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General discussion

GENERAL DISCUSSION

Due to the infiltrative nature of the disease, the median expected survival in patients 
with a malignant brain tumor remains dismal despite improved surgical and adjuvant 
treatment strategies.1 The thin line between treatment effectiveness and patient 
harm underlines the importance of tailoring clinical management to the needs of the 
individual patient and suggests a strong potential for the emerging field of predictive 
analytics.

Classical statistics
Throughout the medico-scientific history, numerous analytical techniques have been 
developed to derive knowledge from experiments and observations to improve day-to-
day patient care. Classical statistical methods evaluate the strength of an association 
between patient characteristics and outcomes within a sample population, with the 
aim of generalizing these conclusions to the larger population.

Although these statistical techniques have become indispensable for studying 
treatment efficacy and identifying risk factors, their coefficients remain group-level 
estimates derived from the total study cohort and do not necessarily apply to the same 
extent in each individual patient. A clinical trial could demonstrate the efficacy of a 
novel neurosurgical procedure, as well as the rate of complications observed at the 
cohort-level. In day-to-day clinical care, however, the question remains to what extent 
the individual patient would benefit from this treatment and how likely he or she is to 
experience the dreaded adverse events.

The advent of predictive analytics provides clinicians with the analytical support for 
personalizing treatment decisions. Regression analysis can compute patient-level 
predictions of the outcome by adding the population intercept and the slope coefficients 
pertinent to the individual patient. To develop this model, however, human experts still 
need to determine which variables to include, identify relevant effect modifiers, and 
perform data transformations to meet the underlying assumptions. This requires pre-
existing human understanding to hypothesize these statistical patterns and substantial 
effort to define the model properties accordingly. The high level of human interference 
is feasible for structured data sets with a limited number of clinically interpretable 
variables and even provides valuable insights into the underlying relationships among 
variables and outcomes. But how should a human test which variables to select, 
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interactions to include, or transformation to perform if the variables are composed of 
individual words in a text document, pixels in a picture, genes on a chromosome, or 
voxels in an MRI scan, let alone specify all these model properties by hand?

Machine learning
This is where machine learning comes into play. In contrast to classical statistics, modern 
machine learning prioritizes prediction over inference, even if it is achieved at the cost 
of its interpretability.2 Compared to regression analysis, the modeling process (e.g., the 
inclusion of nonlinear associations and interaction terms) occurs rather automatically 
in many machine learning algorithms. Furthermore, they are less concerned with 
providing interpretable coefficients but rather oriented towards computing accurate 
predictions. Because they require less human guidance, these algorithms can model 
complex patterns automatically, even those that are potentially undetectable or 
meaningless for humans. Similar to regression analysis, however, classical machine 
learning algorithms, such as fully connected artificial neural networks, random forest, 
and support vector machines, are limited to the analysis of structured data (i.e., data 
in tabular, two-dimensional format in which observations are represented by rows and 
variables by columns). As a result, a neuroradiologist still has to measure the size of 
a brain tumor manually and insert this value into a data collection sheet to allow for 
the construction of classic machine learning models. This poses a significant burden 
on the clinician or researcher and introduces human subjectivity with regard to the 
generation and selection of input features. Furthermore, it ignores the potentially 
relevant hierarchical relationship between individual data points. Voxels close to each 
other in the scan might have a different, yet relevant relationship compared to voxels 
far away from each other. This spatial, temporal hierarchy would be missed if the data 
is shoehorned into a tabular format.

Deep learning has emerged as a family of techniques that were designed to develop 
models directly from the raw, unstructured data itself.3 It allows the computer to 
ingest and analyze high-dimensional data formats (e.g., free text, pictures, MRI scan) 
and identify meaningful representations within the data. Considering the same neuro-
imaging example, nodes in the lower layers of a computer vision model might be 
susceptible for detecting simple straight lines in the brain MRI, subsequent hidden 
layers can learn how to detect shapes by recognizing combinations of lines, and the 
top layers utilize this condensed knowledge to produce clinically meaningful estimates, 
such as diagnostic classifications, volumetric segmentations, or outcome predictions. 
This process of condensing high-dimensional data to meaningful features within the 
model is called feature extraction and allows the raw data to speak for itself.
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Instead of engaging into the futile efforts of defining when an algorithm becomes 
machine or deep learning, they can be considered as an extension of traditional 
statistical approaches. Machine learning algorithms exist along a continuum, 
determined by how much is specified by humans and how much is learned by the 
machine, referred to as the machine learning spectrum.4 The current thesis describes 
several studies along the continuum of the machine learning spectrum as it applies to 
neurosurgical oncology (Figure 1).
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FIGURE 1. The machine learning spectrum as it applies to the current thesis. Numbers 2 to 8 correspond to the 
chapters in the current thesis.

Part I: Outcomes and risk factors in neurosurgical oncology
In Chapters 2 and 3, the inferential utility of regression-based algorithms was used 
to identify risk factors associated with 30-day outcomes in patients operated for 
a malignant brain tumor.  Among patients undergoing craniotomy for a primary 
malignant brain tumor, 12.9% experienced a major complication within 30 days after 
surgery, in particular elderly patients and patients with worse functional status or more 
comorbidity. The increased risk of adverse events should be considered and balanced 
against the expected survival benefit in this particular patient population. Reoperation 
and venous thromboembolism were identified as the two most common postoperative 
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major complications, and intracranial hemorrhage as the most common reason for 
reoperation. These results indicate blood coagulation as a primary challenge in the 
perioperative management of glioblastoma patient with a careful balance, often 
deviating in both directions.

In a subsequent in-depth analysis (Chapter 3), intracranial hemorrhages occurred 
predominantly within the first days of surgery, whereas the risk of thrombogenic 
complications, and pulmonary embolisms in particular, extended beyond the period of 
hospitalization. The hemorrhagic and thrombogenic risk patterns, which diverge over 
time, suggest caution with regards to starting anticoagulation shortly after surgery, 
as well as a potential role for continuing it beyond the period of hospitalization. In 
a retrospective cohort study investigating this prophylactic strategy (Chapter 4), 
the rate of venous thromboembolism remained nevertheless similar in patients 
receiving short (i.e., up to discharge) versus prolonged (i.e., 21 days after surgery) 
thromboprophylaxis. A higher rate of intracranial hemorrhages was even observed 
in the latter group. Based on these findings, we do not recommend the routine use 
of prolonged thromboprophylaxis in patients undergoing craniotomy for high-grade 
glioma.

Part I characterized risk factors of postoperative complications, as well as the safety 
and efficacy of thromboprophylaxis, in patients undergoing craniotomy for a primary 
malignant brain tumor. However, the interpretable coefficients to quantify these effects 
remain group-level estimates and do not necessarily apply to each individual patient to 
the same extent. After all, the risk of venous thromboembolism in the individual patient 
can be very different from the cohort’s average. Although routine use of prolonged 
thromboprophylaxis did not significantly reduce the rate of venous thromboembolism 
at the group-level, this does not preclude selected individual patients to benefit from 
this strategy. Predictive analytics could help in personalizing clinical decision-making to 
the characteristics and needs of the individual patient.

Part II: Predictive analytics in neurosurgical oncology
In Chapter 5, we developed a model to predict survival in the individual glioblastoma 
patient. We trained several statistical and machine learning algorithms based on 
structured demographic, socio-economic, clinical, and radiographic information. 
The accelerated failure time model demonstrated superior performance in terms of 
discrimination, calibration, interpretability, predictive applicability, and computational 
efficiency compared to Cox proportional hazards regression and other machine 
learning algorithms.
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Surgery, and neurosurgery in particular, is characterized by balancing outcome 
probabilities. In the decision-making process, the surgeon has to weigh the chances of 
a favorable outcome against the risks of surgery, keeping in mind the natural course 
of the disease. Large cohort studies allowed us to estimate the expected outcomes 
in the total population and even differentiate between various risk strata. These 
strata, however, comprise clusters within the total population, ranked on a single 
or few cardinal features. As such, the physician still relies on group-level statistics 
complemented with their own clinical experience. The lack of personalized outcome 
and risk assessment can result in informed consent procedures that are ambiguous 
and biased towards the mean (e.g., “Trials have shown a median increase in survival 
of …”, “Generally, X out of 100 will develop …”). Predictive models in contrast intend 
to quantify the estimated outcomes in the individual patient. As such, a personalized 
overview of the estimated outcomes can be provided when communicating different 
surgical strategies with patients and their families. This not only improves the patient 
selection and surgical decision-making but also enhances the patient’s autonomy 
throughout the decision-making process.

To facilitate its transparency, reproducibility, and utility, we deployed the model 
developed in Chapter 5 as an online calculator for survival through a free, publicly 
available software. This prediction tool provides an online and interactive interface 
for survival modeling with the potential to inform clinical and personal decision-
making in the individual glioblastoma patients. External and prospective validation 
on heterogenous cohorts from multiple institutions remains necessary, however, 
to confirm its prognostic value at point-of-care prior to clinical implementation. 
Furthermore, the online calculator, as well as clinical prediction tools in general, should 
be considered as dynamic rather than static products developed on the best available 
evidence available at that point. Continuous model evaluation and optimization remains 
therefore mandatory to improve its accuracy and precision based on supplementary 
patient data and novel insights. Currently, we are working on the first model update 
utilizing the recently published SEER data of glioblastoma patients diagnosed in 2016 as 
well. This update has improved model performance according to the Harrell’s C-index 
from 0.70 (95%CI 0.70 – 0.70) to 0.73 (95%CI 0.73 – 0.73). In the future, we aim to re-
iterate the analysis and further optimize model performance. Collection of information 
on functional status and molecular markers in the SEER registry could be a valuable 
first step towards optimizing the model again in the near future.

149380-senders-layout.indd   173149380-senders-layout.indd   173 05/11/2021   13:5305/11/2021   13:53



174

Chapter 10

Part III: Natural language processing in neurosurgical 
oncology
Part III encompasses the application of machine learning to a higher dimensional 
problem. Various natural language processing approaches were developed to automate 
the processing and analysis of narratively written clinical reports. In Chapter 6, we 
have developed a pipeline for automated clinical chart review by analyzing a corpus 
of free-text radiology reports of brain tumor patients. In this study, we utilized a bag-
of-words approach with a classical statistical algorithm known for its strong method 
of regularization, LASSO regression. The developed pipeline was able to extract 15 
distinct radiographic features with high to excellent discriminatory performance (AUC 
0.82-0.98). Model performance was correlated with the interrater agreement, which 
underlines the importance of expert consensus in generating ground truth training 
labels. However, expert consensus can also be used as a potential indicator for the 
complexity of the natural language processing task at hand.

In Chapter 7, we compared various statistical (logistic regression, LASSO regression), 
classical machine learning (fully connected artificial neural networks), and deep 
learning (convolutional neural networks, gated recurrent unit, and long short-term 
memory) techniques in their ability to classify radiology reports of brain metastases 
patients into reports that describe solitary versus multiple metastases. Both the LASSO 
regression and convolutional neural networks model demonstrated to outperform 
other competing statistical and machine learning models. Although these algorithms 
are on the opposite ends of the machine learning spectrum, their performance were 
highly comparable. The LASSO regression model focused merely on the relative 
frequency of words or word combinations but ignored the order or semantic properties 
of individual words. In contrast, the deep learning model (i.e., convolutional neural 
networks) were able to accommodate to higher-level lexical complexity. This sequence-
based approach also modeled the order of the words and paragraphs, as well as the 
semantic relationships among words and thus the statistical properties of a language.

Despite the advantages of modeling these sequential and semantic attributes, the 
deep learning model in this project did not outperform the less complex LASSO 
regression model. Perhaps due to its simplicity, LASSO regression demonstrated the 
most robust performance across different metrics. This implies that the underlying 
signal for this particular text classification task was found in primitive (i.e., relative 
word frequencies) rather than complex patterns within the data (i.e., sequential and 
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semantic relationships). By scrutinizing the full complexity of the data, however, deep 
learning algorithms were computationally inefficient and perhaps prone to overfitting 
to statistical noise.

In Chapter 8, we compared the learning curves of various algorithms in determining 
the histopathological diagnosis of brain tumor patients based on free-text pathology 
reports. In this study, we developed a modified version of the generic convolution 
network model equipped with stronger methods of regularization. The resultant model 
was able to model the semantic complexity of text documents without overfitting to 
statistical noise. The number of required training samples to reach the predetermined 
performance thresholds (an AUC of 0.95 and 0.98) was two to eight times lower for 
the modified deep learning model, ClinicalTextMiner, compared to regression and 
conventional deep learning-based architectures. The steep learning curve can be 
valuable for natural language processing tasks with a limited set of training examples 
available (e.g., rare diseases and events or institutions with lower patient volumes).

Utilizing natural language processing in healthcare could have profound implications 
for clinical research and even patient care. Currently, clinical research endeavors 
are restricted significantly by the need for financial and human resources to gather, 
process, and analyze clinically generated data. Observational studies are therefore 
limited to data sets that can be collected by hand, often a mere fraction of the entire 
population. Yet, their results are generalized to the entire population. The automatic 
nature could accelerate retrospective chart review to an unprecedented scale, such 
as the entire population, and allow for the assembly of large, continuously updated 
clinical registries. The deterministic nature can make data collection less subject to 
inter- and intra-reviewer inconsistencies but rather based on a consensus label from 
clinical experts.

The impact of natural language processing in clinical care could even be more profound. 
Although the bulk of biomedical information is increasing in volume and complexity, 
the human physician brain that has to comprehend this information is and will remain 
the same. Information overload, therefore, constitutes a significant problem in the 
digital age of healthcare and plays a key role in diagnostic errors, near misses and 
patients’ safety, as well as the stress and work satisfaction perceived among healthcare 
workers.5,6 Natural language processing algorithms might assist exposing relevant 
information in a patient’s chart without multiple clicks or relieve the administrative 
burden on clinicians. The process of viewing and entering the clinically most useful 
data frictionless is essential for clinicians, not just for their convenience, but to spend 
more time with their patients and provide the best possible care.7

149380-senders-layout.indd   175149380-senders-layout.indd   175 05/11/2021   13:5305/11/2021   13:53



176

Chapter 10

Lastly, by extracting and analyzing patient characteristics and outcomes automatically, 
natural language processing could facilitate a health care system that continuously 
learns from clinically derived data, thereby narrowing the gap between research and 
patient care. This resultant collective learning curve can be used to inform and optimize 
clinical decision-making in the individual patient at point of care.

The machine learning spectrum in neurosurgical oncology
It is the increasing availability of high-dimensional clinical information and computational 
power that has propelled the use and popularity of algorithms on the high end of the 
machine learning spectrum (i.e., deep learning). However, these ‘black box’ algorithms 
do not constitute the computational panacea to all medico-scientific problems due to 
the lack of interpretability and need for enormous amounts of data to grasp the full 
complexity of the data without overfitting.3 This thesis confirms that placement on the 
high end of the spectrum does not necessarily imply superiority over other algorithms.

Regression analysis, as demonstrated in Part I, and other methods for statistical 
inference will remain pivotal for clarifying clinically relevant associations at the group-
level. It performs well and consistent, even on relatively small data sets. Predictive 
analytics has the potential to personalize these estimates after collection of sufficient 
amounts of training data. Even in the predictive realm, however, machine learning 
does not necessarily outperform classical statistical algorithms, as shown in a recent 
systematic review as well.7 In Part II, for example, we deployed an algorithm on the 
low end of the machine learning spectrum (i.e., the accelerated failure time) because 
of its superior predictive performance and interpretability. In Part III, however, we 
gravitated towards the high end of the machine learning spectrum (i.e., deep learning). 
In these natural language processing studies, the input consisted of unstructured high-
dimensional data, namely free-text clinical reports. Manual specification of the almost 
infinite number of associations, interactions terms, and data transformations would be 
virtually impossible and meaningless for humans. Algorithms on the high-end of the 
machine learning spectrum, on the other hand, allowed for automated analysis of the 
hierarchical and semantic relationships among words, without the need for manual 
specification.

Future research
Instead of focusing merely on novel and complex algorithms on the high end of the 
machine learning spectrum, future research should focus on tailoring the modeling 
approach to the computational and clinical problem at hand. After all, different 
problems require different levels of human involvement.
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Despite the rapid development of high-performing clinical prediction models, few are 
actually implemented in the clinical realm. This underlines the importance of shifting 
our focus from the technical development to the clinical implementation and the 
ethical challenges that come along with it. At this stage, clinical implementation is not 
solely dependent on whether we can improve the performance of a given model from 
99.0% to 99.5%. It is rather dependent on whether we as a medical society decide to 
rely our clinical decision-making on the model, while accepting that it is wrong 1% 
of the time. Future research should therefore focus on developing implementation 
criteria for high-performing prediction models, considering both the accuracy and 
clinical consequences of their predictions. Rather than focusing merely on measures 
of prediction performance, we therefore advocate a multimodal assessment including 
measures of interpretability as well when developing clinical prediction tools. In 
addition to implementation criteria, we also advocate the development of mechanisms 
for continuous performance evaluation and even exit criteria for models that have 
been clinically implemented. After all, their performance is not a static fact but highly 
subject to changes in the clinical environment. For example, a sudden, yet undetected 
change in patient population or data acquisition methods could instantly reduce model 
performance, and a delay in detecting the deviating performance trends can result in 
detrimental patient outcomes.

Additionally, we underline the importance of adopting the concept of open source 
coding in clinical research. Open source coding enhances the reproducibility and 
transparency of machine learning models developed in medical research. As such, 
it facilitates the implementation and acceptance in clinical care as well.8 To allow for 
external validation, we have deployed the model developed in Chapter 5 as a publicly 
accessible, online survival prediction tool for glioblastoma patients. In Chapters 6, 7, 
and 8, we did not deploy the resultant natural language processing models because 
these models were trained on a text corpus of a single institution, which may be 
characterized by unique styles and language in their clinical reports. As such, they may 
not generalize well to text corpora from external institutions or documents written in 
other languages. Instead, we released the underlying source code which allows for 
the development, validation, and optimization of similar models in other languages, 
institutions, patient populations, clinical reports, and outcomes.

In addition to enhancing the transparency of prediction models, improving the 
computational knowledge among clinicians can reduce a dependency on ‘black-box’ 
algorithms and shift the doctor-versus-machine paradigm to a doctor-and-machine 
paradigm. Although optimization of the internal parameters occurs automatically, 
model fitting only constitutes a single step within the process of model development 
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that largely occurs outside the ‘black-box’.  For example, the way patients are selected, 
input features preprocessed, complexities in the data accounted for, outcomes 
defined, hyperparameters optimized, and model performance evaluated are all 
specified manually based on clinical expertise and substantially determine the internal 
and external structure of the final model.

Lastly, machine learning provides powerful methods for mapping numeric input 
to numeric output. However, not everything is reducible to numbers, especially not 
in healthcare. Primitive clinical characteristics, pictures, text, and images can all be 
expressed as 0’s or 1’s and thus easily be incorporated into a model, whereas human 
values pertinent to the patient remain irreducible to numbers. The model developed in 
Chapter 5 predicts personalized estimates of expected survival with high accuracy and 
precision; however, it cannot grasp the personal and clinical implications associated 
with these predictions. As such, clinical decision-making can still be very different in 
two patients, even if the predicted outcomes are exactly the same. Clinicians should 
therefore be trained in considering the appropriate machine learning tools on case-by-
case basis and interpreting the clinical implications associated with their predictions.

CONCLUSION

The thin line between treatment effectiveness and patient harms underpins the 
importance of tailoring clinical management to the individual brain tumor patient. 
Machine learning algorithms have the potential to unlock unique insights from large, 
complex data sources and effectively personalize clinical decision-making to the needs 
of the individual brain tumor patient. However, the automated nature comes at the 
cost of its interpretability, which can limit their clinical implementation and acceptance. 
Machine learning algorithms should be considered as an extension to statistical 
approaches and exist along a continuum determined by how much is specified by 
humans and how much is learnt by the machine. The choice of algorithm should be 
guided by the nature and complexity of the input data, as well as the desired level 
of human guidance and model interpretability. Although machine learning algorithms 
can produce highly accurate predictions based on high-dimensional data, clinicians 
and researchers should interpret the clinical implications of these predictions on case-
by-case basis.
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