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ABSTRACT

We constrain the redshift dependence of gas pressure bias
〈
byPe

〉
(bias-weighted average electron pressure), which characterises the

thermodynamics of intergalactic gas, through a combination of cross-correlations between galaxy positions and the thermal Sunyaev-
Zeldovich (tSZ) effect, as well as galaxy positions and the gravitational lensing of the cosmic microwave background (CMB). The
galaxy sample is from the 4th data release of the Kilo-Degree Survey (KiDS). The tSZ y map, and the CMB lensing map are from
the Planck 2015 and 2018 data releases, respectively. The measurements are performed in five redshift bins with z . 1. With these
measurements, combining galaxy-tSZ and galaxy-CMB lensing cross-correlations allows us to break the degeneracy between galaxy
bias and gas pressure bias, and hence constrain them simultaneously. In all redshift bins, the best-fit values of

〈
byPe

〉
are at a level of

∼ 0.3meV/cm3 and increase slightly with redshift. The galaxy bias is consistent with unity in all the redshift bins. We demonstrate
that the cosmic infrared background contamination in the tSZ map, cosmic magnification, and redshift distribution uncertainty have
negligible effects on our constraints for all of the redshift bins. Our results are not sensitive to the non-linear details of the cross-
correlation, which are smoothed out by the Planck beam. Our measurements constrain the evolution of thermal energy in dark matter
halos into the high-redshift regime, which is in agreement with previous measurements as well as with theoretical predictions. We
also show that our conclusions are not changed when CMB lensing is replaced by galaxy lensing, which shows consistency of the
two lensing signals despite their radically different redshift range. This study demonstrates the feasibility of using CMB lensing to
calibrate the galaxy distribution such that the galaxy distribution can be used as a mass proxy without relying on the precise knowledge
of the matter distribution.

Key words. LSS of Universe– Sunyaev-Zeldovich effect–intergalactic gas– cross-correlation

1. Introduction

The study of large-scale structure (LSS) is a major topic in mod-
ern cosmology. The theoretical framework of LSS in the linear
regime is well-established and has been constrained by multiple
observations (see, for example, Dodelson & Schmidt (2020) for
a detailed description). On small scales (∼ 1 Mpc), the growth
of structure is driven by the combination of the non-linear grav-
itational collapse and baryonic processes in the intergalactic gas
(van Daalen et al. 2011; Semboloni et al. 2011; Fedelia 2014;
Mead et al. 2015). Although the latter is challenging to model,
an increasing number of multi-wavelengths sky surveys reach
high redshifts and high angular resolution (Catinella et al. 2010;
Heymans et al. 2012; de Jong et al. 2013; Abbott et al. 2016; Ai-
hara et al. 2018, for example), which extend our understanding

? E-mail:yanza15@phas.ubc.ca
?? E-mail:waerbeke@phas.ubc.ca

of the late-time history of the Universe and make us sensitive to
subtle and complicated small-scale physics. In addition, obser-
vations of different “tracers” make it possible to study different
aspects of LSS. In summary, it is a golden age dominated by
surveys that shed light on the role of small-scale physics in LSS
formation and evolution.

For many years, cross-correlations between different LSS
tracers have been a strong tool to help us understand relations
between underlying physics (Hill & Spergel 2014; Van Waer-
beke et al. 2014; Kirk et al. 2016; Hojjati et al. 2017; Singh et al.
2017; Ammazzalorso et al. 2020). Compared to other LSS trac-
ers, the galaxy distribution is easier to measure with high preci-
sion. Cross-correlations between galaxy positions and LSS has
proved to be a powerful tool to study different properties of LSS.
For example, the cross correlation between galaxy positions and
cosmic infrared background (CIB) has been used to probe the
properties of dust in star-forming galaxies (Serra et al. 2014); the
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cross correlation between galaxy position and 21 cm emission is
useful to study the cosmic reionization history (Lidz et al. 2008);
Kuntz (2015) probes the cross-correlation between galaxy posi-
tions and CMB lensing to study the galaxy bias and lensing am-
plitude. In this study, we focus on the cross-correlation between
the galaxy distribution and the thermal Sunyaev-Zeldovich (tSZ)
effect (denoted as the “gy” cross-correlation hereafter) to probe
the “gas pressure bias”, defined as the multiplication of the mean
electron pressure and gas bias, the ratio of the gas overdensity to
the mass overdensity, as a proxy of intergalactic gas properties.

The tSZ effect (Zeldovich & Sunyaev 1969; Sunyaev & Zel-
dovich 1972) is the distortion of the CMB energy spectrum due
to inverse Compton scattering by high-energy electrons; tSZ is
therefore a tracer of the projected intergalactic gas pressure.
Since warm/hot intergalactic gas is typically concentrated in
galaxy clusters, one can use the tSZ effect to detect galaxy clus-
ters (Planck Collaboration 2011; Hincks et al. 2010). In addi-
tion, cross-correlations between tSZ, galaxy clustering and weak
lensing is useful to study the properties of the diffuse gas as
well as the mass distribution of galaxy clusters (Hojjati et al.
2017; Makiya et al. 2018; Koukoufilippas et al. 2020). In order
to probe intergalactic hot gas, the tSZ effect has several advan-
tages over the X-ray emission originating from Bremsstrahlung.
Firstly, its amplitude, characterized by the Compton y param-
eter, does not depend on the cluster redshift while X-ray sur-
face brightness scales with (1+ z)−4, which makes tSZ sensi-
tive to higher redshifts. Secondly, the y parameter depends lin-
early on the density of gas particles while X-ray brightness has
a quadratic dependence. The X-ray emission is thus more af-
fected by the clumpiness of gas. In addition, the characteristic
frequency dependence of tSZ makes it possible to be fully ex-
tracted against other sources of radiation such as CMB, Galactic
dust thermal emission and synchrotron emission (Remazeilles
et al. 2011a), while X-ray spectra highly depend on the temper-
ature and composition of sources.

Makiya et al. (2018); Pandey et al. (2019); Koukoufil-
ippas et al. (2020) report measurements of gy with galaxy
data from the 2MASS photometric redshift survey and
WISE×SuperCOSMOS, the Dark Energy Survey redMaGiC
sample, and the 2MASS redshift survey, respectively. In our
study, we use the galaxy sample from the 4th data release of
the Kilo-Degree Survey (KiDS) (Kuijken et al. 2019) and the
Compton y map from the 2015 data release of the Planck mis-
sion (Planck Collaboration 2016a). The previous studies have
larger sky coverage but lower survey depth, while KiDS covers
only about 2% of the sky but goes as deep as z∼ 1. Chiang et al.
(2020) has also measured the tSZ signal up to z ∼ 1, but uses a
quasar catalog at high redshift. Quasars might have strong feed-
back effect in the cross-correlation, which is difficult to model.
In contrast, our measurement uses a pure galaxy sample that goes
to the highest redshift to date.

The galaxy distribution is a biased tracer of the mass distri-
bution, and when used in cross-correlation studies, the galaxy
bias is degenerate with the bias of the other tracer. For ex-
ample, in the gy measurements, the galaxy bias and the gas
pressure bias are degenerate. In Koukoufilippas et al. (2020);
Pandey et al. (2019); Makiya et al. (2018), this problem was
addressed by measuring the galaxy bias from the galaxy auto-
correlation function, which requires careful modelling of the
auto-correlation noise. For KiDS, the field-to-field depth vari-
ation is large, which makes galaxy auto-correlations challeng-
ing to model with precision. We therefore adopt an alternative
approach, which consists of measuring the galaxy bias using
the CMB lensing convergence as the mass proxy, via the “gκ”

cross-correlation, which is also adopted in studies such as Fer-
raro et al. (2015). The gravitational lensing effect of CMB pho-
tons (Lewis & Challinor 2006) is an unbiased mass tracer of LSS
which has been used to cross-correlate with other tracers to study
mass clustering and galaxy bias (Bianchini et al. 2015; Singh
et al. 2017; Hurier et al. 2019). In this work, we measure the
cross-correlation between galaxy positions and the Planck CMB
lensing map (Planck Collaboration 2020b) to independently con-
strain the galaxy bias and to eliminate the need for modelling
the galaxy auto-correlation function. It should be noted that the
noise modelling of the galaxy distribution also affects the cross-
correlations, but only at the covariance level. In this study, we
focus on the linear scale properties of the gas and galaxy posi-
tion while modelling the cross-correlations on non-linear scales
with simple one-parameter models. We do not attempt to extract
any cosmological information from them. However, with future
improvements in data quality, this approach could in principle be
generalized to probe non-linear scales.

Note that the galaxy bias could also be constrained from the
cross-correlation between foreground galaxy positions and back-
ground galaxy shear, known as galaxy-galaxy lensing. However,
at high precision, the interpretation of galaxy lensing requires the
modelling of non-lensing effects such as the source-lens cluster-
ing and the intrinsic alignments (Hamana et al. 2002; Hall &
Taylor 2014; Valageas 2013), and shape measurement residual
systematics. These are extensively studied in their own right,
but in this work, we intend to highlight the feasibility of us-
ing the galaxy distribution as a proxy for the mass distribution
with CMB lensing as the galaxy-mass calibration tool. Although
CMB lensing has a much lower signal-to-noise than galaxy lens-
ing for a given sky area, it extends to much higher redshift and is
immune to most of the non-lensing effects that can contaminate
galaxy lensing.

This paper is structured as follows: in Sect. 2 we describe
the theoretical model we use for the cross-correlations; Section
3 introduces the data set that we are using; Section 4 presents
the method to measure cross-correlations, as well as our esti-
mation of covariance matrix, likelihood, and systematics; Sec-
tion 5 presents the results; Section 6 discusses the results and
summarizes our conclusion. Throughout this study, we assume
a flat ΛCDM cosmology with fixed cosmological parameters
from Planck Collaboration (2020a) as our fiducial cosmology:
(h,Ωch2,Ωbh2,σ8,ns) = (0.676,0.119,0.022,0.81,0.967). The
impact of fixing cosmological parameters are discussed in Sec-
tion. 6.

2. Models

We measure the angular cross-correlation in harmonic space.
In general, the angular cross-correlation between two projected
tracers u and v at scales ` & 10 are well computed by the Limber
approximation (Limber 1953; Kaiser 1992):

Cuv
` =

∫
χH

0

dχ

χ2 W u(χ)W v(χ)PUV

(
k =

`+1/2
χ

,z(χ)
)
, (1)

where χ denotes the comoving distance; χH is the comoving
distance to the horizon; W u(χ) is the radial kernel of tracer u;
PUV (k,z) is the three-dimensional (3D) cross-power spectrum of
associated 3D fluctuating tracers U and V :

〈
δU (k)δV (k′)

〉
= (2π)3

δ (k+k′)PUV (k) (2)
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In this work, the fluctuating physical quantity for tSZ is the
3D electron pressure fluctuation ∆Pe; for galaxy number counts
it is the 3D galaxy overdensity δG; for CMB lensing it is the 3D
mass overdensity δM. Note that, throughout this paper, the two-
dimensional (2D) projected tracers (projected galaxy number,
Compton y and lensing convergence κ) are labeled as lower case
letters g, y, and κ; while the corresponding 3D tracer (galaxy
number distribution, electron pressure, and mass distribution)
are labeled as capital letters G, P, and M.

In this work we measure Cgy
` and Cgκ

` . The angular fluctu-
ation of galaxy number density ∆g is the 2D projection of 3D
number-density fluctuations:

∆g(θ̂) =
∫

χH

0
dχ

H(z)
c

ng(z)δG(χ(z)θ̂ ,z), (3)

where c is the speed of light; H(z) is the Hubble constant at
redshift z; δG(χ(z)θ̂ ,z) is the 3D galaxy number density fluctua-
tion, and ng(z) is the normalized redshift distribution of galaxies,
which depends on the sky survey. At large scales, we model the
number density fluctuations so that it is proportional to the un-
derlying mass fluctuation: δG =

〈
bg
〉

δM where
〈
bg
〉

is the mean
galaxy bias of the galaxy population and δM is the total mass
overdensity. The galaxy kernel is given as

W g(χ) =
H(χ)

c
ng[z(χ)]. (4)

The tSZ signal is parametrized by the Compton-y parameter,
given by:

y(θ̂) =
σT

mec2

∫
χH

0

dχ

1+ z
Pe(χθ̂), (5)

where σT is the Thomson scattering cross-section; and me is the
electron mass; Pe is the gas electron pressure. Like the galaxy
number density fluctuation, we also model the intergalactic gas
overdensity as a linearly biased tracer of the underlying mass
fluctuation at large scales (Goldberg & Spergel 1999; Van Waer-
beke et al. 2014), so the pressure fluctuation ∆Pe ≡ Pe−〈Pe〉 =
〈Pe〉δgas =

〈
byPe

〉
δm, where δgas denotes the gas overdensity; by

is the gas bias; and 〈Pe〉 ≡ 〈nekBTe〉 is the mean electron pres-
sure in gas halos. The combination “gas pressure bias”

〈
byPe

〉
is

the mean pressure weighted by gas bias, which is related to the
thermodynamics of gas inside halos. The tSZ kernel is given by

W y(χ) =
σT

mec2
1

1+ z(χ)
. (6)

The CMB lensing kernel is the mass fluctuation convolved
with the lensing kernel:

W κ(χ) =
3H2

0 Ωm

2ac2 χ
χCMB−χ

χCMB
, (7)

where χCMB is the comoving distance to the last-scattering sur-
face at z ∼ 1100; a denotes the scale factor. Therefore, in the
linear regime, all three tracers are modelled as linearly biased
mass fluctuation convolved with respective kernels, so the linear
cross-power spectrum PUV (k) is the linearly biased matter power
spectrum:

Plin
GP(k) =

〈
bg
〉〈

byPe
〉

Plin(k)

Plin
GM(k) =

〈
bg
〉

Plin(k),
(8)

where Plin(k) is the linear matter power spectrum. For simplicity,
hereafter we omit the redshift dependence in the notation of

〈
bg
〉

and
〈
byPe

〉
.

Following the method given in Hang et al. (2021), to account
for non-linear effects at small scales, we model the non-linear
portion of our power spectra as an unknown amplitude multi-
plied by a physical model template:

Pnl
GP(k) =

〈
cgy
〉

T nl
GP(k),

Pnl
GM(k) =

〈
cgκ

〉
T nl

GM(k),
(9)

where T nl(k) is the additional non-linear templates.
〈
cgy
〉

and〈
cgκ

〉
are two re-scaling parameters that account for differences

between the amplitudes of non-linear gy, gκ , and dark matter
cross-correlations. The total power spectrum is then modeled as:

PGP(k) =
〈
bg
〉〈

byPe
〉

Plin(k)+
〈
cgy
〉

T nl
GP(k),

PGM(k) =
〈
bg
〉

Plin(k)+
〈
cgκ

〉
T nl

GM(k).
(10)

To ensure that our constraints on linear bias are robust to the
exact non-linear models, we try three well-used models for the
non-linear power spectrum templates as well as trying a purely
linear model:

1) Halo model: the non-linear power spectrum is given by the
one-halo term of the halo model (Cooray & Sheth 2002; Seljak
2000):

T nl
UV (k) = P1h

UV (k)≡
∫

∞

0
dM

dn
dM

pU (k |M)pV (k |M), (11)

where dn/dM is the halo mass function and pU (k | M) is the
profile of the tracer U with mass M in Fourier space:

pU (k |M)≡ 4π

∫
∞

0
drr2 sin(kr)

kr
pU (r |M) . (12)

For CMB lensing, we take the profile that enters the halo
model as the dark matter halo profile, which is typically mod-
elled via the Navarro-Frenk-White profile (NFW; Navarro et al.
1996):

pM(r |M) = ρNFW(r |M) ∝
1

r/rs (1+ r/rs)
2 , (13)

where rs is the characteristic radius of a dark matter halo,
which relates to the halo mass which we take from the mass-
concentration relation.

The galaxy population in a halo is divided into centrals and
satellites, the abundances of which we relate to halo mass via a
Halo Occupation Distribution (HOD) model (Zheng et al. 2005;
Peacock & Smith 2000):

Nc(M) =
1
2

[
1+ erf

(
log(M/Mmin)

σlnM

)]
Ns(M) = Nc(M)Θ(M−M0)

(
M−M0

M1

)αs

,

(14)

where Nc(M) and Ns(M) are the mean number of central and
satellite galaxies respectively. M1,M0,Mmin,σM,αs are free pa-
rameters in principle. The galaxy density profile is then:

pg(k |M) = n̄−1
g [Nc(M)+Ns(M)ps(k |M)] , (15)
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where n̄g is the mean galaxy number density. We assume
that central galaxies exist at the halo centre while satel-
lites follow the underlying matter distribution, so the satel-
lite profile ps is the NFW profile. In this work, we fix
HOD parameters to {σM,αs, log10 M1, log10 M0, log10 Mmin} =
{0.15,1,13,11.86,11.68} as constrained from Zheng et al.
(2005). Here masses are in the unit of h−1M�. While this may
not be a correct description of our galaxy population, we see
later that our conclusions are unaffected by the details of our
non-linear model.

The y signal derives via the electron pressure profile
pe(r,M,z), which we take from Arnaud et al. (2010):

pe(r,M,z) = 1.65(h/0.7)2 eVcm−3

×E8/3(z)
[

M
3×1014(0.7/h)M�

]2/3+αp

p(x),
(16)

where x ≡ r/r500 and E(z) ≡ H(z)/H0. r500 is the radius which
encloses a region with average density equal to 500 times the
critical density of the Universe. The parameter αp = 0.12 as
given by Arnaud et al. (2010). The self-similar part of the pres-
sure profile p(x) is given by (Nagai et al. 2007):

p(x)≡ P0(0.7/h)3/2

(c500x)γ
[
1+(c500x)α

](β−γ)/α
. (17)

The parameters in p(x) are taken as the best-fitted val-
ues from Planck Collaboration (2013): {P0,c500,α,β ,γ} =
{6.41,1.81,1.33,4.13,0.31}.

Note that, in halo model, the gas pressure bias can be ex-
pressed as:

〈
byPe

〉
(z) =

∫
∞

0
dM

dn
dM

(z)bh(M,z)
∫

∞

0
dr4πr2 pe(r,M,z), (18)

where∫
∞

0
dr4πr2 pe(r,M,z)≡ ET(M,z), (19)

which means that〈
byPe

〉
(z) =

∫
∞

0
dM

dn
dM

(z)bh(M,z)ET(M,z). (20)

Therefore, the gas pressure bias directly links to the thermal en-
ergy of dark matter halos.

We take the halo mass function and halo bias needed in the
halo model from the fitting formulae of Tinker et al. (2008) and
Tinker et al. (2010), respectively. We choose this ‘halo model’
as our fiducial model.

2) HALOFIT non-linear model: we isolate the purely non-
linear part of the HALOFIT model (Smith et al. 2003; Takahashi
et al. 2012) by taking the full model and subtracting linear the-
ory:

T nl(k) = PHF(k)−Plin(k), (21)

where PHF(k) is the HALOFIT matter power spectrum. While
the HALOFIT model was calibrated to the matter power spec-
trum only, we hope that the non-linear shape is general enough
to capture the correct shape of the galaxy–Pressure and galaxy–
matter power spectra that are relevant to our cross correlations.

Any amplitude differences will be absorbed by our multiplica-
tive non-linear coefficients. This non-linear template is also used
in Hang et al. (2021).

3) Constant non-linear model: The non-linear power spectra
are constants:

T nl
UV (k) = P1h

UV (0), (22)

where P1h
UV (0) is the one-halo term of the halo-model power

spectrum at k = 0Mpc−1.This model should only work on large
scales where the one-halo region can be treated as a point source.

To make sure that our non-linear models are not sensitive to
the precise shape of the non-linear power spectrum, we only fit
C`’s in each tomographic bin within an angular scale correspond-
ing to k < 0.7Mpc−1 via the Limber approximation. In addition,
Mead & Verde (2020) points out that the halo model is not ac-
curate in the transition between the one- and two-halo regions.
To attempt to correct for this, we follow Koukoufilippas et al.
(2020) and multiply the power spectra given by 1) and 3) with a
scale-dependent quantity:

R(k)≡ PHF(k)
Phm

MM(k)
(23)

where PHF(k) is from HALOFIT and Phm
MM(k) is the matter–matter

power evaluated via the halo model (with NFW profiles). Al-
though Mead & Verde (2020) showed that the correction re-
quired to the halo model in the transition region is not universal,
and instead depends on the tracers being modelled, it was shown
that attempting some correction is better than no correction at
all.

Previous studies on galaxy or gas cross-correlations such
as Van Waerbeke et al. (2014); Bianchini et al. (2015); Kuntz
(2015) treat the galaxy or gas distribution to be proportional to
mass distribution on all scales, which means they only have two
free parameters:

〈
bg
〉

or
〈
byPe

〉
. However, it should be noted that

this model is not physically accurate because the galaxy and gas
distributions have significantly different non-linear details com-
pared to the matter distribution. Pandey et al. (2019) use a lin-
ear bias model for the galaxy distribution over the scales R & 10
Mpc, to which our measurements are not sensitive. However, as
is indicated in Sugiyama et al. (2020), to apply a fully linear
model, one needs a scale cut of at least 12 Mpc. The free pref-
actors for our three models account for different non-linear am-
plitudes, but our models are probably still not accurate for the
details of the non-linear shape. To model the shapes more ac-
curately, one would need to constrain HOD and pressure profile
parameters as well as to significantly improve the treatment of
the transition region, which is not feasible in this analysis given
the noise level of current data. We leave this to future study.

In summary, with fixed cosmological parameters, by measur-
ing Cgy

` and Cgκ

` we can independently constrain and compare〈
bg
〉
,
〈
byPe

〉
,
〈
cgy
〉

and
〈
cgκ

〉
with the three non-linear models

introduced above.

3. Data

3.1. KiDS Data

We use the lensing catalogue provided by the 4th data release
of the Kilo-Degree Survey (KiDS; Kuijken et al. 2019) as our
galaxy sample. KiDS is a sky-survey project, which measures
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Fig. 1: Redshift distributions of the five tomographic bins of the
KiDS “gold” galaxy sample.

Bin zB range Mean redshift n̄

1 (0.1, 0.3] 0.23 5.73
2 (0.3, 0.5] 0.38 11.87
3 (0.5, 0.7] 0.54 20.18
4 (0.7, 0.9] 0.77 14.81
5 (0.9, 1.2] 0.96 17.20

Table 1: Information of the KiDS galaxy sample in each tomo-
graphic bin. n̄ stands for mean galaxy number in a HEALPIX
pixel with NSIDE = 1024.

the positions and shapes of galaxies using the VLT Survey Tele-
scope (VST) at the European Southern Observatory (ESO). It is
primarily designed for weak-lensing applications. The footprint
of KiDS DR4 (also called KiDS-1000) is divided into a north-
ern and southern patch, with total coverage of 1006 deg2 of the
sky (corresponding to a fraction of fsky = 2.2%.) The footprint is
shown in the upper panel of Fig. 2. High-quality images are pro-
duced with VST-OmegaCAM. Combining with the VISTA Kilo-
degree INfrared Galaxy survey (VIKING; Edge et al. 2013), the
observed galaxies are photometrically measured in 9 optical and
near-infrared bands ugriZY JHKs. The KiDS survey covers red-
shifts z . 1.5, which makes it a useful dataset to trace the his-
tory of different components of the LSS into the early Universe.
For each galaxy in the lensing catalogue, the ellipticities are
measured with the LENSFIT algorithm (Miller et al. 2013). We
only use the “gold subsample” (Wright et al. 2020) of the lens-
ing catalogue since the redshift distribution is more accurately
calibrated in this subsample. We present the information of the
galaxy sample that we use in Table. 1. Note, however, that we
do not use the shape information in our fiducial analysis. In Ap-
pendix A we use the shape information to replace CMB lensing
as an alternative measurement and sanity check.

We perform a tomographic measurement of cross-
correlations by dividing the galaxy catalogue into 5 redshift bins
according to the best-fit photometric redshift zB of each galaxy.
These are the same redshift bins used in the KiDS-1000 cosmol-
ogy papers (Asgari et al. 2021a; Heymans et al. 2020; Tröster
et al. 2020). The redshift distribution of each bin is calibrated
using Self-Organising Maps (SOM) as described in Wright et al.
(2020); Hildebrandt et al. (2020). Note that the SOM-calibrated
redshift distributions in this study are not exactly the same as
Hildebrandt et al. (2020) in which the redshift distributions are

Fig. 2: KiDS-1000 footprint and masks for the Planck y map and
CMB lensing map. Regions in purple are masked out.

calibrated with a galaxy sample weighted by the lensfit weight,
while in this work the redshift distributions are calibrated with
the raw, unweighted sample. The redshift distributions of the 5
tomographic bins are shown in Fig. 1. Galaxy overdensity maps
are produced for each tomographic bin in the HEALPIX (Gorski
et al. 2005) format with NSIDE = 1024, corresponding to a
pixel size of 3.4 arcmin. For each tomographic bin, the galaxy
overdensity in each pixel is given as

∆g,i =
ni− n̄

n̄
, (24)

where i denotes the pixel index, ni is the number of galaxies in
the i-th pixel and n̄ is the average galaxy number of all the pix-
els in the footprint and the given redshift bin. The galaxy mask
for the cross-correlation measurement is just the KiDS footprint,
which is presented in the upper panel of Fig. 2.

3.2. tSZ Data

We use the all-sky Compton-y map presented in Planck Collab-
oration (2016a) for the tSZ signal. The y map that we use is con-
structed with the Modified Internal Linear Combination Algo-
rithm (MILCA; Hurier et al. 2013), which properly suppresses
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scale-dependent contamination, as well as projects out the CMB
signal. Planck has also released another y map constructed with
the Needlet Internal Linear Combination (NILC; Basak & De-
labrouille 2012) method. Although MILCA and NILC y map
agree with each other in most of the relevant studies, the NILC
map turns out to be noisier (Planck Collaboration 2016a). There-
fore we apply the Planck MILCA map in this study. The MILCA
y map has a beam Full Width at Half Maximum (FWHM) of 10
arcmin.

Before calculating the gy cross-correlation, we mask out the
Milky Way and point sources with a joint mask of the Planck
60% Galactic mask and point source mask. The combined mask
is shown in the middle panel of Fig. 2. The mask and y map are
originally provided in the HEALPIX format with NSIDE = 2048
and we degrade them into NSIDE = 1024 to match the resolution
of the KiDS galaxy overdensity map.

To evaluate the CIB contamination in the galaxy-tSZ cross-
correlation, we also introduce the Planck 545 GHz CIB inten-
sity map as a CIB template (Planck Collaboration 2016b). The
CIB intensity map is generated with the Generalized-NILC (Re-
mazeilles et al. 2011b, GNILC) method and has an angular res-
olution of 5 arcmin. We first convolve the CIB map with a√

102−52 = 8.66 arcmin Gaussian filter to match its resolu-
tion to the 10 arcmin of the y map, before degrading the map
to NSIDE = 1024.

3.3. CMB lensing data

We use the Planck CMB lensing map from the 2018 Data Re-
lease (Planck Collaboration 2020b) to measure the galaxy-CMB
Lensing cross-correlation. The map is provided in the format
of the spherical harmonic transformation of the lensing conver-
gence κ`m, which is related to the lensing potential φ via

κ`m =
`(`+1)

2
φ`m. (25)

We first transform κ`m back into a HEALPIX κ map with
NSIDE = 1024. The corresponding mask is provided along with
the CMB lensing data. It is shown in the lower panel of Fig. 2.

4. Measurements

4.1. Cross-correlation Measurements

The cross-correlation between two sky maps, that are smoothed
with the beam window function bbeam(`), is related to the real C`

with

Ĉuv
` =Cuv

` bu
beam(`)b

v
beam(`)b

u
pix(`)b

v
pix(`), (26)

where Ĉuv
` denotes the smoothed C` between sky map u and v;

and bpix(`) is the pixelization window function. In our analysis
we take the Gaussian window function which is given by

bbeam(`) = exp
(
−`(`+1)σ2/2

)
, (27)

where σ = FWHM/
√

8ln2. The pixelization window function
corresponding to NSIDE = 1024 is provided by the HEALPIX
package. Note that for the KiDS galaxy map, FWHM = 0.

We use POLSPICE to estimate the angular cross-power spec-
tra. Mode-coupling due to mask and beam smoothing are cor-
rected during this process. Fourier ringings are reduced by set-
ting the internal parameters of POLSPICE apodizesigma=60

Fig. 3: Standard deviation calculated from the diagonal of
CovJK(Cgy

` ,Cgy
` ) and CovANA(Cgy

` ,Cgy
` ) in the third tomographic

bin. We also plot the standard deviation from the jackknife co-
variance matrix with Nside = 16 as a consistency check.

and thetamax=60 deg. The measured angular power spectra are
binned into 10 linear bins from ` = 100 to ` = 1100. The high
limit of ` corresponds to the Planck beam, which has a size of 10
arcmin.

4.2. Covariance Matrix

We combine two methods to estimate the covariance matrix in
our C` measurement: one is jackknife resampling, the other is
an analytical Gaussian covariance matrix. For jackknife resam-
pling, we generate 415 jackknife samples by masking out pixels
corresponding to NSIDE = 32 (which has a size of 1.83 degree)
in turn from the KiDS galaxy overdensity map. Smaller jack-
knife pixels would fail to estimate the variance at large scales;
while with larger jackknife pixels we would not have enough re-
alisations. So we choose this intermediate jackknife pixel size to
balance the pixel size with the sample size. However, as is shown
in Fig. 3, jackknife pixel with NSIDE = 16 (corresponding to an
angular size of 3.66 degree) gives consistent standard deviation.
Cgy
` and Cgκ

` are measured with each of these jackknife samples
and the covariance matrix is calculated with

CovJK (Cuv
` ,Cwz

`′
)
=

NJK−1
NJK

NJK

∑
n=1

∆Cuv,(n)
` ∆Cwz,(n)

`′ , (28)

where NJK = 415 denotes the number of jackknife samples;
uv,wz ∈ {gy,gκ}; ∆Cuv,(n)

` is the difference between the cross-
correlation of the n-th jackknife sample and the mean cross-
correlation over all samples.

Since the KiDS footprint is only∼ 2% of the sky, it is hard to
generate enough jackknife samples to fully recover the true co-
variance matrix; so the off-diagonal components of the jackknife
covariance matrix are noisy. In addition, since different jack-
knife regions have slightly different shapes, we cannot recover
the mode-coupling in the covariance matrix associated with the
whole map geometry. To better estimate the off-diagonal com-
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Fig. 4: The full correlation coefficient matrices of covariance matrices (defined in Eq.(30)) of the gy and the gκ cross-correlations in
each tomographic bin. Each covariance matrix consists of 4 sub-matrices, corresponding to the covariances of Cgy

` and Cgκ

` (block
diagonals), as well as their cross-covariance. For each sub-matrix, the pixels show the cross coefficient between binned C`’s, where
` bins are defined in subsection 4.1.

ponents and account for mode-coupling accurately, we also esti-
mate the covariance matrix using an analytical method.

The main contribution to the covariance matrix is from a
Gaussian random field:

CovG (Cuv
` ,Cwz

`′
)
= δ``′

Cuw
` Cvz

`′ +Cuz
` Cvw

`′

fsky(2`+1)
, (29)

where fsky is the sky fraction. Sky masks introduce non-zero
coupling between different `. To account for this, we use the
method given by Efstathiou (2004); García-García et al. (2019)
and implemented in the NAMASTER package (Alonso et al.
2019) 1. The auto power-spectra in (29) are directly measured
from maps so that noise auto-spectra can also be included; the
cross power-spectra are instead calculated from the theoretical
model described in Section 2, since their measurements are sig-
nificantly noisier.

The non-Gaussian term includes a connected contribution re-
sulting from the small-scale non-linear clustering of the tracers,
related to the trispectrum of the tracers. According to Koukoufil-
ippas et al. (2020); Barreira et al. (2018); Nicola et al. (2020),

1 Note that NAMASTER can also measure C` and their results agree
with POLSPICE, but NAMASTER is significantly slower than POLSPICE
when calculating more than 1000 jackknife cross-correlations. So we
only use it to calculate the analytical covariance matrix, which POL-
SPICE cannot do.

this contribution is only significant for low redshifts z . 0.2,
therefore we neglect it in our covariance matrix. Another non-
Gaussian contribution is the super-sample covariance (Takada &
Hu 2013, SSC) resulting from mode mixing between observed
in-survey and the unobserved out-of-survey modes, we also ig-
nore this in this work.

To calculate the analytical covariance matrices, we need to
use model parameters that we do not know a priori. So we fol-
low Koukoufilippas et al. (2020) and take a two-step fitting: we
first take an assumed value for the model parameters to calculate
these covariance matrices and then use these to find the best-fit
parameters. We then update the covariance matrix, using these
best-fit parameters, and fit for the parameters again. The best-fit
parameters from this second round of fitting are taken to be our
fiducial results.

The diagonal components of the jackknife and analytical co-
variance matrices generally agree with each other (see Fig. 3 as
an example), this justifies that we can ignore the non-Gaussian
contribution in the covariance matrix. To ensure that we recover
realistic error bar sizes, we combine the variance estimated from
the jackknife covariance matrix with the analytical covariance
matrix, as in Koukoufilippas et al. (2020), to account for the
coupling between different modes caused by masks and non-
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Gaussianities while avoiding the statistical noise in the jackknife
estimator. Therefore our final covariance matrix is:

Covi j = CovANA
i j

√√√√ CovJK
ii CovJK

j j

CovANA
ii CovANA

j j
. (30)

The correlation coefficient matrices of all the tomographic bins
are shown in Fig. 4.

4.3. Likelihood

Since we are working with a wide ` range, there are many de-
grees of freedom in each ` bin. According to the central limit the-
orem, the bin-averaged C`’s obey a Gaussian distribution around
their true values. Thus we assume that the measured power spec-
tra follow a Gaussian likelihood:

−2lnL(D | q) = χ
2 ≡ (D−M(q))T Cov−1(D−M(q)), (31)

where q ≡ {
〈
bg
〉
×
〈
byPe

〉
,
〈
bg
〉
,
〈
cgy
〉
,
〈
cgκ

〉
} stands for our

model parameters (for the ‘linear model’ we only have two
parameters q ≡ {

〈
bg
〉
×
〈
byPe

〉
,
〈
bg
〉
}); the data vector D ≡

(Cgy
` ,Cgκ

` ) is a concatenation of measured gy and gκ cross-
correlations; M(q) is the cross-correlation predicted by model
described in Section 2 with parameter q. Note that the gas pres-
sure bias

〈
byPe

〉
, which we are primarily interested in, is the ratio

between the first two model parameters.
We sample the posterior distribution of model parameters us-

ing the Markov Chain Monte Carlo method (MCMC) using the
emcee package (Foreman-Mackey et al. 2013). We take flat pri-
ors for all four model parameters:

0≤
〈
bg
〉
≤ 3,

0≤
〈
bg
〉
×
〈
byPe

〉
≤ 9,

0≤
〈
cgκ

〉
≤ 10,

0≤
〈
cgy
〉
≤ 10.

(32)

The lower boundaries of the prior is a physical constrain, indicat-
ing that the parameters cannot be negative; the upper boundaries
are set so that at least 5σ of the marginalized posterior distribu-
tion falls in these ranges.

Model parameters are fit independently for each of the tomo-
graphic bins. The theoretical model is calculated using the Core
Cosmology Library package (Chisari et al. 2019).

4.4. Systematics

4.4.1. CIB contamination

The CIB radiation is the accumulated emission from early galaxy
populations spanning a large range of redshifts, mostly generated
from dust thermal radiation around extragalactic star-formation
regions (Hauser & Dwek 2001). The tSZ map is contaminated
by residual CIB (Hurier 2015; Yan et al. 2019), which dominates
extragalactic signals at high frequency and high redshifts. This
residual might contaminate our galaxy-tSZ cross-correlation. We
follow the method in Koukoufilippas et al. (2020) to model the
CIB contamination in the y map as a factor αCIB times a CIB
template map, which is taken to be the Planck CIB intensity map
at 545 GHz (Planck Collaboration 2016b):

ŷ(θ) = y(θ)+αCIBICIB(θ), (33)

where ŷ denotes the contaminated y map and ICIB denotes the
CIB intensity in 545 GHz. So the measured galaxy-tSZ cross-
correlation is given by:

Cgŷ
` =Cgy

` +αCIBCgICIB
` , (34)

where the galaxy-CIB cross-correlation CgICIB
` can be directly

measured with the Planck CIB map. For αCIB, we take the value
αCIB = (2.3± 6.6)× 10−7(MJy/sr)−1 reported in Alonso et al.
(2018).

4.4.2. Cosmic magnification

The measured galaxy overdensity depends not only on the real
galaxy distribution but also on lensing magnification induced
by the line-of-sight mass distribution (Schneider 1989; Narayan
1989). This magnification, or so-called cosmic magnification,
has two effects on the measured galaxy overdensity: i) overden-
sities along the line-of-sight cause the local angular separation
between source galaxies to increase, so the galaxy spatial distri-
butions are diluted and cross-correlation is suppressed; ii) lenses
along line-of-sight magnify the flux of source galaxies such that
fainter galaxies enter the observed sample, so the overdensity in-
creases. These effects bias galaxy-related cross-correlations, es-
pecially for high-redshift galaxies (Hui et al. 2007; Ziour & Hui
2008; Hilbert et al. 2009). To take these two effects into account,
we modify the expression for the galaxy overdensity (Hui et al.
2007):

δ̂g(z) =
〈
bg
〉

δm(z)+2(2.5s−1)κ(z), (35)

where the second term on the right-hand side of the equation is
the cosmic magnification contribution. Here κ(z) is the line-of-
sight integral of the lensing convergence to the galaxy redshift
z; s is the slope of the logarithmic cumulative number counts of
our galaxy sample at magnitude limit mlim

s≡ ∂ log10 N(< m)

∂m

∣∣∣∣
m=mlim

. (36)

The KiDS ‘gold’ galaxy sample has an r−band magnitude limit
of 25, but the completeness limit is around 24 (Wright et al.
2018). To properly estimate s, one needs a galaxy sample from a
deeper survey that has a completeness magnitude of at least 25,
as well as the same redshift distribution in each tomographic bin
as the KiDS ‘gold’ galaxy sample. In addition, the slopes for dif-
ferent tomographic bins should be different, but we don’t have a
good way to estimate them, so we take a simple method to es-
timate s. Given that the logarithmic cumulative number counts
of the galaxy sample is nearly linear with respect to m (see
Fig. 6 of Wright et al. 2018)2, we estimate s by extrapolating
the slope at the completeness magnitude (which is 24) to the
magnitude limit, which is 25 (Hildebrandt 2016). The resulting
slope is 0.29. We also try other magnitudes to extrapolate from
and find that our best-fitting parameters only change marginally.
Note that the 2× 2.5sκ(z) term accounts for flux magnification
and 2×κ(z) term accounts for angular dilution, so when s = 0.4
both effects cancel out.

2 The paper cited here is a KV-450 paper, but this consideration applies
equally to KiDS-1000 since the data depth is the same.
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Fig. 5: The measurements of Cgκ

` and Cgy
` (red dots with error bars) over-plotted with best-fit models(green lines). The non-linear

model shown here is the ‘halo model’ non-linear template. Each row shows results in each tomographic bin. Shaded regions are
scales corresponding to ` scales within the threshold kcut > 0.7Mpc−1, which are not included the model-fit.

4.4.3. Uncertainty of the redshift distribution

Uncertainties in the galaxy redshift distributions could af-
fect galaxy cross-correlations. We estimate the uncertainties of
the SOM redshift distributions using the same method as de-
scribed in Hildebrandt et al. (2020), which gives uncertain-
ties of the mean redshift at a level of ∼ 0.02 in all 5 to-
mographic bins. To evaluate the impact of this uncertainty,
we shift the fiducial redshift distribution ng(z) in (4) by δz =
{−0.02,−0.01,0,0.01,0.02}. We fit the model parameters with
these shifted redshift distributions to see if this changes our re-
sults.

5. Results

We estimate the galaxy-tSZ and the galaxy-CMB lensing cross-
correlations of KiDS galaxies as well as corresponding covari-
ance matrices in each of the 5 tomographic bins with the meth-
ods described in Sect. 4. Figure 5 shows our measurements of
Cgκ

` (left column) and Cgy
` (right column) bandpowers with red

dots. The bandpowers are calculated as the mean C` in each ` bin
and the error bars are given by the square root of the diagonals of
covariance matrices. Each row corresponds to one of the tomo-
graphic bins. The measured cross-correlations are over-plotted
with the best-fit fiducial model (with the ‘halo model’ non-linear
matter power spectrum) with green lines. Shaded regions are an-
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Fig. 6: Best-fit
〈
byPe

〉
with varying redshift distribution shifts.

The non-linear model is the ‘halo model’ non-linear template.
The best-fit parameter values and errors are calculated as the
modes and standard deviations of the Gaussian kernel density
estimation (KDE) fits of marginalized posterior distribution.

Fig. 7: 68% and 95% contours of the posterior distribution of
{
〈
byPe

〉
,
〈
bg
〉
,
〈
cgy
〉
,
〈
cgκ

〉
} in the third redshift bin with the

‘halo model’ non-linear template in the third redshift bin. The
contours and 1-D posteriors have been smoothed for the purpose
of presentation.

gular scales corresponding to kcut > 0.7Mpc−1, which are not
included in the model-fit. 3 We set this threshold because we
do not think our simple models will capture the details of the
non-linear regime. Note that the red dots show our fiducial re-
sults with both CIB contamination and cosmic magnification
corrected. In all the tomographic bins, CIB contributions are at
a level of ∼ 1% even with the most conservative level of αCIB
(i.e., with αCIB = (2.3 + 6.6)× 10−7(MJy/sr)−1), and can be

3 For each redshift bin, the k threshold translates into the ` threshold
via `cut ≡ kcutχ(zmean), where zmean denotes the mean redshift of each
redshift bin. Note that this threshold is beyond the upper bound of ` for
the last three redshift bins.

neglected. We validate this claim by also fitting the raw, CIB
contaminated gy cross-correlation with our model and find no
significant difference between the best-fit

〈
byPe

〉
values and the

fiducial fitting. In order to evaluate the impact of cosmic magni-
fication, we also fit a model without cosmic magnification cor-
rection given by Eq. (35). Comparing with our fiducial results,
we find that if the cosmic magnification is neglected,

〈
bg
〉

in all
the redshift bins will be slightly under-estimated at a level of
∼ 1%. We also show the best-fit parameters from shifted red-
shift distributions in Fig. 6. Points with error bars in different
colours correspond to different shifts of redshift distributions δz.
Our fiducial results have δz = 0. From the plot, we conclude that
a redshift bias of δz ∼ 0.02 would only have a marginal effect
on our results. It should be noted that the constraint in the first
redshift bin gets mostly affected. This might be due to the fact
that the redshift distribution of this bin is the narrowest, which
makes it more sensitive to a redshift error.

An example of the fiducial MCMC posterior (that corre-
sponds to the ‘halo model’ non-linear power spectrum) distri-
bution of {

〈
byPe

〉
,
〈
bg
〉
,
〈
cgy
〉
,
〈
cgκ

〉
} is shown in Fig. 7. Note

that the linear biases that we are fitting are the normalisation of
the two linear cross-correlations, namely {

〈
bg
〉
×
〈
byPe

〉
,
〈
bg
〉
}.

Their posteriors are Gaussian in the linear region because they
both linearly depend on the linear cross-correlations. The gas
pressure bias

〈
byPe

〉
is then the ratio of two Gaussian parame-

ters, so its posterior distribution is asymmetric, as shown in Fig.
7. A summary of the fiducial fitting results of

〈
bg
〉

and
〈
byPe

〉
is given in Table 2. The best-fit parameter values and errors are
calculated as the modes and standard deviations of the Gaussian
kernel density estimation (KDE) fittings of the marginalised pos-
terior distributions. We evaluate the constraining power of both
linear bias parameters with the method given by Asgari et al.
(2021b). That is, we calculate the values of the marginalized
posterior at both extremes of the prior distribution, and compare
them with 0.135, the ratio between the peak of a Gaussian dis-
tribution and the height of the 2σ confidence level. If the pos-
terior at the extreme is higher than 0.135, then the parameter
boundary is not well constrained. We find that the lower bound
of
〈
byPe

〉
of the fifth redshift bin does not meet this criterion

(this can also be seen from the fact that the 2σ lower-bound of〈
byPe

〉
in the fifth redshift bin is below zero). However, it should

be noted that the lower extremes of the bias parameters are phys-
ical limits, which could not be extended. For the parameters that
are not bounded, KDE might give inaccurate results. To test that,
we calculate the best-fit

〈
byPe

〉
in the fifth redshift bin without

smoothing the marginalized posterior with a KDE kernel. This
changes the value from 0.16 to 0.134. The difference is well be-
low the constraining error.

In order to evaluate the goodness-of-fit, we calculate the χ2

in each tomographic bin, and then calculate the corresponding
probability-to-exceed (PTE) given the degree-of-freedom. Hey-
mans et al. (2020) adopts the criterion PTE>0.001 (correspond-
ing to a ∼ 3σ deviation) to be acceptable. We find our fittings
of all the tomographic bins with all the three non-linear models
meet this criterion. The pure linear model does not fit well, es-
pecially in low redshift bins. Thus we conclude that all of our
nonlinear models fit well with our data.

We show the redshift dependence of
〈
bg
〉

and
〈
byPe

〉
in Fig.

8. The dots with different colours are the constraints from our re-
sults with three non-linear power spectrum models, marginalized
over the non-linear parameters

〈
cgy
〉

and
〈
cgκ

〉
. The plots show

that the constraints on
〈
bg
〉

and
〈
byPe

〉
are consistent with differ-

ent non-linear power spectrum models, indicating that our mea-
surements are insensitive to the details of the non-linear cross-
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Fig. 8: The constraints of
〈
bg
〉

and
〈
byPe

〉
in each tomographic bin. The best-fitting parameter values and errors are calculated as

the modes and standard deviations of the Gaussian KDE fittings of marginalized posterior distributions. Dots with different colours
are correspond to the different non-linear power spectrum models. The grey line shows the best-fit model from Chiang et al. (2020).

correlations. To further verify this argument, we repeat the model
fitting with different scale cuts kcut (modes of C` with a scale
smaller than kcut are removed from the model fitting procedure)
and plot the best-fit values of

〈
bg
〉

and
〈
byPe

〉
as a function of

kcut in Fig. 9. The plot shows that the constraints do not change
significantly as different scales are removed, so we conclude that
our constraints are robust to non-linear details. To highlight the
importance of transition region error, we also fit the halo model
and the constant non-linear model without correction with R(k)
defined in Eq. (23). We find that this correction changes the best-
fit parameter value by a few percent, worst in the lower redshift
bin (about 10%), but the differences are below the 1σ level. This
is because the Planck beam size ensures that the data are noisy
at these scales. However, future studies with higher resolution
should be sensitive to these systematics. We also acknowledge
that different non-linear models affect

〈
byPe

〉
in the lowest red-

shift at a level of 0.5−1σ , because Planck beam does not smooth
out the non-linear details as completely as high redshift bins. In
Fig. 9, we also plot the fitting of

〈
bg
〉

and
〈
byPe

〉
with a pure

linear model in purple (i.e.
〈
cgκ

〉
and

〈
cgy
〉

are both fixed to
be zero). We find that the pure linear model gives

〈
bg
〉

values
that are higher than non-linear models on all scales, and have
the tendency to merge with the fiducial fitting with low kcut. The
gas pressure bias

〈
byPe

〉
is the ratio between linear amplitudes

of gκ and gy cross-correlations, so it could be close to the real
value even if the linear model gives biased amplitudes. This re-
sult highlights the necessity to include some form of non-linear
model in the fitting.

In our analysis, we use the whole KiDS “gold” lensing
galaxy sample, in which there are many blue galaxies which
are distributed out to a large distance from cluster centres (Cro-
ton et al. 2007). The best-fit

〈
bg
〉

values in all the redshift bins
are consistent with one, which suggests that our galaxy sam-
ple is a good tracer of the dark matter distribution. This should
be contrasted with, e.g. Luminous Red Galaxies (LRG), which
are strongly biased tracers of mass (Zehavi et al. 2005) because
LRGs are known to be clustered around halo centres.

Fig. 10 compares our constraints on
〈
byPe

〉
to previous stud-

ies. These studies relied on the cross-correlation of data from dif-
ferent surveys with Planck tSZ data. Van Waerbeke et al. (2014)
(orange dot) uses the lensing data from the RCSLenS sample;

Koukoufilippas et al. (2020) (purple dots) uses the 2MPZ and
WISE×SuperCosmos samples; Pandey et al. (2019) (red dots)
uses the DES sample; Chiang et al. (2020) uses the galaxy sam-
ples from SDSS, BOSS for low redshifts, and QSO samples
from SDSS, BOSS and eBOSS for high redshifts. All these
studies used the galaxy auto-correlation to measure

〈
bg
〉
, ex-

cept Van Waerbeke et al. (2014) which used the mass distribu-
tion measured from weak gravitational lensing. In our approach,
we use the galaxy-CMB lensing cross-correlation to constrain〈
bg
〉
. It is remarkable that these measurements, from very dif-

ferent surveys and with very different estimators give consistent
results for

〈
byPe

〉
. However, it should be noted that although our

measurement goes to higher redshift, our constraining power is
significantly weaker than previous studies in the same redshift
range. This is because 1) the limitation of the KiDS footprint
makes it less sensitive to linear scales; 2) the CMB lensing map
is noisy. With future sky surveys having wider sky coverage and
CMB surveys having lower noise levels, these two drawbacks
can be improved. The grey line in Fig. 10 is the best-fit redshift
dependence of the tSZ halo model given by Chiang et al. (2020).
Although this work does not constrain that model, it is intro-
duced and discussed in Appendix B for forecasting future stud-
ies. With an agreement with these previous results as well as the
halo model prediction, our tomographic measurement provides
insights into the thermal history of the LSS.

The linear bias assumption might break down on small scales
where baryonic effects become significant. However, in our anal-
ysis, the Planck beam makes our measurements insensitive to
these effects. We leave as a future work the generalisation of our
results to the small scales when data with higher resolution are
available. Such a situation can be handled with a more sophisti-
cated model, for example, Mead et al. (2020).

In our study, our approach consists of using CMB lensing as
a way to constrain

〈
bg
〉

of a galaxy sample. One can indepen-
dently measure

〈
bg
〉

using weak gravitational lensing as a re-
placement for CMB lensing. Appendix A shows the results when
CMB lensing is replaced by the KiDS weak lensing signal. We
find that the constraints on

〈
byPe

〉
are consistent with CMB lens-

ing. This result validates our approach and highlights the fact the
CMB lensing and galaxy lensing can be used independently to
calibrate the mass of a galaxy distribution using a very differ-
ent source redshift screen. Fig. A.2 also shows that the highest
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Fig. 9: The constraints of
〈
bg
〉

and
〈
byPe

〉
for different non-linear matter power spectrum models with different scale cuts kcut. We

also plot the fitting of
〈
bg
〉

and
〈
byPe

〉
with a pure linear model in purple (i.e.

〈
cgκ

〉
and

〈
cgy
〉

are both fixed to be zero). Note that
for low redshifts and low kcut, we do not have enough degrees-of-freedom so

〈
bg
〉

and
〈
byPe

〉
are not presented. In addition, for

high redshift bins, large scale cuts are beyond the high limit of `, so with these kcut values, the constraints do not change.

Zbin zmean bg 〈bPe〉[meV/cm3] χ2/d.o. f PTE

0.1< ZB ≤0.3 0.23 1.26+0.34
−0.36 0.12+0.05

−0.03 1.15 0.22
0.3< ZB ≤0.5 0.38 0.78+0.36

−0.38 0.21+0.22
−0.08 1.15 0.39

0.5< ZB ≤0.7 0.54 0.54+0.24
−0.26 0.35+0.38

−0.16 0.96 0.53
0.7< ZB ≤0.9 0.77 0.59+0.26

−0.28 0.38+0.44
−0.21 1.06 0.4

0.9< ZB ≤1.2 0.96 1.05+0.38
−0.45 0.16+0.2

−0.1 1.46 0.09

Table 2: The best-fitting linear bias parameters from each tomographic bin. The results correspond to the non-linear power spectrum
model being the default ‘halo model’. The best-fit parameter values and errors are calculated as the modes and standard deviations of
the Gaussian KDE fit of marginalized posterior distributions. PTE stands for the probability-to-exceed of the corresponding reduced
χ2 value.

redshift bin is significantly noisier when galaxy lensing is used
compared to CMB lensing, while galaxy lensing provides higher
signal-to-noise for lower redshifts. This is a direct consequence
of the very different source redshift between CMB and galaxy
lensing, and it illustrates the fact that lensing signal-to-noise de-
creases dramatically when the lenses are close to the sources, as
expected.

6. Discussion and Conclusion

In this work we use the galaxy sample from the 4th KiDS
Data Release, the Planck y map and Planck CMB lensing
map to probe the redshift dependence of galaxy bias of KiDS
galaxies and gas pressure bias from the galaxy×tSZ and the
galaxy×κCMB cross-correlations. We assume that, in the lin-
ear region, both tSZ y parameter and galaxy overdensity are
proportional to the underlying mass fluctuation, with the pro-
portionality parametrized by galaxy bias

〈
bg
〉

and gas pressure
bias

〈
byPe

〉
, which is consistent with our measurement being re-
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Fig. 10: The constraints of
〈
byPe

〉
in each tomographic bin. Our

results with the ‘halo model’ non-linear matter power spectrum
is presented as black dots with errorbars. The best-fit parameter
values and errors are calculated as the modes and standard de-
viations of the Gaussian KDE fittings of marginalized posterior
distributions. Results from previous studies are also plotted as
well as the best-fit

〈
byPe

〉
model given by Chiang et al. (2020).

stricted to large angular scales. To account for the non-linear
effects, we also model the non-linear power spectra of gy and
gκ cross-correlations as re-scaled non-linear templates. We tried
three kinds of non-linear templates: halo model, HALOFIT, and
constant, all of which yield consistent constraints of

〈
bg
〉

and〈
byPe

〉
, indicating that our measurements are not yet sensitive to

the non-linear details. However, with an additional inconsistent
constraint with a purely linear model, we emphasize the neces-
sity to consider non-linear cross-correlations.

〈
bg
〉

and
〈
byPe

〉
are constrained for galaxies from 5 tomographic bins within
z . 1, which counts amongst the furthest distance probed from
this kind of analysis. The reduced χ2 of the best-fit parameter
values indicate that our model fits the data well.

The best-fitting galaxy bias is close to 1, which indicates that
the KiDS galaxy sample is an unbiased tracer of the underlying
mass distribution. In previous works (for example Koukoufilip-
pas et al. 2020; Chiang et al. 2020; Pandey et al. 2019) the au-
thors used galaxy auto spectra to constrain galaxy bias, which
is subject to modelling uncertainties and auto-correlated noise.
Our approach avoids this problem by using the CMB lensing to
calibrate the mass from the galaxy distribution. In Appendix A,
we will show that our results are unchanged when we replace
CMB lensing by galaxy lensing from KiDS.

Fig. 10 shows our constraints on
〈
byPe

〉
in each of the tomo-

graphic bins as well as the measurements from previous stud-
ies (Van Waerbeke et al. 2014; Pandey et al. 2019; Koukoufilip-
pas et al. 2020; Chiang et al. 2020). Our result agrees well with
them. We also compare our result with predictions of the halo
model (Chiang et al. 2020) and find good agreement. Our tomo-
graphic measurement of

〈
byPe

〉
confirms the evolution of biased

thermal energy in halos into the high redshift regime. In addi-
tion, the gas bias by, estimated to be ∼ 3.5 (Chiang et al. 2020),
parametrises the link between gas and dark matter halo; the mean
electron pressure 〈Pe〉= 〈ne〉kBT e is associated with the thermal
dynamic property of electrons. Based on CMB constraints, the
average electron number density is 〈ne〉 ∼ 0.25m−3 (Hinshaw
et al. 2013). Taking these values into account, the mean elec-
tron temperature T e is at a level of T e ∼ 106 K, which is con-
sistent with the estimated temperature of ‘missing baryons’(Cen

& Ostriker 1999). This means that if the tSZ signal were en-
tirely from intergalactic gas, it could account for all the miss-
ing baryons within the temperature range 105−107 K (Bregman
2007). To confirm this, we need a halo model for diffuse baryons
which can properly describe the spatial distribution of gas within
dark matter halos, which we leave to future work. Our study
consolidates our understanding of intergalactic gas at high red-
shift, which, combined with future tomographic measurements
on
〈
byPe

〉
, will improve our understanding on the thermal his-

tory of the Universe, as well as the evolution of links between
gas and dark matter halos.

The uncertainty we find for
〈
byPe

〉
is larger than previous

studies because KiDS has a smaller sky coverage compared with
those surveys, which makes it less sensitive to the linear regime
where the majority of constraining power lies. Uncertainties of〈
bg
〉

and
〈
byPe

〉
are both dominated by sample variance on the

linear scales. Future sky surveys such as the Rubin Observa-
tory Legacy Survey of Space and Time (LSST) (Abell et al.
2009) and the Euclid survey (Laureijs et al. 2010) will cover
a larger fraction of the sky, making it possible to yield tighter
constrain on linear biases. In addition, future CMB-S4 and Si-
mons Observatory-like experiments will provide CMB lensing
and y maps with lower noise levels (Hadzhiyska et al. 2019) and
with higher angular resolution, which will improve both the con-
straining capacity of galaxy bias and sensitivity to small-scale
physics. With these improvements, one could model the non-
linear cross-correlation with a more sophisticated model like the
full halo model with a GNFW profile (Arnaud et al. 2010) for the
tSZ and the HOD model for the galaxy distribution. We make a
forecast on gκ and gy cross-correlations with such model with
hypothetical LSST, Euclid , and CMB-S4 surveys in Appendix
B, which yields a tight constraint on

〈
byPe

〉
. Our forecast high-

lights the validity of multi-tracer analysis for future sky surveys.
We carefully evaluate the systematics in our data that could

cause bias in our model fitting. The main systematics considered
in this study are the cosmic magnification in galaxy overdensity
measurements, CIB contamination in tSZ map and uncertainties
in the redshift distributions. Though all of these systematics are
not significant in our measurement due to low signal-to-noise in
our data, they will become significant for future surveys with
large sky coverage. In principle, the first two systematics af-
fect high redshifts more significantly, so future studies with a
deeper redshift reach must carefully take these into account. It
should also be noted that the parameter constraints in this study
are quoted under the assumption of fixed cosmological parame-
ters from Planck (Planck Collaboration 2020b). The amplitude
of angular cross-correlations is closely related to galaxy and gas
biases as well as σ8. So these parameters are strongly degenerate.
We could robustly constrain cosmological parameters as well as
galaxy and gas biases by combining more cross-correlation mea-
surements, like galaxy clustering and cosmic shear. Once again,
we leave this to future studies.

This work shows the potential to study LSS by combining
different cross-correlations measurements. Cross correlation is
known to be immune to auto-correlated noise. A combination of
different cross-correlations can break the degeneracies between
model parameters. Specifically, in our fiducial measurements,
we do not use cosmic shear, which is affected by intrinsic align-
ments and shape miscalibration. Instead, we use CMB lensing
as a non-biased tracer of LSS to independently constrain

〈
bg
〉
.

We provide a sanity check in Appendix A by replacing the CMB
lensing map with the KiDS shear map and perform the same
analysis, which gives consistent results for all tomographic red-
shift bins; this validates our fiducial method. However, the re-
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sults from galaxy lensing at high redshift are noisier than our
fiducial results, which indicates the advantage of using CMB
lensing as a proxy for the mass distribution, especially at high
redshift. Future work could combine CMB lensing and galaxy
lensing as independent mass tracers, which could yield tighter
constraints on LSS properties. Future surveys will also provide
denser galaxy samples in wider ranges and deeper reaches in
the sky, as well as cleaner CMB lensing and y maps, which will
make this method more promising for multi-tracer cosmology.
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Appendix A: Alternative method: galaxy-galaxy
lensing cross-correlations

In this appendix, we measure the cross-correlation between
galaxy overdensity and lensing-induced galaxy shear caused by
as an alternate to CMB lensing. This measurement serves as a
sanity check of our fiducial result. We replace the CMB lens-
ing map with the galaxy shear map generated with the 4th tomo-
graphic bin of the “gold” KiDS lensing shear catalogue and mea-
sure the cross-correlation between galaxy overdensity in each
tomographic bin and galaxy lensing convergence κgl. The kernel
of κgl is given by:

W κgl(χ) =
3ΩmH2

0
2ac2 g(χ), (A.1)

with

g(χ) =
∫

χH

χ

dχ
′ng
(
z(χ ′)

)
χ

χ ′−χ

χ ′
, (A.2)

where χH is the comoving distance to the horizon. For the non-
linear region, we take the rescaled halo model described in Sect.
2.

The KiDS lensing shear catalogue (Giblin et al. 2020) pro-
vides ellipticities (e1, e2) of each galaxy. From them we con-
struct a map triplet of ellipticities (0, −e1, e2) (Harnois-Déraps
et al. 2017) as an analog to CMB temperature-polarization map
triplet (T, Q, U). The minus sign on e1 is due to the differ-
ent convention of positive x direction between lensing exper-
iments and CMB polarization experiments. We measure the
cross-correlation between the KiDS galaxy overdensity maps
and shear map triplet with POLSPICE. The output “∆gE” mode
(similar to the “TE” mode of CMB) is the cross-correlation
between galaxy overdensity and galaxy-galaxy lensing conver-
gence gκgl cross-correlation that we want. The “∆gB” mode
(similar to the “TB” mode of CMB) should be zero, and we take
it as a null test.

The covariance matrices are calculated the same way as our
fiducial measurement. The cosmic magnification is also cor-
rected. For scales with k > 0.3hMpc−1, non-linear galaxy bias
becomes significant (Heymans et al. 2020). Besides, we want
to match the physical scale of the cross-correlations between
gκgl and gκCMB. Take these factors into account; we only use
angular scales 100 < ` < 200 for the lowest redshift bin and
100 < ` < 300 for the rest. The measurements and best-fit mod-
els are plotted in Fig. A.1. The “∆gB” mode is consistent with
zero in all redshift bins. The gκgl cross-correlation measured at
high redshift are very noisy because for those bins the shear
maps contain many galaxies that are in front of lenses, which
only contributes to random noise from their intrinsic alignments
as well as their cosmic shear from the foreground.

We present the constraints of our model parameters with the
galaxy-galaxy lensing cross-correlation in Fig. A.2. The con-
straints on both

〈
bg
〉

and
〈
byPe

〉
are consistent. The errors of

CMB lensing and galaxy lensing are comparable in the low red-
shift bins, which is expected if both mass proxies are cut at
a comparable scale where the ellipticity noise is subdominant,
and the error is mainly driven by sampling variance. This is a
proof that CMB lensing and galaxy lensing are not only consis-
tent (which is impressive given ∼12 billion years of separation
between the two source populations), but also have comparable
signal-to-noise in the sampling variance dominated regime. The
uncertainty of the

〈
bg
〉

in the last two redshift bins is very high
due to low signal-to-noise in these bins because in these bins

most of the source galaxies are actually in front of lens galax-
ies. Thus they only contribute noise. This indicates that CMB
lensing out-performs galaxy lensing when cross-correlated with
high-redshift galaxies. This sanity check not only proves the re-
liability of our fiducial results but also shows the advantages of
CMB lensing experiments over galaxy lensing with the KiDS
data. For future studies, a combination of these measurements
will yield even better constraint on models of interest.

Appendix B: Forecasting the constrain power of
full halo model for future sky surveys

In this section, we forecast the constraining power on the full
halo model (Cooray & Sheth 2002; Seljak 2000) parameters
from gκ and gy cross-correlations measured from future sky
surveys. The galaxy catalogue is assumed to be taken from a
LSST/Euclid-like survey; the CMB lensing and tSZ data are
from the CMB-S4 (Abazajian et al. 2016) experiment. LSST and
Euclid will cover a much wider area of the sky than KiDS, which
makes them sensitive to the linear region as well as improves the
signal-to-noise. CMB-S4 will achieve a higher angular resolu-
tion than Planck, which makes it possible to reveal the details of
non-linear cross-correlations.

With such improvements, it is possible to use data from these
future surveys to probe the full halo model for galaxies and the
tSZ effect. The general halo model divides the power spectrum
into the two-halo term, which accounts for the correlation be-
tween different halos, and the one-halo term, which accounts for
correlations within the same halo, so that

PUV (k) = PUV,1h(k)+PUV,2h(k). (B.1)

Both terms are related to the profiles of U and V in Fourier space:

PUV,1h(k) =
∫

∞

0
dM

dn
dM
〈pU (k |M)pV (k |M)〉

PUV,2h(k) = 〈bU 〉(k)〈bV 〉(k)Plin(k)

〈bU 〉(k)≡
∫

∞

0
dM

dn
dM

bh(M)〈pU (k |M)〉,

(B.2)

where Plin(k) is the linear power spectrum; dn/dM is the halo
mass function; bh is the halo bias and pU (k |M) is the profile of
the tracer U with mass M in Fourier space:

pU (k |M)≡ 4π

∫
∞

0
drr2 sin(kr)

kr
pU (r |M). (B.3)

For the one-halo term, one needs to calculate the correla-
tion between different profiles. We take the one-parameter model
from Koukoufilippas et al. (2020) to account for the cross-
correlation between abundances of u and v:

〈pU (k |M)pV (k |M)〉= (1+ρUV )〈pU (k |M)〉〈pV (k |M)〉 .
(B.4)

The details of profiles have been introduced in Sect. 2. For
the HOD profile we still fix σM = 0.15 and αs = 1, and let
{M0,M1,Mmin} vary.

For the tSZ profile, we must note that the mass term in this
formula is calibrated with X-ray observations and are possibly
biased (Planck Collaboration 2014). A ‘hydrostatic bias’ bH is

Article number, page 15 of 18



A&A proofs: manuscript no. main

Fig. A.1: The galaxy-shear cross-correlation. The left column shows the “∆gE” mode which corresponds to gκgl cross-correlation
and the right column shows the “∆gB” mode as a null test. Green lines are the best-fit models. We find that the “∆gB” mode is
consistent with zero.

introduced, so that the mass term in (16) is replaced by (1−
bH)M. In the modelling, we also multiply the power spectra with
correction factor R(k,z) defined in (23). Now we can see that the
non-linear bias

〈
cgκ

〉
and

〈
cgy
〉

are directly related to ρGM, ρGP,
and bH.

We construct the Fisher matrix:

Fαβ =
∂MT

∂qα

Cov−1 ∂M
∂qβ

(B.5)

where M(q) is the cross-correlations given by full halo model
described above. We also assume that the covariance matrix
does not depend on parameters. The free parameters are q ∈
{log10 M1, log10 M0, log10 Mmin,bH,ρGP,ρGM}. The Fisher ma-
trix is calculated at the best-fit parameter values which are as-
sumed to be {13,11.68,11.86,0.16,−0.5,0}.

The hypothetical measurement should be extended to non-
linear region, so we set the ` region to be 50 < ` < 3000. The
Gaussian covariance matrix is calculated the same way as Eq.
(29), with Cuv

` the real angular power spectra signal calculated
from best-fit model plus noise spectrum:

Cuv
` =Cuv,signal

` +Nuv
` . (B.6)

For cross-correlations, Nuv
` = 0. The galaxy count noise is taken

as the shot noise:

Ngg
` = 1/N, (B.7)

where N is the mean number of galaxies per steradian on the sur-
vey. In this section, we present the forecast for the tomographic
bin of a LSST/Euclid-like survey corresponding to the last tomo-
graphic bin of KiDS (0.9<ZB≤1.2). The redshift distribution and
galaxy numbers are from LSST Science Collaboration (2009).
The information of LSST and Euclid surveys are summarized in
Table. B.1. Since both has similar survey coverage and galaxy
number density, we only show the forecast for LSST for clarity.
We take the noise power spectra of CMB lensing and tSZ ef-
fect for CMB-S4 presented in Shirasaki et al. (2019) and Schaan
et al. (2017) respectively.

Since the hypothetical measurement extends into non-linear
region, we include the non-Gaussian covariance matrix which is
given by:

CovNG (Cuv
` ,Cwz

`′
)
=
∫

∞

0
dχ

W u(χ)W v(χ)W w(χ)W z(χ)

4π fskyχ6

×TUVWZ

(
k =

`+1/2
χ

,k′ =
`′+1/2

χ

)
,

(B.8)
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Fig. A.2: Constraints of model parameters with the galaxy-
galaxy lensing and the galaxy-tSZ cross-correlations. Upper
panel shows the constraints on

〈
bg
〉

and the lower panel shows〈
byPe

〉
overplotted with halo model results from Chiang et al.

(2020).

Survey Sky coverage [deg2] fsky [%] N [arcmin−2]

LSST 20000 48.5 55.5
Euclid 15000 36.4 37.0

Table B.1: Information of LSST and Euclid surveys needed for
forecasting. Note that the sky coverage is the full sky coverage
multiplied by the estimated overlapping fraction with CMB-S4.

where TUVWZ(k) is the trispectrum. Using the halo model, the
trispectrum is decomposed into one- to four- halo terms. Here
we only take the one-halo term into account, since it dominates
the scales we are interested in (Pielorz et al. 2010):

T 1h
UVWZ(k,k

′)≡
∫

∞

0
dM

dn
dM

×〈pU (k |M)pV (k |M)pW (k′ |M)pZ(k′ |M)〉,
(B.9)

With these pieces of information, we calculate the covariance
matrix as Cov = CovG +CovNG. The confidence contours from
the Fisher matrix is calculated and presented in Fig. B.1.

The parameter that we are interested in is bH, which is con-
strained as 0.16± 0.04 for such LSST/Euclid-like surveys. The

gas pressure bias
〈
byPe

〉
can then be calculated according to

(20), yielding a constraint (0.37± 0.02)[meV/cm3]. Although
the constraining power for galaxy parameters {M1,M0,Mmin} is
weak, the constraining power for gas pressure bias is relatively
strong, indicating that galaxy-CMB lensing cross-correlation is
a valid method to break the degeneracy between parameters of
galaxy distribution and other large-scale tracers when measuring
galaxy cross-correlations. Our forecast indicates that future sky
surveys like LSST and Euclid as well as CMB-S4 will obtain
data that can be used to conduct such measurement.
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Fig. B.1: The 95% and 68% confidence contours of model parameters of the full halo model. The confidence contours are calculated
from the Fisher matrix for LSST/Euclid-like galaxy surveys and CMB-S4.
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