
The cosmic dispersion measure in the EAGLE simulations
Batten, A.J.; Duffy, A.R.; Wijers, N.A.; Gupta, V.; Flynn, C.; Schaye, J.; Ryan-Weber, E.

Citation
Batten, A. J., Duffy, A. R., Wijers, N. A., Gupta, V., Flynn, C., Schaye, J., & Ryan-Weber, E.
(2021). The cosmic dispersion measure in the EAGLE simulations. Monthly Notices Of The
Royal Astronomical Society, 505(4), 5356-5369. doi:10.1093/mnras/stab1528
 
Version: Accepted Manuscript
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/3251021
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/3251021


MNRAS 000, 1–14 (2020) Preprint 1 December 2020 Compiled using MNRAS LATEX style file v3.0

The Cosmic Dispersion Measure in the EAGLE Simulations

Adam J. Batten,1,2★ Alan R. Duffy,1,2 Nastasha A. Wĳers,3 Vivek Gupta,1 Chris Flynn,1
Joop Schaye,3 Emma Ryan-Weber1,2

1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
3Sterrewacht, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
The dispersion measure (DM) of fast radio bursts (FRBs) provides a unique way to probe ionised baryons in the intergalactic
medium (IGM). Cosmological models with different parameters lead to different DM-redshift (DM − 𝑧) relations. Additionally,
the over/under-dense regions in the IGM and the circumgalactic medium of intervening galaxies lead to scatter around the mean
DM − 𝑧 relations. We have used the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations to
measure the mean DM− 𝑧 relation and the scatter around it using over one billion lines-of-sight between redshifts 0 < 𝑧 < 3. We
investigated two techniques to estimate line-of-sight DM: ‘pixel scrambling’ and ‘box transformations’. We find that using box
transformations (a technique from the literature) causes strong correlations due to repeated replication of structure. Comparing
a linear and non-linear model, we find that the non-linear model with cosmological parameters, provides a better fit to the
DM− 𝑧 relation. The differences between these models are the most significant at low redshifts (𝑧 < 0.5). The scatter around the
DM − 𝑧 relation is highly asymmetric, especially at low redshift (𝑧 < 0.5), and becomes more Gaussian as redshift approaches
𝑧 ∼ 3, the limit of this study. The increase in Gaussianity with redshift is indicative of the large scale structures that is better
probed with longer lines-of-sight. The minimum simulation size suitable for investigations into the scatter around the DM − 𝑧

relation is 100 comoving Mpc. The DM− 𝑧 relation measured in EAGLE is available with an easy-to-use python interface in the
open-source FRB redshift estimation package fruitbat.
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1 INTRODUCTION

The whereabouts of almost a third of the baryons in the Universe is
still unknown. A census by Shull et al. (2012) to identify the baryonic
content of the Universe at redshift 𝑧 = 0 found that 29±13% remains
undetected. This is known as the ‘missing baryon problem’.
Cosmological hydrodynamic simulations of a lambda cold dark

matter (ΛCDM) Universe predict that these ‘missing baryons’ reside
in the intergalactic medium (IGM), where the extremely low den-
sities (𝑛H ∼ 10−6cm−3) and high temperatures (𝑇 ∼ 106 K) make
observational confirmation elusive due to the lack of UV and optical
transition lines in this temperature-density regime (Cen & Ostriker
1999; Bregman 2007; Shull et al. 2012).
Fast Radio Bursts (FRBs) offer a promising tool to find these miss-

ing baryons by directly probing the ionised gas that has eluded the
emission and absorption line census to date: highly ionised low den-
sity material (McQuinn 2014; Deng & Zhang 2014; Keane 2019;
Macquart et al. 2020). FRBs are a class of newly discovered, bright
extragalactic radio transients (∼ 1 Jy) with short, millisecond du-
rations and unknown origins (Lorimer et al. 2007; Thornton et al.

★ E-mail: abatten@swin.edu.au

2013). For recent reviews on FRBs see Petroff et al. (2019) and
Cordes & Chatterjee (2019).
The majority of the 137 FRBs detected to date (November 2020)

have been one-off events – only 22 have been seen to repeat (Spitler
et al. 2014, 2016; Petroff et al. 2016; Marcote et al. 2017; The
CHIME/FRBCollaboration et al. 2019b,a). Currently, the host galax-
ies have been identified for three repeating (FRB 21102; Tendulkar
et al. 2017, FRB180916;Marcote et al. 2020, FRB190711;Macquart
et al. 2020) and nine non-repeating FRBs (FRB 180924; Bannister
et al. 2019, FRB 190523; Ravi et al. 2019, FRB 181112; Prochaska
et al. 2019, FRB 190102, FRB 190611, FRB 190711; Macquart
et al. 2020, FRB 191001; Bhandari et al. 2020, FRB 190717 and
FRB 200430; Heintz et al. 2020).
One of the defining features of FRBs, and the key to finding the

missing baryons, is their large dispersion measures (DM1) relative
to the DM of the interstellar medium.
The DMof an FRB is an observed quantity that measures the delay

1 We note that in this work we are using convention in the FRB literature of
using the initialism ‘DM’ to stand for ‘dispersion measure’ instead of ‘dark
matter’ as is the convention in cosmology and hydrodynamic simulations. We
will be explicitly using ‘dark matter’ in the text when required.

© 2020 The Authors

ar
X

iv
:2

01
1.

14
54

7v
1 

 [
as

tr
o-

ph
.C

O
] 

 3
0 

N
ov

 2
02

0



2 A. J. Batten et al.

in arrival time of the burst as a function of frequency. Electromagnetic
waves travelling in an ionised medium will experience a frequency
dependent delay. The lower frequency electromagnetic waves of the
FRB will be delayed relative to higher frequencies, causing the pulse
to become ‘dispersed’. The larger the quantity of plasma along the
line-of-sight, the larger the observed time delay between frequencies
an (i.e the larger the DM).
The observed DMs of FRBs currently span more than an order of

magnitude: the lowest FRB DM is 103 pc cm−3 (The CHIME/FRB
Collaboration et al. 2019a) and the largest is 2596 pc cm−3 (Bhandari
et al. 2018).
Taking into account cosmological effects, the DM of a source at

redshift 𝑧 is exactly equal to:

DM =

∫ 𝑧

0

𝑛𝑒 (𝑧)
1 + 𝑧

d𝑙 , (1)

where 𝑛𝑒 is the physical electron density, d𝑙 is the physi-
cal distance element such that d𝑙 = 𝑐(1 + 𝑧)−1H−10 𝐸 (𝑧)−1d𝑧,
𝐸 (𝑧) =

√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ, 𝑐 is the speed of light, H0 is the

Hubble parameter at redshift 𝑧 = 0, Ω𝑏 and ΩΛ are the cosmic mat-
ter density and cosmic dark energy density respectively. The (1 + 𝑧)
factor in the denominator accounts for cosmological time dilation
due to the expanding Universe.
Because FRBs originate fromgalaxies external to theMilkyWay, it

is convenient to break the observed DM (DMObs) into 3 components:
DMMW, DMcosmic (𝑧) and DMHost as shown in Equation (2).

DMObs (𝑧) = DMMW + DMcosmic (𝑧) +
DMHost
1 + 𝑧

, (2)

where DMMW is the DM due to the the Milky Way (this includes the
ionised plasma in both the interstellar medium and the circumgalactic
medium), DMcosmic (𝑧) is the DM component due to the IGM and
any contributions from intervening galaxy halos along the line-of-
sight, and DMHost is the DM component due to the host galaxy and
local source environment of the FRB.
The DMMW component is usually estimated using a galaxy

electron density model such as NE2001 (Cordes & Lazio 2002)
or YWM16 (Yao et al. 2017). This quantity is typically a small
fraction of DMObs. For example, FRB 121002 has a DMObs of
1629.18 pc cm−3, whereas the NE2001 and YMW16 models es-
timate a DMMW in the direction of the burst of 72.2 pc cm−3 and
60.5 pc cm−3 respectively. It should be noted that these models have
their own uncertainties of a factor 2 or 3 (Price et al. submitted).
The DMHost is currently the least constrained parameter of the

three contributing components of DMObs. The value of DMHost is
unique for each galaxy, modulated further by the path of the FRB
with respect to the plane of the galaxy. For example, a highly inclined
galaxy is likely to have a higher DMHost because the burst must
traverse the ionised material in the denser ISM in the disk of the
galaxy. Additionally there may be some contributions to DMHost
from the local source environment around the FRB. There have been
some attempts to provide estimates of DMHost (Yang et al. 2017),
however it is frequently assumed DMHost = 0 or a value similar to
the Milky Way (DMHost = 100 pc cm−3).
The third component, DMcosmic, is the focus of this paper. The

DMcosmic component includes both the contribution from the IGM
(DMIGM) and any intervening galaxy halos (DMHalo,Int.). Whilst
DMHalo,Int. is unique to the line-of-sight towards each FRB, DMIGM

can be analytically estimated using Equation (3) as derived in Deng
& Zhang (2014):

DMIGM =
3𝑐H0Ω𝑏

8𝜋𝐺𝑚𝑝

∫ 𝑧

0

(1 + 𝑧) 𝑓IGM (𝑧)𝜒(𝑧)√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ

𝑑𝑧 , (3)

where Ω𝑏 is the cosmic baryon density, 𝐺 is the gravitational con-
stant, 𝑚𝑝 is the proton mass and 𝑓IGM (𝑧) is the fraction of baryons
in the IGM at redshift 𝑧. For a model of the IGM containing only
hydrogen and helium, the ionisation parameter 𝜒(𝑧) is given by:

𝜒(𝑧) =
[
0.75𝑦1𝜒𝑒,H (𝑧) + 0.25

𝑦2
2
𝜒𝑒,He (𝑧)

]
, (4)

where 𝜒𝑒,H (𝑧) and 𝜒𝑒,He (𝑧) are the ionisation fractions of hydrogen
and helium respectively, and 𝑦1 ∼ 1 and 𝑦2 ' 4− 3𝑦1 ∼ 1 indicating
the small deviations from the 0.75-to-0.25 split of primordial hydro-
gen and helium mass fractions. The helium ionisation factor has an
additional factor of 12 due to helium only providing 0.5 electrons per
proton mass.
The key to identifying the missing baryons is the relationship

between the DM and the redshift (i.e the DM − 𝑧 relation, also
the Macquart DM − 𝑧 relation) of FRBs. The shape and slope of
the DM − 𝑧 relation depends on the quantity of ionised baryons in
the IGM. Therefore by measuring the host galaxy redshift and the
DMIGM component of FRBs and comparingwith a theoreticalDM−𝑧
relation, it becomes possible to measure the fraction of baryons in the
IGM. This exact analysis was performed by Macquart et al. (2020)
to conclude that FRBs are able to find all the ‘missing baryons’ in
the IGM.
The DM − 𝑧 relations in the literature have been established using

various techniques including: analytic models, semi-analytic mod-
els, and hydrodynamic simulations. Each of these techniques have
significant differences in both the assumptions that they make and
the resulting DM − 𝑧 relation.
The analytic models of Ioka (2003), Inoue (2004) and Zhang

(2018) approximate the DM − 𝑧 relation through the cosmic baryon
density, Ω𝑏 , in addition to assuming a composition and ionisation
state of the Universe. The differences in the analytic models arise
due to these differing assumptions.
The Ioka (2003) model matches a homogeneous Universe with

all the baryons (Ω𝑏 = 0.044) fully ionised. It also assumes the
Universe is homogeneously filledwith 100% ionised hydrogen. These
assumptions lead to an approximately linear DM − 𝑧 relation with a
slope of DMIoka (𝑧)/𝑧 ≈ 1174 pc cm−3.
The Inoue (2004) and Zhang (2018) models are is similar to Ioka

(2003), except with different parameters. Inoue (2004) instead as-
sumes the IGM consists of 24% helium by mass and the rest hydro-
gen. Additionally it models hydrogen as fully ionised and helium as
singly ionised. The Zhang (2018) model on the other hand adds two
additional parameters: the helium abundance and the baryonic frac-
tion locked inside galaxies. Zhang (2018) assumes that all baryons are
fully ionised and a 0.875-to-1 ratio between electrons and baryons (to
account for helium) and also assumes that only 85% of baryons are in
the IGM (with the remaining 15% locked up within galaxies and the
CGM). These differing assumptions lead to a flatter DM− 𝑧 slope of
DMInoue (𝑧)/𝑧 ≈ 960 pc cm−3 and DMZhang (𝑧)/𝑧 ≈ 850 pc cm−3

for Inoue (2004) and Zhang (2018) respectively.
Since the analytic formulations all assume a homogeneous Uni-

verse, there is no scatter around the relation. These analytic models
can not provide information on the line-of-sight variations due to
the clumpy IGM. There has been additional work to calculate ana-
lytic estimates of the scatter around the DM− 𝑧 relation by McQuinn

MNRAS 000, 1–14 (2020)



The Cosmic Dispersion Measure in EAGLE 3

(2014) andMacquart et al. (2020). However, simulations are required
to support these estimates of line-of-sight variations.
The semi-analytic approach from Pol et al. (2019) uses a large

𝑁-body/dark matter simulations to estimate the electrons density in
the IGM from the dark matter distribution. This technique allows the
use of extremely large simulations with high-resolution, however the
drawback is that it only use dark matter density distributions and do
not include any baryonic physics.
Pol et al. (2019) used the MareNostrum MICE large 𝑁-body/dark

matter simulations (Fosalba et al. 2008) which have box sizes
3072 Mpc ℎ−1 with 20483 particles. These simulations are a series
of concentric radial shells of finite width around a central observer.
Pol et al. (2019) convert the dark matter density into a free

electron density and then integrate this to find the DM as a func-
tion of redshift. They find DMcosmic at redshift 𝑧 = 1 to be
DMcosmic (𝑧 = 1) = 800+7000−170 pc cm

−3. However, their DM− 𝑧 rela-
tion has a significantly reduced estimate of IGM baryons compared
to all other studies at low redshifts (𝑧 < 1). Their 95% confidence
interval predicts IGM column densities of electrons equivalent to that
of the Milky Way halo (∼ 30 − 100 pc cm−3) out to redshift 𝑧 = 0.5.
Studies of the DM − 𝑧 relation using cosmological hydrodynamic

simulations have previously been used by McQuinn (2014), Dolag
et al. (2015) and Jaroszynski (2019). Each of these have used a
different suite of simulations and arrive at different estimates of the
DM − 𝑧 relation.
McQuinn (2014) calculated theDM−𝑧 relationwith differentmod-

els (analytic and simulations) for the distribution of cosmic baryons.
These showed that the variance around the DM − 𝑧 relation is quite
sensitive to whether the ‘missing’ baryons are at the boundary of the
IGM and CGM or significantly further out. From their cosmological
simulation they found a variance around the mean DM− 𝑧 relation of
40%. However their simulation was relatively small (40 ℎ−1 cMpc;
For comparison: EAGLE = 100 cMpc, Magneticum Pathfinder =
896 ℎ−1 cMpc and Illustris = 75 ℎ−1 cMpc) and do not specify the
number of lines-of-sight they have used.
Dolag et al. (2015) used the Magneticum suite of simulations to

constrain the origins of FRBs by calculating the DM contributions
from the Milky Way, local Universe and large scale structure. The
Magneticum Pathfinder simulations are large enough (896 ℎ−1Mpc)
that their simulation boxes overlap in redshift, however their reso-
lution is significantly lower than EAGLE and Illustris. They used
40962 (∼ 1.7 × 106) sight lines to generate the DM probability
distribution function at 7 redshifts between 0 < 𝑧 < 1.980.
Jaroszynski (2019) used the Illustris simulations and found a 13

percent scatter around the DM − 𝑧 relation at 𝑧 = 1 and 7 percent
at 𝑧 = 3. They also simulated populations of FRBs to determine if
they are able constrain cosmological parameters such as the Hubble
constant, H0. They concluded that to constrain the mean ionised frac-
tion to ∼ 1% at various epoch, would require 104 FRBs with known
redshifts, a number significantly higher than the current number of
measured FRB redshifts.
In this work we have used the EAGLE simulations to calculate the

DM − 𝑧 relation from redshift 𝑧 = 0 to 3 using over a billion lines of
sight. This is the largest number of lines of sight used in the analysis of
the DM − 𝑧 relation; exceeding the previous highest by Jaroszynski
(2019) by a factor of 4. In doing so we have produced DMcosmic
PDFs at the highest number of redshift samples (66 samples between
redshifts 𝑧 = 0 and 3).We compare our results to those in the literature
and find that the mean DMcosmic broadly agrees with previous work
and is well fitted by a non-linear model that includes parameters
for cosmology. We have performed an explicit investigation into the
scatter around the mean finding that there is significant asymmetry

in the shape of the PDFs. We also provide convergence tests for both
volume and resolution, which has previously not been performed.
We also compare our DM− 𝑧 relation to the redshifts of known FRB
host galaxies and find that many FRBs lay in the 2 − 3𝜎 region of
the confidence interval. We suggest that this could be an indication
that these FRBs have intersected with filaments of the IGM.
In Section 2 we provide an overview of the EAGLE cosmological

hydrodynamic simulations. In Section 3.1 we describe the process
of generating projected DM maps from EAGLE. In Section 3.2 we
describe the process of generating interpolated DM maps for 66
redshift samples and the process of combining these maps to produce
a DM − 𝑧 relation in Section 3.3. In Section 4 we present the DM-
redshift relation and discuss the scatter around the mean. We also
compare with observations of localised FRBs. Finally, we summarise
our results and provide our conclusions in Section 5.
Length units with the prefixes ‘p’ and ‘c’ indicate ‘proper’ and

‘comoving’ quantities respectively. The exception is centimetres (cm)
which is in proper units.

2 THE EAGLE SIMULATIONS

In this section we provide an overview of the EAGLE (Evolution
and Assembly of GaLaxies and their Environments) simulations. For
a more detailed description of the EAGLE simulations see Schaye
et al. (2015) and Crain et al. (2015).
The EAGLE simulations are a suite of high resolution cosmo-

logical 𝑁-body/hydrodynamic simulations performed using a mod-
ified version of the smooth particle hydrodynamic (SPH) code
gadget-3, last described in Springel (2005). EAGLE adopts a
Planck Collaboration et al. (2014) ΛCDM cosmology, with the fol-
lowing parameters: Ω𝑚 = 0.307, ΩΛ = 0.693, Ω𝑏 = 0.04825,
𝐻0 = 67.77 km s−1 Mpc−1, 𝜎8 = 0.8288, 𝑛𝑠 = 0.9611 and
𝑌 = 0.248.
The main EAGLE simulation cubes were run with volumes of 25,

50 and 100 cMpc per side and employed a gravitational softening
length of 0.7 pkpc. The resolution in EAGLE is not sufficient to fully
resolve the multi-phase nature of the interstellar medium (ISM), but
is able to marginally resolve the warm ISM (T ∼ 104 K) on ∼ kpc
scales.
Galactic-scale processes that occur on scales that are unresolved in

EAGLE (these processes are often referred to as ‘subgrid physics’)
are implemented using subgrid models. Gas is cooling is imple-
mented through tracking the abundances of 11 elements (H, He, C,
N, O, Ne, Mg, Si, S, Ca, and Fe) and their cooling rates follow-
ing Wiersma et al. (2009a). Hydrogen reionisation is implemented
by ‘turning-on’ a Haardt & Madau (2001) time-dependent spatially
uniform UV/X-ray background at 𝑧 = 11.5. Star formation fol-
lows Schaye & Dalla Vecchia (2008) and, by-design, reproduces the
Kennicutt-Schmidt star formation law (Kennicutt 1998). Star parti-
cles are treated as simple stellar populations with a Chabrier (2003)
IMF with stellar evolution and mass loss based on Wiersma et al.
(2009b). Galactic winds are driven by energy feedback from star
formation (Dalla Vecchia & Schaye 2012) and active galactic nuclei
(AGN; Booth & Schaye 2009) through the stochastic heating of gas
particles to temperatures large enough to overcome the over-cooling
problem.
We have chosen to use the EAGLE simulations to study the DM−𝑧

relation of the IGM for the following reasons:

(i) The physics scheme implemented in EAGLE is successful in
reproducing observed galaxy properties at low redshift such as the

MNRAS 000, 1–14 (2020)



4 A. J. Batten et al.

Table 1. The simulation properties and lines-of-sight parameters used in this work. From left to right the columns are: simulation name, comoving box size
(𝐿box), number of dark matter particles (𝑁 ; this is the same as the initial number of gas particles), the resolution level of the simulation, initial mass of the
baryonic particles (𝑚gas), mass of the cold dark matter particles (𝑚cdm), maximum physical softening length (𝜖phys), the number of pixels (𝑁pixels; equivalent
to the number of lines-of-sight) per DM map, the number of DM maps generated (𝑁z) and the convergence test associated with the simulation. The name of
each simulation consists of three sections:<prefix>L<box size>N<particles>. The prefix indicates the stellar/AGN feedback model used (Ref indicating
a reference simulation and Recal having the stellar and AGN feedback fine tuned to better fit the galaxy stellar mass function at high resolution). Columns
2-7 are properties of the simulation themselves; columns 8-9 are parameters chosen during our analysis. The main simulation we refer to in our results is
RefL0100N1504 with the remaining used to perform convergence tests.

Name 𝐿box 𝑁 Resolution 𝑚gas 𝑚cdm 𝜖phys 𝑁pixels 𝑁𝑧 Associated
(cMpc) (M�) (M�) (pkpc) Convergence Test

RefL0100N1504 100 15043 Medium 1.81 × 106 9.70 × 106 0.70 320002 66 Reference
RefL0050N0752 50 7523 Medium 1.81 × 106 9.70 × 106 0.70 160002 131 Volume
RefL0025N0376 25 3763 Medium 1.81 × 106 9.70 × 106 0.70 80002 262 Volume and Resolution
RefL0025N0752 25 7523 High 2.26 × 105 1.21 × 106 0.35 80002 262 Resolution and Physics
RecalL0025N0752 25 7523 High 2.26 × 105 1.21 × 106 0.35 80002 262 Physics

cosmic star formation history (e.g. Madau et al. 1996) in Furlong
et al. (2015).
(ii) Rahmati et al. (2015) showed that EAGLE is in broad agree-

ment with observed H i absorption line statistics (Rudie et al. 2012;
Prochaska et al. 2013). Since H i absorption and DM are linked (H i
absorption traces neutral gas, whereas DM traces ionised gas), it
should be expected that EAGLE is also well suited to predicting the
DM − 𝑧 relation of the IGM.
(iii) The resolution in EAGLE is high enough to resolve the Jeans

length in the IGM.
(iv) Since EAGLE is a hydrodynamic simulation, it evolves both

the baryonic matter and dark matter together self-consistently. Hence
we do not make any assumptions about the distribution of baryons
based on dark matter distributions, as is done with semi-analytic
models.

Table 1 summarises the simulations that were used in this work.
The reference feedback model was calibrated at the standard EAGLE
resolution (i.e the resolution of RefL0100N1504). The reference
feedback model is used in the simulations listed in Table 1 with the
prefix ‘Ref’. The simulation RecalL0025N0752 was re-calibrated in
the same manner as the reference feedback model except at eight
times higher resolution. Using a variety of box sizes (i.e. 25, 50 and
100 cMpc), resolutions and feedback calibrations is necessary to test
for resolution and box size convergence. Except for in Appendices C
and D we will only be sharing the results obtained from the analysis
of RefL0100N1504.

3 METHODS

We have used EAGLE to calculate the DM − 𝑧 relation between
redshifts 0 < 𝑧 . 3. We limit our analysis to redshifts 𝑧 . 3 because
helium reionisation is expected to be complete by redshift 𝑧 ∼ 3
and the Haardt & Madau (2001) UV background may not accurately
reproduce the abundances of singly ionised helium (i.e. at redshift
0 < 𝑧 . 3 the properties of the IGM are relatively simple).

3.1 Creating Dispersion Measure Maps

For each of the simulations listed in Table 1, we produced integrated
electron column density (𝑁𝑒) maps from all the EAGLE snapshots
in the redshift range 𝑧 = 0 to 3.016. We then converted each of these
column density maps into DM maps.

The method we used to calculate these integrated column densities
is detailed in Section 2.2 of Wĳers et al. (2019); however we provide
an overview of this process in Section 3.1.1 below.

3.1.1 Column Density Calculation

We post-processed the EAGLE snapshots to obtain the ion abun-
dances of H i, He i and He ii. We determined the number density
of ions using tabulated ionisation fractions as a function of density,
temperature, redshift. These ionisation fraction tableswere computed
using the spectral synthesis program Cloudy (version c07.02.00, Fer-
land et al. 1998) under the same cooling assumptions that were used
in EAGLE. We used the Rahmati et al. (2013) prescription to obtain
the fraction of neutral hydrogen because the ionisation tables do not
account for self-shielding against ionising radiation in high-density
(𝑛H & 10−3 cm3) gas.
We obtained the column densities (𝑁𝑥 ; where 𝑥 is H, H i, He, He i

or He ii) of these ions by summing within columns (thin elongated
rectangular prisms) of fixed length and finite area. We divided the
𝑋 and 𝑌 directions of a snapshot such that each column had an area
of 3.1252 ckpc2. This area was chosen such that the column density
statistics had converged. The length of each column is equal to the
box size (𝐿box) This gives us the number of lines-of-sight (𝑁pixels)
shown in Table 1.
We use the SPH kernel to project the ion abundances within SPH

particles into columns, then add the particle contributions in each
column together. We then divide the total abundance in each column
by the area (3.1252 ckpc2) to get the column densities in lines-of-
sight along the 𝑍-axis.2 We refer to this 2D projection as a column
density ‘map’. Each pixel in the map is the column density along that
line-of-sight.

3.1.2 Electron Column Density Maps

We calculated the electron column density, 𝑁𝑒, along each line-of-
sight from the calculated ion column densities as shown in Equa-
tion (5),

𝑁𝑒 = (𝑁H − 𝑁H i) + (2𝑁He − 2𝑁He i − 𝑁He ii) . (5)

2 We only used projections along the 𝑍 axis instead of three axes, because
performing projections along 𝑋 ,𝑌 and 𝑍 would triple the computation time.

MNRAS 000, 1–14 (2020)



The Cosmic Dispersion Measure in EAGLE 5

Here 𝑁H, 𝑁Hi, 𝑁He, 𝑁Hei, 𝑁Heii are the column densities of hy-
drogen, neutral hydrogen, helium, neutral helium and singly ionised
helium respectively. The values for 𝑁𝑒 were determined in this man-
ner becausewe did not have ionisation tables to calculate ion fractions
for singly ionised hydrogen (H ii) and doubly ionised helium (He iii).
We converted these electron column density maps into DM maps

by a change of units (from cm−2 to pc cm−3). We note that for
snapshots with redshift 𝑧 > 0, this is not the ‘true’ DM map at that
redshift, but the DM map of that snapshot as if it was at redshift
𝑧 = 0. We corrected for this by introducing a factor of (1 + 𝑧)−1
(see Section 3.2 and Appendix B for a derivation of this factor). In
Figure 1 we show three of the DMmaps at redshifts 𝑧 = 0, 1.004 and
3.017.
We clarify here that in this step we are not computing the total

DM to a source, but the DM over the length of the EAGLE boxes at
different redshifts.
In Section 3.2 we generate interpolated DM maps at redshift in-

tervals equal to the 𝐿box. We sum these interpolated DM maps in
Section 3.3 to obtain the total DM to sources at different redshifts.

3.2 Interpolated Dispersion Measure Maps

To study the DM−𝑧 relation for distances larger than one box size, we
need to connect snapshots together (as discussed above) by creating
continuous lines-of-sight from redshifts 𝑧 = 0 to 3. However the
EAGLE boxes do not overlap because the redshift spacing between
the snapshots is larger than the box size (𝐿box). In other words,
there are ‘gaps’ in redshift that EAGLE does not cover. Without
creating maps to fill in these redshift ‘gaps’ we would be significantly
underestimating the line-of-sight DM.
For each of the simulations we generated a sequence of sample

redshifts between 𝑧 = 0 and 3.016 (the redshift of EAGLE snapshot
17) separated by 𝐿box. The redshift sampleswere generated assuming
the same cosmology as implemented as in EAGLE (Planck Collabo-
ration et al. 2014). This gave us 𝑁𝑧 redshift samples (see Table 1 for
a summary of the simulations used).
We calculated an interpolated DM map for each of the redshift

samples by linearly interpolating between neighbouring EAGLEDM
maps. In other words; to create an interpolated DM map at redshift
𝑧 = 0.2 in the RefL0100N1504 simulation, we linearly interpolated
between the DM maps created from neighbouring snapshot outputs
at redshifts 𝑧 = 0.18 and 𝑧 = 0.27.
We linearly interpolated in redshift rather than using comoving

distance because as shown in Equation (B5) DM scales linearly with
the scale factor 𝑎 = (1+𝑧)−1.Wemultiplied each of these interpolated
DMmaps by a factor of (1+ 𝑧)−1 to obtain the true DM values at that
redshift (see Appendix B for a derivation of this (1 + 𝑧)−1 factor).
This gave us 𝑁𝑧 DMmaps, all separated spatially by 𝐿box. Because

the spatial separation between the maps is 𝐿box, we were able to add
these maps together to obtain a continuous sight lines up to redshift
𝑧 = 3.017. In Figure 1 we show a quadrant from three DM maps at
redshifts 𝑧 = 0, 1.004 and 3.017.

3.2.1 Pixel Randomisation (‘Scramble Technique’ )

A common issue that arises when connecting simulation boxes to
create larger volumes is the replication of structure. If these boxes
were naively combined as is, then there would be a periodic repeating
of structure along each line-of-sight. This would lead to results that
would not match our Universe.
One way to minimise the effects of periodic repeating of structure

is to perform a randomised transformation on each replicated simu-
lation box (Blaizot et al. 2005). These transformations are a series of
rotations, mirrors and translations.
However, as we show in Appendix D, in the case of DMmaps this

transformation technique is ineffective at removing correlations in
the smaller simulations (25 and 50 cMpc). This is because there is
less space in the smaller boxes to ‘translate’ the boxes, which leads
to a greater number of repeating structures.
We have instead used a ‘scramble’ technique to remove the struc-

ture of the DM maps. For each map we randomly reassign the in-
dividual lines-of-sight (pixels) to new locations. The reassignment
of lines-of-sight to new position is completely independent for each
map. This process scrambles the positions of the lines-of-sight to
ensure there we have no repeating structures.

3.3 Cumulative Sum and PDF Normalisation

After scrambling the positions of the lines-of-sight we have a 3-
dimensional array (𝑁pixels × 𝑁pixels × 𝑁𝑧) containing DMmaps sep-
arated by 100 cMpc with no periodic structure (see Section 3.2.1).
For each pixel, we performed a cumulative sum along 𝑧. This gave

us 𝑁z redshift samples, each with 𝑁pixels × 𝑁pixels line-of-sight DM
measurements.
For each of the 𝑁z redshift samples we constructed the DM prob-

ability density function (PDF). We created histograms using 1000
(𝑁bins) logarithmically spaced bins between 100 − 105 pc cm−3. We
normalised each histogram to produce the probability density func-
tion (PDF). This normalisation is:

PDF(𝑧) = 𝑁los,𝑖

(
ΔDM𝑖

𝑁bins∑︁
𝑖=0

𝑁los,𝑖

)−1
, (6)

where PDF(𝑧) is the DMcosmic PDF at redshift 𝑧, 𝑁los,𝑖 is the number
of lines-of-sight within the 𝑖th DM bin, and ΔDM𝑖 is the width of
the 𝑖th DM bin.

4 RESULTS AND DISCUSSION

4.1 Dispersion Measure - Redshift Relation

In the left panel of Figure 2 we show the PDFs of DMcosmic from
the RefL0100N1504 simulation at 66 redshift intervals between
0 < 𝑧 < 3.016. The thick solid black line is the mean DMcosmic
(〈DMcosmic〉) at each redshift and the dot-dashed, dashed, and dot-
ted lines are the 1𝜎, 2𝜎, and 3𝜎, confidence intervals respectively.
See Section 4.2 and Section 4.3 for more details on 〈DMcosmic〉 and
the confidence intervals. The PDFs have been normalised to unity
as described in Equation (6). We have truncated the colour bar at
log10 PDF(𝑧) = −6 because below this value there is noise in the
PDF bins due to the low number of lines-of-sight.
In the right panel of Figure 2, we plot the 〈DMcosmic〉 with existing

analytic (solid), hydrodynamic (dashed) and semi-analytic (dotted)
analysis in the literature. The analytic models of Ioka (2003), In-
oue (2004), Zhang (2018) and Macquart et al. (2020) are coloured
yellow, purple, orange and green respectively. The hydrodynamic
models of McQuinn (2014), Dolag et al. (2015) and Jaroszynski
(2019) are coloured light brown, red and light-blue respectively. The
semi-analytic model of Pol et al. (2019) is coloured grey. The line
for Jaroszynski (2019) is difficult to see because it almost perfectly
overlaps with 〈DMcosmic〉. We find a large spread in the DMcosmic
PDFs. This is not unexpected since this spread is indicative of the
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Figure 1. Left to Right: Zoom in DM maps from simulation RefL0100N1504 at several redshifts (𝑧 = 0, 1.004 and 3.017, from left to right). Each of these
maps span 50 cMpc × 50 cMpc (i.e. one quadrant of the larger DMmap) with 16, 000×16, 000 lines-of-sight. The larger DM values in the third panel compared
to the first panel are not due to longer lines-of-sight (these maps only span the 100 cMpc simulation box size) but due to the average physical density of the
Universe being larger at higher redshifts. Note that we have capped the colour bar at 500 pc cm−3 to emphasise the filament structure of the IGM.

Figure 2. Left: The purple-green coloured histogram is the PDF of DMcosmic in the EAGLE RefL0100N1504 simulation at each redshift. The thick solid black
line is the mean DMcosmic at each redshift. The thin black lines are the 1 𝜎 (dash-dotted), 2 𝜎 (dashed) and 3 𝜎 (dotted) confidence intervals at each redshift.
The DMcosmic PDF at has been normalised to unity at each redshift. Right: A comparison between the mean DM − 𝑧 relation of this work and other results in
the literature. The thick solid black line is the mean DMcosmic at each redshift (same as left). The remaining solid lines are the analytic models of Ioka (2003)
(yellow), Inoue (2004) (purple), Zhang (2018) (orange) and Macquart et al. (2020) (green). These analytical approximations have zero spread in DM values
due to assuming the universe is homogeneous. The differences in these analytical formulations are due to differing assumptions of the elemental composition,
ionisation state and baryonic content of the IGM. The dashed lines are hydrodynamic models of McQuinn (2014) (light brown), Dolag et al. (2015) (red), and
Jaroszynski (2019) (light-blue). The dotted line is the semi-analytic model of Pol et al. (2019) (grey).

variation in cosmic electron column density between different lines-
of-sight. See Section 4.3 for further analysis of the non-Gaussianity
of these PDFs.
Our 〈DMcosmic〉 broadly agree with the other models in the liter-

ature; in-particular Jaroszynski (2019) is an extremely close match
for all redshifts.

The Ioka (2003) can be considered an upper-limit to the slope of the
DM − 𝑧 relation because it assumes the Universe is homogeneously
filled with ionised hydrogen alone. Increasing the helium fraction or
the amount of baryons locked inside galaxies both decrease the slope
of the DM − 𝑧 relation.
On the other hand, Zhang (2018) uses a 𝑓IGM factor ( 𝑓IGM = 0.85)
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Figure 3. Top: The solid black line is the 〈DMcosmic 〉 at each redshift. The
red and blue lines are the Model A (linear model) and Model B (non-linear
model) fits themean respectively.Middle:The residuals of 〈DMcosmic 〉minus
the model fits. The colours here are the same as the top panel. Bottom: The
relative residuals of the mean minus the model fits. The colours here are the
same as the other panels.

to analytically exclude baryons locked inside galaxies from contribut-
ing to DMcosmic. However, their model underestimates 〈DMcosmic〉
at all redshifts compared to the results of this work and other hydro-
dynamic simulations. This suggests that simulations predict a higher
fraction of baryons residing in the IGM than analytic models.

4.2 Mean Dispersion Measure

We calculated themean 〈DMcosmo〉 at each of the 66 redshift samples
using the relation

〈DMcosmic〉 =
𝑁bins∑︁
𝑖=0
DM𝑖 𝑃(DM𝑖 |𝑧) ΔDM𝑖 , (7)

where DM𝑖 is a bin value, 𝑃(DM𝑖 |𝑧) is the probability of a line-
of-sight with DM𝑖 at redshift 𝑧 and ΔDM𝑖 is the width of the DM𝑖

bin.
In the top Figure 3 we show the measured 〈DMcosmic〉 for each

redshift. To fit this data we have considered both a linear and non-
linear model for the DM − 𝑧 relation.
We term the linear relation between 〈DMcosmic〉 and redshift as

Model A where,

〈DMcosmic〉 = 𝑎𝑧 + 𝑏 . (8)

This model has been used previously in the literature to provide
a simple a ’rule-of-thumb’ for converting DMObs into an estimated
redshift (e.g. Zhang 2018; Petroff et al. 2019). We have fit this model
with both a zero and non-zero intercept and find that 𝑏 ≠ 0 is
preferred. We note however that most of the literature uses Model A
with 𝑏 = 0 .
Model B is a non-linear parameterisation of the DM − 𝑧 relation

to include the cosmology of the Universe

〈DMcosmic〉 = 𝛼𝐹 (𝑧) , (9)

here the parameter 𝐹 (𝑧) is given by the following

𝐹 (𝑧) =
∫ 𝑧

0

1 + 𝑧√︁
(1 + 𝑧)Ω𝑚 +ΩΛ

d𝑧 . (10)

Model B is based on Equation (3) which relates 〈DMcosmic〉 to 𝑧.
At redshift 𝑧 = 0, 𝐹 (𝑧) = 1. This means we are able to measure the
redshift 𝑧 = 0 value of 𝛼 =

3𝑐H0Ω𝑏

8𝜋𝐺𝑚𝑝
𝑓IGM (𝑧 = 0)𝜒(𝑧 = 0).

We calculated a least squares fit for both models as a function of
redshift 𝑧. In the top panel of Figure 3 we present the best fitting
parameters for both Model A and Model B. In the lower two panels
of Figure 3 we have also plotted the absolute and relative residuals
to the best fitting model. We find that the best fit to Model A has
parameters 𝑎 = 999 ± 4 and 𝑏 = 17 ± 6, with a reduced 𝜒2 = 809.3
with 64 degrees of freedom and a mean relative residual of 14.6% in
the redshift range 𝑧 = 0 − 3. The best fit to Model A with 𝑏 = 0 has
parameters 𝑎 = 1009± 3 with a reduced 𝜒2 = 899.2 with 65 degrees
of freedom. We find that the Model A fit with 𝑏 ≠ 0 is preferred.
The best fitting Model B has parameters 𝛼 = 934.5 ± 0.3, with a

reduced 𝜒2 = 13.2 with 65 degrees of freedom and a mean relative
residual of 0.732%.
We find that Model B is a better fit to the 〈DMcosmic〉 particularly

at low redshifts (𝑧 < 0.5). We would urge caution when using a
linear model for estimating FRBs redshifts with low DM values.
Using 𝛼 = 934.5 we find 𝑓IGM (𝑧 = 0)𝜒(𝑧 = 0) = 0.85.

4.3 Standard Deviation

We have use two different (but related) metrics to measure the scatter
around 〈DMcosmic〉 at a given redshift. These metrics are:

(i) 𝜎Var: the variance of the PDF, and
(ii) 𝜎CI: the 1 𝜎 (68%) confidence interval.

We have used two metrics because they both quantify the spread
around the mean but in different ways. 𝜎Var quantifies the expected
deviation from the mean, whereas 𝜎CI describes the width. These
𝜎Var, 𝜎CI are defined as,

𝜎2Var (𝑧) =
𝑁bins∑︁
𝑖=0

(DM𝑖 − 〈DMcosmic〉)2𝑃(DM𝑖 |𝑧)ΔDM𝑖 , (11)

𝜎CI (𝑧) =
DM84 (𝑧) − DM16 (𝑧)

2
. (12)

In Equation (11), DM𝑖 is a bin value, 〈DMcosmic〉 is mean of the
PDF at redshift 𝑧, 𝑃(DM𝑖 |𝑧) is the probability of a line-of-sight with
DM𝑖 at redshift 𝑧 and ΔDM𝑖 is the width of the bin. In Equation (12)
DM84 (𝑧) and DM16 (𝑧) are the upper and lower limits of the 68%
confidence interval respectively.
When the 〈DMcosmic〉 PDF is Gaussian, both 𝜎Var and 𝜎CI are

identical. However for distributions that are skewed, 𝜎Var > 𝜎CI.
The larger the difference between 𝜎Var and 𝜎CI, the more skewed the
distribution.
In the top panel of Figure 4we show𝜎CI and𝜎Var for each redshift.

We calculated a least squares fit for both 𝜎Var and 𝜎CI assuming
an exponential form with redshift 𝑧 as

𝜎 = 𝐴𝑒𝐵𝑧 + 𝐶 . (13)

We plot the best fitting exponential models in Figure 4. In the
lower two panels of Figure 4 we have also plotted the absolute and
relative residuals. We find that the best exponential fit to 𝜎Var has
parameters 𝐴 = −205± 2, 𝐵 = −1.35± 0.04 and 𝐶 = 254± 2 with a
reduced 𝜒2 = 21.4 with 63 degrees of freedom and a mean relative
residual of 7.12% in the redshift range 𝑧 = 0 − 3.
Similarly the best fitting exponential to 𝜎CI has the parameters
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Figure 4. Top: The solid and dashed black lines 𝜎CI and 𝜎Var at each redshift
respectively. The red and blue lines are the best fitting exponential models
for 𝜎CI (solid) and 𝜎Var (dashed) respectively.Middle: The residuals of 𝜎CI
and 𝜎Var minus the model fits. The line styles here are the same as the top
panel. Bottom: The relative residuals of 𝜎CI and 𝜎Var minus the model fits.
The line styles here are the same as the other panels.
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Figure 5. Non-Gaussainity of the PDFs, 𝑓NG, as a function of redshift, 𝑧. A
value of 𝑓NG of 0.0 indicates that the 〈DMcosmic 〉 PDF at redshift 𝑧 is Gaus-
sian. Ratios other than 0.0 indicate that the PDF is skewed from normality.
The Gaussianity of the 〈DMcosmic 〉 PDFs increases with redshift.

𝐴 = −234.3 ± 0.7, 𝐵 = −0.991 ± 0.009 and 𝐶 = 237.2 ± 0.8 with a
reduced 𝜒2 = 2.18 with 63 degrees of freedom and a mean relative
residual of 7.9% in the redshift range 𝑧 = 0 − 3.
We find that 𝜎Var is significantly larger than 𝜎CI for all redshifts

indicating that the DMcosmic PDF are non-Gaussian.

4.4 PDF Non-Gaussianity

We introduce the quantity 𝑓NG as ameasure of the “non-Gaussianity"
of the PDFs at any given redshift as described by

𝑓NG = 1 − 𝜎CI
𝜎Var

. (14)

A value of 𝑓NG that is close to zero indicates the PDF is close to
Gaussian, whereas a value close to unity indicates extremely strong
non-Gaussianity.
In Figure 5 we plot 𝑓NG for each redshift. Over the redshift range

0 < 𝑧 < 3, we find that the Gaussianity of the PDFs increases
markedly with redshift. We note that even at redshift 𝑧 = 3, 𝑓NG ≈
0.1. This indicates that even at high redshifts (𝑧 ∼ 3), the shape
of the DMcosmic is still significantly non-Gaussian. This increase in
Gaussianity with redshift can be well interpreted in terms of the FRB
path length and the amount of substructure up to that distance.
The shorter path length of low-redshift (𝑧 < 0.5) FRBs increases

the probability that the line-of-sight will not intersect with any galaxy
halos or IGM filaments. The few high DM structures that intersect
the sight lines of these low-redshift FRBs cause the PDF to become
skewed to reflect the log-normal matter distribution.
At higher-redshifts (𝑧 > 0.5), the FRB sight lines are likely in-

tersect with more high DM structures, causing the PDF to become
more Gaussian with increasing redshift.
Additionally, the size of the simulation box contributes to the

shape of the PDF distribution because it physically determines the
maximum size of structures. A small, 25 cMpc box is physically
unable to contain the low-density voids, or extremely rare high-
density clusters because they would extend outside the box. Using
larger boxs alleviates this problem because they are able to contain
larger substructure. See Figure C4 for a comparison of 𝑓NG with
different simulation box sizes.
Another factor to consider is that different parameterisations of

galaxy feedback mechanisms (i.e AGN and star formation) will lead
to different growths of substructure. For example: increases in AGN
feedback would likely eject more baryons into the IGM and decrease
baryons in galaxies. The reduced amount of baryons in galaxies could
cause the shape of the DMcosmic to become more Gaussian at low
redshifts (𝑧 < 0.5).
In the future as we move towards a situation of hundreds (or

thousands) of localised FRBs, it may become possible to constrain
the feedback mechanisms involved in galaxy evolution. The ability of
future FRBhost galaxy surveys tomeasure galaxy feedback processes
will be explored more in Batten et al. in prep.

4.5 Comparison to Localised Fast Radio Bursts

In Figure 6 we plot 〈DMcosmic〉 from this work and the 1, 2 and
3 𝜎CI confidence intervals. We clarify here that the 3𝜎CI region is
not simply 3 × 𝜎CI, but the region that encompasses 99.7% of the
〈DMcosmic〉 PDF.
We have also plotted the redshifts of the FRBs with localised host

galaxies (see Table 2). The tips of the error bar tops indicates DMObs.
The symbols here represent the DM excess (DMObs −DMMW) with
diamonds (black) and filled circles (yellow) indicating repeating and
not observed to repeat FRBs respectively. We remind the reader that
the DM excess of an FRB is not the same as DMcosmic. There are
additional contributions to DMObs that are not model in the NE2001
electron density model. The two additional contributions that we
consider are the halo of the Milky Way and the ionised gas inside
of the FRBs host galaxy. For the Milky Way halo, we used the
estimated 30 pc cm−3 from Prochaska & Zheng (2019). We have
excluded FRB 190614 (Law et al. 2020) because the localisation
identifies two possible host galaxies at redshift 𝑧 ∼ 0.6.
The contribution due to ionised gas inside the host galaxy is unique

to each FRB. We adopt a rather conservative estimate that each of
the localised FRBs has a host galaxy contribution of 100 pc cm−3.
We expect that 100 pc cm−3 is close to the upper limit for most FRBs
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Name R.A. (J2000) Dec. (J2000) 𝑧host DMObs DMMW Repeater
(Deg) (Deg)

[
pc cm−3] [

pc cm−3]
FRB 180916 01:58:00.28 +65:42:53.0 0.034 348.8 199 Yes Marcote et al. (2020)
FRB 190608 22:16:04.90 −07:53:55.8 0.118 339.5 37.2 No Macquart et al. (2020)
FRB 200430 15:18:49.52 +12:22:35.8 0.160 380.0 27.2 No Heintz et al. (2020)
FRB 121102 05:31:58.70 +33:08:52.7 0.193 557.0 188 Yes Tendulkar et al. (2017)
FRB 191001 21:33:24.44 −54:44:54.7 0.2340 507.9 44.2 No Bhandari et al. (2020)
FRB 190714 12:15:55.09 −13:01:16.0 0.2365 504.1 38.5 No Heintz et al. (2020)
FRB 190102 21:29:39.72 −79:28:32.2 0.291 364.5 57.3 No Macquart et al. (2020)
FRB 180924 21:44:25.25 −40:54:00.8 0.321 361.4 40.5 No Bannister et al. (2019)
FRB 190611 21:22:58.71 −79:23:49.6 0.378 321.4 57.8 No Macquart et al. (2020)
FRB 181112 21:49:23.68 −52:58:15.4 0.476 589.3 40.2 No Prochaska et al. (2019)
FRB 190711 21:57:40.63 −80:21:29.3 0.522 593.1 56.5 Yes Macquart et al. (2020)
FRB 190523 13:48:15.43 +72:28:14.4 0.660 760.8 37.0 No Ravi et al. (2019)

Table 2. All FRBs for which host galaxies have been identified as of November 2020. From left to right the columns are: the name of the FRB, right ascension
of the FRB in J2000 coordinates, declination of the FRB in J2000 coordinates the redshift of the FRB host galaxy (𝑧host), the observed dispersion measure
(DMObs), the estimated Milky Way contribution calculated from the NE2001 (Cordes & Lazio 2002) Galactic electron density model (DMMW), repeating status
(Yes/No), and the reference to the FRB host galaxy measurement. The FRBs are ordered in increasing redshift. We have plotted these FRBs against the EAGLE
DMcosmic relation in Figure 6.

Figure 6. The solid black line is the mean DM− 𝑧 relation found in this work
shown in Figure 2. The blue contours indicate the 1, 2 and 3 𝜎CI confidence
intervals. The data points show the DM versus redshift, 𝑧, for FRBs which
have been associated with host galaxies (listed in Table 2). For each FRB, the
symbols show the DM excess (DMobs - DMMW), the tip of the upward error
bar shows the observed DM (DMobs). The Milky Way DM is estimated using
the NE2001 galactic electron density model (Cordes & Chatterjee 2019).
The tip of downward error bar indicates an additional contribution of 130
pc cm−3 (composed of 100 pc cm−3 for an estimated host galaxy and 30
pc cm−3 for the contribution due to the Milky Way halo from Prochaska &
Zheng 2019; which is not modelled in NE2001). Diamonds (black) indicate
known repeating FRBs, while filled circles (yellow) are FRBs that have not
yet been seen to repeat.

based on the Milky Way DM contributions. This is assuming that
there is not a large contribution to DMObs from the local environment
surrounding the source of the FRB within the galaxy.
The bottom of the error bars indicate an additional 130 pc cm−3

of subtracted DM. This additional contribution accounts for contri-
bution of ISM contribution
We expect that for most FRBs, the DM excess falls above our mean

DM−𝑧 relation when not accounting for the host galaxy contribution.

Figure 6 shows that the DM−𝑧 relation obtained using the EAGLE
simulations broadly agrees with the observed FRBs host galaxies.
We note that the number of localised FRBs is still small and a larger
number is required, particularly at higher redshifts (𝑧 ∼ 2 − 3).
Of particular note that even with the significant amount of scat-

ter we measure around 〈DMcosmo〉, the six FRBs with the lowest
redshifts (FRB 180916, FRB 190608, FRB 200430, FRB 121102,
FRB 191001 and FRB 190714) all reside in the 2 − 3 𝜎CI re-
gions, whereas the remaining high redshift FRBsmore closely follow
〈DMcosmic〉.
There are a few reasons why an FRB would have a significantly

larger DMcosmic than is expected given its redshift. (i) the DM con-
tribution from host galaxy and/or source environment around the
FRB is larger than estimated, (ii) the FRB intersects with an unseen
intervening galaxy halo, (iii) the FRB intersects with an over-dense
filament of the IGM.
Simha et al. (2020) showed that FRB 190608 traverses through an

over-dense filament of the IGM, which is why it has a DM excess
much larger than the 〈DMcosmic〉 at redshift 𝑧 = 0.378.
We predict that if the IGM reconstruction similar to Simha et al.

(2020) is performed on FRB 200430, FRB 191001 and FRB 190714
we expect that these will also indicate they intersect through an over-
dense filament. We have not included the repeaters FRB 180916 and
FRB 121102 as it is currently unclear if repeating FRBs and single
burst FRBs have the same progenitors. A difference in progenitors
could lead to significantly different source environment DM contri-
butions.
On the other hand, it is unlikely that of the 12 localised FRB

host galaxies, one quarter of them would intersect IGM filaments,
particularly because they all originate from different locations on the
sky. The large DM excess of the FRBs could instead be explained by
significant host galaxy or source environment.

5 SUMMARY AND CONCLUSIONS

In this paper we measured the DM for over 1 billion (15042) sight
lines through the EAGLE cosmological, hydrodynamic simulations.
We used these sight lines to calculate the DM − 𝑧 relation and the
scatter around it for FRBs between redshifts 0 < 𝑧 < 3.We then com-
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pared our model with the observations of FRB host galaxy redshifts.
We summarise our results as follows.

• We have fit the mean DM − 𝑧 relation using both a linear rela-
tion (used often through the literature) and a non-linear relation that
accounts for the cosmology of the Universe. We find that between
redshifts 0 < 𝑧 < 3, the mean DM − 𝑧 relations is best fit by the
non-linear relation,

〈DMcosmic〉 =
(
934.5 ± 0.3 pc cm−3

) ∫ 𝑧

0

1 + 𝑧√︁
(1 + 𝑧)Ω𝑚 +ΩΛ

d𝑧 .

(15)

with Ω𝑚 and ΩΛ being 0.307 and 0.693 respectively. This fit has a
mean residual of approximately 0.7% in the redshift range 0 < 𝑧 < 3.

• We find significant asymmetric scatter around the mean DM− 𝑧

relation that increases exponentially with redshift. Due to the asym-
metry in the DMcosmic PDFs, we have used two different metrics to
quantify the scatter around the mean 𝜎Var (the standard deviation)
and 𝜎CI (the width of the 68% confidence interval). The best fitting
relations (exponential with 𝑧) for 𝜎Var and 𝜎CI are:

𝜎Var = (−205 ± 2) exp[(−1.35 ± 0.04)𝑧] + (254 ± 2) (16)
𝜎CI = (−237.3 ± 0.7) exp[(−0.991 ± 0.009)𝑧] + (237.2 ± 0.8)

(17)

These fits have a mean residual of approximately 7-8% in the
redshift range 0 < 𝑧 < 3.

• We find that the DMcosmic PDFs are strongly asymmetric at
low-redshifts (𝑧 < 0.5) and become more Gaussian as the redshift
approaches 𝑧 ∼ 3.
This is explained by the increasing path length of high redshift

FRBs intersecting with many more high DM structures, causing
the PDF to become more Gaussian. However, the box size of the
simulation is also an important factor. The smaller the simulation,
the faster the PDFswill becomeGaussian. This is because the box size
physically constrains the maximum size of structure in the Universe.
The simulations with box sizes of 25 cMpc can not contain clusters
and voids of that scale or larger. Large simulations of the order 100
cMpc is required to measure the effects of the log-normal matter
density profile on the shape of the DMcosmic PDFs.

• Even with the large amount of scatter, we find that the six
FRBs with the closest host galaxies in redshift all have DMcosmic
values that places them in the 2 − 3𝜎 confidence interval above the
mean 〈DMcosmic〉. These FRBs include: FRB 180916, FRB 190608,
FRB 200430, FRB 121102, FRB 191001 and FRB 190714. We
predict that when an IGM reconstruction similar to the work of
Simha et al. (2020) is performed on FRB 200430, FRB 191001
and FRB 190714, it will indicate that these FRBs also intersect a
filament of the IGM. Alternatively, if these FRBs are not found to
have intersected with an IGM filament, it would indicate a significant
host galaxy or local environment DM contribution.

• We have made the DM − 𝑧 relation published in this work
publicly available through inclusion in the open source FRB redshift
estimation package fruitbat (Batten 2019) which is available via
pip and https://github.com/abatten/fruitbat.
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APPENDIX A: MODEL AVAILABILITY IN FRUITBAT

We have made the DM − 𝑧 relation from this work available in the
open source python package fruitbat (Batten 2019).
In Figure A1we show an example plot of using the DM−𝑧 relation

presented in this work to estimate the redshift of FRB 190711. The
solid black line is the redshift PDF at 536.6 pc cm−3, the DM excess
for FRB 190711. In this case we used a uniform prior (𝑃(𝑧) = 1).
The filled orange region is the 68% confidence interval for redshift,
and the dotted blue line is the median redshift estimate.
In Listing 1 we show the IPython console input and output that

was used to create Figure A1 using fruitbat.

In [1]: import fruitbat as frbat

In [2]: frb190711 = frbat.Frb(
dm=593.1,
raj="21:57:40.68",
decj=" -80:21:28.8",
name="FRB\ 190711")

In [3]: frb190711.calc_dm_galaxy(
model="ne2001")

Figure A1.An example redshift PDF created with fruitbat for FRB 190711.
The dotted blue line is the median of the redshift PDF and the orange shaded
region highlights the 68% confidence interval.

Out[3]: <Quantity 56.48736954 pc / cm3>

In [4]: frb190711.calc_redshift(
method="Batten2020")

Out[4]: <Quantity 0.54406244>

In [5]: frb190711.plot_redshift_pdf(
filename="FRB190711_z_PDF",
usetex=True)

Listing 1: The sample code used to create Figure A1.

APPENDIX B: DERIVATION OF DM

In this appendix we describe how we calculate DM along lines-of-
sight in the EAGLE simulations.
We begin with the definition of DM. The total DM along a line-

of-sight d𝑙 to redshift 𝑧 is as we defined in Equation (1)

DM =

∫ 𝑧

0

𝑛𝑒,p (𝑧)
1 + 𝑧

d𝑙p , (B1)

where DM is the dispersion measure, 𝑛𝑒,p is the physical electron
number density and d𝑙p is the physical distance element.
Note that here we have added the subscript ‘p’ to 𝑛𝑒,p and d𝑙p to

emphasise that these are physical quantities. Since the box size of
the EAGLE simulations are in comoving units, it is convenient to
convert d𝑙p to a comoving quantity (i.e. d𝑙p = d𝑙c (1+ 𝑧)−1). Thus we
have

DM =

∫ 𝑧)

0

𝑛𝑒,p

(1 + 𝑧′)2
d𝑙c . (B2)

In the case of the EAGLE simulations we do not have an infinite
sampling of redshift slices, but instead a finite number of simulation
boxes with a comoving depth of 𝐿box,c. In practise, we have to break
the integral in Equation (B2) into a sum over the series of boxes

DM =
∑︁
Boxes

𝑛𝑒,p

(1 + 𝑧)2
𝐿box,c . (B3)

The column density of electrons, 𝑁𝑒, along a given line-of-sight is
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given by 𝑁𝑒 =
∫
𝑛𝑒,p (𝑧) d𝑙p. Where d𝑙p is the physical distance ele-

ment. Therefore the column density through the EAGLE simulation
box (𝑁𝑒,EAGLE) with a depth 𝐿box,c is given by

𝑁𝑒,EAGLE = 𝑛𝑒,p
𝐿box,c
1 + 𝑧

, (B4)

were 𝐿box,p = 𝐿box,c (1 + 𝑧)−1. Through rearranging we find 𝑛𝑒,p =
𝑁𝑒,EAGLE𝐿

−1
box,c (1 + 𝑧). When we substitute this into Equation (B3)

we obtain:

DM =
∑︁
Boxes

𝑁𝑒,EAGLE
(1 + 𝑧) . (B5)

Hence, to calculate the DM along lines-of-sight in EAGLE, we can
use the column density of electrons, 𝑁𝑒,EAGLE, as shown in Equa-
tion (B5).

APPENDIX C: CONVERGENCE TESTING

In this appendix, we test the convergence of 〈DMcosmic〉, 𝜎Var,
𝜎CI and 𝑓NG with box size, simulation resolution and sub-grid
physics calibration. The default simulation that we compare to is
RefL0100N1504. Table 1 lists the simulations referenced in this ap-
pendix.
Convergence testing is necessary to ensure that the results and

conclusions measured in this paper are not dependent on artificial
properties of the simulation (i.e resolution and box size). One issue
that arises is the resolution of subgrid physics models. There are
two main approaches: you can use the same subgrid model at high
resolution but know the results will be different because the feedback
is acting on different scales or you can recalibrate the model for high
resolution, but add extra degrees of freedom. In the language of
Schaye et al. (2015), if the simulations we say that the simulation
is ‘strongly converged’ if the results do not change with increasing
resolution and the subgrid model is held fixed. Alternatively, we
say the simulations are ‘weakly converged’ if results do not change
with increasing resolution after the subgrid physics model was re-
calibrated for its higher resolution. Simulated volume convergence
does not suffer from these issues because the mass resolution of the
simulation is the same.
We compare the effects of changing box-size by performing the

same analysis using two smaller simulations of the same resolution
(RefL0025N0376 and RefL0050N0752).
We compare between three 25 cMpc boxes to test the effects

of simulation resolution because higher-resolution simulations of
50 or 100 cMpc do not exist. A comparison to RefL0025N0752
and RefL0025N0376 tests the ‘strong convergence’ of the simu-
lations as they are all run with the same subgrid physics param-
eters. We have also tested the ‘weak convergence’ of by compar-
ing to RecalL0025N0752. We consider RecalL0025N0752 a bet-
ter representation of RefL0100N1504 at higher resolution than
RefL0025N0752.The strong and weak of simulations is described
in section 2.2 of Schaye et al. (2015).

C1 DM - Redshift Relation Convergence

In Figure C1 we show the effect of box size, resolution and sub-
grid physics calibration has on 〈DMcosmic〉. The thick black line is
the reference 〈DMcosmic〉 presented in this paper from simulation
RefL0100N1504. The dotted lines indicate simulations that have
the same resolution, but smaller box size as RefL0100N1504. The
dashed lines indicate simulations that have a higher resolution than
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Figure C1. The mean dispersion measure at each redshift calculated us-
ing Equation (7) for all the simulations. The simulations with dotted lines
(RefL0050N0752 and RefL0025N0376) indicate they have the same resolu-
tion as RefL0100N1504 and and differences is due to a box size dependence.
The simulations with dashed lines (RefL0025N0752 and RecalL0025N0752)
indicate they have the same box size and resolution, but different physics
calibrations.

the reference simulation. We find little to no difference between the
〈DMcosmic〉 for each simulation. This indicates that 〈DMcosmic〉 is
extremely well converged in our analysis.

C2 Scatter Convergence

In Figure C2 and Fig. C3 we plot 𝜎Var and 𝜎CI respectively as a
function of redshift 𝑧. The line colours and styles are the same as in
Figure C1.
We should expect to see some differences between simulations

due to the larger number of DM maps used in the smaller simula-
tions. For example, to satisfy resolution convergence, four 25 cMpc
maps from RefL0025N0752 should sum to the same total variance
of RefL0100N1504. Since variance is added in quadrature, if we
assume that each of the four DM maps of a 25 cMpc simulation are
approximately the same variance (which is not necessarily true) then
we should expect 𝜎Var to satisfy

𝜎2var,100 ≈ 4𝜎
2
var,25 . (C1)

Here, 𝜎var,100 and 𝜎var,25 are the standard deviations of a single
100 cMpc and 25 cMpc DM map respectively. From Equation (C1)
we would expect to see a

√
2 increase in 𝜎var for a doubling in

simulation box size.
We have over plotted the

√
2×𝜎var and 2×𝜎var as light grey dotted

lines in Figure C2 relative to the RefL0025N0376 line. Similarly we
also over plotted

√
2 × 𝜎CI and 2 × 𝜎CI in Figure C3. If 𝜎var and

𝜎CI are converged with box size, we should expect that the 50 cMpc
simulations be below or follow close to the bottom light-grey dotted
line and the 100 cMpc simulation to be below or lay close to the upper
light-grey dotted line line. We can see here that both the 50 cMpc and
the 100 cMpc are less than the appropriate light-grey dotted lines,
indicating that we are converged with box size.
Additionally, we see very little difference between the simulations

RefL0025N0376, RecalL0025N0752 and RefL0025N0752 indicat-
ing we have both strong and weak convergence in resolution.
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Figure C2. The 𝜎Var as a function of redshift all the different simulation
types. The line styles here are the same as in Figure C1. The two light-grey
dotted lines are

√
2×𝜎Var and 2×𝜎Var from RefL0025N0376. For the results

to be converged the RefL0100N1504 line should be at or below the highest
grey dotted line.

Figure C3. The 𝜎CI as a function of redshift all the different simulation
types. The line styles here are the same as in Figure C1. The two light-grey
dotted lines are

√
2× 𝜎CI and 2× 𝜎CI from RefL0025N0376. For the results

to be converged the RefL0100N1504 line should be at or below the highest
grey dotted line.

C3 Non-Gaussanity Convergence

In Figure C4 we show the effect of box size, resolution and sub-grid
physics calibration has on 𝑓NG. The line colours and styles are the
same as in Figure C1.
The smaller 25 cMpc simulations become close to Gaussian by

redshift 𝑧 ∼ 0.5. The rate at which the PDFs become Gaussian with
redshift in the 25 cMpc simulations is significantly faster than the
50 and 100 cMpc simulations. This is likely because the 25 cMpc
simulations are not large enough to contain structure in the extreme
tails of the log-normal matter density distribution.

Figure C4. A comparison between 𝜎Var and 𝜎CI from Figures C2 and C3
respectively. A ratio of 0.0 indicates that the 〈DMcosmic 〉 PDF at redshift
𝑧 is Gaussian. Ratios other than 0.0 indicate that the PDF is skewed from
normality.

APPENDIX D: SCRAMBLE VS. TRANSFORMED MAPS
COMPARISON

In this section we compare two techniques that can be used to min-
imise repeating structure when combining the simulations.
The two techniques we compare are: (i) the technique used in Sec-

tion 3.2.1 that we have called the ‘Scramble Technique’ and (ii) a
more traditional approach involving rotations, mirrors and transla-
tions. We refer to this second approach as the ‘transformation tech-
nique’.

D1 Transformation Technique

For each interpolated DM map except the first (we did not perform
any transformations on the redshift 𝑧 = 0 interpolated DM map) we
performed a random rotation, mirror and translation.

Rotation: To rotate the interpolated DM map we randomly chose
an angle 𝜃 that is an integer multiple of 90 degrees (i.e 0, 90, 180
or 270 degrees) and rotated the map by 𝜃 in the counter-clockwise
direction. We chose 𝜃 = 0, 90, 180 or 270 degrees to ensure that
all the pixels in the interpolated DM maps end up aligned across
redshifts for ease of computation.

Mirror: To mirror the interpolated DMmap we flip the orientation
of the horizontal axis. This has the effect of mirroring the left-right
orientation. We chose to only mirror the horizontal axis since mir-
roring the vertical axis can be achieved through a combination of
rotations plus a horizontal mirror. 3 It should be noted that we chose
the random rotation and mirror in conjunction such that zero-rotation
and zero-mirror (relative to snapshot at 𝑧 = 0) was not an available
option.

Translation: To translate the interpolated DM map we randomly
applied a periodic shift to the rows and columns. We are able to
translate the map because EAGLE employs periodic boundary con-
ditions. The number of rows and columns to shift were calculated

3 A vertical mirror is a 180 degree rotation followed by a horizontal mirror.
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Figure D1. The 𝜎CI (𝜎Var) for RefL0025N0376 in the top (bottom) panel
comparing the scrambled (solid black) and transformed (dashed blue) tech-
niques. The large difference between the two curves indicates that the trans-
formed technique introduces significant correlations.

to ensure that a minimum translation of 10 cMpc occurred. 4 A
translation of 10 cMpc is sufficiently large enough that correlations
are nearly absent between large scale structure and hence repetition
along line-of-sights should be minimised.

We can see that at high redshift the value of 𝜎var and 𝜎CI increases
with decreasing box size (i.e. RefL0025N0376, RefL0025N0752
have much larger values than RefL0100N1504). The increased vari-
ance is caused by correlations between boxes.
Since the translation always has a minimum distance of 10 cMpc

in both the 𝑋 and 𝑌 directions this means the smaller boxes (i.e.
RefL0025N0376, RefL0025N0752, and RecalL0025N0752) do not
have a large range of translation space. They only have a small region
in the middle to translate to. This coupled with the fact that we
require 262 × 25 cMpc maps to extend out to redshift 𝑧 = 3, causes
a significant amount of overlapping structure and correlations.

This paper has been typeset from a TEX/LATEX file prepared by the author.

4 There was also a maximum translation of 90 cMpc which corresponds to a
10 cMpc translation in the opposite direction

Figure D2. The 𝜎CI (𝜎Var) for RefL0100N1504 in the top (bottom) panel
comparing the scrambled (solid black) and transformed (dashed blue) tech-
niques. The smaller difference between the two curves as compared to Fig-
ure D1 indicates that the transformed technique introduced only small corre-
lations with this size simulation. This suggests that using the transformation
technique on boxes that are smaller than 100 cMpc will lead to significant
errors on the estimated scatter around the DM − 𝑧 relation.
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