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Abstract

Introduction
Although survival statistics in patients with glioblastoma are well-defined at the group 
level, predicting individual-patient survival remains challenging due to significant 
variation within strata. The aim of this study was to compare statistical and machine 
learning algorithms in their ability to predict survival in glioblastoma patients and 
deploy the best performing model as an online survival calculator.

Methods
Patients undergoing an operation for a histopathologically confirmed glioblastoma 
were extracted from the Surveillance Epidemiology and End Results (SEER) database 
(2005-2015) and split into a training and hold-out test set in an 80/20 ratio. Fifteen 
statistical and machine learning algorithms were trained based on 13 demographic, 
socio-economic, clinical, and radiographic features to predict overall survival, one-year 
survival status, and compute personalized survival curves.

Results
In total, 20,821 patients met our inclusion criteria. The accelerated failure time 
model demonstrated superior performance in terms of discrimination (concordance-
index=0.70), calibration, interpretability, predictive applicability, and computational 
efficiency compared to Cox proportional hazards regression and other machine 
learning algorithms. This model was deployed through a free, publicly available 
software interface (https://cnoc-bwh.shinyapps.io/gbmsurvivalpredictor/).

Conclusion
The development and deployment of survival prediction tools require a multimodal 
assessment rather than a single metric comparison. This study provides a framework 
for the development of prediction tools in cancer patients, as well as an online 
survival calculator for patients with glioblastoma. Future efforts should improve 
the interpretability, predictive applicability, and computational efficiency of existing 
machine learning algorithms, increase the granularity of population-based registries, 
and externally validate the proposed prediction tool.
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Introduction

Glioblastoma is the most common primary malignant brain tumor with almost 12,000 
new cases per year in the United States and a median survival of only a year after 
diagnosis.1 Adequate survival prognostication is essential for informing clinical and 
personal decision-making. Although survival statistics are well-defined at the group-
level, predicting individual patient survival remains challenging due to the heterogenous 
nature of the disease and significant variation in survival within strata.

In recent years, numerous statistical and machine learning algorithms have emerged 
that can learn from examples to make patient-level predictions of survival. These 
algorithms can be particularly useful for tailoring clinical care to the needs of the 
individual glioblastoma patient.

This study aims to compare the most commonly used statistical and machine learning 
algorithms in their ability to predict individual-patient survival in glioblastoma 
patients. In order to promote the reproducibility of the current study and facilitate 
external validation and implementation of the developed models, we deployed the 
best performing model as an online calculator that provides interactive, online, and 
graphical representations of personalized survival estimates.

Methods

Data and study population
The Transparent Reporting of a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) Statement was used for the reporting of this study.2 Data was 
extracted from the Surveillance Epidemiology and End Results (SEER) database (2005-
2015).3 The SEER registry compiles cancer incidence and survival data of 18 registries 
and covers 28% of the U.S. population from academic and nonacademic hospitals, and 
as such, is broadly representative of the U.S. population as a whole.4 Patients who 
underwent surgery for a histopathologically confirmed diagnosis of a glioblastoma 
(International Classification of Diseases for Oncology-Third Edition [ICD-O-3] codes 
9440, 9441, 9442) were included in the analysis. Patients were excluded from the 
analysis if they died in the direct postoperative period (≤30 days after surgery). Our 
institutional review board has exempted the SEER database from review and waived 
the need for informed consent due to the retrospective nature of this study.
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Outcome and input features
Although machine learning provides a variety of predictive algorithms, most of them 
are developed to accommodate binary or continuous outcomes instead of censored 
survival outcomes (i.e., time-to-event data). To facilitate a vis-à-vis comparison 
between traditional statistical and novel machine learning algorithms, we compared 
all algorithms in their ability to predict one or more of the following survival outcomes: 
(i) continuous: overall survival from diagnosis to death in months, (ii) binary: one-year 
survival probability, and (iii) censored: subject-level Kaplan-Meier survival curves. All 
demographic, socio-economic, radiographic, and therapeutic characteristics available 
at individual patient-level in the SEER registry were included as input features. 
Continuous variables included age at diagnosis (years) and maximal enhancing tumor 
diameter in any dimension (millimeters). Categorical variables included sex, race (White, 
Black, Asian, other), ethnicity (Hispanic, non-Hispanic), marital status (married, non-
married), insurance status (insured, uninsured/Medicaid), tumor laterality (left, right, 
midline), tumor location (frontal, temporal, parietal, occipital, cerebellum, brainstem, 
ventricles, overlapping lesion), tumor extension (confined to primary location, ventricle 
involvement, midline crossing), surgery type (biopsy, sub-total resection, gross-total 
resection), and administration of any form of postoperative chemotherapy and/
or radiotherapy. Data on input features and survival outcomes were collected by 
independent, trained data collectors.

Statistical analysis
Missing data was multiple imputed by means of a random forest algorithm.5 The 
total cohort was randomly split into a training and hold-out test set based on an 
80/20 ratio. The Cox proportional hazards regression (CPHR) and the Accelerated 
Failure Time (AFT) algorithms allow for inferential analysis on censored survival data. 
Therefore, both approaches were also utilized to provide insight into the independent 
association between covariates and survival. Interactions between age, sex, surgery 
type, radiotherapy, and chemotherapy were modeled in both approaches. The 
Benjamini-Hochberg procedure based on 41 comparisons (26 parameters plus 15 two-
way interactions) was used to adjust for multiple testing. The proportional hazards 
assumption of the CPHR model was assessed by means of the Schoenfeld Residuals 
Test, and the distribution assumption of the AFT by means of a quantile-quantile 
plot. All covariates that were statistically significantly associated with survival in the 
inferential analysis were included in the predictive analysis.

For the predictive analysis, 15 machine learning and statistical algorithms were 
trained including AFT, bagged decision trees, boosted decision trees, boosted 
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decision trees survival, CPHR, extreme boosted decision trees, k-nearest neighbors, 
generalized linear models, lasso and elastic-net regularized generalized linear models, 
multilayer perceptron, naïve Bayes, random forests, random forest survival, recursive 
partitioning, and support vector machines.6–8 Among these, only the AFT, boosted 
decision trees survival, CPHR, random forest survival, and recursive partitioning 
algorithms were capable of modeling time-to-event data. Five-fold cross-validation was 
used on the training set for preprocessing optimization and hyperparameter tuning. 
Hyperparameters were model-specific, such as the number of trees in a random forest 
model and the number of layers or nodes per layer in a neural network. The algorithms 
were subsequently trained with optimized hyperparameter settings on the full training 
set and evaluated on the hold-out test set, which has not been used for preprocessing 
and hyperparameter tuning in any form.

Metrics of predictive performance
Discrimination and calibration were used as metrics for prediction performance. 
Discrimination reflects the ability of a model to separate observations, whereas 
calibration measures the agreement between the observed and predicted outcomes.9 
Discrimination was quantified according to the concordance index (C-index). The 
C-index represents the probability that for any two patients chosen at random, the 
patient who had the event first is rated as being more at risk of the event according to 
the model. Therefore, the C-index takes into account the occurrence of the event, as 
well as the length of follow-up, and is particularly well-suited for right-censored survival 
analysis.10 For the subject-level survival curves produced by time-to-event models, the 
C-index was evaluated per time point weighted according to the survival distribution 
in the test set and integrated over time. The relationship between predicted one-year 
survival probability and observed survival rate was graphically assessed in a calibration 
plot.

Secondary metrics
In addition to prediction performance, we evaluated additional metrics that pose 
significant pragmatic challenges to the deployment and implementation of prediction 
models in clinical care. These metrics include model interpretability, predictive 
applicability, and computational efficiency. Lack of interpretability is an important 
concern for the implementation of many machine learning models, which are typically 
referred to as “black-boxes” and sometimes cited as a weakness compared to classical 
statistical methods. Inferential utility is a traditional hallmark of model interpretability 
and therefore included as a model assessment measure. Predictive applicability refers 
to the type of outcome classes to be predicted (binary, continuous, or time-to-event), as 
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well as the generated output of the fitted models (class probability, numeric estimate, 
or subject-level survival curve, respectively). Computational efficiency was measured in 
terms of model size, loading time, and computation time to produce a prediction. For 
models that do not provide natural prediction confidence intervals, model predictions 
were bootstrapped 100 times with replacement to provide such estimates.

We also developed an online, interactive, and graphical tool based on the overall best 
performing model. Statistical analyses were conducted using R (version 3.5.1, R Core 
Team, Vienna, Austria).11 All machine learning modeling was performed using the Caret 
package,12 and the application was built and deployed using the Shiny package and 
server.13

Results

Patient demographics and clinical characteristics
In total, 20,821 patients met our inclusion criteria. Missing data was multiply imputed 
for insurance status (16.7% missingness), tumor size (14.3%), tumor laterality (12.0%), 
tumor location (6.6%), marital status (3.8%), tumor extension (1.6%), surgery type (1.3%), 
and race (0.2%). Survival time was censored for 3,745 patients (18.0%). The estimated 
median survival time in the total cohort was 13 months (95%-CI 12-13 months). The 
total cohort was split into a training and hold-out test set of 16,656 and 4,165 patients, 
respectively (Table 1).
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TABLE 1. Baseline characteristics for the training and hold-out test set.

Characteristic Definition

Training set (n = 16,656) Hold-out test set (n = 4,165)

pn % n %

Age (years) <50 2900 17.4 695 16.7 0.505

50-70 9781 58.7 2456 59.0

>70 3975 23.9 1014 24.3

Mean ± SD 60.5 ± 13.8 60.7 ± 13.9 0.179

Sex Female 6872 41.3 1717 41.2 0.982

Male 9784 58.7 2448 58.8

Race White 14821 89.0 3710 89.1 0.509

Black 1018 6.1 238 5.7

Asian 741 4.4 201 4.8

Other 76 0.5 16 0.4

Hispanic No 14993 90.0 3735 89.7 0.533

Yes 1663 10.0 430 10.3

Married No 5535 33.2 1305 31.3 0.021

Yes 11121 66.8 2860 68.7

Insurance Insured 14503 87.1 3636 87.3 0.717

Uninsured/Medicaid 2153 12.9 529 12.7

Laterality Left 7779 46.7 1901 45.6 0.469

Right 8714 52.3 2222 53.3

Midline 163 1.0 42 1.0

Location Frontal lobe 5001 30.0 1219 29.3 0.377

Temporal lobe 4901 29.4 1270 30.5

Parietal lobe 3071 18.4 770 18.5

Occipital lobe 875 5.3 206 4.9

Ventricle, NOS 79 0.5 14 0.3

Cerebellum, NOS 125 0.8 39 0.9

Brain stem 75 0.5 12 0.3

Overlapping 
lesion of brain

2529 15.2 635 15.2

Tumor 
extension

Confined to 
primary location

14007 84.1 3536 84.9 0.295

Ventricles 653 3.9 144 3.5

Midline crossing 1996 12.0 485 11.6

Tumor size 
(mm)

<25 1539 9.2 382 9.2 0.387

25-50 9380 56.3 2393 57.5

>50 5737 34.4 1390 33.4
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TABLE 1. Continued

Characteristic Definition

Training set (n = 16,656) Hold-out test set (n = 4,165)

pn % n %

Tumor size Median [IQR] 45 [35-55] 45 [35-55] 45 [35-55] 45 [35-55] 0.986

Surgery type Biopsy 3882 23.3 977 23.5 0.894

Sub-total resection 5888 35.4 1456 35.0

Gross-total 
resection

6886 41.3 1732 41.6

Radiotherapy No 2667 16.0 662 15.9 0.871

Yes 13989 84.0 3503 84.1

Chemotherapy No 3647 21.9 883 21.2 0.341

Yes 13009 78.1 3282 78.8

Abbreviations: IQR=interquartile range; mm=millimeters; n=number; SD=standard deviation

Inferential analysis
The Schoenfeld residuals test demonstrated that the assumption of proportionality 
was violated for all variables except sex and ethnicity in the CPHR model (all p<.006 and 
global test p<.001; Supplementary Table S1). The quantile-quantile plot demonstrated 
a valid log-logistic distribution assumption for the (AFT) model (Supplementary 
Figure S1). For these reasons, we present the inferential results of the AFT model. The 
AFT allows for uncomplicated interpretation, as it provides acceleration factors (γ), which 
represent the relative survival duration of a strata compared to the reference group. For 
example, a γ of 1.5 reflects an expected survival duration that is 50% longer compared 
to the reference group. Multivariable AFT analysis identified older age (γ=0.75  per 
10 years increase, p<.001), male sex (γ=0.93, p<.001), uninsured insurance status 
or insurance by Medicaid (γ=0.87, p<.001), midline tumors (γ=0.79, p=.004), tumors 
primarily located in the parietal lobe (γ=0.91, p<.001), brain stem (γ=0.44, p<.001), or 
multiple lobes (γ=0.88, p<.001), tumors extending to the ventricles (γ=0.90, p<.001) or 
across the midline (γ=0.73, p<.001), and larger sized tumors (γ=0.99 per cm, p<.001) 
as independent predictors of shorter survival (Figure 1). Asian race (γ=1.14, p=.001), 
Hispanic ethnicity (γ=1.08, p=.007), married marital status (γ=1.15,  p<.001), gross-
total resection (γ=1.19, p<.001), radiotherapy (γ=1.27, p<.001), and chemotherapy 
(γ=1.49, p<.001) were identified as independent predictors of longer survival.

The AFT model with interaction terms demonstrated that age interacted with extent 
of resection (γ>1.03 per 10 years increase, p<.02), as well as radiotherapy (γ=1.04 per 
10 years increase, p=.03) (Supplementary Table S2).
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Age at diagnosis (y)
Sex

Race

Hispanic

Married

Insurance

Laterality

Location

Tumor extension

Tumor size (cm)
Surgery type

Radiotherapy

Chemotherapy

Female
Male
White
Black
Asian
Other
No
Yes
No
Yes
Insured
Uninsured/Medicaid
Left
Right
Midline
Frontal lobe
Temporal lobe
Parietal lobe
Occipital lobe
Ventricle, NOS
Cerebellum, NOS
Brain stem
Overlapping lesion of brain
Confined to Primary Location
Ventricles
Midline Crossing

Biopsy
Sub−Total Resection
Gross−Total Resection
No
Yes
No
Yes

16656
6872
9784

14821
1018
741

76
14993

1663
5535

11121
14503

2153
7779
8714
163

5001
4901
3071
875

79
125

75
2529

14007
653

1996
16656

3882
5888
6886
2667

13989
3647

13009

0.97 (0.97, 0.97)
Reference
0.93 (0.90, 0.96)
Reference
1.05 (0.99, 1.12)
1.14 (1.06, 1.23)
0.91 (0.73, 1.13)
Reference
1.08 (1.03, 1.14)
Reference
1.15 (1.12, 1.19)
Reference
0.87 (0.83, 0.91)
Reference
1.00 (0.97, 1.03)
0.79 (0.69, 0.91)
Reference
0.98 (0.94, 1.02)
0.91 (0.87, 0.95)
0.97 (0.91, 1.04)
0.97 (0.78, 1.20)
1.03 (0.87, 1.22)
0.44 (0.35, 0.54)
0.88 (0.84, 0.92)
Reference
0.90 (0.83, 0.97)
0.73 (0.70, 0.76)
0.99 (0.99, 1.00)
Reference
0.96 (0.93, 1.00)
1.19 (1.15, 1.24)
Reference
1.27 (1.21, 1.33)
Reference
1.49 (1.42, 1.55)

<0.001

<0.001

0.229
0.001
0.778

0.007

<0.001

<0.001

1.000
0.004

0.590
<0.001

0.801
1.000
1.000

<0.001
<0.001

0.013
<0.001

0.002

0.089
<0.001

<0.001

<0.001

Variable N Estimate p

0.5 1 1.5

FIGURE 1. Forest plot for the accelerated failure time model characterizing the association between the individual 
predictors and survival. In the inferential analysis, the estimates for age and tumor size were presented per ten 
years and ten millimeters increase, respectively, to reflect the incremental relative survival duration of clinically 
meaningful intervals. The p-value was corrected for multiple testing by means of the Benjamini-Hochberg 
procedure.
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Predictive analysis
The discriminatory performance on the hold-out test set as measured by the C-index 
set ranged between 0.66-0.70 and between 0.67-0.70 across all models for predicting 
overall survival and one-year survival status, respectively (Table 2). Among the time-
to-event models, the integrated C-index ranged between 0.68-0.70 for predicting 
subject-level Kaplan-Meier survival curves. The AFT model based on a log-logistic 
distribution demonstrated the highest discriminatory performance for computing 
personalized survival curves. Compared to all continuous and binary models, the AFT 
model demonstrated similar or better discrimination for predicting overall survival and 
one-year survival probability, respectively. Model calibration varied significantly across 
all models (Supplementary Figure S2). The traditional CPHR model systematically 
underestimated survival in the 0.5-0.75 one-year survival probability range, whereas 
the AFT model showed better calibration, particularly in this clinically relevant interval 
(Figure 2).

0
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Predicted Probability (%)
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)

Model
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FIGURE 2. Calibration plot demonstrating a systematic underestimation of survival by the Cox proportional 
hazards regression model in the 0.5 to 0.75 one-year survival probability range and a well-calibrated accelerated 
failure time model. Abbreviations: AFT=accelerated failure time; CPHR=Cox proportional hazards regression.
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TABLE 2. Discriminatory performance for all time-to-event, continuous, and binary survival models according to 
the (integrated) concordance index.

C-index (95%-CI)

Integrated C-indexOverall survival 1Y-survival status

Time-to-event Models

Accelerated Failure Time 0.70 (0.70-0.70) 0.70 (0.70-0.70) 0.70 (0.70-0.70)

CPHR 0.69 (0.69-0.70) 0.69 (0.69-0.70) 0.69 (0.69-0.70)

Boosted Decision 
Tree Survival

0.69 (0.69-0.70) 0.69 (0.69-0.70) 0.69 (0.69-0.70)

Random Forest Survival 0.68 (0.68-0.68) 0.69 (0.69-0.69) 0.68 (0.68-0.68)

Recursive Partitioning 0.68 (0.68-0.68) 0.68 (0.68-0.68) 0.68 (0.68-0.68)

Continuous and binary Models

Gradient Boosting 0.70 (0.70-0.70) 0.70 (0.70-0.70) NA

Regularized GLM 0.70 (0.70-0.70) 0.70 (0.70-0.70) NA

GLM 0.70 (0.70-0.70) 0.70 (0.70-0.70) NA

Support Vector Machines 0.70 (0.70-0.70) 0.69 (0.69-0.69) NA

Multilayer Perceptron 0.61 (0.61-0.61) 0.69 (0.69-0.69) NA

Naïve Bayesa NA 0.69 (0.69-0.69) NA

Random Forest 0.69 (0.69-0.69) 0.69 (0.69-0.69) NA

Extreme Gradient Boosting 0.68 (0.68-0.68) 0.68 (0.68-0.68) NA

K-Nearest Neighbors 0.67 (0.67-0.67) 0.68 (0.67-0.68) NA

Bagging 0.67 (0.66-0.67) 0.66 (0.66-0.66) NA

Abbreviations: 1Y=one year; C-index=concordance index; CI=confidence interval; CPHR=cox proportional hazards 
regression; GLM=generalized linear models; NA=not available
a Naïve Bayes fits to categorical data only.

Secondary metrics
Secondary metrics related to model deployment and clinical implementation varied 
across all models (Table 3). AFT, CPHR, and (regularized) generalized linear models 
were the only models with inferential utility. AFT, CPHR, boosted decision trees 
survival, recursive partitioning, and random forest survival were the only models that 
can analyze time-to-event data and thus compute subject-level survival curves. The 
application loading time varied between 0.2 seconds and 45 minutes. The 100-fold 
bootstrapped prediction time varied between 1.9 seconds and four minutes on a single 
central processing unit.
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TABLE 3. Secondary metrics for model performance and deployment.

Model

Interpretability Predictive Applicability Computational Efficiencya

Inference Prediction Binary Continuous
Survival 
Curves

Size
(Mb)

Load
Time (s)

Prediction 
Time (s)

AFT X X X X X 20 0.9 1.9

Bagging - X X X - 16,380 1,335 31.8

Blackboost - X X X X 36,790 2,455 234.3

CPHR X X X X X 37 1.7 7.5

Recursive 
Partitioning

- X X X X 490 52.1 3.4

BDT - X X X - 300 8.2 2.1

GLM X X X X - 1 0.2 1.7

GLMnet X X X X - 109 6.7 2.3

K-Nearest 
Neighbors

- X X X - 91 5.6 1.9

Multilayer 
Perceptron

- X X X - 45 1.4 17.4

Naïve Bayes - X X - - 82 2.9 13.0

Random 
forest

- X X X - 1,100 41.4 10.1

Random 
Forest 
Survival

- X X X X 6,350 65.7 139.0

Support 
Vector 
Machine

- X X X - 111 4.8 4.4

XBDT - X X X - 92 2.4 1.5

Abbreviations: AFT=accelerated failure time; CPHR=Cox proportional hazards regression; GLM(net)= (Lasso and elastic-
net regularized) generalized linear models; Mb = megabyte; s = seconds; TTE=time-to-event; (X)BDT= (extreme) boosted 
decision trees
a Based on a 100-fold bootstrapped model.

Deployment
Although the AFT model demonstrated similar to superior performance in terms of 
discrimination and calibration, it outperformed competing statistical and machine 
learning algorithms in terms of interpretability, predictive applicability, and 
computational efficiency. Therefore, it was selected as back end for the online survival 
prediction tool. (https://cnoc-bwh.shinyapps.io/gbmsurvivalpredictor/). The estimated 
survival profile for a hypothetical patient is shown in Figure 3.
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FIGURE 3. Estimated survival profile of a hypothetical patient (male, 50-years old, white, non-Hispanic, married, 
insured, left-sided, frontal lobe, confined to its primary location, 50mm in size, gross-total resection), plotted per 
adjuvant treatment strategy. Personalized estimates of overall survival in months (upper left), one-year survival 
probability (upper right), and five-year survival curves (lower) as predicted by the accelerated failure time 
model. The boxes and whiskers in the boxplots represent the 50% and 95% confidence interval, respectively. 
The ribbons in the survival curves represent the 95% confidence intervals. Abbreviations: Rx=Radiotherapy; 
Cx=Chemotherapy.
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Discussion

This manuscript and the accompanying online prediction tool provide a framework for 
individualized survival modeling in patients with glioblastoma that is generalizable to 
other cancer and neurosurgical patients. Although prior investigation in this area tends 
to focus on metrics of prediction performance, we advocate a multimodal assessment 
when constructing and implementing clinical prediction models. The online prediction 
tool provides interactive, online, and graphical representations of expected survival in 
glioblastoma patients.

Few other groups have developed an online survival prediction tool for glioblastoma 
patients.14–16 Gorlia et al. developed multiple nomograms based on a secondary 
analysis of trial data using age at diagnosis, World Health Organization performance 
score (WPS), extent of resection, Mini-Mental State Examination (MMSE) score, and 
O6-methylguanine–DNA methyltransferase (MGMT) methylation status as input 
features, thereby achieving a maximum C-index of 0.66.14 Gittleman et al. developed 
similar nomograms including sex as an input feature and Karnofsky Performance 
Status (KPS) score as a measure of functional status. However, model discrimination 
remained similar (C-index 0.66).15 Marko et al. developed a model in which extent 
of resection was modeled as a continuous covariate. This group also utilized an AFT 
model to account for the violated proportional hazards assumption and achieved a 
C-index of 0.69.16 Higher discriminatory performance (C-index 0.63-0.77) was achieved 
in studies that used machine learning algorithms to analyze complex, high-dimensional 
data structures, such as genomic, imaging, and health-related quality of life data.17–25 
Although many machine learning algorithms are ideally suited for superior prediction 
performance by utilizing these high-dimensional data structures, increasing model 
complexity may incur other costs in terms of interpretability, ease of use, computation 
speed, and external generalizability.

Limitations
Due to the retrospective nature of the data acquisition, it cannot be excluded that 
adjuvant therapy was administered at outside hospitals and not corresponded 
back to the reporting hospital. However, because of the short survival period in this 
patient population, the percentage of patients with complete survival follow-up is 
exceptionally high. Although clinically essential features were included to mitigate the 
risk of confounding, the possibility of influence from unmeasured confounders cannot 
be excluded. Randomized data would be ideal; however, it is practically and financially 
infeasible to establish a cohort on this scale, and it has become ethically unjustifiable 
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to randomize newly diagnosed patients to a placebo arm now that a proven, effective 
adjuvant treatment for glioblastoma has emerged.26 Predictive modeling on this scale 
remains therefore bound to observational data, thereby highlighting the need for 
exploring analytical approaches to mitigate confounding.

On average, 3.3% of all data points were missing in the total data set, which was multiply 
imputed by means of a random forest algorithm to mitigate the risk of systematic 
bias associated with a complete-case analysis. Nonetheless, survival performance in 
the current study is limited by the type and number of features included in the SEER 
registry. As a result, KPS score, isocitrate dehydrogenase 1 (IDH1) mutation, 1p/19q 
co-deletion, and MGMT methylation status were not included in the current iteration 
of the prediction model. Despite these limitations, the performance of the current 
proposed prediction tool exceeds that of the currently available prediction tools and 
even approximates the performance of many complex radiogenomic models,17–25  
yet with the ease, speed, accessibility, interpretability, and generalizability of clinical 
prediction tools. Furthermore, this study presents a framework that can be updated 
and reiterated when novel variables are added to the SEER registry or when novel 
large-scale multicenter glioblastoma registries are assembled. Because these models 
are trained on data from thousands of patients from numerous hospitals across the 
U.S., we expect the fitted models to be less prone to overfitting to data from a single 
institution and plausibly more generalizable to patients from diverse geographic 
regions undergoing a variety of clinical treatments.

Implications
Survival prognostication is critical for clinical and personal decision-making in 
glioblastoma patients. Although our current prediction tool provides an interactive 
interface for survival modeling with potential clinical utility, it is designed as a research 
tool and should not be implemented in clinical practice prior to prospective validation 
on multiple heterogenous cohorts. Using a population-based registry might be more 
representative of the typical glioblastoma patient in the US; however, testing the 
current model on single institutional or multicenter data might be essential to confirm 
its prognostic value at point-of-care. Furthermore, predictive models should inform 
rather than direct clinical decision-making. We advocate a multidimensional approach 
for survival prognostication, in which model predictions are adjusted and balanced 
against complementary information that is available including clinical experience, 
neuropsychological testing, imaging data, and genomic information.

Many statistical and machine learning algorithms allow for the analysis of historical 
patient cohorts to predict survival in new patients. However, prediction performance, 
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interpretability, clinical utility, computational efficiency, and their associated limitations 
vary widely across different models due to their mathematical underpinnings. CPHR 
has emerged as the cornerstone of survival analysis but is limited by the assumption of 
proportionality, which assumes that the relationship between covariate and outcome 
is constant over time. In the real world, this association is often dynamic, and the 
assumption of proportionality is effectively violated. The AFT model does allow for 
increasing or decreasing covariate risk contribution over time, which is particularly 
useful in individualizing survival predictions. The AFT model has been shown to be 
a valuable alternative to CPHR in simulation studies,27 as well as survival studies on 
glioblastoma patients.16

Molecular markers (e.g., IDH1 mutation, 1p19q codeletion, and MGMT methylation 
status), as well as functional status (e.g., KPS, MMSE), have been demonstrated to 
impact survival in glioblastoma patients and are commonly used for stratifying patient 
cohorts in clinical decision-making. However, they have not yet been included in large-
scale, multicenter registries. Inclusion of these variables would improve individual 
patient survival modeling. Furthermore, granular information with regards to the 
healthcare setting (e.g., academic versus non-academic) and provided clinical care 
(e.g., volumetric measurements of tumor size and extent of resection, as well as the 
timing, type, dose, and sequence of adjuvant treatment) would be valuable to further 
improve model performance. If addition of any of these variables improves model 
performance only slightly, however, it may be preferable to exclude some predictors 
for ease of use at the point of care. Another method to overcome the lack of large-scale 
granular data sets could be to explore the concept of transfer learning, a common 
machine learning approach of updating a pre-trained model on novel data sources or 
even different outcomes.28 In the context of glioblastoma survival prediction, this could 
mean developing a base model on population-based data, which is further trained 
on institutional data to fit institutional patterns and include relevant institutional 
parameters not available in population-based registries.

Although many machine learning algorithms show great predictive performance, 
their utility is often limited to continuous and binary models, which merely provide 
point estimates of overall survival and one-year survival probability at a given point 
in time, respectively. Transferring the predictive power of these algorithms to time-
to-event models allows for the computation of subject-level survival curves, thereby 
enabling more granular insight into expected survival. Furthermore, time-to-event 
models can be trained on patients with either complete or incomplete follow-up, 
which mitigates the systematic bias associated with exclusion of the latter group. 
Although many machine learning models demonstrate high performance in the 
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academic realm,29 lack of interpretability and computational inefficiency hinders their 
deployment in the clinical realm. When evaluating models for clinical deployment, we 
recommend evaluating fitted models on several criteria rather than a singular focus 
on prediction performance since factors unrelated to prediction performance (such 
as interpretability or applicability) can exclude high-performing models from clinical 
deployment. Although the AFT model was selected due its high overall performance, 
the difference in prediction performance was not always clinically meaningful, thereby 
emphasizing the importance of taking into account these secondary metrics as well. 
Furthermore, the prediction performance can change as the number and nature of 
the input features change. For example, the assembly of multimodal data including 
radiogenomics data might call for alternative analytical approaches in the near future.

Prognostication is and always has been aimed at a moving target and future factors 
impacting clinical course cannot be modeled, most importantly advances in clinical care. 
Prediction performance therefore remains an asymptotic ideal for which perfection will 
never be reached. Future research should focus on developing clinically meaningful 
and interpretable prediction tools. Improving the end-user transparency regarding the 
underlying predictive mechanisms and the inherent limitations allows for a safe and 
reliable implementation of survival prediction tools in clinical care.

Conclusion

This study provides a framework for the development of survival prediction tools in 
cancer patients, as well as an online calculator for predicting survival in glioblastoma 
patients. Future efforts should focus on developing additional algorithms that can train 
on right-censored survival data, improve the granularity of population-based registries, 
and externally validate the proposed prediction tool.

Supplementary material
Supplementary tables and figures available online at:

https://academic.oup.com/neurosurgery/article/86/2/E184/5581744#supplementary-
data
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