function of redshift, it is in
principle possible to track the effects as a function of cosmic time and disentangle the
effects of the accretion rate from the effect of fifth forces.

Precise measurements of the outer edge of massive dark matter halos have become
feasible only in the last decade, thanks to the introduction of large galaxy and cluster
samples. These measurements allow the study of the interface between the nonlinear
multi-stream region of collapsed structures and the mildly nonlinear scales of infalling
material, and directly connect the environment of massive halos and their properties.
As we have shown in this work, this new research direction offers a route to reliable
dynamical mass measurements as well as a new way to probe gravitational theories.

As discussed in Section 5.5.2, future stage IV surveys will provide percentage level
splashback measurements. Modeling the trends in redshift, mass, accretion rate, and
satellite properties of this feature promises to provide a powerful probe of the physics
behind galaxy formation (Adhikari et al., 2020), as well as the large-scale environment
of massive halos and their anisotropy (Contigiani et al., 2021).
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Chapter 6

Learning how to surf: studies
in gravitational-wave
cosmology

We investigate the relationship between the large-scale structure of the Universe and
the gravitational wave (GW) signals emitted by merging binaries of astrophysical ori-
gin. We first study the effects of gravitational lensing on the observed population. By
making minimal assumptions about the distribution of intrinsic properties, we show
that lensing effects leave a recognizable signature on the observed rates and that they
are prominent mainly at low inferred redshifts. We then consider the spatial cross-
correlation of galaxy catalogs with either an unresolved GW background or catalogs of
resolved GW sources. The first signal can constrain the evolution of the emitting pop-
ulation over cosmic time, while the second can be used to constrain the propagation of
tensor metric perturbations. Our results suggest that galaxy surveys and GW signals
will be powerful probes for both the astrophysical properties of the merging popula-
tion and cosmology. Using mock data based on a simplified model, we show how our
predictions can be re-scaled to multiple instrumental configurations. We find that a
higher spatial resolution improves constraints across the board, but accurate distance
measurements are essential for cosmological applications.

Omar Contigiani
2020, Monthly Notices of the Royal Astronomical Society, 492, 3359

Guadalupe Canas-Herrera, Omar Contigiani, and Valeri Vardanyan
2021, The Astrophysical Journal, 918, 20
2020, Physical Review D, 102, 043513
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6.1 Introduction

Gravitational waves (GWs) are one of the most striking predictions of the General The-
ory of Relativity (Einstein, 1916, 1918) and their direct detection by the LIGO-Virgo
collaboration (Abbott et al., 2016) triggered a rapidly increasing interest in exploiting
this new field for cosmological information. In this chapter, we summarize three works
pushing toward this objective.

In Section 6.2 we discuss the consequences of gravitational magnification, i.e., the
enlargement of a source in the image plane of an observer due to the converging effect
of one or more gravitational lenses along the line of sight. For point-like EM sources,
this corresponds to an increase in brightness by a factor 1, which has been shown to
affect the bright end of the luminosity functions of high redshift quasars and submil-
limeter galaxies (e.g. Negrello et al., 2010; Wyithe and Loeb, 2002). Similarly, the effects
of magnification on the GW signals emitted by merging binary compact objects in-
troduces a long and highly suppressed tail in the observed distribution (e.g. Dai et al.,
2017; Oguri, 2018; Smith et al., 2018). Recently, Broadhurst et al. (2018) claimed that a
considerable fraction of LIGO-Virgo events to date might belong to this tail and that
another sign of strong lensing, i.e., multiple images originating from the same source,
might have already been detected (Broadhurst et al., 2019). While this idea explains the
present-day tension with binary evolution models (see e.g. Dominik et al., 2012) that
predict lower masses than what is observed, the hypothesis is not favored by the data
(Hannuksela et al., 2019; Singer et al., 2019). Furthermore, the tension it tries to ex-
plain might also be alleviated through tweaks to stellar evolution models (Abbott et al.,
2016). The goal of Section 6.2 is to offer general quantitative insights into the effects
of lensing on the expected rates of gravitational wave mergers and call attention to its
general low likelihood in light of the aforementioned claims.!

GWs alone are not particularly useful for general cosmological applications because
near future data will only provide rough estimates of the sky position and luminosity
distance to the source. However, they can serve as powerful cosmological probes when
combined with electromagnetic (EM) data, from which redshifts can be extracted. This
idea dates back to Schutz (1986), and in Section 6.3 and 6.4, we discuss in detail how
one can exploit the spatial correlation between the galaxies hosting GW events and the
galaxies observed by wide surveys for cosmological applications.

First, we study the cross-correlation signal between an unresolved GW background
(GWB) and galaxy catalogs, arguing why it represents the ideal observable to detect
and measure said background. In the past, the anisotropies of the astrophysical GWB
have been extensively studied (Thrane et al., 2009) and, more recently, two independent
groups Cusin et. al. (Cusin et al., 2018, 2017) and Jenkins et. al. (Jenkins, Alexander C.
and Sakellariadou, Mairi, 2018; Jenkins et al., 2018) obtained discrepant predictions for

n the interest of reproducibility, a Jupyter notebook offering a guided version of this section is available
at https://www.github.com/contigiani/lensingGW.
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the scale-dependent signal (Cusin et al., 2018; Jenkins et al., 2019b). The main disagree-
ments are related to the shape of the angular power spectrum as well as the overall
amplitude of the signal. In this work, we explain how the difference in shape is re-
lated to the treatment of non-linear scales (see Section 6.3.1), whereas the difference
in amplitude is simply due to the chosen normalization. Apart from this necessary
clarification, we focus almost exclusively on the cross-correlation of the GWB with
galaxies and quantify its constraining power. We choose to work with this observ-
able for two main reasons. (1) the cross-correlation signal for diffuse backgrounds is
expected to have a larger signal-to-noise ratio compared to the autocorrelation signal
and is likely to be detected earlier (Ando et al., 2014), (2) the autocorrelation signal of
the astrophysical GWB is susceptible to small scales and nearby structures, while the
cross-correlation signal GW is free from this problem.

Second, in Section 6.4, we explore ways to reconstruct the difference between mod-
els of modified gravity and GR using resolved GW sources in combination with galaxy
catalogs. An altered friction term for GWs arises in extended models displaying a
redshift-dependent gravitational coupling (Amendola et al., 2018; Belgacem et al., 2018)
and, as a result, the inferred luminosity distance to GW sources differs from the corre-
sponding EM luminosity distance. It should be noted that this interesting phenomenon
can already be loosely constrained today using multiple techniques, e.g. using the mul-
timessenger detection of GW170817 (Arai and Nishizawa, 2018; Lagos et al., 2019) or
features in the mass distribution of existing GW catalogs (Maria Ezquiaga, 2021). In ad-
dition to presenting our formalism, we also show how to jointly reconstruct the redshift
evolution of modified gravity effects and the bias of GW sources. The reconstruction
method we make use of is based on Gaussian processes (GPs), a well-known hyper-
parametric regression procedure (Rasmussen and Williams, 2005).

Unless stated otherwise, our fiducial cosmology is based on the best fit results from
Planck 2018 (Aghanim et al., 2020). In our analysis, we use COLOSSUS (Diemer, 2018)
and Astropy (Robitaille et al., 2013; Price-Whelan et al., 2018) for cosmological calcu-
lations, sklearn (Scikit-learn, 2018) for the GP implementation, emcee (Foreman-
Mackey et al., 2013) as our posterior sampler and GetDist (Lewis, 2019) to plot the
final contours.
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6.2 Lensing boost

6.2.1 Formalism

The value of the magnification y for cosmological sources at various redshifts z is mod-
eled by a probability function P(u, z) which can be obtained numerically by perform-
ing ray-tracing simulations (e.g. Hilbert et al., 2007; Takahashi et al., 2011). To simplify
the notation, here we call P(u) what is sometimes called % in the literature. This
quantity measures the distribution of magnification for all possible images of a given
source and due to conservation of photons/gravitons on average we have null magni-
fication,

(1) = /du pP(p, z) = 1. (6.1)

More details about how this distribution should be interpreted are available in appendix
A of Oguri (2018).

For this section, we will use a simplified model of P(u, z), calculated as the sum
of two components: weak and strong lensing. For the first, we assume a log-normal
distribution for the convergence  (as in, e.g. Taruya et al., 2002; Hada and Futamase,
2018) and derive the corresponding magnification probability density function using
the relation:

1

= e (6.2)
While this relation for y and k is valid only in the limit of null shear |y| = 0, it has
been shown to accurately reproduce the weak lensing component of the magnifica-
tion distribution (Takahashi et al., 2011), where x < 1. For the strong-lensing compo-
nent, we do not assume any relation between i, %, || and instead impose a power-law
P(u,2) oc p=3 for p > 1, calibrated empirically using the lensing depths of Oguri
(2018). Finally, to simulate the demagnification tail, we assume a constant value for
1 < 1. We point out that we do not consider sources with z > 10 in this work.

For EM sources, the source flux is amplified by a factor y in the presence of magni-
fication. If the redshift to the source is known and a cosmology is assumed, the result

is a mismatch between the inferred luminosity (£) and the intrinsic one (L.):

L
Lo (63)

*

If only the luminosity is known, then the result is a mismatch between the inferred and

actual luminosity distance to the source:

D(z

D(z) = &),
Vi

where we call z and z, the inferred redshift and the true one, respectively. We also

refer to the corresponding luminosity distances as D and D,. This case applies to

(6.4)
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Supernovae type IA (SNIa), a category of transient events known as standard candles
because they share the same intrinsic luminosity. The Jacobians of the transformations
in Egs. (6.3) and (6.4) are:

9L, _ 1 (6.5)
oL '
and 9 D(2)
Ze z
9z D/(z*)\/ﬁ' (©0)

In the case of GWs, we limit ourselves to the inspiral phase of compact binary
mergers. In this phase, the gravitational wave strain amplitude as a function of time,
h(t), carries information about the source’s distance and the associated masses. The
frequency evolution of the signal can be used to extract the redshifted chirp mass (an
effective combination of the masses involved in the merger):

foc M(1+ 2), (6.7)
while the amplitude is connected to the inverse of the luminosity distance:

AM(1+ 2))

h(t) D) ,

(6.8)
where A(—) is a function of the redshifted chirp mass alone. From this, it should be
clear that both M and D(z) can be extracted from the signal.

In the presence of magnification, the observed strain is multiplied by a factor /i,
and the mismatch between the intrinsic properties (z., M.) and the inferred ones

(z, M) is such that

D(z) = D\(/f_j), (69)
and L+
Zx
M= M. (6.10)

For ;1 > 1 this implies that distant events are assumed to be closer and more mas-
sive than they actually are, just like magnified electromagnetic sources are assumed
brighter. An essential difference between the two, however, is that the dependence on
magnification is significantly weaker for the GW merger parameter M compared to
the luminosity £,

M _ 1+ 2, O(,us(z),
with s(z) < 0.5 for any z < z, and s(z) — 0.5 for increasing z. This can be easily
shown by combining Eq. (6.9) and (6.10), together with the fact that the luminosity
distance can be expressed, in a flat background, as the product of (1 + z) and a strictly
increasing function of z (comoving distance).

(6.11)
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To conclude this section, it is useful to point out that the Jacobian of the transfor-
mation (M, z) <> (M., 2z,) can be written as

OM, 0z, D'(z2) 1+z2 Vi

M 0z D'(z)1+2 V"

(6.12)

Rates

We write the observed rate of merger events per unit redshift and unit chirp mass as:

rGVI(M, z) = %fﬁmw, 2), (6.13)

where R is the intrinsic rate in the source frame, and £, the lensing boost. Here, we
separate the rate into two components:

R(M, 2) = R(M)R(2), (6.14)

and, for the redshift-dependent part, we assume a rate which is proportional to the
product of the comoving volume boosted by a factor (1 + z)*:

dVv. d2(2)
1+2)? 1 6.15
R() x SE(1+2)7 o E()<+> (6.15
where we use a standard ACDM cosmology with E(z) = 1/0.3(1 + 2)3 + 0.7. This

power-law behavior is expected if the merger rate of compact blnary objects traces the
star formation history (Madau et al., 1998) at low redshift (Dominik et al., 2013). In this
toy model, we also invert the sign of the power-law index 5 = 2.3 at z = 2, in order
to simulate a peak in the star formation rate.

Similar expressions can also be written for the rates of SNIa and the number counts
of quasars:

58 (z) = T giom,) (6.16)
n@(L,2) = N(L)ED (L, 2). (6.17)

Even though we assume that the intrinsic luminosity function of quasars N (£) is not
redshift dependent, lensing effects introduce this dependence in the observed n(L, ).
The lensing boost factors can then be written as:

g = / (M, /M) (ﬁ))w@w (M, /M, 2), (6.18)

g WSN(D, /D, 2), (6.19)
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N(L,)
N(£L)
where we have introduced the weight functions W+, quantifying the contribution to

the observed rates at z, M, L from lensed events. These weight functions can be written
as the product of the following terms.

&9 = [ dlogyy (£./0) A WL./L.2), (6.20)

+ A lensing term. For each z., M, and L., there is an associated lensing proba-
bility. For GW and SN, this is P(u, 2. ) because the measured redshift z, inferred
from the luminosity distance, is different from the source redshift z,. This proba-
bility is P(y, z) for the Q case because it is measured directly. For ;1 > 3, we have
P(p, z«) > P(u, z), meaning that we expect strong lensing to be particularly ef-
ficient for standard candles/sirens. Furthermore, because the expressions above
are not written as integrals in p, this term also contains a probability volume, e.g.
dp/dz, for the SN case.

+ A comoving volume term for the GW and SN cases. This is due to our assumption
that R(z) o dV,.. Because lensing introduces contributions from a redshift range
different from the observed z, a term dV,(z,)/dV.(z) is present.

« A redshift evolution term for SN and GW. Similar to the previous case, except
due to the assumed power-law dependence of R(z). This term also accounts for

B—1
the different redshifted rates and is equal to (1+Z - ) .

1+z

« A Jacobian term. As introduced in the previous section, the lensing transfor-
mation from intrinsic to observed quantities introduces an additional Jacobian
factor.

In the next section, we study the impact of lensing magnification on the inferred
chirp mass and redshift values and compare these results to the EM cases. We will
work with the arguments of the integrals written above and, for ease of readability, we
will also normalize these functions w.r.t. their value at null magnification (x = 1). In
particular, we chose not to focus extensively on the results of the integral géGW), since
it strongly depends on the assumed mass function R(M). For accurate rates, we refer
the reader to previous works (e.g. Dai et al., 2017; Oguri, 2018; Broadhurst et al., 2018;
Ng et al., 2018).
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6.2.2 Observational consequences
Weight functions

On the right side of Fig. 6.1, we plot the contribution of different intrinsic chirp masses
to the integral in Eq. (6.18), while on the left-side we plot the equivalent result for light.
These functions correspond to W (W) and (@),

The first obvious conclusion is that magnification affects the inferred rates of GW
mergers more efficiently than EM sources at both high and low redshift. This is mainly
because GW lensing gives access to a broader volume at higher redshift, corresponding
to a higher Jacobian factor and significantly stronger lensing probabilities. These effects
are the main discriminant between the two cases and are dominant at low redshift.

We note, however, that the GW weights are still low. If we focus on a LIGO-like
source (z ~ 0.15), we see that, to have rates at mass M dominated by events at M, ~
M /3, the mass function R(M) should span roughly 7 orders of magnitude between
M, and M. While this is possible, we point out that this roughly corresponds to a
doubly-exponential tail, with

_eM/ Mo

R(M) x e (6.21)
and My = M.,. This conclusion is mostly independent of our assumed mild redshift
evolution.

Despite the lower lensing weights for the EM case, we also show that a typical
Schechter function N (L) « exp(—L/L.)/L (Schechter, 1976) is able to introduce a
significant contribution from highly magnified sources at high z.

Lensing tail

In Fig. 6.2 we show the expected lensing tail of a truncated power-law distribution
R(M) o< M™" for a few choices of n. Events measured with a chirp-mass larger than
the cut-off value M > M., must be magnified mergers with intrinsic redshift z, > z
and intrinsic chirp-mass M, < M.

The prominence of this tail for a steep mass function (large n) and low redshift
z explains why a source distribution can be designed to produce a large number of
lensed events (Broadhurst et al., 2018). It is useful to stress here that the main reason
behind this is not the larger volume available to be lensed, but the fact that higher red-
shift events contributing to the low redshift rates are both more likely to be lensed and
are also necessarily located on a more abundant portion of the mass function. This is
because the mapping (M, z) <> (M., z.) depends only on . Despite the main advan-
tage of amplifying the lensing tail compared to the naive expectation, this mechanism
has the drawback of being efficient only for events with low z. For example, the shape
of the z = 5 lensing tail is less sensitive to the details of the mass function.
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Figure 6.2: The shape of the lensing tail for truncated power-law distributions. The
figure shows the observed rate r(M) for an intrinsic chirp-mass function R(M)
M™" truncated at M_,. The observed rate for M > M, must therefore be due to
lensed events. The dependence on n is more striking for low inferred redshifts z due to
how the intrinsic chip masses are distributed in the volume at z, > 2. See Section 6.2.2
for more details.
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Here we do not assume a lower limit for the values M., and the integrals are trun-
cated because we impose z, < 10. While this choice is unrealistic, it is possible to
verify that setting a lower limit M, > 5 Mg (1) does not affect the quantitative results
of Fig. 6.2 forn < 10 and M > 20 Mg, and (2) has no impact on the qualitative results
discussed in this section for all values of n.

Luminosity distance

Another consequence of the dependence of the observed mass M on the magnification
1 is the broadness of the peak in Fig. 6.1. The standard deviation of this distribution
can be interpreted as an uncertainty in the measured M, and, for an individual event,
it can be pretty substantial: its value grows from 1 to about 7 percent between z = 1
and z = 5. The primary source of this scatter is the convergence distribution discussed
in Section 6.2.1, and it is not particularly affected by our chosen source redshift de-
pendence R(z). For a flat mass function, no significant bias is observed in this redshift
range, meaning that the contributors to an event of observed chirp mass M and redshift
z are expected to have, on average, the same intrinsic properties.

This scatter also introduces an intrinsic error on the luminosity distance estimate
to a source. For a flat mass function, we find a spread of 2.5 percent at z = 0.15 and
10 percent at redshift z = 5, which is consistent with results from previous works
(e.g. Holz and Linder, 2005; Kocsis et al., 2006; Sathyaprakash et al., 2010; Oguri, 2016).
However, this value should be compared to the present-day observational uncertainty
in D(z) of about 25 percent, dominated by the poorly constrained detector efficiency.

One can also find that in the presence of a steep mass function, the inferred D(z)
is substantially more biased compared to the inferred M. This is because D, and M.
scale differently with p (Eq. 6.9 and 6.11).

6.2.3 Comparison to observations

LIGO-Virgo is expected to reach its design sensitivity in a few years. The expected
statistical sample of mergers, made of hundreds or thousands of events, will allow a
complete reconstruction of the chirp mass distribution of the underlying populations. If
the intrinsic distribution is extremely peaked, the observed one might be contaminated
by highly lensed events with biased luminosity distances and chirp masses. However,
not only this scenario is in conflict with the expectation from current stellar evolution
models (see e.g. Belczynski et al., 2016, 2017), but we have shown here that this would
leave an easily recognizable signature in the LIGO rates due to (1) the wide range of
probed masses at low redshift (Martynov et al., 2016) and (2) the flatness and low values
of the lensing efficiency as a function of chirp mass (see Fig. 6.1).

As an example, the contribution to mergers with an observed M ~ 30 Mg and
z ~ 0.15 —1 (D ~ 700 — 1000 Mpc) from events with lower M is suppressed by
a factor ~ 10 — 10%. No matter how these lensed events are distributed in intrinsic
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chirp mass, the non-lensed events with similar properties should be both abundant and
isolated from the highly suppressed lensing tail. Note that these properties roughly
correspond to the 12 mergers detected during the first and second observing run of
LIGO-Virgo (Abbott et al., 2019). This implies that the absence of a larger number of
events at M < 10 Mg (to which the detector is sensitive) suggests that the observed
events are not lensed.

6.3 The astrophysical background

6.3.1 Formalism
Autocorrelation

In this section, we discuss the autocorrelation signal of the anisotropic GWB. This sig-
nal and the shot-noise contamination have been extensively studied in previous works
(Jenkins, Alexander C. and Sakellariadou, Mairi, 2019; Jenkins et al., 2019a; Cusin et al.,
2019). Here, we review the main modeling aspects and describe some particularities.

Our starting point is the definition of the dimensionless energy density of GWs per
unit solid angle from a given direction of the sky r. We model this signal as

Raw(r) = /dr r2K(r)n(F), (6.22)

where n(T) is the galaxy density field in comoving coordinates ¥, and K is the GW ker-
nel that encodes the average contribution of a galaxy to f2¢y as a function of comov-
ing distance r. In practice, this includes information about the star formation history
of the Universe and the properties of the emitting binary population. It is instructive
to rewrite Eq. (6.22) in terms of the galaxy overdensity 0 (r) = n(r)/n(r) — 1, with
n(r) being the average number density of galaxies, defined as n(r) = [ d%#n(r) /4.
With this notation we have

Qew(E) = / dr 12K (r)A(r) (55 (F) + 1) (6.23)

From this point, the angular power spectrum of the anisotropic GWB CZGW can be
calculated to be

kmax
CSW = 4n / d—:|mg|279(k) + BSW. (6.24)
k

min

Here §£2(k) is given by

52 (k) = / dr 2K () ()T, (k, 7)o (kr) (6.25)
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where T}, is the synchronous gauge transfer function relating the galaxy power spec-
trum to the primordial one P(k) = A, (k/k.)™ ", and j, is the spherical Bessel func-
tion of order ¢. Note that the galaxy bias is implicitly absorbed in T};,. Note also that
in Eq. (6.25) we neglect relativistic corrections, as they are generally found to be below
cosmic variance (Bertacca et al., 2019).

The term Ber in the power spectrum is the shot-noise bias term introduced by the
spatial and temporal shot-noise in the distribution of the individual events forming the
GWB. Following Jenkins, Alexander C. and Sakellariadou, Mairi (2019), we write the
shot-noise contribution in the kHz band as

BEW — / dr K2(r)A(r)r2 [1 + HT—T;;)] . (6.26)

Because of the low event rate in this frequency range, this noise contribution is in-
versely proportional to the average number of events per galaxy, written as the aver-
age redshifted event rate R(r)/(1 + z) multiplied by the observing time T. However,
because the duration of the inspiral phase in the mHz band is much larger than any
reasonable observing time, the contribution of the term 1/(R(r)Tp) is negligible in
this case.

The GWB discussed here is an integrated signal. Because of this, the low-redshift
objects might significantly contribute to the GWB. Indeed, the astrophysical models of
Cusin et al. (2019) suggest that the combination

I@(r) = IC(r)ﬁ(r)r2 (6.27)

is not decaying to negligible values close to redshifts z ~ 0. This introduces two com-
plications in the modelling.
The first is connected to the shot noise. To highlight this, we rewrite Eq. (6.26) as

w_ [, K20) [ 1+20)
B _/d oL {1+ R(r)To} (6.28)

This expression shows that the shot-noise has a divergent expression due to low-redshift
(low-7) contributions. This divergence can be suppressed if local events are excluded
from the background to obtain a well-behaved prediction for the autocorrelation signal.
This is equivalent to setting a lower limit in the integral above different from zero.

Second, there is a complication derived from the scale-dependent part of the angular
power spectrum (the first term in Eq. (6.24)), which is expected to receive non-negligible
contributions from small, highly non-linear scales. To get some intuition about this
feature, let us simplify our expression for the GWB angular power spectrum by using
the so-called Limber approximation

Je(z) — \/%5]3 (a—1x), (6.29)
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where Jp is the Dirac delta-function and o« = ¢ + 1/2. Using this in Eq. (6.25) and
neglecting the bias term we obtain

on? (hmes dk - s .
aw _ 21 dk oo (0N o (, @
T o WY (k)S (k’k) (6.30)
S(k,r) = Ty(k, r)P(k)'/2, (6.31)

What Eq. (6.30) demonstrates is that K(r) acts as a modified kernel and selects a
particular domain in the k-integral. This causes small scales to contribute significantly
to CEW, unless K is vanishing at the lower end of its argument or S?/k? is falling
fast enough at large values of k. As the modeling of the galaxy power spectrum at
non-linear scales is highly uncertain, this feature signals a potential danger of using
the autocorrelation signal as a probe of the GW merger history or cosmology.

Cross-correlation with galaxy clustering

This subsection introduces the main concepts necessary for modeling the cross-correlation
signal and discusses its advantages. First of all, we define the observed overdensity of
galaxies in the given direction f per unit sold angle as

Af) = / dr Wi(r)s,(E), (6.32)

where W;(r) is the probability density function of the galaxies’ comoving distances
(also referred to as the window function) and d,(r) is the galaxy overdensity defined
earlier. Using Eq. (6.32), the angular power spectrum of this field, CF*C, can be shown
to be

CSC = 47r/ d—:|Ag(k)|27>(k) + nl (6.33)
where Ay(k) is given by
Adk) = [ dr Wir T 0k i(r), (639

T;(k, r) is the transfer function for the galaxy overdensity in the selected redshift range
Wi (1), je(kr) is the spherical Bessel function of order £ and n; is the average number
of galaxies per steradian, also dependent on the specific redshift selection W;(r). This
final quantity appears in the second term in Eq. (6.33) and dictates the size of the shot-
noise component of the power spectrum. In total, the spectrum Cfc as a function
of scale ¢ is also sometimes referred to as the galaxy clustering (GC) angular power
spectrum.
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Using Eqgs. (6.25) and (6.34), one can derive the angular power spectrum of the cross-
correlation C;° of the GWB and the GC maps, given by Eq. (6.22) and (6.32). This is

CF = 4n / I 508 (k) Au(k)P (k) + By, (6.35)
where the shot-noise contribution By, derived in Appendix 6A, can be shown to be

B, = /dr Wi (r)KC(r). (6.36)

With these expressions in mind, we can now discuss how the cross-correlation signal
can address the modeling challenges presented in the previous section.

To address the first one, we notice that, while the 1/ r2 divergence is still present in
the integral in Eq. (6.36), this integral is generally well behaved if the window function
W;(r) decays fast enough at small redshifts. Notice that this is impossible to do in the
equivalent expression for the autocorrelation in Eq. (6.26).

With respect to the second issue related to the small-scale dependence of the signal,
we write the equivalent of Eq. (6.30) for the cross-correlation,

T [ EREES D e

Because GC surveys allow for redshift-selection of the sources, the GC window function
W (r) can be taken to be peaked at some non-zero redshift and quickly decaying for
larger or smaller values of . Eq. (6.37) proves that this behavior cuts off the contribution
from very large and very small scales.

6.3.2 Forecast
Model set-up

In this section, our primary goal is to explore the sensitivity of the cross-correlation
signal to various parameters and estimate its information content. To this end, we
model the signal using simple but representative assumptions about the GW and GC
maps. This allows us to derive an upper limit on the constraining power by assuming
the minimum theoretical uncertainty due to cosmic variance.

We base our model for K(') on the physically motivated one of Cusin et al. (2019),
by noting that their function .A(z) is the analogue of our K(r) in redshift space. In this
reference, in particular, it is shown that A(r) is a slowly-evolving function of redshift
and has a similar shape over a wide range of frequencies and assumptions about the
source population (see their figures 19 and 13). Thus, we model the kernel as

K(r) = s=—r5— {tanh [10(z,(r) — 2(r))] + 1}, (6.38)

Ko
2a(r)r
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where Ky is the amplitude of the kernel, z, is a cut-off redshift, and 7(r) =~ 10~1
Mpc~? is the average comoving galaxy number density estimated using Figure 4 of
Schaye et al. (2015). We do not implement a redshift dependence for this quantity
because its value is relevant only for the shot-noise component of the cross-correlation,
found to be negligible in the cases considered here. In our fiducial model, we assume
2z, = 1 as the astrophysical kernel C(r)7n(r)r? is expected to decay around that value
in redshift. Notice that, while Ky should be dimensionful, its units are irrelevant to
us because the cross-correlation signal is proportional to its value. For the rest of the
section, we call K¢ the fiducial value of this quantity.

In the next subsections, we study the cross-correlation between the GWB modeled
above and two galaxy catalogs centered at different redshifts. The two window func-
tions, W and W, are assumed to be Gaussian distributions centered at Z = {0.5,1.5}
and with widths of o, = {0.18,0.6}. These values are picked so that the two selections
overlap with the constant portions of k().

Moreover, we model the transfer functions in Egs. (6.34) and (6.25) by using a linear
bias approximation (valid for large scales):

Tz(k‘) = biTm(k‘, 7‘), (6.39)

and
Tg(k‘,T‘) = b(;me(k',T), (640)

where T, (k,r) is the transfer function for cold dark matter, and the bx are known
as bias parameters. When varying our model, we freeze the bias of both galaxy cat-
alogs since it can be extracted from their clustering autocorrelation signal alone. On
the contrary, we treat the GW bias bgw as a free parameter, and we assume it to be a
constant over redshift. While this is not necessarily true, in the absence of shot-noise,
only the combination bawkK (r) appears in the signal. This implies that a more complex
model can always capture any redshift dependence through the function K(r). Note,
however, that breaking the degeneracy between the linear bias of the GW population
and the amplitude of the astrophysical kernel /C(r) requires a full understanding of the
GWB kernel and all ingredients (Scelfo et al., 2018b).

We focus on the mHz frequency band for the rest of the analysis and assume that
low-redshift events (below r = 150 Mpc) can be filtered. As discussed in the previ-
ous sections, these assumptions are essential to obtain a well-behaved signal not over-
whelmed by noise. For reference, under these assumptions, we get the following rela-
tive noise values at / = 10:

BSW B
4 4 —4
~ —= ~ 107" (6.41)
GW X
le CZ

This value is derived using the inspiral time of a solar mass black hole binary starting
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from 1 mHz (Blanchet et al., 1995), an observing time of 1 year and a merger rate of
10~? per year.

The codes used in this section are made publicly available on https://github.com/
valerivardanyan/GW-GC-CrossCorr. To calculate the matter power-spectra we use the
ACDM limit of EFTCAMB (Hu et al., 2014; Raveri et al., 2014).

Constraining (r)

The main goal of this section is to understand the constraining power of the cross-
correlation signal by studying how precisely the astrophysical model can be inferred
from a noisy C; measurement.

In our analysis, we focus on the best-case scenario of cosmic-variance limited un-
certainties as derived in Appendix 6B and use a simple proxy for the overall signal-to-
noise ratio of the cross-correlation, defined as

S\ ks (@)’
(N) = ; VarCp (6.42)

Let us note that in our setup, the GC signal dominates over the GC shot noise, imply-
ing that Eq. (6.42) is indeed the theoretical limit for uncertainties. In the presence of
multiple, independent window functions, we simply sum the relative signal-to-noise
expressions in quadrature.

We compute the cross-correlation power spectra, given in Eq. (6.35), using the
model presented in Section 6.3.2, and attempt to recover the model parameters from
a noisy realization. To explore the inferred constraints as a function of angular reso-
lution and S/N levels, we do this in several multipole ranges of ¢ with £;,;;, = 2 and
varying lax-

The parameters of interest in our analysis are the amplitude of the GWB kernel
Ko and the turnover redshift z,. In addition to these, we also explore the bias bgw
and {2,,, to see if variations in T, (k, r) can affect the inferred (), and to explore the
possible degeneracies between the GWB model and cosmology. To include the effects
of varying (2, we have precomputed the dark matter transfer functions for a grid of
{21, values and have inferred the results for the intermediate values through nearest-
neighbor interpolation. We have employed a Gaussian likelihood function on Cy with
diagonal covariance matrix given through Eq. (6.77), and the prior ranges shown in
Table 6.1. Note that since we expect K¢ to be degenerate with bgw, we do not vary K
itself, but rather vary the combination bgw/Co.

The main results of the analysis are summarised in Fig. 6.3, where we show the
expected constraints on the parameters of interest as a function of the maximum mul-
tipole included in the analysis. We also offer the corresponding cosmic-variance-only
signal-to-noise ratios.


https://github.com/valerivardanyan/GW-GC-CrossCorr
https://github.com/valerivardanyan/GW-GC-CrossCorr
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Figure 6.3: Constraints on the GWB parameters (bgw/Co, z.) and cosmology ({2,,,) ob-
tained using the cross-correlation signal with two window functions as a function of
the maximum multipole included in the analysis. Cosmic-variance limited measure-
ments are assumed for all the constraints, so these should be understood as the best-
case scenario results. Larger values of the signal-to-noise ratio (S/N) correspond to
better angular resolution (see Eq. 6.42). We have explored the effect of {2,,, on these
constraints by either fixing its value (top panel), or setting a Planck-2018-like Gaus-
sian prior (bottom panel). Remarkably, the combination bgw/Co can be constrained
even with very limited angular sensitivity. The turnover location z, is practically un-
constrained for {y,, < 50, and (2, is prior dominated for these multipoles. In case
of liax 2 50 all the relevant parameters are tightly constrained, and for £y, ~ 100
the constraints are at the level of a few percent. Notably, the cosmology (mimicked by
varying {2, in our analysis) can match and surpass the CMB results only in case of high
angular resolution/signal-to-noise. For reference, ¢,,,, = 100 roughly corresponds to
2 degrees.
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Parameter Fiducial value Prior
baw Ko 1 [0.01,100]
baw 1 [0.1,10]

Zx 1 [0.5,1.5]
2n 0.32 G(0.32,0.013)

Table 6.1: Prior ranges of the sampled parameters. For (2,, we use a Planck-2018
inspired Gaussian prior.

Let us first have a look at the top panel of the figure, which corresponds to a fixed
2, value. As we see, bgw/Co is constrained and, notably, this is true even in the lim-
ited multipole range corresponding to ¢;,,x = 10. This is expected, as a clear signal
detection is associated with a measurement of its amplitude. On the other hand, less
encouraging are the results for the turnover redshift 2., which can be constrained only
for £max 2 50 or, equivalently, an S/N of ~ 33. In the bottom panel of the figure, we
now impose a Gaussian prior on {2,,,, with its variance being comparable to the Planck-
2018 constraint on (2,,. While the z, results are not affected, the uncertainties on the
amplitude are now slightly inflated due to a degeneracy between (2,,, and bgw KCo.

Let us now fully concentrate on the two limiting angular sensitivities in our anal-
ysis. The turn-over redshift z, is unconstrained for the low-resolution case, while it is
tightly constrained for the case of £,,,x = 100. The dark matter abundance (2,,, is prior
dominated for the low-resolution case, while it beats the prior in the high-resolution
scenario.

Before turning to the next section, we want to mention that the results presented in
this section depend on the precise details of the GC window functions and GWB detec-
tion, and more accurate results can only be obtained by performing a realistic forecast
with exact survey/detector specifications. While we leave a more detailed investigation
for future research, our results suggest that a cosmic-variance limited measurement of
the GWB anisotropies down to £ ~ 100 can tightly constrain the redshift evolution of
the GW kernel K.

6.4 Resolved events

6.4.1 Formalism
Gravitational wave propagation

In GR, the amplitude of GWs on top of Friedmann-Lemaitre-Robertson-Walker (FLRW)
background evolves according to

B! 4+ 2Hh!, — V?he =0, (6.43)
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where h, denotes the amplitude of either polarization (« € [X,+]), primes denote
derivatives with respect to the conformal time, and H is the conformal Hubble function.
In this equation, the prefactor of the Laplacian term controls the propagation speed,
which we have set to coincide with the speed of light in ¢ = 1 units.

The second term is the standard cosmic friction term and its impact, combined with
conservation of gravitons, causes the strain amplitude to decay as h,(2) oc Dy *(2),
with Dy, being the FLRW luminosity distance:

2 -
Dp(z)=(1+2) ; %, (6.44)
where the Hubble function H (z) is given in terms of the Hubble constant H, present-
day dark matter abundance (2,, and dark energy abundance {2pg(z) as

Throughout this section we assume a constant equation of state wp for dark energy,
such that its energy density is given by

Qpp(z) = (1 — Q) (1 + z)30+wo), (6.46)

The standard AC DM cosmology corresponds to wy = —1.

It is now established that modifications of GR can affect the propagation of GWs.
The important effect for us is the modified friction term with respect to the GR expec-
tation in Equation (6.43),

B!+ 12+ an(2)] Hh', — V2he = 0, (6.47)

where we have introduced an additional function aps modelling this change. Once
again, we imposed the GW speed to be unity as suggested by observations. The mod-
ified friction term introduces a new scaling h,,(2) « 1/Dp, aw(z), with Dy, gw(z) #
Dy,(2) for non-zero aps(z). The luminosity distance to GW events can be written as:

Drow v _ 1 [7 . au(®)
D1 o (2) =e p{ 2/0 dz ) } (6.48)

In this work, we assume that the luminosity distance for EM sources Dy, gy is unaf-
fected and is equal to the expression in Equation (6.44). The function oy corresponds
to the running of the effective Planck mass, i.e.,

_ dlog(Meg/Mp)?

an = , (6.49)

dloga

where Mp is the Planck mass and M, is its effective value at redshift z = 1/a—1. This
function encodes information about extensions of GR such as scalar-tensor theories
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that predict the existence of a gravitational scalar degree of freedom non-minimally
coupled to curvature (Horndeski, 1974; Bellini and Sawicki, 2014). This scalar degree
of freedom can also propagate as a scalar wave. Still, its effects are expected to be
suppressed on Earth, where local tests of gravity place tight constraints on deviations
from GR (see e.g. Bertotti et al., 2003). However, notice that this restoration of the GR
limit does not impact the effect discussed here, Eq. (6.48) is an integrated effect, and
the impact of the local region of observation is minimal. More broadly, it should be
noted that this modified friction term is also a natural prediction of quantum gravity
(Calcagni et al., 2019) and non-local modifications of gravity (Dirian et al., 2016).

From an effective field theory point of view, apr(2) is a free function of order unity.
However, in practical studies of modified gravity and dark energy, o)/ is often assumed
to take simple parametric forms. The main guiding principle is the assumption that its
effects should be negligible in the early universe, which prompts to choose a(2) to
be proportional either to the dark energy abundance or simply to some power of the
scale factor a.

Such parametrizations make it possible to find a closed form expression for the
ratio in Equation (6.48) and have inspired a widely used parametrization of the ratio as
a monotonic deviation which goes to 1 at present day (Belgacem et al., 2018)

Dy, gw - 1- 5

Z) ==p+ m (6.50)

D1, Em

In this expression, =y and n are two constant parameters typically ~ 1.

Angular power-spectra

We consider GW mergers with a distribution in redshift written as

no

naw(z) = 17 (6.51)

where ng corresponds to the comoving number density of observed events as a function
of redshift, and the term (1 4 z) takes into account the cosmological time dilation. In
our analysis for this section, we use a constant value of ng ~ 3 x 10~ hSMpcf3 (with
h denoting here the usual normalized Hubble constant), motivated by current LIGO
constraints (Abbott et al., 2020).

For a given selection of sources along the line of sight, the average number of pro-
jected sources can be written using the comoving distance x(z):

e3¢} 2
_ X°(2)
Ngw = dz S(z)n z). 6.52

The function S encodes the selection, and the scatter due to observational errors.
In this section, simple bins in a range [D1, min, DL max] are used and we assume a log-
normal distribution with fixed scatter oy, p for the individual sources (Oguri, 2016). In
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this case, S can be written as:

S(Z) =5 [xmin(z) - xmax(z)] ) (653)

with

In DL,min —In DL7GW(Z):|
\/EO-IHD ’

and similarly for z,,x. Including this effect makes S resemble a top-hat function with
damping tails dictated by oy, p.

The angular power spectrum of these sources can be written using the Limber ap-
proximation

Tin(2) = erfc [ (6.54)

Can(t) = [~ de W )P (% ) L 659)

where P(k, z) is the matter power-spectrum at redshift z and comoving scale k, baw
is the bias of the GW sources, and the window function can be written as

X?(Z)nG“NZ)S(z) (6.56)

Wewl(z) = H(z) ngw

For the purpose of illustration, we will make use of a few simple parametrization
for the GW bias. We will consider either a constant bias bgw with a value of order
unity or a more complex form:

baw(z) = bo <1 + %) , (6.57)

where D(z) represents the growth factor. The first model, with its low constant value,
mimics a PBH origin for the mergers (Bird et al., 2016; Raccanelli et al., 2016), while
the second mimics the stellar evolution case by tracking the galaxy linear bias (Oguri,
2016).

Similarly to the GW population, we again assume a constant comoving number
density of galaxies. Throughout our analysis we fix

Ngal(2) = 1073h3Mpec 3, (6.58)

and we write the autocorrelation signal of galaxies under the Limber approximation as

Co(£) = /O @z %Wgal(z)bgal(z)P (% z) . (6.59)
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In this expression the definition of W, is the same as Wgw used in the previous
section except for using nga1(2), a different selection function, and bga(2) is the linear
galaxy bias. In our analyses, we assume a known galaxy bias in the form of

1

bgal(z) =1+ D(Z) .

(6.60)

In general, this function is expected to be accurately measured from the galaxy auto-
correlation signal alone.

In this section, we employ a top-hat selection function for Wy,1, which assumes no
uncertainty in galaxy redshift estimates. This choice mimics a spectroscopic galaxy sur-
vey or a general redshift survey with negligible uncertainties. As an example, another
choice commonly found in the literature is a Gaussian distribution N (z, 04a1), where
0gal should be much larger than the expected redshift uncertainty for each galaxy.

By combining the distribution of GW sources and galaxies, one can construct a
cross-correlation map. In our formalism, we write the cross-correlation between a GW
bin ¢ and a galaxy bin j (fully specified by their respective window functions) as:

H ; 4 1/2
;%%Mﬁmmdﬂgmw)xme@w@ﬂdP<£§@§nz>.(am)
Note that this signal is different from the GWB cross-correlation of Eq. (6.35) from the
previous section.

We conclude this subsection by pointing out that the power spectra in Equations
(6.59), (6.55) and (6.61) do not include relativistic terms and do not capture the effects of
evolution and lensing bias (see e.g. Scelfo et al., 2018a, 2020, for a detailed treatment).
Specifically, while the lensing bias should be negligible compared to the luminosity
distance uncertainties at the redshifts considered here (see Section 6.2), the same is not
true for relativistic effects. Therefore, we choose not to consider small values of ¢ in the
analysis of this section since the signal at these large angular scales is largely dictated
by them.

@m:/dz
0

Constraining the propagation

The primary goal of the subsection is to demonstrate how to reconstruct the properties
of GW propagation and source clustering as a function of redshift. We show how to
recover an assumed fiducial model using mock angular power spectra with cosmic-
variance or shot-noise limited uncertainties.

Our methodology hinges on the fact that by cross-correlating a GW luminosity
distance bin with multiple galaxy redshift bins, we can determine the redshift of the
GW sources by matching the clustering properties of the two at the true redshift (Oguri,
2016; Bera et al., 2020).
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Figure 6.4: The cross-correlation signal between GW sources at z = [0.9,1.1]

(shaded area) and galaxies at different redshifts (2ga1). If the luminosity distance ra-
tio D, gw /D1 gm(2) in Equation (6.50) is different from its GR assumption (= # 1),
the location of the predicted cross-correlation peak is also affected.
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We demonstrate this idea in Figure 6.4, where we have considered GW sources
located at redshift [0.9,1.1] in a GR cosmology where Dy, aw(z) = DL gm(z). This
figure shows the expected cross-correlation signal between the angular distribution of
these sources and the angular distribution of galaxies located at various redshifts. As
expected, in GR (Zp = 1), the signal peaks inside the correct redshift range (shaded
area). However, as we depart from the GW luminosity distance relation, the location
of this peak is affected.

6.4.2 Forecast
Model set-up

In this section, we describe the recipe used to generate the mock angular power spec-
tra (Cgal, Caw, and Cx) that are fed into our reconstruction pipeline together with
their error covariance matrix. These angular power-spectra are extracted from the au-
tocorrelation and cross-correlation maps representing the sky distribution of galaxies
and GW sources when describing actual data. The recipe has three main ingredients:
the details of the fiducial model, a description of the instrumental configuration and a
definition of the dominant source of error.

The first ingredient is the fiducial model. Our decision in this case is based on the
results of Baker and Harrison (2021), where present-day constraints on the function
oy appearing in Equation (6.48) are presented. As shown in Belgacem et al. (2019), the
results of the aps o< a parametrization found in that work can be mapped to the =(z)
function in Equation (6.50). Using this transformation, we find that the 3o upper limit
roughly corresponds to

Ep S 14, (6.62)

with n = 1. Thus, we assume a fiducial model with Egd = 1.4 and nfid = 1, repre-

senting the limit of our present understanding.

The second ingredient of our forecast is the instrumental configurations. The size
of our data vector is given by the number of multipoles ¢ and window functions that
we include in our analysis. Since both are primarily dictated by observational consid-
erations, in this work, we assume an optimistic combination of a network of three Ein-
stein Telescopes (Maggiore et al., 2020b; Hall and Evans, 2019) capable of a log-scatter
in measured Dy, gw of o1, p = 0.05, and a high-z redshift survey with extensive sky
coverage and negligible redshift uncertainties (such as, e.g., the Square Kilometer Ar-
ray, Weltman et al., 2020).

The range of angular scales that we consider is limited by two factors. On small
scales, large multipoles (¢ > 100) are excluded due to the angular resolution of about
1 degree expected for our GW detector configuration of choice (Hall and Evans, 2019).
On large scales, we do not explore values of ¢/ < 10 because our modeling does not
consider the relativistic effects dominating the signal at these scales. Nevertheless, we
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Parameter Prior
Node amplitudes [0, 11] (Uniform)
Correlation length (L)  [1, 10] (Uniform)

Qm 1% (Gaussian)
h 1% (Gaussian)
wo 5% (Gaussian)

Table 6.2: Summary of the priors imposed before reconstructing bgvy /bgal (2) and
D1, aw/DL gwMm (2) using 4 nodes each. The GP hyper-parameters (i.e., the 2 correla-
tion lengths and the 4 x 2 amplitudes) are explored independently. The fiducial model
isgivenby =y = 1.4,n = 1,82, = 0.31,h = 0.67,wy = —1.

stress that these multipoles contribute relatively little information compared to larger
multipoles since they are dominated by cosmic variance.

Our window functions are distributed in the redshift range [0.1,3]. We assume
Nga1 = 12 galaxy bins equally spaced in redshift, and Ngw = 8 GW luminosity dis-
tance bins equally spaced in Dy, gw. We mention in particular that this choice is not
completely arbitrary. The number of GW bins is motivated by forcing well-defined bins
such that their width is at least three times the luminosity distance uncertainty oy, p
that we have assumed. Furthermore, we have also verified that the exact number of
galaxy bins does not dominate our results as long as Nga > Naow.

As for the last ingredient, we assume cosmic-variance or shot-noise limited uncer-
tainties. In this case, we can write the covariance matrix of the autocorrelation and
cross-correlation signals defined in Equations (6.55), (6.59) and (6.61) as the following:

Oper

Cov [CH ()C™ (¢)] = 20+ 1) fury

x (Cimean g mcim), (663)
where the indices i, j, m, n can represent both galaxy or gravitational wave bins. The

terms C""" contain the shot-noise contribution when they represent the autocorrela-
tions in the same bin:

Cm(0) = ¢ (0) + 5;_;”, (6.64)

where 7 is the average density of projected objects from Equation (6.52). In this work,
we assume a survey covering a sky fraction equal to f, = 0.5.

Gaussian Processes

Similarly to what was done in subsection 6.3.2, we try to recover our assumed param-
eters. The main difference, in this case, is that we focus on the posteriors of baw (z)
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and Dr, gw/D1, mm(2) according to a Gaussian Process (GP) reconstruction. Our pri-
ors in Table 6.2 are imposed both on physical parameters ({2,,,, wg, Hp) and also on the
GP parameters. We consider a certain number of redshift nodes for the two functions,
referred to as training nodes with a slight abuse of terminology. The amplitudes of the
nodes are free and, given a node configuration, we consider GPs which pass through
all of these nodes exactly. To render our scenario computationally feasible and not
consider many functions for each node configuration, we use the GPs regressor of the
python package sklearn to output the best fit and use this as our function.

Our use of GPs can be thought of as a binning of the functions of interest in redshift
space, and imposing a certain prior correlations between the bins. These correlations
are specified by the GP kernel function, which in our case is chosen to be

1/ |z — 2]\
k(zi, 25 L) ocexp{—§ (lZZL—Z]|> }7 (6.65)

where L is the so-called correlation length. This kernel is flexible enough for our pur-
poses, and we do not expect the detailed choice to have any significant impact on our
results. For computational purposes, we generate the GPs using a baseline around
D1, aw/Dr,gm (2) = 1. This baseline makes the GPs reconstruction to efficiently re-
turn to Dp, . aw/Dr.Em (2) = 1 when not pushed toward other values by the training
nodes. For the function Dy, gw /D1, Em (%) we also artificially impose the physical con-
straint Dr, gw /DL em(z = 0) = 1 (see Eq. 6.48).

For the setup described in this subsection, we find a total SNR of the GW-gal and
GW-GW angular power-spectra of ~ 37. This value is dominated by the GW-gal cross-
correlations since the GW-GW autocorrelations are not well measured (SNR< 6). To
generalize our choices, in section 6.4.2 we expand on how different combinations of
instrumental specifications can affect the precision of the reconstruction.

Results

The results of our Gaussian process reconstruction of the bias b(z) and luminosity dis-
tance ratio Dr, gw/D1, gm(2) is presented in Figure 6.5. In the same figure, we also
compare these constraints to different theoretical models. In the case of the luminosity
distance ratio, we use the parametrization

ot (2) = a {%} g (6.66)

where we use the Equation (6.45) with wy = —1 to obtain the plotted lines (Bel-
gacem et al.,, 2019). On the other hand, for bgw /bga1 (2) we plot the lines correspond-
ing to constant values of baw (z), while keeping the galaxy bias fixed to the expres-
sion in Equation (6.60). As expected, we observe how the fiducial models for both
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Figure 6.5: Confidence intervals (68%, in black, and 95%, in lighter grey) of the jointly
reconstructed functions D, gw /Dy gm (2) and baw /bgar (2). Together with the as-
sumed fiducial model, we also plot the expectation for different models (see text for
more details). The vertical lines mark the fixed location of the nodes used in the GP
reconstruction.
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D1, cw/Dr.em (2) and bgy /bgal (2) are well encoded within the reconstructed confi-
dence contours in both panels of Figure 6.5. The constraints at higher redshift (z ~ 3)
for both reconstructions are broader. This is an effect that could not be seen if a para-
metric function was used for Dy, gw /D1, gm (#), for instance, as the parametrization
would have fixed the behavior similarly at low and higher redshifts.

In principle, the output of our sampling can also be used to reconstruct the function
ap(z) by calculating the numerical derivative of D, gw/DL gm (2). For this paper,
however, we chose not to do this. The kernel in Equation (6.65) can be interpreted as
a smoothness prior, and the value of aps(2) is directly affected by it. Because of this,
if one is interested in inferring as(z), GPs should be used to sample this function
directly.

The constraining power of our method crucially depends on several observational
specifications. The most relevant parameters are (1) the angular sensitivity, specified
by the maximum multipole £y« of the angular power spectra; (2) the number of GW
sources, which is specified by the comoving number density ngv; and (3) the precision
of the GW luminosity distance measurements oy, p. In the case of ngw, we adjust the
value of ng in Equation (6.51) as a way to explore different values of the total number
of observed GW events, N = 47 fq,igw. This, in principle, should include selection
effects not captured by our formalism. Obviously, for a given experimental configura-
tion, the mentioned three variables are not independent, but it is still interesting to find
the dependence of our results on each one of them separately. This allows us to reach
conclusions without relying on specific experiments and to suggest potential design
guidelines for future GW detectors.

To attain such insights, in this subsection, we consider constraints on the paramet-
ric expression in Equation (6.50), as well as the parametric GW bias given by Equa-
tion (6.57). For simplicity, we fix n = 1 and only constrain the parameter =j.

When varying /na.x and N, we keep the rest of the configuration (including the
luminosity distance binning) fixed. Each case of o), p, on the other hand, is accom-
panied by an adjustment in the number of luminosity distance bins. This is done to
be consistent with our binning strategy, namely that the luminosity distance width of
each bin is at least O(3) times wider than o, p.

Our results are summarized in Figure 6.6, where we plot the anticipated uncertain-
ties in =y (upper panel) and by (lower panel) as a function of the SNR of the cross-
correlation in Equation (6.61).

For a fixed oy, p, the constraining power on = and by is almost entirely determined
by the cross-correlation SNR. This fact suggests that no matter how the given SNR is
realized (either by increasing the number of sources or by improving the angular sensi-
tivity), the expected constraints will be the same. This implies that the results presented
in this section can be easily scaled to different configurations. Unsurprisingly, we find
that the constraints scale as 1/SNR.

The situation is somewhat different for the case of varying o1, p (and the number of
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Figure 6.6: Scaling of the observed constraints with the cross-correlation SNR. Using
a parametrized model for bgw /bga1 (2) and Dy, gw /D1 gm (2) we explore the con-
straining power of our method as a function of the number of observed GW sources
N = [0.7,4,7,13,20] x 10%, angular resolution £y, = [20, 40,60, 80, 100] and lu-
minosity distance uncertainty o1, p = [0.5,0.3,0.2,0.075,0.05]. As visible from the
figure, the data SNR completely captures the effect on the observed uncertainties Abg
and A= in the first two cases. In the case of o1, p, we observe that the increase in con-
straining power for Dr, gw /D1, gm (2) is steeper due to the larger number of window
functions that we can build to sample Dy, gw (2).
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luminosity distance bins). The constraints on the bias still follow the same form (see the
lower panel), but the scaling of the = constraints, on the other hand, is much steeper
than in the cases of varying £i,ax and ngw, roughly 1/SNR?. This fact can be qual-
itatively understood by remembering the importance of the relative positions of GW
and galaxy window functions demonstrated in Figure 6.4. Sampling this relation with
a higher number of window functions increases the precision of our reconstruction.

The results presented in this section quantify the importance of accurate luminosity
distance measurements and demonstrate the benefit that smaller values of o}, p can
bring to a binned approach.

6.4.3 Comparison with previous works

Our formalism, based on binned angular power-spectra and sky maps, is optimal for
many sources with no known counterpart. Its main advantages are related to the sim-
ple modeling of the theoretical signals and their data covariance matrix. Because no
reconstruction of the underlying density field is necessary, the predictions display a
clear separation of scales. For example, the angular scales that we have considered hare
are all within the linear regime (k < 0.1 Mpc™1!). Furthermore, because this formalism
is well established, our shot-noise limited covariance matrix can be easily generalized
to include additional sources of (co-)variance.

Although a comprehensive comparison between multiple approaches is outside the
scope of this work, it is worth discussing how our results compare to others found in
the literature. However, we preface this by saying that one-to-one comparisons are
often complicated either by significantly different assumptions or the impossibility of
directly translating these assumptions from one prescription to another. Despite this,
here, we draw a parallel between our method and two other methods.

The first method is the one used in Mukherjee et al. (2020), which has also been
shown to be extremely successful in measuring both baw (z) and Dy, gw (2) using
parametric models. Similarly to this work, the information is also extracted from the
cross-correlation with redshift sources, but no binning of the GW data is performed.
In this case, we have verified that such methods perform significantly better than our
map-based approach in the case of a low number density of GW sources and large
uncertainty in the measured Dy, pm (2). These features, in particular, make it especially
useful for near-future samples of a few tens of objects.

The second promising method to measure Dy, gw (#) proposed in the literature is
offered by GW sources with known counterparts. Such observations give direct access
to Dr, gw as a function of redshift and can be combined with similar measurements in
the EM spectrum to obtain Dy, gw /Dy gMm (2). The analysis of Belgacem et al. (2020) is
based on this methodology and, similarly to ours, also employs GPs to reconstruct this
ratio from an Einstein Telescope sample with ~ 10? sources. Ultimately, we expect this
counterpart-based formalism and the one described in this work to be complementary:
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a direct measure of D, gw (2) can be used to break the degeneracy between the bias
and luminosity distance reconstruction. However, we do not attempt to combine the
two methods here because the fraction of events with known counterparts that will
be observed is heavily dependent on both the GW source distribution and multiple
instrumental setups.

6.5 Conclusions

In Section 6.2 we have explored the impact of gravitational lensing on the soon to be
measured merger rates of GW mergers. These results offer guidance when interpret-
ing magnification effects and are intentionally agnostic regarding detector or source
population. The main result is that the presence of a lensed population in an observed
sample is easily recognizable. This conclusion hinges only on the weak dependence of
the inferred binary properties on the factor ;2 and provides a general explanation for
the established result that lensing contamination for luminosity-limited GW events are
low for a wide range of detectors and source populations (e.g. Sereno et al., 2010; Ding
et al., 2015; Ng et al., 2018; Oguri, 2018).

In Section 6.3 we have quantified for the first time the need for high-resolution GW
detectors to extract the total information content of the GWB of astrophysical origin.
In particular, we have shown that both a high angular resolution and a high signal-to-
noise ratio (¢ ~ 100, S/N ~ 70) are required to recover both the matter abundance {2,
and features of the kernel IC(r) as a function of redshift. Note, in particular, that these
requirements exceed the angular resolution of present-day and near-future detectors
(roughly ¢ < 10, and even ¢ < 4 for LISA (Ungarelli and Vecchio, 2001; LIGO Scien-
tific collaboration and VIRGO collaboration, 2019)). While this is not the priority of
currently proposed third-generation detectors (Maggiore et al., 2020a), it is worth not-
ing that the advantages of high-resolution gravitational-wave astronomy are numerous
and not limited to the study of this anisotropic background (Baker et al., 2019). Further-
more, the case for studying the cross-correlation is strengthened by noticing that the
anisotropies of the GWB in the kHz band will most probably first be measured through
cross-correlation with galaxy surveys. The galaxy map provides a guiding pattern look
into the noisy GW data and therefore enhances the SNR.

Finally, the work presented in Section 6.4 shows that the combination of GW re-
solved events and the clustering of galaxies is expected to improve our current knowl-
edge of the physics of GW mergers and GW propagation. We have discussed how to
reconstruct these properties as a function of redshift in a generic way and highlighted
the need for accurate and precise measurements of Dy, gw. This will require control
over the instrument calibration uncertainties (Cahillane et al., 2017), but also the degen-
eracy between the inclination of the source and its luminosity distance (Ghosh et al.,
2016). In the future, we aim to apply our current analysis pipeline to the next generation
of large-scale structure surveys and incoming GW observations.
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Given the promising nature of our results, we believe that the cross-correlation
between GW and galaxy catalogs has the potential to be a robust observational probe
in the era of multimessenger cosmology.

Appendices

6A Shot-noise for the background cross-correlation
signal

We follow (Jenkins, Alexander C. and Sakellariadou, Mairi, 2019) and evaluate the shot-
noise contribution to the observed cross-correlation signal C; in terms of the shot-
noise contribution to the covariance between the observed maps 2() and A(¢'). Our
starting point is

Bo= [ P §)Con|0@), A Jsx. (667)

By keeping in mind that K(r) = r2K(r)7(r) and that §,(F) = (n(¥) — a(r)) /7
we use the definitions in Egs. (6.22), (6.32) to write:

Cov[2(F), A(F)sx = / dr / dr’% « Cov[K(r)n(®), Wi(rn(®)sx.  (6.68)

As a side note, we point out that this expression is a stretch of notation since, for-
mally, the quantities K(r)n(r) and W (r)n(r) represent the mean values of the vari-
ables that we are trying to correlate. To proceed, we notice that W (r)n(T) is propor-
tional to the number density of galaxies visible in the galaxy survey and that IC(r)n(r)
is proportional to the number density of GW events around an infinitesimal volume
centered in r. This is confirmed by the formalism used in the references mentioned
above, (Jenkins, Alexander C. and Sakellariadou, Mairi, 2019) and (Cusin et al., 2018),
to predict a realistic (7).

In a finite volume §V; we write down the number of GW mergers as

N;
A = Z e, (6.69)
k

where IV is the number of galaxies present in this volume and the \;-s are the number
of events for each galaxy. If we assume that N and )y are Poisson distributed, A;
follows a compound Poisson distribution with variance

Var[A;] = (A7) — (A:)? = (Ni) ((A) + (\)?) . (6.70)



166 Chapter 6. Learning how to surf: studies in gravitational-wave cosmology

If we call f the fraction of galaxies in the volume §V/; visible in the galaxy survey
we also derive:

Cov[fNj, Ai] = [(N)(A)dij, (6.71)

where J;; is the Kronecker delta. By going back to the continuous case, we obtain the
following result:

Cov[K(r)n(¥), Wi (r')n(t)]sy = n(r)Wi(r)K(r)83(F — ). (6.72)

Finally, by plugging everything into Eq. (6.67), we obtain the result shown in the
main text:

By = /dr Wi (r)K(r). (6.73)

6B Cosmic variance of the background
cross-correlation signal

Assume we have two maps on the sky, corresponding to the GWB and GC anisotropies.
The angular decomposition coefficients a5V and a$¢ are assumed to be Gaussian ran-
dom variables with zero mean, and each m-mode is drawn from the same distribution.
The relevant angular power spectra are defined as

C) =CovagW, ail], CEW =Varlag)], CF°=Var|aGl]. (6.74)

It is then trivial to construct an unbiased estimator of the cross-correlation power spec-
trum as

— 1

+£
GW GC
CZX = %—H Z Apryy Appyy - (675)

m=—{

The variance of this estimator can then be shown to be

1 +4 1 +£
VarCZX :(264_—1)2 Z Var [a?ngvafﬁ] = W Z CEWCZGC‘F
m=—~{ m=—/
Cov [(a%,xv)Q , (aﬁf)z} — Cov [a?,,,‘fv, agS]Q . (6.76)

In summary, we have

CoNCE + ()’

20+ 1 ’

VarC* = (6.77)
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where we have used the Gaussianity of ag,,’s. Making the a$¢ — a$W replacement

turns this expression into

2(CF™)°

VarCoW = 1

(6.78)

which, of course, recovers the usual cosmic variance result.
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Samenvatting

6.8 Moderne kosmologie

De fascinatie van de mensheid voor de kosmos is een alomtegenwoordig thema in
onze gemeenschappelijke geschiedenis. De eerste scheppingsmythen vertegenwoor-
digen de eenvoudigste kosmogonie, d.w.z. modellen over de oorsprong van het heelal,
en de meeste hebben de mensheid in een fundamenteel bevoorrechte rol, soms als het
natuurlijke eindpunt van de kosmische geschiedenis. De ontwikkeling van de kos-
mologie, d.w.z. de wetenschappelijke studie van de oorsprong en de evolutie van het
heelal, is daarentegen een proces geweest van voortdurende abstractie van onze per-
soonlijke ervaring en is een duidelijke verwerping gebleken van onze unieke positie.
Wat wij hebben ontworpen is een onverschillig Universum, waarin wij opzettelijk geen
bevoorrechte waarnemer zijn. Voor het grootste deel is deze onderneming een veroot-
moedigend en pijnlijk proces geweest. Toch is de moderne kosmologie ook een uiting
van onze overmoed. Het gaat ons er niet om uitspraken te doen over ons, hier en nu,
maar we streven ernaar alles te verklaren wat was en ooit zal zijn, om wetten af te leiden
die we echt universeel kunnen noemen. Een perfect voorbeeld hiervan is de Algemene
Relativiteitstheorie van Albert Einstein, die we vandaag de dag zien als de gravitatiewet
van het heelal. Zij kan vrijwel elk fenomeen in haar toepassingsgebied beschrijven en
kan een groot aantal waarnemingen nauwkeurig voorspellen: de aantrekkingskracht
van de zwaartekracht tussen atomen, de structuur van de dichtste objecten in het heelal
(zwarte gaten), en de evolutie van het heelal zelf.

Ondanks haar relatieve zwakte is de zwaartekracht de meest relevante kracht op
grote schalen, omdat zij niet kan worden afgeschermd en haar bereik formeel oneindig
is. Het is dan ook niet verwonderlijk dat het belangrijkste kader dat in de kosmologie
wordt gebruikt, gebaseerd is op de Algemene Relativiteit. Volgens de huidige leidende
opvatting is deze theorie het toneel van een touwtrekkerij tussen twee componenten:
donkere materie en donkere energie. Deze twee componenten hebben tegengestelde
effecten: de eerste vormt structuren die bijeen worden gehouden door gravitatiekrach-
ten, terwijl de andere de dingen uit elkaar trekt en de structuur vernietigt. Ondanks hun
essentiéle rol is er zeer weinig bekend over de donkere sector, afgezien van deze zeer
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basiseigenschappen en het feit dat beide componenten geen licht uitzenden. Vandaar
het bijvoeglijk naamwoord “donker”. De “normale” materie, die alles vormt wat we
zien en aanraken, is daarentegen een subdominante component die geen belangrijke
rol speelt in de vorming van de geschiedenis van het heelal.

6.9 De rand en donkere energie

De Melkweg is een spiraalvormig sterrenstelsel waarin het zonnestelsel en de aarde
zich bevinden. Door onze positie lijken de sterren waaruit het bestaat als een melkweg-
streep zichtbaar aan de nachtelijke hemel van afgelegen gebieden. Deze grote kosmi-
sche structuren zijn bij de meesten wel bekend, maar in werkelijkheid bevat het heelal
nog veel grotere objecten. In het bijzonder gaat de aandacht in dit proefschrift uit naar
donkere materie halo’s, dichte klonters donkere materie die 1.000 keer groter zijn dan
ons melkwegstelsel. Deze objecten zijn omgeven door een web-achtige verdeling die
gewoonlijk wordt aangeduid als de grootschalige structuur van het heelal. In de afge-
lopen decennia is het mogelijk geworden om het ontstaan van dit complexe netwerk
te bestuderen door middel van numerieke simulaties. Gesimuleerde heelallen worden
gemaakt en geanalyseerd om de effecten van de donkere sector op de structuurvor-
ming in te schatten. Dit begrip wordt echter bemoeilijkt door het feit dat structuren
van donkere materie in het echte heelal niet kunnen worden gefotografeerd, omdat zij
geen licht uitstralen. Gelukkig kunnen de sterrenstelsels die binnen de halo’s ontstaan
en evolueren, worden gebruikt om de structuren waarin zij leven te onderzoeken. Als
je van veraf naar de sterrenstelsels kijkt, zie je ze als heldere punten die ingebed zijn in
de stellage van donkere materie, die de grootschalige structuur van het heelal vormt.

Het vroege heelal bestond uit een homogene verdeling van materie, maar na ver-
loop van tijd leidden zwaartekrachten tot de vorming van dichte kluiten die dankzij
hun zwaartekracht nog meer materie aantrekken. Dit zijn de donkere materie halo’s
die centraal staan in dit proefschrift. Wanneer men hun gesimuleerde versie in detail
bekijkt, kan men een dichte binnenkern herkennen, omgeven door een buitengebied
dat bestaat uit materie die langzaam naar het binnengebied stroomt. Het overgangs-
gebied tussen deze twee zones is relatief klein en gaat gepaard met een abrupte ver-
andering van dichtheid: omdat het binnenste gebied in de loop van de kosmische tijd
is gegroeid, is het aanzienlijk dichter dan het buitenste gebied. Deze scherpe daling
in massadichtheid staat bekend als de splashback en vormt de titulaire rand van dit
proefschrift.

Laten we, om te begrijpen hoe donkere energie van invloed is op structuurvorming
en spatten, een eenvoudig model daarvoor beschouwen. De minimale verklaring voor
donkere energie is de zogenaamde kosmologische constante, een numerieke parameter
die voorkomt in de vergelijkingen van de Algemene Relativiteit en die resulteert in een
drukkracht die tegengesteld is aan de aantrekkingskracht van de zwaartekracht. Dit
vertraagt effectief de hierboven beschreven groei en belemmert de vorming van kos-
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mische structuren. Er wordt echter getwijfeld aan deze verklaring omdat, indien waar,
de numerieke waarde van deze constante aanzienlijk kleiner zou zijn dan die van an-
dere natuurconstanten. Om deze discrepantie aan te pakken, wordt donkere energie in
alternatieve modellen beschreven als een kwintessens: een vorm van energie die in de
loop van de tijd kan evolueren. Met name vanwege het exclusieve verband met gravita-
tieverschijnselen kunnen modellen van quintessentie ook worden geinterpreteerd als
een uitgebreide versie van de Algemene Relativiteit in plaats van een nieuwe generieke
component. Omdat zij evolueren, is de druk die door deze gewijzigde zwaartekracht-
modellen wordt uitgeoefend anders dan in het geval van de kosmologische constante
en kan hun invloed op de structuur van het heelal worden gebruikt om ze te bestuderen.

6.10 Dit proefschrift

De grenzen van de grootste structuren bieden een laboratorium om de relatie tussen
donkere materie halo’s en kosmologie te onderzoeken. Het kenmerk dat deze randen
definieert is een eenvoudige voorspelling, maar het potentieel ervan om de fysica van
de structuurvorming te bestuderen is pas onlangs erkend. In het bijzonder is dit gebied
de afgelopen vijftig jaar tot bloei gekomen dankzij recente grootschalige onderzoeken
van de hemel, waarmee miljoenen melkwegstelsels kunnen worden waargenomen, ver-
deeld over een aanzienlijk deel van het waarneembare heelal. Ondanks de toegenomen
belangstelling staat het vakgebied nog in de kinderschoenen, en er is meer kennis no-
dig voordat het ware potentieel kan worden gerealiseerd. Deze dissertatie presenteert
vier hoofdstukken die erop gericht zijn deze wetenschap tot een volwassen vakgebied
te maken en te laten zien hoe de dynamische aard van de grootschalige structuur van
het heelal kan worden gemodelleerd en gemeten.

Hoofdstuk 2 van dit proefschrift presenteert de eerste meting van de splashback rond
massieve halo’s. Deze meting maakt gebruik van gravitatielensing, een bijzonder gea-
vanceerde manier om de verdeling van donkere materie in het heelal waar te nemen. In
de Algemene Relativiteit wordt de zwaartekracht van zware objecten opgevat als een
vervorming van het weefsel van de ruimtetijd. Daarom worden lichtstralen die door
verre objecten worden uitgezonden, beinvloed door de kromming van structuren van
donkere materie langs de gezichtslijn. De vervorming van beelden die het gevolg is
van dit effect kan vervolgens worden gebruikt om de massaverdeling in het heelal te
meten.

Hoofdstuk 3 presenteert de eerste kwantitatieve voorspellingen van hoe de rand
van halo’s wordt beinvloed in de aanwezigheid van quintessence. Het hoofdstuk con-
centreert zich op een specifiek model, het symmetron, en maakt gebruik van een een-
voudig semi-analytisch model om greep te krijgen op de meest kritische parameters
van deze theorie. Het resultaat is een consistent beeld van deze eigenschap als functie
van deze parameters in de context van het bekende paradigma van structuurvorming.

Hoofdstuk 4 brengt twee nieuwe waarneembare grootheden naar voren. De eerste
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is de relatie tussen de vorm van de rand van een halo en zijn verbinding met het hem
omringende kosmische web. De tweede is het bestaan van een duidelijke relatie tussen
de grootte van een halo, gedefinieerd door zijn rand, en zijn massa. Het meten van deze
relatie is informatief omdat uitgebreide modellen van de zwaartekracht wel invloed
blijken te hebben op de eerste, maar niet op de tweede.

Hoofdstuk 5 is het hoogtepunt van de vorige twee. De belangrijkste resultaten zijn
de meting van de massa-grootte relatie in de gegevens verkregen door de Kilo-Degree
Survey, en de studie van de implicaties daarvan voor het symmetron model.

Hoofdstuk 6 is een samenvatting van drie aanvullende projecten die tijdens het
schrijven van dit proefschrift zijn uitgevoerd. Zij richten zich op de studie van de groot-
schalige structuur van het heelal door middel van een nieuwe probe, gravitatiegolven.
Door de grote kromming die met zwarte gaten samenhangt, veroorzaken de samen-
smeltingen van twee van zulke objecten rimpelingen in de ruimtetijd die vanuit de
hele kosmos kunnen worden waargenomen. Dit hoofdstuk onderzoekt deze nieuwe
klasse van signalen in alternatieve zwaartekrachttheorieén en in de aanwezigheid van
gravitatielensing,.
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Summary

6.11 Modern cosmology

Humanity’s fascination with the cosmos is a pervasive theme of our shared history.
The first creation myths represent the simplest cosmogonies, i.e., models concerning
the origin of the Universe, and most have humanity in a fundamentally privileged role,
sometimes as the natural endpoint of cosmic history. In contrast, the development of
cosmology, i.e., the scientific study of the origin and evolution of the Universe, has
been a process of continuous abstraction from our personal experience and has proved
to be a clear rejection of our unique position. What we have designed is an indifferent
Universe, in which we deliberately do not represent a privileged observer. Nonetheless,
modern cosmology is also a display of our hubris. We are not concerned with making
statements about us, here and now, but we aspire to explain everything that was and
will ever be, to derive laws which we can genuinely call Universal. A perfect exam-
ple of this is Albert Einstein’s theory of general relativity, which we see today as the
Universe’s law of gravitation. It is able to describe virtually every phenomenon in its
purview and can accurately predict a plethora of observations: the gravitational attrac-
tion between atoms, the structure of the densest objects in the Universe (black holes),
and the evolution of the Universe itself.

Despite its relative weakness, gravity is the most relevant force at large scales be-
cause it cannot be screened away and its range is formally infinite. Therefore, it is not
surprising that the leading framework used in cosmology is based on general relativity.
According to the current leading view, this theory represents the playground hosting
a tug of war between two ingredients: dark matter and dark energy. These two com-
ponents have opposite effects, the first forms structures held together by gravitational
forces, while the other pulls things apart and destroys structure. Despite their essential
role, very little is known about the dark sector apart from these very basic properties
and the fact that both components do not emit light. Hence the “dark” adjective. In
contrast, the “normal” matter, which forms everything we see and touch, is a subdom-
inant component that does not play an important role in shaping the history of the
Universe.
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6.12 The edge and dark energy

The Milky Way is a spiral galaxy hosting the Solar System and Earth. Because of our
position, the stars that comprise it appear as a streak spilled of milk visible in the night
skies of remote areas. These large cosmic structures are familiar to most, but in reality,
the Universe contains even larger objects. In particular, the main focus of this thesis
is dark matter halos, dense clumps of dark matter that are 1, 000 times larger than our
galaxy. These objects are surrounded by a web-like distribution commonly referred to
as the large-scale structure of the Universe. In the past few decades, it became possi-
ble to study the emergence of this complex network through numerical simulations.
Simulated universes are created and analyzed to estimate the effects of the dark sector
on structure formation. This understanding, however, is complicated by the fact that
dark matter structures cannot be photographed in the real Universe, since they do not
emit light. Fortunately, the galaxies that form and evolve inside the halos can be used
to probe the structures they live in. When looking at them from far away, galaxies
appear as bright points embedded in the dark matter scaffolding that is the large-scale
structure of the Universe.

The early Universe consisted of a homogeneous distribution of matter, but over time
gravitational forces led to the formation of dense clumps that attract even more matter
thanks to their gravitational pull. These are the dark matter halos at the center of this
thesis. When looking at their simulated version in detail, one can recognize a dense
inner core surrounded by an outer region made of material slowly flowing towards
the inner region. The transition area between these two zones is relatively small and
it is associated with an abrupt change of density: because the inner region has been
growing over cosmic time it is significantly denser than the outer region. This sharp
drop in mass density is known as the splashback feature and it represents the titular
edge of this thesis.

To understand how dark energy affects structure formation and splashback, let us
consider a simple model for it. The minimal explanation for dark energy is the so-called
cosmological constant, a numerical parameter appearing in the equations of general
relativity that results in a pressure force opposing the attractive pull of gravity. This
effectively slows down the growth described above and hinders the formation of cos-
mic structures. However, doubts are cast on this explanation because, if true, the nu-
merical value of this constant would be significantly smaller than other constants of
Nature. To address this discrepancy, alternative models of dark energy describe it as
a quintessence: a form of energy that can evolve over time. In particular, due to its
exclusive connection to gravitational phenomena, models of quintessence can also be
interpreted as an extended version of general relativity instead of a new generic com-
ponent. Because they evolve, the pressure exerted by these modified gravity models
is different from the cosmological constant case and their impact on the Universe’s
structure can be used to study them.
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6.13 'This thesis

The boundaries of the largest structures offer a laboratory to examine the relationship
between dark matter halos and cosmology. The feature that defines these edges is a
straightforward prediction, but its potential to study the physics of structure formation
has only been being recently recognized. In particular, this field thrived in the past
half-decade thanks to recent wide surveys of the sky, capable of observing millions of
galaxies distributed in a sizable portion of the observable Universe. Despite a surge in
interest, the field is still in its infancy, and additional knowledge is required before its
true potential can be realized. This thesis presents four chapters aimed at transforming
this science into a mature field and showcasing how the dynamical nature of the large-
scale structure of the Universe can be modeled and measured.

Chapter 2 of this thesis presents the first measurement of the splashback feature
around massive halos. This measurement makes use of gravitational lensing, a par-
ticularly sophisticated way to observe the distribution of dark matter in the Universe.
In general relativity, the gravitational pull of massive objects is understood as a de-
formation of the fabric of space-time. Therefore light rays emitted by distant objects
are affected by the curvature of dark matter structures along the line of sight. The de-
formation of images resulting from this effect can then be used to measure the mass
distributions in the Universe.

Chapter 3 presents the first quantitative predictions of how the edge of halos is af-
fected in the presence of quintessence. The chapter focuses on a specific model, the
symmetron, and makes use of a straightforward semi-analytical model to get a han-
dle on the most critical parameters of this theory. The result is a consistent view of
this feature as a function of these parameters in the context of the known paradigm of
structure formation.

Chapter 4 brings forward two new observable quantities. The first one is the relation-
ship between the shape of a halo’s edge and its connection to the cosmic web surround-
ing it. The second one is the existence of a clear relationship between the size of a halo,
defined by its boundary, and its mass. Measuring this relation is informative because
extended models of gravity are found to affect the first but not the second.

Chapter 5 is the culmination of the previous two. Its main results are the measurement
of the mass-size relation in the data obtained by the Kilo-Degree Survey, and the study
of its implication for the symmetron model.

Chapter 6 is a summary of three additional projects that were performed during the
writing of this thesis. Their focus is the study of the large-scale structure of the Uni-
verse through a new probe, gravitational waves. Due to the large curvature associated
with black holes, the mergers of two such objects create space-time ripples that can
be observed from across the cosmos. This chapter explores this new class of signals in
alternative theories of gravity and in the presence of gravitational lensing.
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