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ABSTRACT

We carry out a multi-probe self-consistency test of the flat ΛCDM model with the aim of exploring potential causes of the reported
tensions between high- and low-redshift cosmological observations. We divide the model into two theory regimes determined by the
smooth background (geometry) and the evolution of matter density fluctuations (growth), each governed by an independent set of
ΛCDM cosmological parameters. This extended model is constrained by a combination of weak gravitational lensing measurements
from the the Kilo-Degree Survey, galaxy clustering signatures extracted from Sloan Digital Sky Survey campaigns and the Six-Degree
Field Galaxy Survey, as well as the angular baryon acoustic scale and the primordial scalar fluctuation power spectrum measured in
Planck cosmic microwave background (CMB) data. For both the weak lensing data set individually and the combined probes, we
find strong consistency between the geometry and growth parameters, and with the posterior of standard ΛCDM analysis. Tension
in the amplitude of matter density fluctuations as measured by the parameter S 8 persists at around 3σ, with a 1.5 % constraint of
S 8 = 0.776+0.016

−0.008 for the combined probes. We also observe less significant trends (at least 2σ) towards higher values of the Hubble
constant H0 = 70.5+0.7

−1.5 km s−1Mpc−1 and towards lower values of the total matter density parameter Ωm = 0.289+0.007
−0.005 compared to the

full Planck analysis. Including the subset of the CMB information in the probe combination enhances these differences rather than
alleviate them, which we link to the discrepancy between low and high multipoles in Planck data. Our analysis does not yet yield
clear signs whether the origin of discrepancies lies in ΛCDM structure growth or expansion history, but holds promise as an insightful
test for forthcoming more powerful data.

Key words. cosmological parameters – methods: data analysis – cosmology: theory – large-scale structure of Universe – gravitational
lensing: weak

1. Introduction

The dramatic increase of precision experienced by cosmology
over the last thirty years has recently led to the discovery of po-
tential inconsistencies in our cosmological model that previously
might have been obscured by statistical errors. One of the most
relevant of these inconsistencies is the apparent discrepancy be-
tween a subset of the free parameters of the concordance ΛCDM
model (Condon & Matthews 2018; Lahav & Liddle 2019) mea-
sured at early and late times of the Universe. The most notable
manifestation of this tension is the 4.2σ (Riess et al. 2021) differ-
ence in the value of the Hubble constant, H0, between distance
ladder estimates and the early-Universe cosmic microwave back-
ground (CMB) probe Planck (Planck Collaboration et al. 2020a).
Moreover, late-Universe probes of the large-scale structure, such
as weak gravitational lensing (WL) and galaxy clustering, pre-
fer a lower amplitude of the growth of structure than Planck,

with tension up to 3.2σ level in the parameter S 8 = σ8

√
Ωm
0.3 ,

where σ8 is the standard deviation of matter density fluctuations
in spheres of radius 8 h−1Mpc today and Ωm is the matter den-
sity parameter (Alsing et al. 2017; Joudaki et al. 2017a; Loureiro
et al. 2019; Asgari et al. 2021; Tröster et al. 2020b; Kobayashi
et al. 2020).

If confirmed, the reasons behind these discrepancies could
be twofold. On the one hand, if we assume our cosmological
theory to be correct, the origin of the tension must lie in the data
or their analysis of either set of probes. On the other hand, if
we decide to trust the current measurements, the tension would
be suggestive of a shortcoming of the theory used to analyse the
aforementioned data, such as new physics beyond the standard
model (e.g. Mörtsell & Dhawan 2018; Capistrano et al. 2020;
Abellan et al. 2020).

Numerous efforts have been made to identify possible errors
in the respective data analysis processes of each set of probes.
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Concerning the local measurements of the Hubble parameter,
examples of these efforts can be found in the most recent review
of the distance ladder (Riess et al. 2021). Large-scale structure
surveys have also carried out extensive systematics checks and
internal consistency tests; see Abbott et al. (2018a); Lemos et al.
(2020) and Doux et al. (2021) for the Dark Energy Survey, Köh-
linger et al. (2019); Wright et al. (2020); van den Busch et al.
(2020); Giblin et al. (2021); Asgari et al. (2021) and Hildebrandt
et al. (2021) for the Kilo-Degree Survey (KiDS), and Laurent
et al. (2017) and Vargas-Magaña et al. (2018) for the Baryon Os-
cillation Spectroscopic Survey (BOSS) and the Extented Baryon
Oscillation Spectroscopic Survey (eBOSS) respectively. As for
the CMB probes, Efstathiou & Gratton (2019) undertook a thor-
ough revision of the CamSpec Likelihood used to analyze Planck
data in search for potential sytematics. Moreover, the initiative
’Beyond Planck’ is currently conducting a thorough revision of
Planck’s and WMAP’s methodology (BeyondPlanck Collabo-
ration et al. 2020). However, no known systematic errors that
could convincingly explain either tension have been reported yet.
Equally, the tensions have proven not to be relieved by combin-
ing data of independent late-Universe probes (e.g. Abbott et al.
2018b; Tröster et al. 2020b; Heymans et al. 2021) nor by propos-
ing alternative ways of measuring the Hubble parameter locally
(e.g. Freedman et al. 2019; Pesce et al. 2020).

In this work we develop and apply methodology to test the
self-consistency of the spatially flat ΛCDM model with the goal
of providing guidance as to which regime of the theory could
drive the observed tension. To do so, we differentiate between
two theory regimes within the cosmological model: geometry,
i.e. parts of the model related to the dynamics of the smooth
space-time lattice; and growth, concerning the formation of mat-
ter anisotropies on top of the dynamics of the space-time lattice.
The key distinguishing factor between the two regimes is that
geometry fully operates within the assumptions of homogeneity
and isotropy while growth considers perturbations on this back-
ground. If the ΛCDM model is self-consistent, the same set of
cosmological parameter values should correctly reproduce both
of its theory regimes. We test this assumption by letting each
theory regime be governed by an independent set of ΛCDM pa-
rameters. Then, we employ a range of high- and low-redshift
cosmological probes to obtain constraints for each regime of the
theory. Any discrepancies between the pairs of geometry and
growth parameters would hint at the origin of potential failures
in our current cosmological model.

This approach, in the particular formulation we use in this
work, was originally proposed by Ruiz & Huterer (2015). How-
ever, our interpretation of geometry and growth lies closer to
that put forward by Nesseris & Perivolaropoulos (2007). Sim-
ilar studies were conducted prior to this publication which also
explore the effects of splitting certain parameters of a given cos-
mological model as a means to investigating its self-consistency.
As early as 2004, Chu & Knox (2005) studied the consistency of
the constraints coming from data on the ionization history and on
the pressure profile of the pre-recombination fluid in the context
of flat ΛCDM by duplicating the baryon density parameter, Ωb,
and allowing each instance be constrained by one of the phenom-
ena. In Abate & Lahav (2008) a similar exercise was performed
on the total matter density parameter, Ωm, by having three in-
stances, each controlled by a different physical observable in SN
Ia data.

Beyond ΛCDM, Bernal et al. (2016) and Wang et al. (2007)
undertook multi-probe studies of the consistency of the wCDM
model by splitting the equation-of-state parameter w, and the
density parameter ΩDE, of dark energy into their geometry

and growth contributions. During the final stages of our study,
Muir et al. (2021) published a closely analogous investigation
of geometry–growth consistency using several probes from the
Dark Energy Survey in combination with external data. Our
work is complementary in that it employs a different mix of data
sources: weak gravitational lensing data from KiDS-1000 (As-
gari et al. 2021), galaxy clustering data from BOSS (Alam et al.
2017) and the 6 Degree Field Galaxy Survey (6dFGS; Beutler
et al. 2011), Lyman-α and quasar clustering information from
the Extended Baryon Oscillation Spectroscopic Survey (eBOSS;
de Sainte Agathe et al. 2019; Blomqvist et al. 2019), and subsets
of the Planck CMB temperature and polarization anisotropy cor-
relations. Moreover, our split is more comprehensive in that we
duplicate the full flat-ΛCDM parameter space, whereas Ruiz &
Huterer (2015) and Muir et al. (2021) limited themselves to a
split in the dark matter density parameter only.

This work is structured as follows: in Section 2 we present
the methodology of this work regarding the distinction between
geometry and growth in the ΛCDM model and the resulting
modelling of the observables of interest. In Section 3 we describe
the data sets that we analyse. We discuss the likelihood analysis
in Section 4 and present results in Section 5. In Section 6 we
summarise our findings and conclude.

2. Methodology

2.1. Distinguishing geometry and growth

We adopt a classification of the theory of the ΛCDM model
based on whether it keeps, or departs from, the assumptions of
homogeneity and isotropy. These assumptions strictly prohibit
the formation of structure in the universe. Hence, any informa-
tion regarding the formation of structure in the model can be
traced to where it departs from a smooth background. Thus,
we distinguish two theoretical regimes: on the one hand, an
isotropic, homogeneous background that describes the curvature
and expansion history of the Universe, and on the other hand, a
theory of perturbations that build up from the background and
create the structures in the Universe1. We refer to these two
regimes of the theory as geometry and growth, respectively.

In mathematical terms the departure from, or conservation
of, homogeneity and isotropy can be fully encapsulated in the
choice of metric since its shape is fully determined by the as-
sumptions that we make about the universe which we aim to de-
scribe. Furthermore, the fundamental role that the metric plays
in Einstein gravity means that these assumptions propagate into
the entirety of the theoretical predictions of the model. Of these
predictions, we particularly focus on two: the field equations,
which describe the relationship between matter and gravity, and
the equations of motion of the stress-energy tensor fields, which
describe how the content of the Universe evolves over time. The
FLRW line element, in which the assumptions of homogeneity
and isotropy are expressed, directly leads to the Friedmann field
equations. Moreover, the Friedmann field equations can be com-
bined into a conservation law for the field that describes its evo-
lution. The perturbation of this homogeneous background met-
ric ultimately leads to the Jeans equation, describing the evolu-
tion of matter density perturbations over cosmic time (e.g. Baker
et al. 2014).

1 As in standard structure formation theory, we assume here that struc-
ture growth does not feed back significantly on the expansion history;
see Clarkson et al. (2011) for a detailed discussion about this backreac-
tion.
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This dualistic understanding of the theory is extremely useful
when calculating predictions of astrophysical phenomena. This
is due to the fact that some phenomena can be accurately mod-
elled purely within a particular regime. Thus, we can equiva-
lently distinguish between geometry and growth observables as
well as geometry and growth theory regimes. Furthermore, the
modelling of more "complex" observables might need a combi-
nation of background and perturbation physics.

Nonetheless, if the ΛCDM model is to be self-consistent,
both regimes of the theory must be governed by the same set
of parameters, and therefore, parameter constraints based on ge-
ometry observables should be consistent with those from growth
ones. Similarly, observables whose modelling makes use of both
theory regimes should exhibit internal consistency between the
preferred parametrizations of their different calculation stages.

In this work we test the self-consistency of the ΛCDM model
by assigning to each theory regime its own set of cosmological
parameters and simultaneously parametrizing them using a set of
geometry and growth observables. This allows us to observe the
parametrization preferences of each regime such that potential
discrepancies can be identified. From here on we denote the sets
of parameters governing the geometry and growth regimes of the
theory as pgeom and pgrow, respectively. In this analysis we sam-
ple over the following parameters: S 8 = σ8

√
Ωm/0.3; where σ8

is the root-mean-square of matter density fluctuations in spheres
of 8 h−1Mpc and Ωm is the total matter density parameter, the
reduced Hubble parameter h = H0/(100 km s−1Mpc−1), the re-
duced cosmological cold dark matter density ωcdm = Ωcdmh2,
the reduced cosmological baryonic density ωb = Ωbh2 and the
spectral index ns.

We expect there to be correlations between pgeom and pgrow

because one can fully derive the growth aspects from the geome-
try parameters and vice versa, via the Jeans equation, in cosmo-
logical models in which gravitational collapse is quasistatic up
to the linear level of the theory (Silvestri et al. 2013; Baker et al.
2014). An explicit demonstration of this duality in GR+ΛCDM
can be found in Alam et al. (2009). Thus, simply splitting the
parameter space into two subsets does not ensure independent
constraints for the two theory regimes. Moreover, even if the
set of geometry cosmological parameters cannot constrain pa-
rameters that explicitly relate to matter anisotropies (e.g., S 8),
fixing them would misrepresent this lack of constraining power.
An analogous argument can be made for growth parameters that
primarily affect the expansion history, such as h. We therefore
assign the same, uninformative priors to both parameter sets and
vary the full set in each case.

There are alternative interpretations of the categories of ge-
ometry and growth and that the choice made in this work is not
necessarily unique. For example, in Muir et al. (2021) growth is
limited to describe only the late, non-linear growth of structure
based on the made argument that geometry and growth are an-
alytically linked at the level of linear theory. These approaches
are not contradictory but the different analysis choices prevent
direct comparisons between the resulting constraints.

For the purposes of this work we limit ourselves to a spatially
flat ΛCDM model. In agreement with Hildebrandt et al. (2020),
we also assume two massless neutrino species and a third mas-
sive species with mass mncdm = 0.06 eV/c2, as well as a temper-
ature of the non-cold relic Tncdm = 0.71611 K.

Table 1. Geometry and growth classification of the observables used in
our analysis.

Geometry Growth
BAO angular scale RSD growth rate
WL lensing efficiencies WL matter power spec-

trum
CMB first acoustic peak
position

CMB primordial power
spectrum

Notes. The first row lists features extracted from clustering signals
(BAO: baryon acoustic oscillations; RSD: redshift space distortions),
the second row weak lensing (WL) signal contributions, and the third
row quantities inferred from cosmic microwave background (CMB)
measurements.

2.2. Cosmological observables

In this section we introduce the physical observables used in this
work, including a discussion of their geometry versus growth
treatment; see Table 1 for an overview.

2.2.1. Weak lensing

In general relativity mass induces in its surrounding space-time a
non-Euclidean geometry. In agreement with Fermat’s principle,
photons seek the path of least action through the curved space.
These paths correspond to geodesic lines which are not straight
in a Euclidean sense, thus causing light rays to appear bent. This
deflection of light rays leads to similar observational effects as
those of optical lenses, focusing and distorting the images we
observe of celestial bodies that lie behind the lens. The effect
of such lenses is usually quite weak, so that it can only be de-
tected via statistical methods from large galaxy samples. This is
referred to as weak lensing (WL).

Weak lensing measurements are an excellent tool to inspect
the interplay between the different regimes of ΛCDM because
it is sensitive to both geometry and growth. This is because the
strength of the light deflection depends on the distances between
the light source, the lens, and the observer, as well as the spatial
distribution of the lenses and their density contrast with respect
to the mean matter distribution. Formally, this duality can be ob-
served in the key quantity of weak lensing, the lensing conver-
gence κ (e.g. Bartelmann & Schneider 2001),

κi(θ) =
3H2

0Ωm

2c2

∫ χlim

0

dχ χ
a(χ)

gi(χ)δ(χθ, χ) , (1)

where we assume a spatially flat universe. Here, χ is the radial
comoving distance, χlim is the radial comoving distance to the
horizon, a is the scale factor, c is the speed of light in the vac-
uum, and θ is a two-dimensional vector that represents angular
position on the sky. We also introduce the matter density contrast
δ measured at a position and epoch determined by the comoving
distance and the angular position. The lensing efficiency gi(χ) is
defined as

gi(χ) =

∫ χlim

χ

dχ′ni(χ′)
χ′ − χ

χ′
, (2)

where ni(χ′) is the comoving distance distribution of source
galaxies on which the lensing effect is measured, assigned to a
tomographic redshift bin labelled by i. In practice, we measure
the source distribution of redshifts, ni(z) = ni(χ) dχ/dz.
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Since the effects of weak lensing are not strong enough to be
directly observable, it is only possible to appreciate them statis-
tically. The standard baseline two-point statistic to model weak
lensing signals is the Fourier transform of the two-point correla-
tion of the convergence across redshift bins i and j, the conver-
gence power spectrum

Ci j
κ (`) =

9
4

Ω2
m

(H0

c

)4 ∫ χlim

0
dχ

gi(χ)g j(χ)
a2(χ)

Pδ

(
` + 1/2
χ

, χ

)
, (3)

where Pδ(k, χ) is the (non-linear) matter power spectrum evalu-
ated at wavenumber k and an epoch marked by χ. In Eq. (3) the
Limber approximation was applied (Limber 1953).

Angular power spectra are not directly measurable from a re-
stricted survey footprint. We employ band powers derived from
angular correlation function measurements; see Joachimi et al.
(2021); van Uitert et al. (2018); Schneider et al. (2002) for a de-
tailed description. Band powers can be modelled as linear func-
tionals of the angular convergence power spectra,

C
i j
E,l =

1
2Nl

∫ ∞

0
d`` W l

EE(`) Ci j
κ (`) , (4)

for a band indexed by l, where the filter function W l
EE is given

by equation 26 of Joachimi et al. (2021). The normalisation, Nl,
is defined such that the band powers trace `2Cκ(`) at the loga-
rithmic centre of the bin, Nl = ln(`up,l) − ln(`lo,l) with `up,l and
`lo,l defining the edges of the top-hat band selection function for
the bin indexed by l. Here, we have assumed that the model does
not predict any B-modes, and we will only use the E-mode band
powers in our analysis. This assumption is based on the work
of Giblin et al. (2021) who showed that there is no significant
detection of B-modes in KiDS-1000.

It is possible to establish a classification of the quantities that
enter the convergence power spectrum as geometry- or growth-
related. On the one hand, the cosmological dependence of the
matter power spectrum Pδ is growth-related. On the other hand,
the lensing efficiency solely concerns angular diameter distances
(or comoving distances when assuming a flat universe), which
are purely geometry-related. A more ambiguous decision is
whether to consider the prefactor in Eq. (3) geometry or growth.
This is due to the fact that, while these terms originate from
the Poisson equation that relates the gravitational potential to its
source, δ, in the context of the calculation of the observable they
effectively contribute a simple distance relationship that does not
necessarily regard anisotropies. In agreement with the criteria of
recent work (Muir et al. 2021), we consider these prefactors as
geometry.

2.2.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAOs) cause matter overdensities
at a characteristic physical separation scale which corresponds to
the size of the sound horizon at the end of the drag epoch, rs(zd)
(Peebles & Yu 1970; Hu & Dodelson 2002). The sound horizon
is defined as the distance a pressure wave can travel from its time
of emission in the very early Universe up to a given redshift. This
can be expressed as

rs(z) =

∫ ∞

z

cs dz′

H(z′)
, (5)

where cs denotes the speed of sound, and where H(z) is the ex-
pansion rate at redshift z. The end of the drag epoch is defined

as the time when photon pressure can no longer prevent gravi-
tational instability in baryons around z ∼ 1020 (Komatsu et al.
2009). The redshift of this time is typically estimated using the
following fitting formula:

zd =
1291(ωm)0.251

1 + 0.659(ωm)0.828 [1 + b1(ωb)b2 ] , (6)

where b1 = 0.313(ωm)−0.419[1 + 0.607(ωm)0.674], b2 =
0.238(ωm)0.223 and ωm = ωcdm + ωb is the reduced cosmolog-
ical matter density; see Komatsu et al. (2009).

Since the overdensity manifests anisotropically in redshift-
space as a three-dimensional shell around a given tracer, it is
possible to shift the BAO peak position with respect to its po-
sition in a fiducial cosmology, parallel and perpendicular to the
line of sight. Perpendicular to the line of sight, the BAO feature
informs the trigonometric relationship

θ ≈
rs(z)

DM(z)
, (7)

where θ is the angle under which the scale of the sound hori-
zon is observed, and DM(z) is the comoving angular diameter
distance to redshift z, which in a flat universe is identical to the
comoving radial distance χ(z). Parallel to the line of sight, the
BAO feature allows us to measure the expansion history of the
Universe. The BAO measurements along the line of sight can be
use to constrain the relationship H(z)rs(zd).

We cast our BAO measurements in the form of the dimen-
sionless ratios (Alam et al. 2017; du Mas des Bourboux et al.
2020; de Sainte Agathe et al. 2019; Blomqvist et al. 2019):

α‖ =
[DH/rs(zd)]

[DH/rs(zd)]fid
; α⊥ =

[χ/rs(zd)]
[χ/rs(zd)]fid

, (8)

to describe shifts perpendicular and parallel to the line of sight,
where DH(z) = c/H(z) is the Hubble distance and the label ‘fid’
denotes a quantity evaluated at the aforementioned fiducial cos-
mology. Nonetheless, the quantities chosen to represent these
parallel and perpendicular signatures of the BAO feature can
vary from probe to probe.

It is also common to combine the perpendicular and parallel
information in the volume-averaged angular diameter distance
defined as

Dv(z) =

(
cz

H(z)
χ2(z)

)1/3

, (9)

or in the anisotropy parameter known as the Alcock-Paczynski
parameter ; FAP(z) (Alcock & Paczynski 1979), defined as:

FAP(z) = χ(z)H(z)/c . (10)

Although BAOs are a consequence of structure growth, their
signature in the matter distribution can be translated into dis-
tance relationships that can be calculated without making use of
density perturbations. This can be seen in the fact that, while the
speed of propagation of BAOs, and thus the sound horizon, is
a function of the matter content of the Universe, it can be com-
pletely calculated by assuming this content to be homogeneous
and isotropic. Therefore, measurements of the position of the
BAO peak in the CMB or in the large-scale structure can be clas-
sified as pure geometry phenomena.
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2.2.3. Redshift space distortions

Redshift space distortions (RSDs) are modifications to the ob-
served redshift of a given object due to its peculiar velocity along
the line of sight on top of the recession velocity due to cosmolog-
ical expansion (Kaiser 1987). RSDs are determined by peculiar
motion in the gravitational potential of the surrounding matter
distribution and thus governed by the Poisson equation, which
makes them a pure growth effect. For galaxies on large, lin-
ear scales RSDs are dominated by the infall towards overdense
structure, known as the Kaiser effect (Hamilton 1998).

Clustering two-point statistics as a function of transverse
and line-of-sight separation can be used to extract RSDs via the
quantity (e.g. Beutler et al. 2017)

fσ8 ≡
d ln δ
d ln a

σ8 , (11)

where f is the growth rate and δ is again the matter density con-
trast. Both f and σ8 are evaluated at the effective redshift of the
measurement, as opposed to the use of σ8 in weak lensing which
is always interpreted at z = 0.

2.2.4. Early-Universe geometry and growth parameters

The CMB is the richest source of cosmological information to
date and particularly valuable as a complement to low-redshift
probes of the large-scale structure. While a full re-analysis of
Planck data is beyond the scope of this work, we would still
like to make use of readily accessible CMB information that can
be allocated cleanly to either the geometry or growth regimes.
The primary CMB anisotropies can be described by a set of
five cosmological parameters (Vonlanthen et al. 2010; Kosowsky
et al. 2002): the reduced baryon density parameter ωb, the re-
duced cold dark matter density parameter ωcdm, the amplitude
and spectral index of primordial scalar fluctuations, As and ns
respectively, and the angle subtended by the sound horizon at
end of recombination epoch θ∗ (cf. Eq. 7, evaluated at redshift
z∗ ∼ 1100 as opposed to zd ∼ 1020). A detailed discussion of
the role of each of these parameters in determining the physical
properties of the CMB can be found in Mukhanov (2004).

The parameters ns and As are pure growth quantities as they
determine the primordial scalar fluctuation power spectrum

Pδ,prim(k) = As

(
k
k0

)ns

, (12)

where k0 is the pivot scale of the power spectrum here set to
the value of 0.05 Mpc−1 for consistency with Planck (Planck
Collaboration et al. 2020a). In contrast, θ∗ is clearly a parameter
solely concerned with the background cosmology as it relates the
distance to the surface of last scattering to the size of the sound
horizon.

The roles of ωb and ωcdm are not readily categorised. On the
one hand, they play a role in determining the relative height of
the CMB peaks, related to density fluctuations, but they also gov-
ern the expansion history and the value of the speed of sound in
the baryon-photon fluid, all describable in a smooth universe.
Therefore we decided not to include CMB constraints on ωb
and ωcdm in our analysis, but do make use of the marginalised
posteriors of the combination {ns, As, θ

∗}, taking their correlation
into account. We note that similar analyses (Muir et al. 2021)
have employed the CMB shift parameter R, a measure of the
change of location of the first power spectrum peak with respect
to a fiducial cosmology (Efstathiou & Bond 1999). While the

R parameter is a good alternative to constrain geometry, in this
work we decided to use θ∗ as it is a direct analogue of quanti-
ties available for the large-scale structure BAO measurements.
The parameter ns can be directly matched to the sampled ns val-
ues in our analysis to constrain growth. As can be inferred from
the sampled S 8 value to constrain growth. On the other hand,
we treat θ∗ as another evaluation of the distance relationship in
Eq. (7) and use it to constrain the geometry regime.

3. Data Sets

To constrain the geometry and growth regimes of ΛCDM, we
jointly analyse a range of recent measurements. A summary of
the data sets employed in this work is given in Table 2.

3.1. KiDS-1000 cosmic shear measurements

We employ cosmic shear measurements from the fourth data re-
lease of the European Southern Observatory’s Kilo Degree Sur-
vey (KiDS; Kuijken et al. 2019) incorporating data from the
fully overlapping VISTA Kilo-Degree Infrared Galaxy Survey
(VIKING; Edge et al. 2013). The KiDS and VIKING surveys
were designed to be complementary and combine optical and
near-infrared imaging in nine photometric bands (Wright et al.
2020). We analyze the now public weak lensing shear catalogue
dubbed KiDS-1000 from Giblin et al. (2021), which images
1006 deg2 on the sky 2. This data set is divided in four photomet-
ric redshift bins of width ∆z = 0.2 in the range 0.1 ≤ zB ≤ 0.9
and a fifth bin with 0.9 ≤ zB ≤ 1.2, based on their most probable
Bayesian redshift zB inferred with the code BPZ (Benítez 2000).
The redshift distributions of the five tomographic bins are then
calibrated with deep spectroscopic samples that are reweighted
using a self-organising map (Wright et al. 2020; Hildebrandt
et al. 2021).

As summary statistic of the cosmic shear signal we adopt
band power spectra estimated from the two-point correlation
functions, which are analysed in Asgari et al. (2021). The corre-
sponding KiDS-1000 cosmic shear likelihood is publicly avail-
able in the KiDS Cosmology Analysis Pipeline3 (KCAP) to-
gether with a MontePython interface4 that wraps the KCAP
functionality. This likelihood requires two additional astrophysi-
cal nuisance parameters: the amplitude of intrinsic galaxy align-
ments AIA and the baryonic feedback parameter Abary; see
Joachimi et al. (2021) for further details. Furthermore, five addi-
tional nuisance parameters δz allow for a shift of the mean of the
redshift distribution in each tomographic bin within informative
Gaussian prior set by the calibration procedure. Since these nui-
sance parameters do not have a cosmological interpretation we
only keep one instance that is shared between the geometry and
the growth instances of the cosmological code.

3.2. Galaxy clustering

The main data source we employ to draw constraints from the
BAO and RSD observables are the Sloan Digital Sky Survey III
(SDSS III; Eisenstein et al. 2011; Alam et al. 2017) and the Six-
Degree Field Galaxy Survey (6dFGS) (Jones et al. 2009; Beutler
et al. 2011). Concerning the first of the two surveys, we make
use of the twelfth data release of the galaxy clustering data set

2 http://kids.strw.leidenuniv.nl/DR4/lensing.php
3 https://github.com/KiDS-WL/kcap
4 https://github.com/BStoelzner/KiDS-1000_
MontePython_likelihood
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Table 2. Data sets used in our analysis, and their properties.

Probe Data set Redshifts Observable(s) Data
Points

Weak lensing KiDS-1000 (Kuijken et al.
2019; Hildebrandt et al. 2021;
Giblin et al. 2021)

0.1 - 1.2 (photo-
metric redshift)

Tomographic band
power spectra Ci j

E,l (see
Eq. 4)

120

Clustering - BAO BOSS DR12 (Alam et al. 2017) 0.38 - 0.61 [H(z)]fid/(α‖);
α⊥[χ(z)]fid (see Eq. 13)

6

6dfGS (Jones et al. 2009) 0.106 rs(zd)/Dv 1
Clustering - RSD BOSS DR12 (Alam et al. 2017) 0.38 - 0.61 fσ8 3
Lyα - BAO eBOSS DR14 (de Sainte Agathe

et al. 2019; Blomqvist et al.
2019)

2.34 α‖; α⊥ 6360

CMB - BAO Planck 2018 TT, TE, EE + Lowl
+ lowE (Planck Collaboration
et al. 2020a)

∼ 1100 rs(z∗)
DA(z∗) 1

CMB - Primordial Planck 2018 TT, TE, EE + Lowl
+ lowE (Planck Collaboration
et al. 2020a)

∼ 1100 As, ns 2

Notes. We list the probe, the type of data selected, the redshift range of the probe, the choice of observable, and the size of the data vector.
Expressions for the observables are provided in Sect. 2.2. A detailed description of the different data sets can be found in Sect. 3.

of the Baryon Oscillation Spectroscopic Survey (BOSS DR12)
which forms part of SDSS III. BOSS DR12 contains records of
1.2 million galaxies over an area of 9329 deg2 and volume of
18.7 Gpc3, divided into three partially overlapping redshift slices
centred at effective redshifts 0.38, 0.51, and 0.61.

We fit the geometrical relations α‖ and α⊥ (Eq. 8) as reported
by the BOSS DR12 data products:

[H(z)]fid

α‖
=

H(z)[rs(zd)]fid

rs(zd)
; α⊥[χ(z)]fid =

χ/rs(zd)
[rs(zd)]fid

, (13)

from the reconstruction of the BAO feature at the three differ-
ent redshift bins where [rs(zd)]fid = 147.78 Mpc is the scale of
the sound horizon at drag epoch as given by the fiducial cos-
mology used for the reconstruction. [H(z)]fid and [χ(z)]fid are
the corresponding Hubble parameter and comoving radial dis-
tance for the fiducial cosmology, respectively. Note that when
fitting these distance relationships, rs was treated as a free quan-
tity to be determined by the fitting process while r′s was fixed
to the value provided in the data products. Moreover, we fit the
three redshift measurements of fσ8(z) from RSD obtained us-
ing the anisotropic clustering of the pre-reconstruction density
field (Alam et al. 2017). The BAO and RSD measurements of
BOSS DR12 are two features extracted from the same set of ob-
servations. As such, they are not statistically independent. Thus,
when analyzing these two features, a combined analysis was per-
formed mediated by the combined covariance matrix of the two
sets of measurements from Alam et al. (2017). Moreover, we
also account for the correlations present between the three BAO
measurements with each other and between the three RSD mea-
surements with each other resulting from the overlap in the used
redshift bins.

This treatment of BOSS DR12 data given is different from
Tröster et al. (2020b) and Heymans et al. (2021), who perform
a combined studies of KiDS with BOSS DR12 in a full-shape
analysis. While performing a full-shape analysis in our study
would increase the constraining power, it makes discerning be-
tween geometry and growth significantly more complex. Thus,
we decided to trade constraining power for clarity in our pro-
posed classification.

The 6dFGS is a combined redshift and peculiar velocity sur-
vey covering nearly the entire southern sky. The median redshift
of the survey is z = 0.052. The 6dFGS BAO detection offers
a constraint on the distance-redshift relation rs(zd)/Dv(zeff) at
zeff = 0.106. Altogether, we employ a total of 10 data points
from clustering surveys.

Both the SDSS and the 6dFGS overlap with KiDS in its
Northern and Southern patches, respectively. While in princi-
ple this induces correlations with the weak lensing measure-
ments, these are comfortably negligible, primarily because of the
large survey areas outside the KiDS footprint used for clustering.
Moreover, the inferred statistics from the clustering signals tend
to originate from larger physical scales than the weak lensing in-
formation. Joachimi et al. (2021) showed that cross-correlations
between BOSS and KiDS are negligible even for a full-shape
clustering analysis, and for the 6dFGS, which is at very low red-
shift, the correlation is even weaker.

3.3. Lyman-α forest and quasars

We employ high-redshift constraints on the BAO signature from
SDSS-IV (Dawson et al. 2016) Data Release 14, observed as
part of the extended Baryon Oscillation Spectroscopic Survey
(eBOSS; Blanton et al. 2017). We do so by combining the auto-
and cross-correlation analyses of three quasar samples from
DR14Q (de Sainte Agathe et al. 2019; Blomqvist et al. 2019)
which includes quasar clustering and Lyα forest absorption in
the Lyα and Lyβ regions. The selected sample of tracer quasars
contains 266,590 quasars in the range 1.77 < zq < 3.5. It in-
cludes 13,406 SDSS DR7 quasars Schneider et al. (2010) and
18,418 broad absorption line (BAL) quasars (Weymann et al.
1991).

The Lyα sample is derived from a super set consisting of
194,166 quasars in the redshift range 2.05 < zq < 3.5, whereas
the Lyβ sample is taken from a super set containing 76,650
quasars with 2.55 < zq < 3.5.

The BAO signal is detected both parallel and perpendicular
to the line of sight in all cases. This allows for the measure-
ment of the distance relationships α‖ and α⊥ described in Eq. (8),
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where the fiducial factors of normalization are [DM/rs(zd)]fid =
39.26 and [DH/rs(zd)]fid = 8.581. However, we do not fit the
distance relationships directly. Instead, we interpolate the pub-
licly available MCMC chains of the combined analysis of Lyα
auto-correlation, quasar auto-correlation and Lyα-quasar cross-
correlation5 from de Sainte Agathe et al. (2019); Blomqvist et al.
(2019) and evaluate the 2D interpolation function at the sampled
α‖ and α⊥ to obtain the corresponding ∆χ2-value relative to the
best-fit χ2-value; χ2

min, obtained from Blomqvist et al. (2019, ta-
ble 5). When reporting the goodness of fit obtained using this
likelihood, we employ the following formula χ2 = ∆χ2 + χ2

min =

∆χ2 + 6499.31; where ∆χ2 is the value inferred with our like-
lihood code. When combining this data sets, since goodness of
fit values are additive, we simply add χ2

min = 6499.31 to the ob-
tained ∆χ2 of the combined data sets.

3.4. Cosmic microwave background anisotropies

We make use of the constraints resulting from the analysis of
measurements of the cosmic microwave background (CMB)
temperature and polarization anisotropy maps of the European
Space Agency’s satellite Planck (Planck Collaboration et al.
2020a) denoted as TT, TE, EE + Lowl + lowE and referred to
in the following as "Planck 2018". More specifically, we employ
the posteriors on the cosmological parameters As and ns as two
pseudo data points. Additionally, we adopt Planck’s posterior for
the BAO angular scale θ∗ =

DA(z∗)
rs∗

, where z∗ ∼ 1100 is the red-
shift of the end of the recombination epoch.

In order to convert the previously mentioned posteriors into
pseudo data points, we employ the PythonMonte Carlo sample
analysis package GetDist (Lewis 2019) to first marginalise the
public posterior chains of the Planck 2018 TT, TE, EE + Lowl
+ lowE set over all parameters except θ∗, As and ns. Then, we
extract the best-fit values of the parameters by finding the maxi-
mum of the joint posterior probability density distribution func-
tion. Finally, we calculate the combined covariance matrix of the
three parameters. In doing so, we approximate the marginalised
posterior as a multivariate Gaussian, which is an accurate as-
sumption (see e.g. Fig. A.3). This allows us to associate an error
bar with each data point and to evaluate the level of correlation
between the three pseudo-measurements. This results in three
values that we can match with our theoretical predictions. To
distinguish this subset from the complete Planck posterior we
label it as Recomb This methodology is analogous to that used
by Muir et al. (2021) when extracting constraints from a Multi-
Nest chain of the TT + lowl Planck lite 2015 likelihood and to
the θ∗ fitting process in Ruiz & Huterer (2015) .

4. Likelihood analysis

Bayesian inference is employed to obtain constraints for the
ΛCDM parameter sets governing the geometry and growth the-
ory regimes; pgeom and pgrow respectively. It relies on Bayes’ the-
orem to relate the probability of a given set of parameter val-
ues conditioned on the observed data D, known as the posterior
probability P(pgrow, pgeom|D), to the probability of observing the
data given a set of parameter values, known as the likelihood

5 https://github.com/brinckmann/montepython_public/
blob/3.4/data/eBOSS_DR14_scans/eBOSS_DR14_Lya_
combined_scan.dat

L(D|pgrow, pgeom):

P(pgrow, pgeom|D) =
L(D|pgrow, pgeom)Π(pgrow)Π(pgeom)

Z(D)
. (14)

Here, we also defined the prior Π for a set of model parameters
and the evidenceZ(D), which is independent of the parameters.

In line with previous analyses, we choose a Gaussian likeli-
hood for all data sets under consideration,

L(D|pgrow, pgeom)

=
exp{− 1

2 [D − m(pgrow, pgeom)]T C−1[D − m(pgrow, pgeom)]}

(2π)
N
2
√

det(C)
.

(15)

In this general expression, N is the dimension of the data vec-
tor, C is covariance matrix that describes the statistical un-
certainty and the correlations between the elements of D, and
m(pgeom, pgrow) is the vector composed of the model predictions
for the observations measured in D, given the parameters. This
distance is χ2-distributed for Gaussian data and will be used by
us as a measure of the goodness of fit.

Bayesian inference takes into consideration the initial expec-
tations for the values of the parameters prior to analysing the
data via Π(p). The priors chosen in this work for the parame-
ters in both sets pgeom and pgrow are the same as in the original
KiDS-1000 analysis (Joachimi et al. 2021), which were shown
to bare no effect on the S 8 posteriors. We display the prior dis-
tributions in Table 3. We note that the KiDS cosmology priors
are sufficiently conservative so as not to impact significantly on
the posteriors of any of the probe combinations that we consider
in this work. The table also provides a brief description of each
parameter and specifies their role as either cosmological, nui-
sance or derived, i.e fully determined from the set of sampling
parameters. We also show the treatment of each parameter as ei-
ther split; i.e. present in both the geometry and the growth set of
parameters, or shared; i.e. a single parameter was used to model
both theory regimes.

The geometry and growth parametrisation entails a duplica-
tion of the cosmological parameter space and the associated prior
volume, which affects model comparison and selection criteria
(Handley & Lemos 2019b). We note that alternative choices of
priors could prove useful in this regard. For instance, instead of
the sets pgeom and pgrow one could employ their mean and dif-
ference as the sampling parameters. While the mean would be
assigned the same set of priors as the traditional analysis, the
prior on the parameter differences could more explicitly account
for our expectations in deviations from ΛCDM. We will consider
these options in future work.

The implementation of Bayesian inference relies on com-
puter methods that make handling the typically high dimen-
sionality of the parameter space feasible. This is especially true
in this work where large parts of the parameter space have
been doubled. In this work we made use of the cosmologi-
cal parameter estimation code MontePython 2COSMOS6 (Köh-
linger et al. 2019), a modification of MontePython (Audren
et al. 2013; Brinckmann & Lesgourgues 2019) that allows us
to sample duplicated instances of parameters simultaneously.
MontePython 2COSMOS achieves this by creating two sepa-
rate instances of its underlying cosmological prediction code,
CLASS (Blas et al. 2011; Lesgourgues 2011). Six pre-existing
6 https://github.com/fkoehlin/montepython_2cosmos_
public
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Table 3. Model parameters and their priors, adopted from Asgari et al. (2021).

Parameter Type Prior Duplicated Description
ωcdm Cosmological [0.051, 0.255] X Reduced cold dark matter density parameter

S 8 Cosmological [0.1, 1.3] X S 8 = σ8

√
Ωm
0.3

ωb Cosmological [0.019, 0.026] X Reduced baryonic matter density parameter
ns Cosmological [0.84, 1.1] X Spectral index of the primordial curvature power spectrum
h Cosmological [0.64, 0.82] X Reduced Hubble parameter at present cosmic time
Ωm Derived - X Total matter density parameter
σ8 Derived - X Present-time amplitude of matter density fluctuations
AIA Nuisance [−6.0, 6.0] × Amplitude of intrinsic galaxy alignments
Abary Nuisance [2, 3.13] × The baryonic feedback on the matter power spectrum
δz Nuisance N (µ,C) × Shift of the mean of the KiDS redshift distributions
Ωk Fixed 0 × Curvature density parameter∑

Mncdm Fixed 0.06 eV/c2 × Total mass of massive neutrino species

Notes. The three sections correspond to cosmological, nuisance, and fixed parameters, respectively. The first column provides parameter names,
with a brief description given in the fifth column. The second column lists whether parameters are sampled (distinguishing further between
cosmological and nuisance parameters), fixed, or determined as a derived parameter from the posterior chain. The third column contains the
fiducial parameter value (if fixed) or else the prior range, with the interval indicating the boundaries of a top-hat prior. The five shift parameters δz
are correlated through their covariance matrix C and their means µ are set to the mean values of the shifts of the tomographic redshift distributions
from Hildebrandt et al. (2021). The fourth column shows whether a parameter is duplicated in the geometry–growth split or shared between the
two regimes.

likelihoods from MontePythonwere adapted into MontePython
2COSMOS such that pgrow and pgeom can be assigned to the mod-
els of the observables discussed in Section 2.2; see Fig. 1 for a
schematic overview. We employ the nested sampling algorithm
MultiNest (Feroz et al. 2009, 2019) which allows us to reliably
explore the high-dimensional posterior.

We assume that the likelihoods for the different data sets em-
ployed are independent so that they can be combined by simple
multiplication, Ltot =

∏N
i Li, where N is the number of probes

used. The overlap region of the KiDS-1000 and BOSS footprints
only accounts for 3% of the BOSS area, and hence it is safe to as-
sume the two data sets are independent, as previous works have
shown (Joachimi et al. 2021). Similarly, the BOSS and eBOSS
data sets that we employ have been reported to be effectively in-
dependent (Ata et al. 2018). Also, the 6dfGS survey has been
extensively used as an independent complement to SDSS data,
as shown in Beutler et al. (2011).

The constraints of Planck 2018 are known to be in tension
with those of KiDS-1000 in ΛCDM and therefore should not be
combined per se. This tension has also been shown to persist
even when the As value is fixed; see Tröster et al. (2020a). How-
ever, the tension does not manifest in the subset of parameter
constraints that we adopt from Planck (see Fig. A.3 for refer-
ence). While the Planck pseudo data points are independent of
the low-redshift probes, joint posteriors employing this informa-
tion will be necessarily correlated with full Planck constraints
that we display alongside.

5. Results

In this section we present constraints on the geometry and growth
cosmological parameters combining the weak lensing, cluster-
ing, Lyman-α, and Recomb data sets. In Appendix A, we ver-
ify that these data sets are fully consistent with each other, and
that our ‘traditional’ re-analysis of each data sets is consistent
with the analyses presented in the literature. We also analyse the
goodness of fit for each data combination finding that in all stud-
ied cases the models offer a good fit of the data. Moreover, we
compare the traditional and geometry-growth split analysis, find-

Sample pgrow

from within prior 
Sample pgeom

 from within prior 

Calculate WL matter
power spectrum

Calculate WL lensing
efficiencies and

combine with matter
power spectrum to

predict WL
observable

Calculate fσ8 at an
array of  redshifts

Take sampled values
for ns and As and

match them to Planck
2018 posteriors

Calculate Hubble
parameter and

relevant distance
relationships at an
array of redshifts

Multiply independent
likelihood values to

obtain combined
likelihood value

Fig. 1. Schematic of the complete MontePython 2COSMOS pipeline
developed for the purposes of this work. Two instances of the cosmolog-
ical code, cosmology 1 and cosmology 2, independently sample the cos-
mological parameters for the two theory regimes, geometry and growth,
respectively. These parameters are then passed to the likelihood mod-
ules to calculate the theoretical prediction for each individual probe.
Finally, the respective independent likelihood values for each probe are
multiplied to obtain the likelihood value of the combined data set.

ing that while the split model is better at fitting the data, the im-
provement is not decisive at justifying the extra added degrees
of freedom with respect the traditional analysis; see Appendix B
for further details.
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5.1. Geometry versus growth constraints

The marginalised posterior distributions for a subset of cosmo-
logical parameters, namely Ωm, σ8, and h, are illustrated in Fig.
2 for the split analysis of geometry (grey) and growth (green)
as well as the traditional analysis with one single set of cos-
mological parameters (red). The leftmost row corresponds to an
analysis of weak lensing data alone, while the rows to the right
show the results obtained by subsequently adding the cluster-
ing, Lyman-α, and Recomb data sets. Additionally, we display
the constraints from the Planck 2018 analysis (Planck Collabo-
ration et al. 2020a) for reference in each panel (blue). The corre-
sponding marginalised 1D posteriors are shown in Fig. C.1 and
the posteriors of the full set of cosmological parameters are pre-
sented in Appendix D.

We find that the constraining power on the geometry and
growth theory regimes differs depending on the sensitivity of
the probes with respect to the various cosmological parameter in
the two theory regimes. For the parameters Ωm or ωcdm the con-
straining power of geometry and growth is comparable. Potential
discrepancies in these parameters would thus be the most mean-
ingful as both regimes are informed by the data. We also observe
cosmological parameters for which only one theory regime has
a significant constraining power. This is the case for S 8, ns and
σ8, which are only constrained by the growth regime. Conse-
quently, the posteriors of their geometry counterparts are driven
by the prior. Conversely, we find that h is overwhelmingly domi-
nated by the geometry regime while its growth posterior remains
unconstrained by the data. It is important to stress that while it
is possible for the geometry regime to be uninformed about the
perturbatory cosmological parameters, the growth theory regime
necessarily holds information, even if very limited, on the back-
ground parameters since the perturbatory aspects of the theory
are built from this background cosmology. Finally, we note that
ωb is poorly constrained in both regimes with the data sets used.

The geometry and growth regimes explore independent di-
rections of the parameter space, which results in posterior distri-
butions of Ωm and σ8 that are orthogonal to each other. Figure 2
shows that this orthogonality significantly strengthens as more
data sets are combined. A lack of correlation between pgeom and
pgrow supports the meaningfulness of the geometry and growth
categories as distinct theory regimes. The constraints on Ωm
from growth and on σ8 from geometry are mainly dominated by
the prior, except for the combination of weak lensing + cluster-
ing + Lyman-α + Recomb data, which puts stronger constraints
from the growth regime on Ωm. This causes the two regimes to
span over two independent directions in parameter space. While
Ω

grow
m is largely unconstrained, it is consistent with Ω

geom
m for

all probe combinations, as detailed in Fig. 3. This finding devi-
ates somewhat from the similar study by Muir et al. (2021) who
found a 2σ preference for higher values of Ω

grow
m than Ω

geom
m in

their combined probe analysis.
Positive correlation can be interpreted as a sign of consis-

tency between geometry and growth as it indicates that when
one instance of the parameter is varied, its counterpart mimics
its change. Thus, the two theory aspects portray the same trend.
Conversely, negative correlation would be a sign of lack of con-
sistency in the geometry and growth split. Overall, we observe
minimal or little correlation between the different pairs of cos-
mological parameters for any of the studied combinations of data
sets, finding all pairs of cosmological parameter to have a corre-
lation coefficient below 0.2. The exception to this rule is the Ωm
pair for which we observe a positive correlation of 0.48 between
Ω

geom
m - Ω

grow
m when solely analysing weak lensing data, which is

sensitive to both theory regimes. The correlation vanishes once
additional data sources are included as these put stronger con-
straints on Ω

geo
m while leaving Ω

gro
m mostly unchanged.

The bottom row of Fig. 2 shows the marginalised posterior
distributions for Ωm and h. The weak lensing observable by itself
is not sensitive to the Hubble parameter, which is why the pos-
terior distributions for h are prior-dominated for both geometry
and growth, as well as for the traditional analysis. By adding ad-
ditional data sets to the analysis, the geometry constraints shrink
while the growth ones remain significantly wider, narrowing to-
wards a Ωmh = const degeneracy constrained by the peak posi-
tion of the matter power spectrum.

Comparing the posterior resulting from the traditional anal-
ysis to the ones obtained in the split analysis of the two theory
regimes in the top row of Fig. 2, we find that, as was expected,
the traditional contours reside at the intersection between the ge-
ometry and growth contours. While the constraints on Ωm and
σ8 from geometry and growth by themselves are quite weak, the
combination of the two regimes results in the "banana-shaped"
contour, which is most noticeable in the leftmost panel show-
ing the constraints obtained from solely analysing weak lensing
data. The good agreement between the two theory regimes in-
ternally and the traditional constraints is also evidenced by the
negligible change in the goodness of fit; see Table B.1. However,
tension with the full Planck analysis remains throughout, which
we will discuss further in Section 5.2.

We quantify the level of consistency between the two theory
regimes by considering the posterior distribution of the differ-
ence between the parameter duplicates, which is shown in Fig. 4
for three selected cosmological parameters: S 8, Ωm, and h. Vi-
sually, the marginalised posterior distributions show good agree-
ment with the zero point. This indicates no tension between pa-
rameters in the two theory regimes. We quantify the tension be-
tween parameter duplicates following the methodology of Köh-
linger et al. (2019). We find good agreement between theory
regimes for all combinations of parameters with a maximum off-
set of 1.27σ which is observed in the posterior distribution of ∆h
and ∆Ωm for weak lensing + clustering data.

Finally, we do not observe any new correlations between the
different instances of the cosmological parameters and the nui-
sance parameters beyond those present in the traditional analy-
sis. In particular, we do not see a correlation between the growth
instance of Ωm and the nuisance parameter AIA as reported for
weak lensing data by Muir et al. (2021). We also repeated our
analysis splitting in addition the parameter AIA. We obtained
consistent results with constraints beyond the prior exclusively
on the geometry instance of AIA. This is reassuring as it indi-
cates that the data constrains intrinsic alignments solely through
the different redshift scaling of its contribution relative to weak
lensing.

5.2. Tension with full Planck data

The presence of tension between our analyses and the full Planck
contours suggests that its cause may lie in the weak lensing ob-
servable, common to all cases of study, or in the ΛCDM model.
The most recent cosmic shear analysis of KiDS-1000 (Asgari
et al. 2021) found a 3σ disagreement in their estimate of the
cosmological parameter S 8 with respect to the prediction of the
Planck 2018 analysis of the CMB. This tension has been shown
to persist both when combining the KiDS-1000 data with other
probes (Heymans et al. 2021) and when considering extensions
of the ΛCDM model (Tröster et al. 2020a).
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WL+Clustering+Lyα+RecombWL+Clustering+LyαWL+ClusteringWL                                  

Planck 2018 Traditional Geometry Growth 

Fig. 2. Marginalised posterior distributions of σ8 and Ωm (top row), as well as h and Ωm (bottom row) for different combinations of data sets
(columns). Each panel shows a superposition of four contours. Namely, the growth and geometry contours from the split analysis of the two theory
regimes (green and grey contours respectively), the contour resulting from the traditional analysis with one set of cosmological parameters (red),
and the reference contours from the Planck 2018 analysis (blue; Planck Collaboration et al. 2020a).

WL+Clustering+Lya+Recomb
WL+Clustering+Lyα

WL+Clustering 
WL 

Fig. 3. Marginalised posterior for Ωm when comparing their geometry
(horizontal axis) and growth (vertical axis) counterparts. We show the
evolution of the contours as more data sources are added into the anal-
ysis. Namely, we display weak lensing (green), weak lensing combined
with clustering data (grey), weak lensing combined with clustering and
Lyman-α forest data (red) and finally weak lensing combined with clus-
tering, Lyman-α forest and Recomb data (blue).

The level of consistency between BOSS DR12 data on
galaxy clustering (Alam et al. 2017) and Planck 2018 depends on
the chosen parametrisation (Sánchez et al. 2017; Loureiro et al.
2019; Kobayashi et al. 2020). Tröster et al. (2020b) showed that
when employing the geometrical quantities α⊥ and α‖ the data is
not in tension with the ΛCDM parameters of Planck 2018. When
cast into ΛCDM, the full shape analysis BOSS DR12 prefers a
lower value of σ8 than Planck 2018 at 2.1σ. However, when
the tension is computed for the whole parameter space, the two
probes are in good agreement. The same considerations have to
be made when assessing the consistency of the eBOSS DR14

Fig. 4. Marginalised posterior distributions of the difference between
geometry and growth parameter duplicates of S 8, Ωm, and h. Each panel
shows the contours for the combinations of data sets WL (green), WL +
Clustering (black), WL + Clustering + Lyα (red) and WL + Clustering
+ Lyα + Recomb (blue). At the top-left corner of each panel we display
the σ-level tension of each contour with respect to the null value pgrow =
pgeom for all combination of data sets.

data set with other surveys. In the α⊥ and α‖ framework, the
eBOSS DR14 has been shown to be consistent with the Planck
2016 (Planck Collaboration et al. 2016a) best-fit flat ΛCDM
model, with a mild deviation of 1.7σ (Blomqvist et al. 2019).
However, a non-negligible degree of discrepancy has been re-
ported when constraints are cast into the ΛCDM framework, es-
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Fig. 5. The figure shows the S 8 best-fit parameter values with their asso-
ciated 1σ confidence regions obtained from the different combinations
of data sets explored in this work. In top to bottom order we display
the data sets WL, WL + Clustering, WL + Lyα, WL + Recomb, WL +
Clustering + Lyα and finally WL + Clustering + Lyα + Recomb The
numerical value of the quantities displayed can be found in Tab. 4.

pecially in the Hubble parameter (Aubourg et al. 2015; Addison
et al. 2018).

Finally, our implementation of the CMB data directly uses
Planck 2018 posteriors as pseudo data points ensuring a per-
fect agreement with the early-Universe probe. Thus, of the four
data sets considered in this work, only KiDS-1000 is in signifi-
cant tension with Planck 2018. This is simply a consequence of
the tension manifesting in the amplitude of structure growth for
which the weak lensing data are most constraining. Nonetheless,
this does not exclude the possibility of new tensions appearing
upon the combination of data sets which independently are in
good agreement with Planck 2018; see e.g. the discussion for
Ωm and h below.

Since we use KiDS-1000 as our base observable in all com-
binations of data sets, we observe that the tension on S 8 carries
on to all our combinations of data sets. While the tension can
already be appreciated in Figs. 2 and C.1, we highlight this dis-
agreement in Fig. 5, which shows the constraints on the param-
eter S 8 for all the studied combinations of data sets, and for the
traditional and growth parameters (the geometry constraints de-
fault to the prior and are not shown). We also show the maximum
posterior (MAP) values for S 8 and the associated 68% credible
interval (CI) calculated using its projected joint highest posterior
density PJ-HPD (see Joachimi et al. 2021 for reference) in Ta-
ble 4. The MAP values are directly inferred from the posterior
distribution of sampling parameters. However, the limited num-
ber of samples in the posterior chains leads to some scatter in the
MAP values, which is noticeable for the broader posterior in the
weak lensing-only case. Therefore, we infer the MAP values for
this specific data set using the Nelder-Mead optimisation method
(Nelder & Mead 1965; see Joachimi et al. 2021 for details).

We explicitly quantify this tension under the assumption of
Gaussian and independent marginal posteriors. In this case the
tension τ between two data sets i and j for a parameter p is given

by

τij =
|pi − pj|√

Var[pi] + Var[pj]
, (16)

where the barred quantities refer to the mean values of the dis-
tributions and Var to their variance. We provide the obtained τ
values in Table 5. We see that the tension between the tradi-
tional and Planck 2018 S 8 posterior distributions stays within
2 to 3σ for all combinations of data sets. The growth constraints
are much weaker and hence not in tension although the com-
bined constraint prefers a lower S 8 value than Planck. We ob-
serve a slightly lower tension in S 8 between KiDS-1000 only and
Planck 2018 than Asgari et al. (2021) who employed a different
summary statistic (COSEBIs) for their tension assessment. It is
important to note that no particular choice of summary statistics
is more powerful or more discrepant. Instead, the variance in
the reported tension value for each summary statistics is due to
slight differences in the degeneracy direction between the statis-
tics which the parameter S 8 does not perfectly capture. More-
over, our mean estimate is obtained directly from the posterior
chains sampled with MultiNest, which is less accurate than the
Nelder-Mead optimisation of Asgari et al. (2021).

It is remarkable that the level of tension increases by 0.3σ
when our Recomb data, i.e. the acoustic peak angular scale
and the primordial power spectrum parameters, is included in
the analysis. From Table 4, it is possible to see Clustering and
Lyman-α data push the S 8 constraints towards higher values
more affine to the full Planck result, whereas Recomb; a sub-
set of the CMB data, has the opposite effect, which may seem
counter-intuitive. However, we argue that this trend can be un-
derstood as a manifestation of the high versus low multipole
discrepancy within Planck; see Fig. 21 of Planck Collaboration
et al. (2020a). The parameters we have employed in our analy-
sis are largely informed by multipoles ` < 800, and the low-`
Planck posterior is in excellent agreement with our joint probe
analysis.

In contrast, the tentative signs of tension with the full Planck
constraints manifest not only in S 8 or σ8, but extend to Ωm and
h; as seen in Fig. 2. Discrepancy levels for Ωm are also given
in Table 5 and reach 2.8σ for the joint probe analysis including
Recomb data and 2.4σ in the WL + Clustering + Lyα + Re-
comb case. The Lyman-α forest data also has a preference for
a somewhat lower Ωm than full Planck, which translates into a
2.3σ discrepancy. While the non-Gaussian shape of the marginal
posterior for h prevents us from applying Eq. (16) more gener-
ally, in the WL + Clustering + Lyα + Recomb case the contours
are sufficiently close to normal to apply the tension estimator,
yielding a 2.0σ tension in h. In agreement with the low-` Planck
posterior, our joint probe posterior prefers lower values of Ωm
and higher values of h than full Planck, with MAP values of
Ωm ≈ 0.289+0.007

−0.005 and h ≈ 0.705+0.007
−0.015.

It is important to bear in mind that our joint probe analysis
including the Recomb data is not statistically independent from
the full Planck 2018 constraints, violating the assumption made
to obtain Eq. (16). We leave a quantification of the level of cor-
relation to future work. In principle, this correlation could lower
or increase tension, dependent on the parameter degeneracies in
the complement of the Planck data that we did not employ in
our analysis. However, since the Planck high-` constraints dis-
play the same degeneracy directions for the key parameters Ωm,
σ8, and h as the low-` subset, it is reasonable to assume that this
correlation is positive, and hence our tension estimates of Table 4
are lower bounds on the true level of discrepancy.
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Table 4. Marginal S 8 constraints.

MAP + PJ-HPD Marginal
Data set S trad

8 S geom
8 S grow

8 S trad
8 S geom

8 S grow
8

WL 0.762+0.016
−0.037 0.704+0.402

−0.300 0.654+0.183
−0.120 0.751±0.027 0.719±0.310 0.779±0.139

WL + Clustering 0.776+0.010
−0.022 0.676+0.610

−0.184 0.966+0.027
−0.145 0.768±0.016 0.700±0.326 0.871±0.077

WL + Lyα 0.778+0.015
−0.021 0.373+0.639

−0.116 0.893+0.324
−0.324 0.772±0.017 0.700±0.326 0.902±0.160

WL + Recomb 0.764+0.021
−0.011 0.762+0.505

−0.282 0.684+0.191
−0.084 0.768±0.016 0.701±0.328 0.828±0.131

WL + Clustering + Lyα 0.777+0.009
−0.023 0.375+0.627

−0.140 0.911+0.114
−0.105 0.769±0.016 0.695±0.328 0.867±0.091

WL + Clustering + Lyα +
Recomb

0.776+0.016
−0.008 0.468+0.533

−0.261 0.783+0.029
−0.056 0.781±0.012 0.702±0.336 0.748±0.035

Notes. The first three columns display the maximum posterior (MAP) values for S 8 and its 68% credible interval (CI) calculated using its
projected joint highest posterior density (PJ-HPD). The last three columns display the obtained marginal constraints on S 8 in the form of mean ±
standard deviation calculated using GetDist. In both sets of constraints the first column displays the traditional constraints, the middle column
the constraints found by the geometry regime and last column those of the growth regime.

Table 5. Level of tension for the parameters S 8 and Ωm.

Tension with Planck S 8 Ωm
WL 2.62 0.19
WL + Clustering 2.65 0.11
WL + Lyα 2.64 2.28
WL + Recomb 2.65∗ 2.82∗
WL + Clustering + Lyα 2.65 1.43
WL + Clustering + Lyα + Recomb 2.91∗ 2.40∗

Notes. Tension was calculated using the method of difference of Gaus-
sians between the traditional constraints and those of Planck 2018
(Planck Collaboration et al. 2020a). The entries marked by a star em-
ploy a subset of Planck CMB data in the probe combination and are
therefore not statistically independent.

6. Conclusions

In this work we developed a multi-probe self-consistency test of
the spatially flat ΛCDM model with the aim of exploring poten-
tial causes of the cosmic tension within the current cosmological
theory. In order to do so, we divided our model into two the-
ory regimes, geometry and growth, distinguishing between the
strictly homogeneous and isotropic background and the forma-
tion of matter density fluctuations on top of this background,
respectively. Making use of this distinction, we classified a se-
ries of cosmological observables, or parts thereof, as geometry
or growth depending on the theory regime needed to model them
within the ΛCDM model. We duplicated the ΛCDM parameter
space into two independent copies, pgrow and pgeom, and let each
govern its respective set of observables.

As cosmological observables, we employed weak lensing
(WL) cosmic shear measurements from the latest data release
of the Kilo Degree Survey (KiDS-1000), and measurements of
the galaxy and Lyman-α (Lyα) BAO feature distance relation-
ship from the 12th data release of the Baryon Oscillation Spec-
troscopic Survey (BOSS DR12), as well as from the 14th data
release of the extended Baryon Oscillation Spectroscopic Survey
(eBOSS DR14) and the 6 Degree Field Galaxy Survey (6dFGS).
We also used growth rate measurements from BOSS DR12.
Moreover, we made use of the Planck 2018 posterior distribu-
tions for the cosmological parameters As and ns and the an-
gular scale of the sound horizon θ∗ as pseudo-data points. We

grouped these observables into four data sets: WL comprised of
the KiDS-1000 data, Clustering which combined BOSS DR12
and the 6dfGS galaxy clustering measurements, Lyα composed
of eBOSS DR14 data, and Recomb containing the subset of the
Planck 2018 posterior. Constraints for pgrow and pgeom were ob-
tained using a modified version of the Bayesian parameter esti-
mation code MontePython 2COSMOS. In order to explore the
extended parameter space we made use of Monte Carlo Markov
chains while employing the nested sampler MultiNest. The code
developed to perform this analysis is made publicly available 7.

We generally found very good agreement between all probes
considered, including the subset of CMB data we used, with lit-
tle variation in the goodness of fit. The geometry and growth
parameters are consistent throughout, and the additional degrees
of freedom in the model due to the split are not preferred by the
data. The constraints on pgrow and pgeom converge towards the
those found by the traditional ΛCDM analysis that does not du-
plicate parameters for all the studied combinations of data sets.
We also observed that pgrow and pgeom explore different direc-
tions of the parameter space, their contours tending to be or-
thogonal to each other. Thus, we conclude that our constraints
on pgrow and pgeom support the geometry vs growth distinction as
a meaningful classification of the ΛCDM model.

Regarding the S 8 parameter tension between low- and high-
redshift probes, our analysis produced tension levels between 2
and 3σ for the traditional constraints of different probe combina-
tions and Planck 2018 (Planck Collaboration et al. 2020a). The
joint probe growth constraint on S 8 also prefers lower values,
but is not in tension due to substantially larger statistical errors.
The parameters Ωm and h also reach discrepancies in the 2 and
3σ range, with larger values preferred for h and smaller values
preferred for Ωm, in particular when our subset of CMB data
is included. As the latter is primarily informed by large angu-
lar scales in the Recomb, this result supports earlier indications
that the cosmic tensions in S 8, and possibly also H0, are driven
by multipoles ` > 800 in Planck (Addison et al. 2016; Planck
Collaboration et al. 2020a).

In comparison to the recent similar analysis by Muir et al.
(2021), our work employs an alternative distinction between ge-
ometry and growth solely based on the need to consider mat-

7 https://github.com/BStoelzner/KiDS_geometry_vs_
growth
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ter anisotropies in the modelling of the cosmological observ-
able, irrespective of whether the matter anisotropies reside in the
present or early Universe. This leads to a different classification
of cosmological observables between the two works. Nonethe-
less, both Muir et al. (2021) and this work report an excellent
degree of agreement between the two considered regimes. How-
ever, we do not observe the slight preference for higher values of
Ω

grow
m as seen by Muir et al. (2021), nor do we find any signifi-

cant correlations between Ω
grow
m and the shared nuisance param-

eter for the intrinsic alignment amplitude, AIA.

To conclude we outline possible avenues for improvements
that future iterations of the methodology presented in this work
could consider. On the theoretical side, it would be interest-
ing to study the feasibility of geometry vs growth splits beyond
ΛCDM. It is clear that the distinction proposed in this work can
be extrapolated straightforwardly to modified models that only
introduce changes to the background cosmology, such as non-flat
ΛCDM models or dark energy models with an effective equation
of state, which have proven to be successful at encapsulating
a wide variety of models (Traykova et al. 2021; García-García
et al. 2020). Another type of modification that is compatible with
this framework is an effective Newton’s constant for gravity be-
cause it does not change the shape of the Jeans equation (Baker
et al. 2014). Other, more involved modifications could include
scale-dependent modifications to the growth of structure. More
general parametrisations than a simple duplication of ΛCDM pa-
rameters would have to be considered, and the link between the
background and the growth of structure, via the Jeans equation
and its non-linear corrections, carefully investigated.

Future applications should strive to incorporate new mea-
surements on similar or different physical observables that could
be added as new sources of constraining power. Specially, ef-
forts should be directed towards performing a full-shape analy-
sis of the LSS matter power spectrum as shown in Tröster et al.
(2020b) and Heymans et al. (2021) instead of the BAO and RSD
feature analysis used in this work. Similarly, the current treat-
ment of CMB data should be replaced by a more rigorous geom-
etry and growth analysis of the full CMB dataset, complemented
by an analogous split of the CMB lensing likelihood (Planck
Collaboration et al. 2020b) observable equivalent to the one un-
dertaken for KiDS-1000.

In addition to this, we recommend updating the galaxy clus-
tering data to the latest eBOSS DR16 release (Alam et al. 2021)
which also includes σ8 at high redshifts from quasar density
measurements as well as high-redshift galaxy measurements
(Zhao et al. 2021). Particularly adding to the currently weaker
growth constraints, future works could consider studying the
addition of Sunyaev-Zeldovich measurements of cluster counts
(Planck Collaboration et al. 2016b), as well as the Integrated
Sachs-Wolfe effect (Planck Collaboration et al. 2016c; Stölzner
et al. 2018). The geometry vs growth approach holds promise
to yield novel insights with the powerful data from forthcom-
ing surveys, including DESI 8 (DESI Collaboration et al. 2016),
Euclid 9 (Laureijs et al. 2011), and the LSST at the Rubin Ob-
servatory 10 (The LSST Dark Energy Science Collaboration et al.
2018).

8 https://www.desi.lbl.gov/
9 https://www.euclid-ec.org/

10 https://www.lsst.org/
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Appendix A: Consistency of data sets

We present a comparison between the posteriors of a separate
analysis of the weak lensing data set and the individual analy-
ses of clustering, Lyman-α, and Recomb data. In Fig. A.1 we
compare the individual posteriors for weak lensing (black) and
clustering (green) with the constraints from the combined anal-
ysis of the two data sets (red). Additionally, we show the Planck
2018 contours (Planck Collaboration et al. 2020a) for reference
(blue). Similarly, we show a comparison between weak lensing
and Lyman-α data in Fig. A.2 and between weak lensing and Re-
comb data in Fig. A.3. We note that the Recomb data set, shown
as green contours in Fig. A.3, is composed of pseudo data points
for θ∗, As, and ns which are inferred via marginalisation of the
fiducial Planck posteriors over the remaining cosmological pa-
rameters, as described in Section 3.4.

Our traditional constraints, i.e. with a single set of cosmo-
logical parameters governing geometry and growth, are in ex-
cellent agreement with the fiducial analyses of the band power
spectra in Asgari et al. (2021), the BOSS DR12 consensus anal-
ysis in Alam et al. (2017) and the analysis of eBOSS DR14 data
in Cuceu et al. (2019). Moreover, the Recomb data analysis re-
covers the Planck posterior for the parameters ns, As and θ∗, as
expected. The ns and As posteriors impose constraints along S 8
or σ8, which are consistent with Planck constraints but signif-
icantly broader. Similarly, the θ∗ measurement imposes a de-
generate constraint in the h − ωcdm plane which contains the
Planck 2018 contours; see Fig. A.3 for details. We observe that
for the three combinations of KiDS data with external data sets,
i.e "K1K+Clustering", "K1K+Lyα" and "K1K+CMB", the pos-
terior contours of the respective combined analysis fall at the
intersection of the posteriors of the two individual data sets; see
Figs. A.1, A.2, and A.3.

Appendix B: Goodness of fit

In Table B.1 we provide the best-fit χ2-values, inferred from the
maximum of the posterior, for each combination of data sets
that we consider, and for both the split analysis of geometry and
growth as well as the traditional analysis. Additionally, we show
the number of free parameters employed in each of the anal-
yses (nparams), as well as the associated number of data points
(npoints). We note that in this work we adopted the fiducial KiDS-
1000 cosmology covariance matrix. The fiducial results of As-
gari et al. (2021), however, were obtained with an iterated covari-
ance model which is based on the best-fit parameters of Heymans
et al. (2021). While the covariance model has a negligible impact
on the posteriors (see Asgari et al. 2021), it does impact the nu-
merical χ2-value inferred from the maximum of the posterior at
the few-percent level. Therefore, the best-fit χ2-values reported
in Table B.1 are not directly comparable to the ones reported in
Asgari et al. (2021).

It is common practice to assess the goodness of fit under the
assumption that the χ2 statistic follows a χ2 distribution with the
number of degrees of freedom DoF = npoints − nparams. The re-
duced χ2, which is defined by χ2

= χ2/DoF, is then used as a
measure of goodness of fit. However, this assumption requires
that the data is normally distributed, that the model is linearly
dependent on the sampling parameters, and that there is no infor-
mative prior on the parameter ranges (see for instance Joachimi
et al. 2021). These conditions do not hold in general in cosmo-
logical analyses, which require a more sophisticated estimate of
the effective number of degrees of freedom which can be inferred
for example from mocks or posterior predictive data realisations

(Andrae et al. 2010; Spiegelhalter et al. 2002; Handley & Lemos
2019a; Raveri & Hu 2019; Joachimi et al. 2021).

For the weak lensing data set used in this work, Joachimi
et al. (2021) report an effective number of degrees of freedom of
nparams,eff = 4.5. We cannot simply adopt this number since the
split of cosmological parameters into two theory regimes and
the addition of external data sets is expected to have an impact
on the effective number of degrees of freedom. Therefore, we
restrict the analysis to an interpretation of the commonly used
approximation of the degrees of freedom as the difference be-
tween the number of data points and the number of parameters,
which is conservative in identifying underfitting models. Never-
theless, we treat the five nuisance parameters that parameterise
a shift in the mean of the five KiDS redshift bins as essentially
fixed by their strongly informative Gaussian prior and thus we
do not count them as free parameters.

The reduced χ2 for KiDS weak lensing is fairly high. As dis-
cussed in detail in Asgari et al. (2021), this result only occurs for
the band power statistic and does not appear to point to a system-
atically underfitting model. We also applied our split analysis to
an earlier KiDS data release (cf. Wright et al. 2019) and found
consistent results with good χ2. The combination with any of
the other data sets acts to reduce the reduced χ2 closer to unity,
so that there is no sign of inconsistency between the probes we
combine. We observe that the split analyses show a slightly bet-
ter fit than their traditional counterparts represented by smaller
values of χ2. However, comparing the reduced χ2, which takes
the increased number of model parameters into account, we do
not find a significant preference for the split model. Thus, we
conclude that while the split model is better at fitting the data,
such improvement is not decisive at justifying the extra added
degrees of freedom with respect to the traditional analysis.

Moreover, we calculate the Bayes factor (Kass & Raftery
1995),

B =
Ztrad

Zsplit
, (B.1)

where Z is the Bayesian evidence found for each model (see
Eq. 14 for reference), as well as the difference between the De-
viance Information Criterion (DIC; Gelman et al. 2004),

DIC =
1
2

Var[χ2] − χ2 , (B.2)

between the traditional and split model for each data set. The
bar denotes the mean over the sampled χ2 values. Positive val-
ues of lnB correspond to larger Bayesian evidence in support of
the traditional model; negative values to preference for the split
model. Models with a lower DIC are preferred by the data since
they either possess a lower mean χ2; i.e. a better fit of the data,
or a lower variance in their χ2; i.e. a lower effective number of
parameters. Thus, the DIC acts as a combined measurement of
goodness of fit and model complexity. Therefore, negative val-
ues of DICtrad −DICsplit represent a preference for the traditional
model while negative values support the split model.

The obtained values are shown in Table B.2. In order to asses
the significance of the values reported by both metrics we follow
the criteria laid out in Joudaki et al. (2017b). We interpret −1 <
lnB < 1 and DICtrad −DICsplit < 5 values as not to be significant
enough to prefer either of the models. Therefore, we conclude
that neither the Bayes factor nor the DIC show a preference for
the split or the traditional model.
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Table B.1. Best-fit χ2 values for all different combinations of data sets considered.

χ2 DoF χ2

Data sets Trad. Split Trad. Split Trad. Split
WL 152.34 150.76 120 - 7 120 - 12 1.35 1.40
WL + Clustering 157.49 156.36 130 - 7 130 - 12 1.28 1.33
WL + Lyα 152.37 + 6499.31 152.82 + 6499.31 6483 - 7 6483 - 12 1.03 1.03
WL + Recomb 151.67 152.75 123 - 7 123 - 12 1.32 1.37
WL + Clustering + Lyα 161.33 + 6499.31 160.76 + 6499.31 6493 - 7 6493 - 12 1.03 1.03
WL + Clustering + Lyα + Recomb 163.16 + 6499.31 161.19 + 6499.31 6496 - 7 6496 - 12 1.03 1.03

Notes. Shown are the best-fit χ2 values, the corresponding number of degrees of freedom (DoF), and the goodness of fit χ2. Values are given for
both the geometry and growth split analysis and the traditional analysis. Note that in the rows reporting on results from Lyman-α forest data we
make the contribution to the joint χ2 from the eBOSS DR14 baseline explicit; see Section 3.3 for more details.

Table B.2. Model comparison between the traditional and the split
model, using the Bayes factor B and the DIC.

Data set lnB DICtrad - DICsplit
WL 0.139 0.855
WL + Clustering -0.103 1.153
WL + Lyα 0.001 1.104
WL + Recomb -0.051 1.035
WL + Clustering + Lyα 0.221 1.047
WL + Clustering + Lyα +
Recomb

0.630 0.998

Appendix C: Marginalised 1D posterior
distributions

In Fig. C.1 we provide the marginalised 1D posteriors for h, Ωm,
and σ8, corresponding to the posteriors shown in Fig. 2, for the
combination of weak lensing, clustering, Lyman-α, and Recomb
data sets.

Appendix D: Full cosmological posteriors

In this appendix we present the full set of posterior distributions
for all cosmological parameters and for each of the studied com-
binations of data sets shown in Fig. 2. In Fig. D.1 we show the
marginalised posterior in an analysis of weak lensing data, while
Figs. D.2, D.3, and D.4 show the constraints in an analysis of
weak lensing + clustering, weak lensing + clustering + Lyman-
α, and weak lensing + clustering + Lyman-α + Recomb data,
respectively. In each figure we provide the constraints on geome-
try and growth parameters from a split analysis of the two theory
regimes (grey and green contours), as well the traditional analy-
sis with one set of cosmological parameters (red). Additionally,
we show the Planck 2018 contours (Planck Collaboration et al.
2020a) for reference (blue).
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Fig. A.1. Marginalised posteriors distributions from the analysis of the WL and Clustering data sets. Each panel shows the posterior resulting
from a separate analysis of clustering (green) and weak lensing (black) data sets as well as the combination of both data sets (red). Additionally,
we show the Planck 2018 contours (Planck Collaboration et al. 2020a) for reference (blue).
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Fig. A.2. Marginalised posteriors distributions from the analysis of the WL and Ly-α data sets. Each panel shows the posterior resulting from a
separate analysis of Lyman-α (green) and weak lensing (black) data sets as well as the combination of both data sets (red). Additionally, we show
the Planck 2018 contours (Planck Collaboration et al. 2020a) for reference (blue).
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Fig. A.3. Marginalised posteriors distributions from the analysis of the WL and Recomb data sets. The Recomb data set is composed of pseudo
data points for θ∗, As, and ns which are inferred via marginalisation of the fiducial Planck posteriors (Planck Collaboration et al. 2020a) over the
remaining cosmological parameters, as described in Section 3.4. Each panel shows the posterior resulting from a separate analysis of Recomb
(green) and weak lensing (black) data sets as well as the combination of both data sets (red). Additionally, we show the Planck 2018 contours for
reference (blue).
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Fig. C.1. Marginalised 1D posterior distributions of the cosmological parameters h (first column), Ωm (second column) and σ8 (third column)
for different combinations of data sets (rows). The first row shows the constraints from the WL data set only, while the following rows show
the constraints obtained when subsequently adding the Clustering, Ly-α, and Recomb data sets. In each panel we show a superposition of the
constraints from our split analysis of growth and geometry theory regimes (green and grey contours respectively), a traditional analysis with one
single set of cosmological parameters (red), and the Planck 2018 (Planck Collaboration et al. 2020a) constraints for reference (blue).
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Fig. D.1. Marginalised posteriors from the analysis of the WL data set for all cosmological parameters. Each panel shows a superposition of the
growth (green), geometry (grey), traditional analysis (red), and the Planck 2018 contours (Planck Collaboration et al. 2020a) for reference (blue).
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Fig. D.2. Marginalised posteriors from the analysis of the WL + Clustering data sets for all cosmological parameters. Each panel shows a super-
position of the growth (green), geometry (grey), traditional analysis (red), and the Planck 2018 contours (Planck Collaboration et al. 2020a) for
reference (blue).
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Fig. D.3. Marginalised posteriors from the analysis of the WL + Clustering + Ly-α data sets for all cosmological parameters. Each panel shows a
superposition of the growth (green), geometry (grey), traditional analysis (red), and the Planck 2018 contours (Planck Collaboration et al. 2020a)
for reference (blue).
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Fig. D.4. Marginalised posteriors from the analysis of the WL + Clustering + Recomb data sets for all cosmological parameters. Each panel shows
a superposition of the growth (green), geometry (grey), traditional analysis (red), and the Planck 2018 contours for reference (blue).

Article number, page 24 of 24


	1 Introduction
	2 Methodology
	2.1 Distinguishing geometry and growth
	2.2 Cosmological observables
	2.2.1 Weak lensing
	2.2.2 Baryon acoustic oscillations
	2.2.3 Redshift space distortions
	2.2.4 Early-Universe geometry and growth parameters


	3 Data Sets
	3.1 KiDS-1000 cosmic shear measurements
	3.2 Galaxy clustering
	3.3 Lyman- forest and quasars
	3.4 Cosmic microwave background anisotropies

	4 Likelihood analysis
	5 Results
	5.1 Geometry versus growth constraints
	5.2 Tension with full Planck data

	6 Conclusions
	A Consistency of data sets
	B Goodness of fit
	C Marginalised 1D posterior distributions
	D Full cosmological posteriors

