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ABSTRACT

We present weak lensing shear catalogues from the fourth data release of the Kilo-Degree Survey, KiDS-1000, spanning 1006 square
degrees of deep and high-resolution imaging. Our ‘gold-sample’ of galaxies, with well calibrated photometric redshift distributions,
consists of 21 million galaxies with an effective number density of A: 6.1, B: 6.3, C: 6.2 galaxies per square arcminute. We quantify
the accuracy of the spatial, temporal and flux-dependent point-spread function (PSF) model, verifying that the model meets our
requirements to induce less than a 0.1σ change in the inferred cosmic shear constraints on the clustering cosmological parameter
S 8 = σ8

√
Ωm/0.3. Through a series of two-point null-tests we validate the shear estimates, finding no evidence for significant

non-lensing B-mode distortions in the data. PSF residuals are detected in the highest-redshift bins, originating from object selection
and/or weight bias. The amplitude is however shown to be sufficiently low and within our stringent requirements. With a shear-ratio
null-test we verify the expected redshift scaling of the galaxy-galaxy lensing signal around luminous red galaxies. We conclude that
the joint KiDS-1000 shear and photometric redshift calibration is sufficiently robust for combined-probe gravitational lensing and
spectroscopic clustering analyses.
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1. Introduction

Cosmological information is encoded in the coherent statistical
correlations observed between the shapes of background galax-
ies. This is a consequence of the weak gravitational lensing of
light by foreground large-scale structures. Combining measure-
ments of the correlations between galaxy shapes, referred to as
cosmic shear, the correlations between the galaxy shapes and
the positions of the foreground galaxies, referred to as galaxy-
galaxy lensing, and the correlations between galaxy positions,
referred to as galaxy clustering, provides a powerful set of
observables for cosmological parameter inference (Hu & Jain
2004; Joachimi & Bridle 2010; Zhang et al. 2010). The success
of this type of study, however, rests on the robustness and accu-
racy in the core measurement of galaxy shears and 3D positions,
with the latter estimated through photometric and/or spectro-
scopic redshifts (see Mandelbaum 2018, and references therein).

The Kilo-Degree Survey (KiDS, Kuijken et al. 2019), the
Dark Energy Survey (DES, Drlica-Wagner et al. 2018) and
the Hyper Suprime-Cam Strategic Program (HSC, Aihara et al.
2019), present hundreds to thousands of square-degrees of high-
quality deep ground-based multi-band imaging. Weak lensing
analyses of these surveys have already yielded some of the tight-
est constraints on the clustering parameter S 8 = σ8

√
Ωm/0.3,

where σ8 characterises the amplitude of matter fluctuations
and Ωm is the matter density parameter (Abbott et al. 2018;
Troxel et al. 2018; van Uitert et al. 2018; Hamana et al. 2020;
Hikage et al. 2019; Hildebrandt et al. 2020; Tröster et al. 2020).
The success of these investigations builds upon two decades of
work from previous generations of weak lensing surveys (see
Kilbinger 2015, and references therein).

Comparing KiDS with DES and HSC, we recognise that
the differences between the survey configurations are largely set
by practical considerations associated with instrumentation, re-
sulting in three complementary surveys. While DES covers the
largest area of sky (almost four times the area of HSC and KiDS),
HSC is the deepest, with KiDS and DES at roughly the same
depth. In terms of image quality, HSC has the best seeing con-
ditions with a mean seeing of 0.58 arcsec, followed by KiDS
with 0.7 arcsec and then DES with ∼ 0.9 arcsec. Inspecting the
variation of the point-spread function (PSF) across each survey’s
camera, and seeing variations across each footprint, we conclude
that KiDS has the most homogeneous and isotropic PSF, in com-
parison to DES and HSC. It also has the widest and most exten-
sive matched-depth wavelength coverage, comprising 9 bands
from u to Ks. In this paper we present the galaxy catalogue of
weak lensing shear estimates for the KiDS fourth data release
(Kuijken et al. 2019), totalling 1006 square degrees of imaging
and hereafter referred to as KiDS-1000.

The typical distortion induced by the weak lensing of large-
scale structures changes the observed ellipticity of a galaxy by

a few percent. This can be viewed in contrast to the typical dis-
tortions induced by the atmosphere, telescope and camera, en-
compassed within the PSF, that can alter the observed elliptic-
ity of even a reasonably well resolved galaxy by a few tens of
percent. Reliable shear estimates therefore require a good un-
derstanding of the temporal, spatial, flux and wavelength varia-
tion of the PSF (Hoekstra 2004; Voigt et al. 2012; Massey et al.
2013; Antilogus et al. 2014; Carlsten et al. 2018) characterised
through images of point-source objects. Efforts to minimise the
impact of uncertainties in the PSF model include the installation
of cameras that are designed to produce a stable PSF across the
field of view, with minimal ellipticity (Aune et al. 2003; Kuijken
2011; Flaugher et al. 2015; Miyazaki et al. 2018). A survey strat-
egy that reserves the best observing conditions for the chosen
‘lensing’ imaging band can also be adopted in order to minimise
the PSF size in one of the many multi-band observations (see for
example Kuijken et al. 2015; Aihara et al. 2018). This approach
is however often incompatible with many time domain studies
that require a fixed multi-band cadence.

Shear estimators can be broadly split into two categories;
moments-based approaches or model-fitting methods (see the
discussion in Massey et al. 2007). In this paper we adopt the
lensfit likelihood-based model-fitting method (Miller et al. 2013;
Fenech Conti et al. 2017) which fits a PSF-convolved two-
component bulge and disk galaxy model simultaneously to the
multiple exposures in the KiDS-1000 r-band imaging, returning
an ellipticity estimate per galaxy and an associated weight. This
approach is similar to the IM3SHAPE and NGMIX model-fitting
approaches adopted by DES (Zuntz et al. 2013; Sheldon 2014;
Jarvis et al. 2016; Zuntz et al. 2018), differing in the implemen-
tation and the choice of galaxy model.

One of the most important aspects of accurate shear esti-
mation is to quantify the response of the chosen shear estima-
tor to the presence of noise in the images, often referred to as
‘noise bias’. Cases of both uncorrelated noise (Melchior & Viola
2012; Refregier et al. 2012), and correlated noise, for exam-
ple from the blending of galaxies with unresolved and un-
detected counterparts (Hoekstra et al. 2017; Kannawadi et al.
2019; Euclid Collaboration et al. 2019; Eckert et al. 2020), need
to be considered. Noise bias is not the only source of system-
atic error for shear estimates, however, as during the object de-
tection stage, photometric noise can lead to a preferred orienta-
tion in the selection for galaxies aligned with the PSF. This re-
sults in a non-zero mean for the intrinsic ellipticity of the source
sample (Hirata & Seljak 2003; Heymans et al. 2006). This same
effect arises across the full multi-band imaging of the survey
which can also lead to photometric redshift selection bias, a
bias that is expected to become a significant source of error
for next-generation surveys (Asgari et al. 2019). Model-fitting
methods are also subject to ‘model bias’, where inconsisten-
cies between the adopted smooth galaxy model and the complex
morphology of real galaxies can induce a shear calibration error
(Voigt & Bridle 2010; Melchior et al. 2010).

There are two main shear calibration approaches to miti-
gate these sources of bias. The first is to use the data itself,
known as ‘metacalibration’ or ‘self-calibration’. In the metacal-
ibration approach, successive shears are applied directly to the
data, calibrating the response of the chosen shear estimator at
the location of each individual galaxy (Sheldon & Huff 2017;
Huff & Mandelbaum 2017). Self-calibration follows a similar
philosophy for model-fitting methods, where the initial best-fit
galaxy model, per galaxy, is effectively reinserted into the mea-
surement pipeline. The difference between the resulting ellip-
ticity measurement and the true input ellipticity is then used
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as a calibration correction for that galaxy (Fenech Conti et al.
2017). These approaches both mitigate noise bias, with metacal-
ibration also accounting for model bias. Sheldon & Huff (2017)
and Sheldon et al. (2019) demonstrate how the metacalibration
methodology can also be extended to mitigate object and photo-
metric redshift selection bias.

The second approach to mitigate shear biases relies on the
analysis of realistic pixel-level simulations of the imaging survey
(see for example Rowe et al. 2015) to determine an average shear
calibration correction for a galaxy sample (Heymans et al. 2006;
Hoekstra et al. 2015; Samuroff et al. 2018; Mandelbaum et al.
2018a; Kannawadi et al. 2019). Provided the image simulations
are sufficiently realistic, the resulting calibration will correct for
noise bias including blending, model bias and selection bias.
With realistic multi-band image simulations, photometric red-
shift selection bias can also be calibrated.

In this paper we adopt a hybrid of both calibra-
tion approaches starting with a ‘self-calibration’ stage.
Fenech Conti et al. (2017) demonstrated that whilst this ap-
proach significantly reduces the amplitude of the noise bias, a
percent-level residual remains which is then calibrated, along
with the model and selection bias, using image simulations that
emulate r-band KiDS imaging (Kannawadi et al. 2019).

The conclusion of the shear estimation and calibration anal-
ysis follows a succession of ‘null-tests’ to quantify the robust-
ness of shear catalogue to ensure that it is ‘science-ready’.
The accuracy of the PSF model and correction can be deter-
mined through a series of PSF residual size and ellipticity cross-
correlation statistics (Paulin-Henriksson et al. 2008; Rowe 2010;
Jarvis et al. 2016) and through the cross-correlation of the shear
estimates and PSF ellipticities (see for example Heymans et al.
2012). A series of one-point null-tests can be defined to en-
sure that the average measured shear is uncorrelated with the
measured galaxy flux or the properties of the camera, based on
the position of the galaxy in the field of view (Heymans et al.
2012; Jarvis et al. 2016; Zuntz et al. 2018; Amon et al. 2018;
Mandelbaum et al. 2018b). These null-tests can also be extended
further to include the properties of the galaxies. Troxel et al.
(2018), for example, present two-point cosmic shear measure-
ments differenced for a range of galaxy properties such as the
measured galaxy size and signal-to-noise. Given the impact
of selection bias when constructing samples from measured,
rather than intrinsic galaxy properties, it is often hard to inter-
pret these galaxy-property level null-tests (see the discussion in
Fenech Conti et al. 2017; Mandelbaum 2018). In this analysis
we therefore limit our null-test studies to observables that are
clearly uncorrelated with the intrinsic ellipticity of the galaxies.
We also introduce a new 2D galaxy-galaxy lensing null-test to
assess the position dependence of additive biases.

Gravitational lensing only produces detectable E-mode dis-
tortions, while unaccounted systematics in the data can pro-
duce both E- and B-modes of similar amplitude (Crittenden et al.
2002). We can therefore decompose the measured signal into
its E- and B-modes, using the B-modes to assess the quality of
the data (see for example Jarvis et al. 2003). There is a range
of different statistics that can be used to isolate the B-modes
in the inferred cosmic shear signal (see the discussion in ap-
pendix D6 of Hildebrandt et al. 2017). In this analysis we adopt
the ‘COSEBIs’ statistic which has been demonstrated to act as
both a stringent tool to detect B-modes, but also as a diagnos-
tic tool in order to isolate the origin of any B-modes that are
detected (Asgari et al. 2019).

In all of the KiDS-1000 weak lensing analyses, the cata-
logue of shear estimates presented in this paper will be used

in conjunction with calibrated photometric redshift distributions
(Hildebrandt et al. in prep.). By assuming a fiducial cosmology,
the robustness of any joint shear-redshift catalogue can be as-
sessed by cross-correlating shear measurements separated into
tomographic bins with foreground, and background, galaxy posi-
tions (Heymans et al. 2012). Known as the ‘shear-ratio test’, this
combined shear-redshift analysis can provide a final assessment
of the input joint shear-redshift catalogue for weak lensing sur-
veys (Hildebrandt et al. 2017; Prat et al. 2018; Hildebrandt et al.
2020; MacCrann et al. 2020).

This paper is organised as follows. We summarise the KiDS-
1000 data set and our lensfit data analysis in Sect. 2. We docu-
ment the PSF modelling methodology and validate the accuracy
of the PSF model in Sect. 3. Our suite of shear-catalogue null-
tests are presented in Sect. 4, with our joint null-test of the shear
and photometric redshift estimates presented in Sect. 4.3. Finally
we conclude in Sect. 5. Unless otherwise specified, calculations
and figures use the fiducial set of cosmological parameters spec-
ified in Table A.1 of Joachimi et al. (2020).

The KiDS team is currently blind in their cosmological
parameter analyses of KiDS-1000 (for blinding details see
Sect. 2.3). Throughout this pre-print, you will therefore find
quantitative results quoted in red, like this text, for our three dif-
ferent blinded catalogues, labelled A, B and C. All figures show
the results for blind A, which do not differ significantly from the
equivalent figures for blinds B and C. By sharing this pre-print
for peer review before unblinding, we aim to highlight to the
community the importance of blinding. We also demonstrate the
insensitivity of our null-tests to our chosen method of blinding,
which is an essential aspect for all blinding methodologies.

2. Data processing and analysis

The Kilo-Degree Survey (KiDS) is a European Southern Ob-
servatory multi-band public survey with optical imaging in
the ugri bands from the 2.6 m VLT Survey Telescope (VST,
Capaccioli & Schipani 2011; Capaccioli et al. 2012). These data
are combined with overlapping near-infrared (NIR) images in
the ZY JHKs bands from the 4.1 m Visible and Infrared Survey
Telescope for Astronomy (VISTA), as part of the VISTA Kilo-
degree INfrared Galaxy survey (VIKING, Edge et al. 2013). The
KiDS-1000 analyses focus on the fourth KiDS data release,
spanning 1006 deg2 of imaging (ESO-KiDS-DR4, Kuijken et al.
2019).

We extract weak lensing measurements from the deep KiDS
r-band observations. These images are taken using the wide-field
optical camera OmegaCAM (Kuijken 2011), during dark time
and under excellent seeing conditions. The image scheduler fol-
lows the requirement that the PSF full-width half-maximum is
below 0.8 arcsec, resulting in a mean seeing for the full sur-
vey of 0.7 arcsec. The median limiting 5σ point-source mag-
nitude (2 arcsec aperture) is r = 25.02 ± 0.13. OmegaCAM
features 268 million pixels across 32 CCD detectors, with a
1.013×1.020 deg2 field of view. Data processing for the r-band
imaging uses the weak-lensing optimised THELI data reduc-
tion pipeline (Erben et al. 2005; Schirmer 2013) to produce, tile
by tile, an optimised mean co-addition of the five dithered sub-
exposures for object detection, as well as individual unstacked
calibrated images for each sub-exposure for the weak lensing
shape measurements. The multi-band optical ugri imaging is
processed through the ASTRO-WISE pipeline to produce co-
added images for each filter band with improved multi-band pho-
tometric accuracy (McFarland et al. 2013). For the multi-band
ZY JHKs imaging we use the ‘paw print’ data reduction from the
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VISTA Science Archive (Cross et al. 2012). Accounting for the
area lost to multi-band masks, KiDS-1000 is fully imaged in nine
bands with matched depths over a total effective area of 777.4
square degrees1. We refer the reader to Kuijken et al. (2019) and
Wright et al. (2019a) for further details.

2.1. Photometric redshifts and calibration

Photometric redshift point estimates, zB, are derived using the
Bayesian photometric redshift BPZ method (Benítez 2000) us-
ing the redshift probability prior from Raichoor et al. (2014).
The complete list of settings adopted for the BPZ calculation
can be found in table 5 of Kuijken et al. (2019). We follow
Hildebrandt et al. (2020) in using these point estimates to de-
fine five tomographic bins between 0.1 < zB ≤ 1.2 (see Table 1),
where the lower and upper zB limits are based on the reliability
of the calibration of these photometric redshifts. For our primary
analysis we estimate the true redshift distributions of the five
tomographic bins using a large sample of overlapping spectro-
scopic redshifts and the self-organising map (SOM) methodol-
ogy of Wright et al. (2019b). In this analysis, the mapping from
multi-dimensional 9-band KiDS photometry colour-magnitude
space to true redshift, is trained for each tomographic bin using
a sample of over 25,000 spectroscopic redshifts. The SOM al-
lows us to locate galaxies from the KiDS photometric sample
that lie in any part of colour-magnitude space which is not ad-
equately represented in the spectroscopic sample. These objects
can then be removed to create an accurately calibrated redshift
distribution. We hereafter refer to this SOM-selected photomet-
ric sample as the ‘gold’ sample.

The Wright et al. (2019b) analysis of a mock survey with
KiDS properties, based on the MICE simulation (Crocce et al.
2015), confirms that the SOM approach is more robust than
the direct redshift calibration method (DIR) adopted for the
KiDS-450 and KV450 cosmic shear analyses (Hildebrandt et al.
2017, 2020)2. This results in a decrease in the uncertainty
on the calibrated mean redshift of each tomographic bin,
from σDIR

z = [0.039, 0.023, 0.026, 0.012, 0.011] to σSOM
z =

[0.010, 0.011, 0.012, 0.008, 0.010]. We note that this reduction
in systematic uncertainty incurs an increase in statistical error,
as the SOM-gold selection reduces the effective number density
of objects by ∼ 15%. This increased statistical error is tolerable,
however, as our primary focus is the mitigation of systematic er-
rors. We therefore use the gold photometric sample throughout
this paper (see Wright et al. 2020, for the first application of the
SOM redshift calibration method to the cosmic shear analysis
of KV450). We refer the reader to Hildebrandt et al. (in prep.)
for the details of the KiDS-1000 photometric redshift calibra-

1 This effective area is the total survey area that is not excluded by
the 9-band composite ugriZY JHKs mask that identifies image defects
and overlapping regions, in addition to flagging missing data in one or
more of the bands. This mask is defined on the native OmegaCAM pixel
scale of 0.213 arcsec. We note that the KiDS-1000 analysis is based on
the KiDS-ESO data release update DR4.1, correcting for a minor error
in the registration of the multi-band masking since the publication of
Kuijken et al. (2019).
2 The DIR method includes the ∼ 15% of photometric galaxies that the
SOM flags as problematic, owing to a lack of representation in the spec-
troscopic sample. This results in larger bias and uncertainty for the DIR-
calibrated redshift distributions compared to the SOM distributions in
the MICE mocks (see Wright et al. 2019b, for details). We clarify, how-
ever, that the redshift uncertainties adopted in previous KiDS-with-DIR
cosmic shear analyses, mitigated this bias (Wright et al. 2020).

tion analysis, which also includes a secondary cross-correlation
clustering calibration.

2.2. Weak lensing shear estimates and calibration

Weak lensing shear estimates, ε, and associated weights, w, are
derived from the simultaneous analysis of the individual r-band
exposures using the model-fitting lensfit method (Miller et al.
2013; Fenech Conti et al. 2017). For a perfect ellipse with a
minor-to-major axis length ratio, β, and orientation, φ, measured
counter clockwise from the horizontal axis, the ellipticity param-
eters ε = ε1 + iε2 are given by,(
ε1
ε2

)
=

1 − β
1 + β

(
cos 2φ
sin 2φ

)
. (1)

With this ellipticity definition, an estimate of the weak lens-
ing shear, γ, can be constructed, as 〈ε〉 = γ, to first order
(Seitz & Schneider 1997).

For this KiDS-1000 analysis, we continue to use the ‘self-
calibrating’ version of lensfit developed for the KiDS-450 data
release, described in Fenech Conti et al. (2017) and evaluated in
Kannawadi et al. (2019). Our PSF modelling strategy is however
updated in Sect. 3, to incorporate information from the Gaia
mission (Gaia Collaboration et al. 2018). With the increase in
the number of galaxies in the KiDS-1000 sample, we are also
able to double the overall resolution, and hence accuracy, of our
empirical weight bias correction scheme. This scheme corrects
for correlations between the lensfit weight, the galaxy elliptic-
ity, and the relative orientation of the galaxy to the PSF. When
aligned in parallel with the PSF, a galaxy will be detected with
a higher signal-to-noise, and hence be assigned a higher weight,
than when it is aligned perpendicularly to the PSF. Consider-
ing galaxies of fixed isophotal area and signal-to-noise, we also
find that galaxies have smaller measurement errors, and hence a
higher-than-average weight, at intermediate values of ellipticity.
These correlations naturally lead to additive and multiplicative
biases in any weight-averaged shear estimator (see section 2.3
of Fenech Conti et al. 2017).

To mitigate the impact of weight bias, we create 250 subsam-
ples of the full KiDS-1000 galaxy catalogue with 50 quantiles in
the absolute local PSF model ellipticity, |εPSF|, and 5 quantiles
in PSF model size. For each subsample we map the mean of the
lensfit estimated ellipticity variance as a function of observed
galaxy ellipticity, ε1 and ε2, signal-to-noise ratio and isophotal
area. We then correct the weights, which account for the mea-
sured ellipticity variance, such that the re-calibrated weights in
the sample are not a strong function of the relative PSF-galaxy
position angle or of the galaxy ellipticity. We found that creating
subsamples in terms of the absolute PSF ellipticity, in contrast
to individual PSF ellipticity components, as in Hildebrandt et al.
(2017), and then increasing the resolution in the PSF ellipticity
sub-sampling by a factor of 10, resulted in a reduction in the full
survey-weighted average PSF contamination fraction by a factor
of 3 (see Sect. 3.5 for further details).

As we find no significant changes in the depth and PSF
quality when comparing the KiDS-1000 and KV450 data re-
leases, we continue to use the Kannawadi et al. (2019) image
simulations to calibrate the KiDS-1000 shear measurements.
Kannawadi et al. (2019) emulate KiDS imaging using morpho-
logical information from Hubble Space Telescope imaging of
the COSMOS field (Scoville et al. 2007; Griffith et al. 2012).
Adopting the reasonable assumption that the COSMOS galaxy
sample is representative of those observed in KiDS, the response
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Table 1: Blind A: Properties of the KiDS-1000 ‘gold’ galaxy sample in five tomographic redshift bins. For each bin we tabulate; the
nominal photometric redshift range, zB; the effective number density of the gold photometric sample per square arcminute, ngold

eff
;

the measured ellipticity dispersion per component, σε ; the median redshift of the bin, zmedian
SOM , as defined by the SOM calibration; the

mean redshift of the bin, 〈zSOM〉; the accuracy and uncertainty on the mean of the redshift calibration, δz; and the shear calibration
correction, m.

Bin zB range ngold
eff

[arcmin−2] σε zmedian
SOM 〈zSOM〉 δz m

1 0.1 < zB ≤ 0.3 0.61 0.271 0.2073 0.2572 0.0001 ± 0.0096 −0.009 ± 0.019
2 0.3 < zB ≤ 0.5 1.17 0.261 0.3588 0.4025 0.0021 ± 0.0114 −0.011 ± 0.020
3 0.5 < zB ≤ 0.7 1.83 0.277 0.5414 0.5629 0.0129 ± 0.0116 −0.015 ± 0.017
4 0.7 < zB ≤ 0.9 1.23 0.262 0.7450 0.7909 0.0110 ± 0.0084 0.002 ± 0.012
5 0.9 < zB ≤ 1.2 1.28 0.282 0.9321 0.9823 −0.0060 ± 0.0097 0.007 ± 0.010

Table 2: Blind B: Properties of the KiDS-1000 ‘gold’ galaxy sample in five tomographic redshift bins.

Bin zB range ngold
eff

[arcmin−2] σε zmedian
SOM 〈zSOM〉 δz m

1 0.1 < zB ≤ 0.3 0.62 0.268 0.2072 0.2571 0.0001 ± 0.0096 −0.009 ± 0.019
2 0.3 < zB ≤ 0.5 1.19 0.255 0.3591 0.4029 0.0021 ± 0.0114 −0.011 ± 0.020
3 0.5 < zB ≤ 0.7 1.88 0.268 0.5429 0.5644 0.0129 ± 0.0116 −0.015 ± 0.017
4 0.7 < zB ≤ 0.9 1.29 0.246 0.7472 0.7929 0.0110 ± 0.0084 0.002 ± 0.012
5 0.9 < zB ≤ 1.2 1.35 0.259 0.9353 0.9855 −0.0060 ± 0.0097 0.007 ± 0.010

Table 3: Blind C: Properties of the KiDS-1000 ‘gold’ galaxy sample in five tomographic redshift bins.

Bin zB range ngold
eff

[arcmin−2] σε zmedian
SOM 〈zSOM〉 δz m

1 0.1 < zB ≤ 0.3 0.62 0.270 0.2073 0.2571 0.0001 ± 0.0096 −0.009 ± 0.019
2 0.3 < zB ≤ 0.5 1.18 0.258 0.3590 0.4027 0.0021 ± 0.0114 −0.011 ± 0.020
3 0.5 < zB ≤ 0.7 1.85 0.273 0.5421 0.5636 0.0129 ± 0.0116 −0.015 ± 0.017
4 0.7 < zB ≤ 0.9 1.26 0.254 0.7460 0.7918 0.0110 ± 0.0084 0.002 ± 0.012
5 0.9 < zB ≤ 1.2 1.31 0.270 0.9336 0.9838 −0.0060 ± 0.0097 0.007 ± 0.010

of the lensfit shear estimator to different input shears can be de-
termined, under the KiDS observing conditions. The emulated
COSMOS galaxies are also assigned a redshift, zB, obtained
from KiDS+VIKING photometry of the field such that they ex-
hibit similar noise properties to KiDS-1000. A shear calibration
correction m can then calculated per tomographic bin with the
galaxies weighted to match the lensfit observed size and signal-
to-noise distribution of KiDS-1000.

Kannawadi et al. (2019) show that the derived m value is sen-
sitive to the full joint distribution of galaxy size and ellipticity in
the input COSMOS sample. Comparing the fiducial calibration
corrections with values derived when erasing the apparent COS-
MOS size-ellipticity correlations, by randomly assigning galaxy
ellipticities, leads to ∼ 2% differences in the calibration correc-
tions in the first three tomographic bins. For the first two tomo-
graphic bins, ∼ 2% differences were also found when the cali-
bration was derived from the full COSMOS sample, compared
to the fiducial calibration derived from the zB-binned COSMOS
samples. This effect stems from the correlations that exist be-
tween galaxy morphology, physical size and photometric red-
shift. Applying a tomographic zB selection to the galaxy sample
therefore changes the size-ellipticity correlations and the result-
ing shear calibration.

Kannawadi et al. (2019) proposed a conservative approach
for cosmic shear analyses, setting a calibration correction uncer-
tainty of σi

m = 0.02 for all i ∈ {1, . . . , 5} tomographic bins. This

approach was adopted by Hildebrandt et al. (2020), assuming
100% correlation between the calibration errors in the different
tomographic bins. We review this proposal in light of the insensi-
tivity of the fourth and fifth tomographic bin to the chosen input
COSMOS sample, the fact that ∼ 2% covers the unlikely and ex-
treme case of zero correlation between galaxy size and elliptic-
ity, and the fact that the uncertainty is included in the cosmolog-
ical analysis as a Gaussian of width σm such that more extreme
values of m are still permitted within the tails of the Gaussian
distribution, albeit down-weighted. We therefore revise the cali-
bration correction uncertainty used in Hildebrandt et al. (2020).
We adopt the largest difference in the estimated m-calibrations
between the fiducial, randomised, and non-zB selected analyses
from Kannawadi et al. (2019), with a minimum value of 1%. In
this case σm = [0.019, 0.020, 0.017, 0.012, 0.010] which we as-
sume to be 100% correlated in our fiducial cosmic shear anal-
ysis. We note that taking the alternative approach of adopting
uncorrelated and scaled shear calibration errors (see for example
Appendix A of Hoyle et al. 2018) did not lead to any signifi-
cant changes in the resulting KiDS-1000 cosmological parame-
ter constraints (Asgari et al. in prep.).

It is clear that the application of the SOM-gold selection for
the KiDS-1000 galaxies is likely to introduce a new selection ef-
fect that needs to be accounted for. We determine the COSMOS
gold-selection from the KiDS photometry of the COSMOS field,
i.e. we determine which COSMOS galaxies are poorly repre-
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sented in our spectroscopic sample. We then mimic the gold-
selection in the fiducial Kannawadi et al. (2019) image simu-
lations by removing these under-represented galaxies from the
analysis, before weighting the emulated COSMOS galaxies to
match the lensfit observed size and signal-to-noise distribution of
the SOM-gold sample. We find that the gold-selection changes
the m calibration corrections by (mall − mgold) = 0.008, in the
first and fourth tomographic bins, with negligible changes in the
remaining three bins. We adopt these revised gold calibration
corrections, as listed in Table 1.

We verify that the gold selection does not significantly im-
pact on the calibration correction uncertaintyσm, by determining
the gold calibration correction for the fiducial, randomised, and
non-zB image simulations. Overall σm is reduced by ∼ 0.001
in each redshift bin, a reduction that we choose not to include
in our analysis as the impact is so small. We recognise that a
high-accuracy assessment of the impact of a SOM-gold selec-
tion requires full multi-band image simulations. As the changes
to the shear calibration introduced by the SOM-gold selection on
the single-band Kannawadi et al. (2019) image simulations are
within our σm uncertainty limits however, we reserve the quan-
tification of any second-order multi-band selection effects to a
future analysis.

Table 1 presents the average statistical properties of the
KiDS-1000 shear estimates for each ‘gold’ sample per tomo-
graphic bin. We list the effective number density of galaxies per
square arcmin, neff , to be taken in conjunction with the mea-
sured ellipticity dispersion, per component, σε . These are two
key quantities for the cosmic shear and galaxy-galaxy lensing
covariance estimates. We refer the reader to appendix C3 and
C4 of Joachimi et al. (2020) where the estimators for these key
quantities are derived for a weighted and calibrated ellipticity
distribution. For an ideal survey with unit shear responsivity esti-
mates (i.e. m = 0) these terms reduce to the expressions adopted
in previous analyses (Heymans et al. 2012).

2.3. Blinding strategy

Blinded weak lensing analyses were first advocated and imple-
mented in Kuijken et al. (2015). Blinding has since become a
standard feature of weak lensing studies in order for researchers
to remain agnostic towards the key cosmological results, until
the methodology and data analysis choices have been finalised.
The KiDS collaboration have adopted two approaches to date,
blinding the shear measurements and weights (Kuijken et al.
2015; Hildebrandt et al. 2017), or the photometric redshift distri-
butions (Hildebrandt et al. 2020). Each time the KiDS team have
analysed three or four versions of the data, where one is the truth,
unblinding the results when every stage of the analysis has been
completed. Muir et al. (2020) presents the multi-probe blinding
strategy for the DES collaboration whereby data transformations
are applied to the observed multi-probe data vector to consis-
tently blind the different observations, in addition to multiplica-
tive shear catalogue level blinding. Hikage et al. (2019) discuss
the two-tiered approach of the HSC collaboration whereby the
shear calibration correction m is modified first universally, and
then an additional correction is applied by each analysis team to
facilitate phased unblinding. Sellentin (2020) presents an alter-
native approach whereby the cosmic-shear only or multi-probe
covariance matrix is modified. All these approaches can be tuned
to introduce a ∼ ±2σ (or greater) change in the recovered value
of S 8 = σ8

√
Ωm/0.3.

The primary KiDS-1000 science goals are cosmic shear con-
straints (Asgari et al. in prep.) and a joint multi-probe analy-
sis of KiDS-1000 with BOSS, the Baryon Oscillation Spec-
troscopic Survey (Heymans et al. in prep.). As a multi-probe
blinding analysis is invalidated by the already public nature of
the BOSS cosmological parameter constraints (Sánchez et al.
2017), we adopt the shear catalogue level blinding strategy
of Hildebrandt et al. (2017). We note that the conclusions that
we draw from all the null-tests reported in this paper remain
unchanged for each of the three blinded catalogue versions.
For full transparency we record here that in the calculation
of the shear calibration correction for the SOM-gold selection,
the unblinding of co-author Kannawadi was unavoidable. The
unblinded SOM-gold shear calibration corrections for KV450
(Wright et al. 2020) clarified which KiDS-1000 blind was the
truth during the evaluation of the KiDS-1000 SOM-gold shear
calibration correction. This information, however, was not dis-
tributed to the rest of the team.

3. The point spread function

The atmosphere, telescope, and camera all contribute to the over-
all effective PSF, which is modelled based on the light profile
of calibration point sources observed at various positions in the
field of view. The model is then interpolated to other locations
on the exposure to obtain a model for the full CCD mosaic (see,
for example, Hoekstra 2004; Miller et al. 2013; Kitching et al.
2013; Lu et al. 2017). Galaxy shapes can then be corrected for
this effect.

3.1. Point source selection

To accurately model the PSF, we require a fully representative
sample of stars, with negligible contamination from galaxies. We
follow Kuijken et al. (2015), by selecting star-like sources, on
individual exposures, based on their location in the (T 1/2, J1/4)
plane, where T is a measure of object size, and J is measure
of the concentration of the light distribution. T is given by the
second-order moments of the 2D angular light distribution, I(θ),
with T = Q11 + Q22, and

Qi j =

∫
d2θw[I(θ)] I(θ) θi θ j∫

d2θw[I(θ)] I(θ)
. (2)

Here w[I(θ)] is a weighting function, which is typically chosen
to encompass the full extent of the light distribution. For the pur-
pose of point source selection, we choose the weight to be an
iteratively-centred Gaussian of width 0.62 arcseconds. J is given
by the axisymmetric fourth-order moment of the light distribu-
tion, with

J =

∫
d2θw[I(θ)] I(θ) |θ|4∫

d2θw[I(θ)] I(θ)
. (3)

In previous KiDS analyses, the automatic identification of
stars was carried out using a ‘friends-of-friends’ algorithm to lo-
cate the compact overdensity of stellar objects in the (T 1/2, J1/4)
plane. In this plane, stars have the smallest sizes and the most
concentrated light distributions compared to the full sample of
detected objects. The precise location of the stellar objects in
this plane, however, varies from exposure to exposure and chip
to chip, dependent on the size and shape of the PSF during the
observation.
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Automated star-galaxy separation was found to be success-
ful at selecting a clean sample of stars in ∼ 90% of the data,
where the measure of success required the per-chip variance of
the residual between the measured and model PSF ellipticity to
be less than 0.001. This value was chosen as it provided a clean
divide between catastrophic failures, with residual variance at
the level of > 0.0025, and the tail of the typical noise distribu-
tion of the KiDS PSF residuals. Automation was found to fail in
exposures which contained galaxy clusters where the overden-
sity of similar-sized galaxies in the cluster resulted in the auto-
mated ‘friends-of-friends’ algorithm selecting the galaxy clus-
ter overdensity in the (T 1/2, J1/4) plane, rather than the stellar
overdensity. To remedy this and avoid the manual intervention
required for previous KiDS studies, our KiDS-1000 analysis in-
corporates the DR2 point source catalogue from the Gaia mis-
sion (Gaia Collaboration et al. 2018).

Objects detected in the KiDS imaging are cross-matched
with all Gaia-defined point sources. These are primarily stars,
with a low-level of contamination from extended sources
(Arenou et al. 2018). This bright catalogue is too sparse to pro-
vide an accurate model of the spatially varying PSF for each ex-
posure, but it is sufficient to define the size and concentration of
the stellar population in the (T 1/2, J1/4) plane. For each exposure
and CCD, we therefore augment the sample of PSF objects by
adding all sources less than 3 standard deviations away from the
mean in the (T 1/2, J1/4) plane. The standard deviations and cor-
responding directions are defined from a principal component
analysis performed on the Gaia-matched KiDS sources on the
CCD 3. Adopting this methodology satisfied our requirement for
low-levels of variance in the per-chip residual between the mea-
sured and model PSF ellipticity for the full KiDS-1000 sample.

Baldry et al. (2010) present a star-galaxy separation tech-
nique based on object size and NIR-optical colour in the
(J − Ks, g − i) colour-colour space. Using spectroscopy from
the Galaxy And Mass Assembly survey (GAMA, Driver et al.
2011), they demonstrate that their selection criteria result in a
galaxy selection that is 99.9% complete. Figure 1 compares the
(J − Ks, g − i) distribution of the full sample of objects in the
equatorial KiDS-1000 region (shown as a colour scale) to the
distribution of our point-source sample (shown as magenta con-
tours enclosing 68% and 95% of the sample). We see that this
combination of NIR and optical colours defines two distinct pop-
ulations, with very similar results found for the southern KiDS-
1000 region, albeit with a lower stellar density resulting from the
increased distance from the Galactic equator. The stellar locus,
from equation 2 of Baldry et al. (2010), and the GAMA-defined
exclusion criteria are shown as solid and dashed white lines. We
find that the majority of the widening of the contours seen around
(g − i) ∼ 0.5 derives from an increase in the average (J − Ks)
photometric error, σ(J−Ks), and that only 3% of our point-source
sample have colours that are inconsistent, at more than 3σ(J−Ks),
with a Baldry et al. (2010) defined stellar population. We note
that the significant tail of point-source objects extending beyond
(J −Ks) > 0 and (g− i) < 0.5 have colours that are characteristic
of quasars (see for example figure 6 in Baldry et al. 2010). As
high-redshift quasars are suitable point sources to include in our
PSF model4 we conclude that our point-source sample5 is suffi-

3 The number of Gaia objects per CCD chip varies across the KiDS
sky coverage, with an average of 90 per chip in the southern stripe and
120 per chip in the equatorial stripe.
4 The wavelength range of the OmegaCAM r-band filter is narrow such
that the PSF is not expected to significantly vary across the band.
5 Point-source samples can be accessed through the KiDS-DR4 full
multi-band catalogue using the column SG_FLAG. Users of the KiDS-

Fig. 1: The (J−Ks, g− i) distribution of the full equatorial KiDS-
1000 catalogue (colour map) revealing two distinct populations,
compared to the distribution of objects identified as point sources
(magenta contours enclosing 68% and 95% of the sample). We
find that 3% of our point-source sample has colours that are
inconsistent with the stellar locus and exclusion criteria from
Baldry et al. (2010, solid and dotted white lines). The signifi-
cant tail of point-source objects extending beyond (J − Ks) > 0
and (g − i) < 0.5 have colours that are characteristic of quasars,
which are combined with the stellar sample in our point-source
catalogue.

ciently pure from contamination of extended sources to permit
accurate PSF modelling.

3.2. PSF modelling; spatial variation

Following Miller et al. (2013) and Kuijken et al. (2015), a PSF
model taking the form of a two-dimensional polynomial of order
n, is fit across the whole field of view, with the coefficients up
to order nc given freedom to vary between each of the ND = 32
CCD detectors in OmegaCAM. This allows for flexible spatial
variation (including discontinuities) in the PSF. The total number
of model coefficients per field of view is given by (Kuijken et al.
2015),

Ncoeff =
1
2

[(n + 1)(n + 2) + (ND − 1)(nc + 1)(nc + 2)] . (4)

The total number of coefficients is large, but is sufficiently well
constrained by the number of data points, equal to the number of
pixels times the number of identified stars per exposure.

Figure 2 presents the average PSF pattern εPSF, the variance
in the PSF ellipticity as measured between the 1006 tiles that
comprise KiDS-1000, and the average PSF residual, the differ-
ence between the measured PSF ellipticity and the model at the
location of the stars,

δεPSF = εPSF
true − ε

PSF
model . (5)

These diagnostics are shown for both components of the PSF
ellipticity, ε1 (left), and ε2 (right). The mean PSF ellipticity is
at the percent level, with a standard deviation at the few percent
level. The strongest PSF distortion is seen at the edges of the
field of view. These edge distortions are somewhat mitigated,

1000 gold-shear catalogue need not apply corrections to excise point-
sources as they are efficiently removed by the lensfit weights.
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Fig. 2: The average KiDS-1000 PSF ellipticity εPSF (upper pan-
els), the associated standard deviation (middle panels) and the
residual PSF ellipticity δεPSF (lower panels) on the OmegaCAM
focal plane, for the first (left panels) and second (right panels)
components of the ellipticity. Note that colour-scale changes be-
tween rows.

however, as the KiDS dither strategy is such that the outer ∼ 5%
of all field edges are excised, with the area appearing in a more
central overlap region in an adjacent KiDS-1000 pointing.

One route to test the reliability of the PSF model is to sepa-
rate the stellar sample into a training and validation set, where
the PSF model is created from the training sample, and the
residuals are determined for the validation set (see for example
Jarvis et al. 2016). We do not adopt this approach, however, as
we found that it serves to significantly degrade our PSF model
in low-stellar density regions; constraining the high number of
coefficients in our model requires the maximum number of stars
for the fit. In our analysis the training and validation sample are
therefore the same.

For KiDS-1000 we retain the per-chip coefficient of nc =
1, as in previous analyses. However, we found that we were
able to increase the two-dimensional polynomial order across
the field of view from n = 3 (used in Kuijken et al. 2015;
Hildebrandt et al. 2017) to n = 4. With the improved Gaia-
selected point-source sample, the additional coefficients for this
higher-order model were found to be well constrained. This en-
hancement resulted in a reduction, by a factor of roughly two, in
the amplitude of the δεPSF

2 PSF residual in the upper-right cor-
ner of the field of view. This corner residual is now found at a
lower significance, as seen in Fig. 2. Further discussion of the
PSF model optimisation is presented in Sect. 3.3.1.

3.3. Quantifying the impact of PSF residuals with the
Paulin-Henriksson et al. systematics model

Paulin-Henriksson et al. (2008, hereafter ‘PH08’) quantify the
impact of PSF residuals on cosmic shear estimates for a shear
estimator, eobs, that is given by

eobs =
erawTraw − ePSFTPSF

Traw − TPSF
. (6)

Here e is the ‘polarisation’, measured from the second moments
of the surface brightness profile via

ePSF =
Q11 − Q22 + 2iQ12

Q11 + Q22
, (7)

where the quadrupole moment, Qi j, is given in Eq. 2, and the ob-
ject size6 is given by T = Q11 + Q22. Measurements are made of
the PSF-convolved galaxy light distribution, eraw and Traw, with
the PSF polarisation, ePSF, and size, TPSF, at the location of the
galaxy, inferred from the measurements around point-sources in
the field. For the shear estimator in Eq. 6 to hold, the quadrupole
moment weight function in Eq. 2, w[I(θ)] = 1∀θ. In the case of
realistic noisy imaging data, however, unweighted quadrupole
moments formally lead to infinite noise in the shear estimator.
This motivates the use of a Gaussian weight function to isolate
each object (Kaiser et al. 1995), and Massey et al. (2013) dis-
cuss the additional scaling factors needed to account for the bias
introduced by this Gaussian weight.

At this point it is relevant to note that the PH08 choice of
shear estimator, eobs, is not fully representative of the model-
fitting lensfit shear estimator ε. The relationship between the po-
larisation shear estimator eobs and shear γ is given by 〈eobs〉 '

2(1 − σ2
e) γ, to first order, where σ2

e is the per-component vari-
ance of the unlensed, noise-free, intrinsic polarisation estimates
(Schneider & Seitz 1995). This can be contrasted with the ellip-
ticity shear estimator ε, which is related to the shear γ as 〈ε〉 = γ,
to first order (Seitz & Schneider 1997). This model nevertheless
allows us to form a framework to provide an indicative estimate
of the impact of PSF modelling errors in our analysis.

Errors in the modelled PSF size and ellipticity can be as-
sessed through a first-order Taylor series expansion of Eq. 6 (see
appendix A of PH08) where

eobs ' eperfect
obs + (eperfect

obs − ePSF)
δTPSF

Tgal
−

TPSF

Tgal
δePSF . (8)

Here eperfect
obs is the perfect systematics-free shear estimator, Tgal is

the true size of the galaxy, i.e. the measured size in the absence
of a PSF convolution. Errors in the PSF model are quantified
through δTPSF and δePSF, the offset between the true PSF and the
model PSF at the location of the galaxy, for example δTPSF :=
TPSF − Tmodel.

Cosmic shear is traditionally detected using the two-point
shear correlation function estimated from the ε-shear estimator
as

ξ̂±(θ) =
Σi, jwiw j(εobs,i

t ε
obs,j
t ± εobs,i

× ε
obs,j
× )∆i j(θ)

Σi, jwiw j∆i j(θ)
, (9)

where the w-weighted sum over the tangential, εt, and cross, ε×,
components of the observed ellipticities is taken over all galaxies
i, j. The angular binning function ∆i j(θ) = 1 when the angular
separation between galaxies i and j lies within the bin centred on

6 In the literature, T is also referred to as R2, the radius-squared.
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θ, and is zero otherwise. We can use this estimator to construct a
two-point shear correlation function7 with the systematics model
in Eq. 8 as8,

〈eobseobs〉 '

1 + 2
δTPSF

Tgal

 〈eperfect
obs eperfect

obs

〉
(10)

+

 1
Tgal

2

〈(ePSF δTPSF) (ePSF δTPSF)〉

+2
 1

Tgal

2

〈(ePSF δTPSF) (δePSF TPSF)〉

+

 1
Tgal

2

〈(δePSF TPSF) (δePSF TPSF)〉 .

We note that Eq. 10 differs from similar derivations in
Massey et al. (2013), Melchior et al. (2015) and Jarvis et al.
(2016), as we choose to keep all terms that may couple within
the correlation function. Specifically we include the possibil-
ity where errors in the PSF polarisation, δePSF, are corre-
lated with the PSF size, TPSF. Furthermore, Jarvis et al. (2016)
choose to link the PH08 systematics model in Eq. 8 with a
first-order systematics model (see Sect. 3.5) by connecting the
(δTPSF/Tgal)ePSF term with a fractional PSF residual αePSF mea-
sured directly from the data. We discuss this further in Sect. 3.5.
We recognise the third and fourth terms in Eq. 10 as the Rowe
(2010) statistics, which join the second term as additive shear
biases. In contrast, the first systematic term in Eq. 10 acts as a
multiplicative shear bias.

3.3.1. Constraints on the Paulin-Henriksson et al. model

We measure each term in Eq. 10 directly from the data, with
the exception of the perfect systematics-free shear estimator
term, 〈eperfect

obs eperfect
obs 〉, which is given by the theoretical expec-

tation for ξ+(θ) for the KiDS-1000 redshift distributions from
Hildebrandt et al. (in prep.) and our fiducial set of cosmological
parameters.

We calculate the PSF polarisation, ePSF, and size, TPSF, for
each object in our stellar sample using a weight function, w[I(θ)]
in Eq. 2, given by an iteratively centred Gaussian of width 0.5
arcseconds. This weight function is necessary to minimise the
impact of noise in the wings of the PSF. To be consistent, we ap-
ply the same weight function in the model PSF measurements,
emodel and Tmodel, even though the PSF model is noise-free. For
a circular Gaussian PSF, the weighted and unweighted polari-
sation measurements are equal in the absence of noise. For the
low-ellipticity seeing-dominated OmegaCAM PSFs, we are rel-
atively close to this regime. The weighted size estimate is, how-
ever, artificially reduced in comparison to the unweighted size
7 We use short-hand notation where 〈ab〉 denotes the two-point corre-
lation function estimator ξ±(θ) in Eq. 9, but with the ε-terms labelled
as sample i, replaced with the complex quantity a. The ε-terms terms in
sample j are then replaced with the complex quantity b. For scalar quan-
tities, i.e. size measurements, the notation T denotes the lensfit weighted
value of the scalar quantity T , averaged over the full survey.
8 Here we ignore any potential correlations between galaxy shape,
eperfect

obs , and size, Tgal, which would lead to a position-dependent mul-
tiplicative bias. Kitching et al. (2019) distinguishes between spatially
varying and constant sources of bias which impact the first term in
Eq. 10. Provided that spatially varying biases in the model PSF size are
small, however, they conclude that the average bias, as given in Eq. 10,
is sufficient to model the multiplicative errors for the two-point shear
correlation function.

estimate with the size of the reduction dependent on the relative
size of the PSF to the width of the weight function (Duncan et al.
2016). Massey et al. (2013) estimate that for small galaxies,
weighted size estimates are underestimated by a factor of ∼ 2,
and we adopt this factor to roughly correct our TPSF size esti-
mates. We also divide each PSF polarisation term, ePSF, by a fac-
tor of 2 to account for the factor of ∼ 2 in the polarisation-shear
relation for this shear estimator (Schneider & Seitz 1995).

We estimate the average unconvolved galaxy size, 1/Tgal, by
taking the lensfit-weighted average of Tgal = 6r2

s where rs is the
exponential disk scalelength of each galaxy as determined from
the best-fit galaxy model. The factor of 6 results from the re-
quirement for consistent size definitions between the PSF and
galaxy, and is calculated analytically from Eq. 2, with the 2D
surface brightness profile I(θ) ∝ exp (−θ/rs), following an ex-
ponential profile of scalelength rs. We argue that this approach
is an improvement over the alternative of fixing TPSF/Tgal = 1
(Jarvis et al. 2016; Mandelbaum et al. 2018b), which inappro-
priate for a lensfit weighted approach, where small galaxies are
downweighted in the analysis.

We compute δξ± = 〈eobseobs〉−
〈
eperfect

obs eperfect
obs

〉
, using the same

short-hand notation from Eq. 10. The correlations are measured
using Eq. 9, with a unit weight for all stars. The OmegaCAM
PSF has equal tangential and radial distortions (see for example,
Kuijken et al. 2015), such that we find ξPSF,PSF

− (θ) to be consistent
with zero for all θ. We therefore limit our systematics analysis to
the ξ+(θ) correlation function.

We analyse four different PSF models characterised by the
polynomial orders n:nc = 3:1, 4:1, 3:2 and 5:1 (see Eq. 4).
We find that although the PSF is accurately modelled in all
four cases, as determined by the low-level measurement of
δξ+(θ), the 3:1 model, used for the previous KiDS data releases
(Kuijken et al. 2015; Hildebrandt et al. 2017), does not perform
as well as the other three cases. The level of systematics indi-
cated by the PH08 model are very similar for the 4:1, 3:2 and
5:1 models and we therefore adopt the 4:1 model for KiDS-1000,
given that it has the least number of coefficients.

The measured δξ+(θ), and the amplitudes of the different
contributing terms in Eq. 10, are shown in Fig. 3 for the fifth to-
mographic bin, with similar results found for the other bin com-
binations. All the individual contributing terms, and the sum, are
within the Mandelbaum et al. (2018b) defined requirement lim-
its, shown as a yellow shaded region, and discussed further in
Sect. 3.3.2. Note that Fig. 3 uses a symlog scale for the vertical
axis as these statistics can be negative; the transition from log-
arithmic to linear is indicated by the solid horizontal lines. The
error bars (too small to be seen in some cases) come from a jack-
knife resampling, whereby the field is divided into Njk = 49 seg-
ments which are removed one-by-one, with the different terms
calculated from the remaining Njk−1 segments at each iteration.

Figure 3 shows that the most dominant systematic derives
from the first term in Eq. 10 (shown dotted) which is a multi-
plicative bias, arising from PSF size modelling errors. For tomo-
graphic bins 2, 4 and 5, we find δTPSF/Tgal ∼ (−2± 0.02)× 10−4.
This term is consistent with zero, however, for tomographic bins
1 and 3. The average residual size modelling error is taken over
the full point-source sample, and the reported error on the mean
does not include any errors that arise from the flux-dependent bi-
ases discussed in Sect. 3.4.2. We remind the reader that the value
is also dependent on the size of the weight function used to esti-
mate TPSF in Eq. 2. We currently only approximately account for
the impact of this weight function using the ‘small-galaxy’ cor-
rection factors from Massey et al. (2013). Nevertheless we note
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Fig. 3: Contributions to the additive systematic, δξsys
+ (θ), from the PH08 systematics model. The four terms from Eq. 10, shown

in varying shades of blue/green (see legend for details), cause 〈eobseobs〉 to deviate from 〈eperfect
obs eperfect

obs 〉. The total systematic δξsys
+

(red), given by the summation of these four terms, can be compared to the yellow band which encloses half the uncertainty on ξ+,
assuming a non-tomographic cosmic shear analysis. As the correlations can be negative, the vertical axis has a symlog scale with
black lines indicating the transition from the logarithmic to linear scale. The apparent asymmetry of the error bars (computed via
jackknife realisations) is just an artefact of them crossing the log-linear scale boundary. The PH08 systematics model (red) can
be compared to the magenta curve, which shows the expected contribution to the cosmic shear signal from the detector-level bias
found in 3/32 OmegaCAM CCDs (see Sect. 3.4.1). This figure presents the analysis of the fifth tomographic bin; similar results are
obtained for the other bins.

that in the Asgari et al. (in prep.) KiDS-1000 cosmic shear anal-
ysis, we marginalise over the uncertainty in the calibration bias
correction m, per tomographic bin i, with δi

m ∼ 0.01 − 0.02 (see
Table 1). As the calibration correction to the shear correlation
function ξi j

± (θ), given by (1 + δi
m)(1 + δ

j
m), is larger than the mea-

sured amplitude of the first term in Eq. 10, we conclude that the
δm-marginalisation will mitigate the presence of the multiplica-
tive systematics that we find associated with PSF size modelling
errors.

3.3.2. Accuracy requirements for the PSF model

The procedure for establishing requirements for the PSF mod-
elling, in terms of the additive bias δξ+, is an open question (see
for example the discussion in Kitching et al. 2019). Zuntz et al.

(2018) note that requirements are specific to individual science
cases, but provide a guide that it should be less than 10% of the
weakest tomographic cosmic shear signal. Mandelbaum et al.
(2018b) set the requirement that each of the individual terms in
Eq. 10 will not exceed 0.5σξ+

, where σξ+
is the standard devia-

tion of ξ+ in each tomographic bin.

Figure 3 compares the amplitude of each term in Eq. 10 to
0.5σξ+

(yellow band) where, in contrast to Mandelbaum et al.
(2018b), we take σξ+

to be the error for a non-tomographic anal-
ysis. As we find the PSF errors contaminate each tomographic
bin fairly equally, we argue that any requirements based on the
measured noise on the correlation function, σξ+

, must use a more
stringent requirement set by the noise from a non-tomographic
analysis. We find that the level of systematics in KiDS-1000, as
predicted by PH08, meets this requirement.
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Troxel et al. (2018) verify that their measured amplitude of
δξ+(θ) does not significantly bias the DES Year 1 cosmological
constraints, through a parameter inference analysis of a biased
mock cosmic shear data vector. We adopt a similar philosophy,
but given the computational expense of full MCMC parameter
inference analyses we introduce an initial rapid χ2 analysis of a
series of noisy mock data vectors to first flag problematic sys-
tematic signals. Any systematics that raise a flag are referred to
the computation-intensive MCMC analysis in order to quantify
the resulting bias on the cosmological parameters.

For our rapid χ2 test we define the following χ2-statistics

χ2
perfect

j
= ηT

j C−1 η j

χ2
sys

j
= (η j + δξ)T C−1 (η j + δξ)

χ2
high/low

j
= (η j + ξhigh/low − ξ)

T C−1 (η j + ξhigh/low − ξ). (11)

Here ξ is the tomographic cosmic shear data vector for the fidu-
cial cosmology, η j is the j’th realisation ( j ∈ [0, 5000]) of
the noise on ξ, sampled from the full KiDS-1000 tomographic
cosmic shear covariance matrix C, described in Joachimi et al.
(2020), δξ is the expected systematic bias vector from Eq. 10,
replicated for each tomographic bin combination, and finally
ξhigh/low is the tomographic cosmic shear data vector with S 8
increased/decreased relative to the fiducial cosmology by a
variable factor9 of ±AσS 8 of the KiDS-1000 S 8 constraint in
Asgari et al. (in prep.), where σS 8 ' 0.02. The χ2

perfect values are
those that would be measured for KiDS-1000 in the case of per-
fect shear measurement across a series of random noise realisa-
tions. The χ2

sys values determine the χ2 offset introduced when
the systematic PSF model bias is included in the measurements,
for the same series of noise realisations. This offset quantifies
the reduction in the goodness-of-fit of the perfect cosmological
model to the observed signal which includes systematics.

An initial estimate for the impact of the systematic signal
on the inferred cosmological parameters is determined by com-
paring the offset, ∆χ2

sys = χ2
sys − χ

2
perfect, to the χ2 offset intro-

duced when changing the underlying S 8 cosmology by ±AσS 8 ,
through a series of different χ2

high/low values. As such, we are as-
suming that the bias in the goodness-of-fit caused by the system-
atic, mimics a change in the S 8 parameter. In reality, however, a
given PSF systematic could induce changes in the best-fit values
of multiple cosmological and nuisance parameters, or could al-
ter the χ2 without introducing any bias in the best-fit parameters
(Amara & Réfrégier 2008). Our χ2 test therefore only serves as
a benchmark for the impact of a PSF systematic on the inference
of the S 8 parameter. If the systematic is found to induce sig-
nificant changes in the goodness-of-fit, the systematic can then
move up to the next stage of testing using a full MCMC analysis.

Specifically, we calculate the mean of each χ2 distribution,
and find the lowest amplitude A, where the shift between the
‘perfect’ and ‘sys’ hypotheses, ∆χ2

sys, is smaller than the shifts
induced between the ‘perfect’ and ‘high’ or ‘low’ hypotheses,
∆χ2

high,low. As the values of ∆χ2
sys,high,low vary slightly with the

shot noise η, we measure the average shifts over 20 iterations
of the χ2 distributions, each consisting of 5000 noise realisa-
tions. For the systematic bias vector given in Eq. 10, we find
∆χ2

sys = 0.001±0.001 which is smaller than the shifts induced be-
tween the ‘perfect’ and ‘high’ or ‘low’ hypotheses with A = 0.1,
where ∆χ2

high = 0.016 ± 0.004 and ∆χ2
low = 0.022 ± 0.004. We

9 A was chosen to span a reasonable range with A =
0.1, 0.15, 0.2, 0.3, 0.4.

therefore conclude that the low-level imperfections in our PSF
modelling, seen in Fig. 3, induce a change in the goodness of fit
that is significantly less than the change induced if the underly-
ing S 8 cosmology changes by 0.1σS 8 = 0.002.

Joachimi et al. (2020) determine a requirement for system-
atics to induce a < 0.1σ change on S 8. This limit corresponds
to the typical variance between the values of S 8 recovered from
a series of converged MCMC parameter inference chains that
analyse the same mock KiDS-1000 data vector, but with differ-
ent random seeds. Based on the results of our rapid χ2 analy-
sis, we find that there is no necessity to run an expensive full
MCMC analysis to accurately quantify the bias incurred as a re-
sult of the presence of the additive bias δξ+ shown in Fig. 3. At
the estimated level of < 0.1σ differences, any small offsets in
the MCMC results could simply be attributed to noise in the pa-
rameter estimation. We therefore conclude that the accuracy of
the KiDS-1000 PSF model, as quantified with the PH08 method,
is well within our requirements for KiDS-1000.

3.4. Detector-level effects

The discussion thus far has assumed that the PSF is the only
source of instrumental bias, such that, in the absence of noise,
Eq. 6 provides an unbiased estimate of the galaxy shape. Imper-
fections in the detector are not captured by this equation, how-
ever, and they can also introduce biases in the measured shapes
of galaxies (Massey et al. 2013).

One of the best-known examples of a detector-level distor-
tion is ‘charge transfer inefficiency’ (CTI), which is particularly
relevant for space-based lensing studies where the background is
low (see for example Miralles et al. 2005; Rhodes et al. 2007). In
this case not all the charge in a pixel is transferred at each read-
out cycle, and the trapped charge is released some time later,
with the release probability determined by the type of defect in
the silicon lattice. Traps with release times similar to the clock-
ing time cause a trail that increases with a given object’s distance
to the readout register (see for example Massey et al. 2010). Al-
though prominent in space-based observations, it is a common
feature of all CCD detectors.

The ‘brighter-fatter effect’ (BFE) introduces another distor-
tion. Here the build-up of charge in a pixel inhibits the capture
of more electrons resulting in a broadened PSF for brighter ob-
jects (Antilogus et al. 2014). The flux dependence of the effect is
typically different for the parallel and serial readout directions,
modifying both the PSF size and ellipticity as a function of the
pixel count value.

Lesser-known effects include ‘pixel bounce’, which is sim-
ilar to CTI, and could be caused by dielectric absorption in the
read-out electronics (Toyozumi & Ashley 2005). Here, capaci-
tors in the circuit do not reset to the reference bias voltage suf-
ficiently quickly. If the voltage is too low, the recorded pixel
value is biased high. The excess signal depends on the counts
in the previous pixel inducing a distortion along the readout di-
rection. Unlike CTI, however, the bias in the object shape does
not depend on the distance to the readout register. The trail is
also shorter. Additionally, there is the so-called ‘binary offset ef-
fect’ (Boone et al. 2018) which results in a shift of charge, by
up to three pixels, as a result of the digitisation of the CCD out-
put voltage. Hoekstra et al. (in prep.) have detected this effect in
OmegaCAM data, but conclude that it is irrelevant given the sky
background levels in the KiDS r-band data.

These detector-level distortions are all dependent on the flux
of the object. Any model for the PSF derived from measurements
of bright stars may therefore be inappropriate for faint galaxies.
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A biased PSF correction then leads to biased galaxy shape mea-
surements (Melchior et al. 2015).

Hoekstra et al., (in prep.) present a detailed study of pixel
correlations in flat-field exposures from OmegaCAM, detecting
increased noise-covariance at bright fluxes, a clear signature of
BFE. Given the thinned OmegaCAM CCDs, however, the fluxes
where the effect becomes significant are high, and the impact
on the shape and ellipticity of the PSF itself was found to be
very small for stars with magnitudes r > 18. This bright limit
was therefore adopted in our PSF modelling. In the same anal-
ysis, Hoekstra et al. (in prep.) study CTI in the OmegaCAM se-
rial readout direction, detecting a low-level signal that does not
vary significantly between detectors. They conclude, however,
that the CTI distortion is at level that does not affect the shape
measurements.

3.4.1. Quantifying PSF flux dependent additive bias

We investigate detector-level distortions in Fig. 4, which shows
the average residual PSF, δεPSF, as a function of stellar r-band
magnitude for the 32 OmegaCAM CCD chips for our star sample
with 18 < r < 22.5. For the δεPSF

2 component, we find very
low-levels of flux dependence for all of the CCD chips ranging
from 〈δεPSF

2 〉(r=18) = (2 ± 1) × 10−5 to 〈δεPSF
2 〉(r=22) = (−4 ±

2) × 10−5. For the majority of chips, the flux dependence is also
low for the δεPSF

1 component which ranges from 〈δεPSF
1 〉(r=18) =

(−2.3 ± 0.4) × 10−4 to 〈δεPSF
1 〉(r=22) = (2.2 ± 0.4) × 10−4. Three

of the OmegaCAM CCD chips in Fig. 4 do, however, exhibit
significant flux dependence in the δεPSF

1 component of the PSF
ellipticity, chips with CCD IDs10 15, 21 and 30.

To explore the flux dependence of the PSF further, we anal-
ysed cosmic rays in all the OmegaCAM dark frames, which con-
tain no other objects. Figure 5 shows the stack of all cosmic rays
with counts between 250 and 800 for the most offending detec-
tor, CCD ID 15. We find trailing in the serial direction, which
is flipped in the upper half of OmegaCAM relative to the lower
half, supporting a hypothesis that this effect is caused by CTI
and/or pixel bounce in the readout register. By inspecting the de-
pendence on the distance to the readout register, we find that the
CTI distortion in this CCD is an order of magnitude smaller than
the dominant source of the distortion which we therefore infer
arises from pixel bounce.

We model the systematic error introduced by the flux de-
pendence of the PSF seen in Fig. 4 following Hildebrandt et al.
(2020), fitting a linear relation to the per-chip δεPSF residuals as
a function of r-band magnitude. We estimate a field-of-view po-
sition dependent δεPSF(x, y) model for the typical KiDS galaxy
by extrapolating the linear magnitude relationship to r = 24. We
mimic the dithering and stacking of exposures, by combining
five dithered δεPSF(x, y) maps (see figure 2 in Hildebrandt et al.
2020). Residual PSF ellipticity contributes to the observed cos-
mic shear signal with an amplitude δξ± ≈ 〈δεPSFδεPSF〉 (see for
example the discussion in PH08; Zuntz et al. 2018). We find that
|δξ+|< 5.1 × 10−7, with the angular dependence of the function
shown in Fig. 3 (magenta curve).

10 The THELI CCD naming convention IDs 15, 21 and 30 correspond
to the ESO CCD IDs 74, 84 and 91, where the conversion between the
two naming schemes is given by,

IDESO = 16 [(IDTHELI − 1) //8] + 73 − IDTHELI ,

with // designating integer division.

Fig. 4: The average KiDS-1000 PSF ellipticity εPSF (left panels,
divided by a factor of 10) and residual PSF ellipticity δεPSF (right
panels), indicated by the colour bar, as a function of stellar r-
band magnitude and CCD chip ID. A flux dependence of the PSF
residual δεPSF

1 is seen in CCD chip IDs 15, 21 and 30, indicating
the presence of strong detector-level systematics in these three
CCDs.

Fig. 5: Counts per pixel for a stacked image centred on cosmic
rays detected in dark frames from OmegaCAM THELI CCD
ID 15 (also referred to as ESO CCD ID 74). A distortion can be
seen along the serial direction to the read-out amplifier, which we
interpret as primarily arising from pixel bounce. We note that this
effect is found to be significantly lower in all other OmegaCAM
detectors.
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We quantify the impact of the flux dependence of the
PSF distortions on our cosmological parameter constraints us-
ing the methodology from Sect. 3.3.2. We find the change in
the goodness-of-fit of the fiducial cosmological model, given a
pixel-bounce biased data vector, is consistent with the change
in the goodness-of-fit when the value of S 8 in the cosmological
model changes by 0.15σS 8 , (see Eq. 11). This result is consis-
tent with Asgari et al. (2019) who only see a significant impact
in their mock data analysis if they artificially increase the mag-
nitude of this detector effect by a factor of five. This difference
is just outside our tolerance requirement of systematics inducing
less than a 0.1σS 8 change in S 8, however. As we discuss fur-
ther in Sect. 3.5.2, we do not find evidence in the data to support
the residual PSF model analysed here, with the data favouring
a significantly lower amplitude. We remind the reader that our
faint galaxy residual PSF model is derived from a linear fit to
the effect determined from stars with magnitudes ranging from
18 < r < 22, extrapolated to r = 24. The fact that the faint galaxy
data does not support this extrapolated model is an indication
that the impact of the effect diminishes as the galaxies approach
the background noise level, resulting in a non-linear relationship
between the residual PSF ellipticity and galaxy magnitude.

We note that the results of the PH08 model analysis in
Sect. 3.3.1 do not predict the level of additive bias anticipated
from the estimated detector-level systematic. This is because
our PH08 model analysis is incomplete, as it neglects any flux-
dependence in the measured quantities. We therefore caution
that future systematic tests with the PH08 model should build
in a flux-dependent dimension, evaluating Eq. 10, as a func-
tion of magnitude (see the discussion in Massey et al. 2013;
Cropper et al. 2013). We recognise, however, that this develop-
ment is non-trivial as the various quantities measured in Eq. 10
become progressively noisier as we reach the stellar magnitude
limit for the sample of r & 22 (see Fig. 4). To extend beyond
this limit towards typical galaxy magnitudes, we have relied on
linear extrapolation, the accuracy of which we test in Sect. 3.5.2.
In the future it is likely that we will become reliant on detailed
simulations in order to model and quantify the impact of these
systematic effects (Euclid Collaboration et al. 2020).

3.4.2. Quantifying PSF flux-dependent multiplicative bias

Detector-level distortions impact both the ellipticity and size of
the PSF as a function of flux. As we can see from the first term
in Eq. 10, errors in the PSF size, δTPSF = T data

PSF − T model
PSF , re-

sult in a multiplicative bias on the cosmic shear measurement.
There are, however, two challenges in accurately determining
δTPSF as a function of stellar magnitude. The first is a form of
noise-bias where, as the PSF becomes progressively fainter, the
wings of the distribution dip below the background. In this case,
the T -size estimate is unable to distinguish between a narrow
high surface brightness PSF, or an extended lower surface bright-
ness PSF, as the part of the PSF that we observe above the noise
threshold appears to be the same size (Duncan et al. 2016). The
second involves the choice of weight function in Eq. 2, which
introduces a bias in the recovered object’s size. This bias de-
pends on the relative size of the object to the weight function,
hampering efforts to detect size variation as a function of flux
when using a fixed weight size. Given the difference between
TPSF values measured at different fluxes, compared to the cho-
sen weight radius, however, the impact of the weight function
bias is expected to be weak. These challenges currently preclude
an accurate quantification of the multiplicative bias that we in-
cur from the weak flux dependence of the PSF seen in Fig. 4. We

can however make a rough calculation based on the data to hand,
which is expected to overestimate the amplitude of this effect11.

Extrapolating measurements of δTPSF/TPSF as a function
of stellar r-band to r = 24, we estimate that −0.005 <
〈δTPSF/TPSF〉(r=24) < 0. At the faint end of the galaxy popula-
tion, the lensfit weighted 〈TPSF/Tgal〉(r=24) ∼ 1, where we include
the ‘small-galaxy’ correction factor from Massey et al. (2013) to
account for the weight bias in TPSF. Combining these estimates
we can conclude that the impact of flux dependent multiplicative
bias on the two-point shear correlation function ξ±, as quantified
through the first term in Eq. 10, is −0.01 < 2〈δTPSF/Tgal〉(r=24) <
0. The Kannawadi et al. (2019) uncertainty on the calibration
correction to the shear correlation function ξ

i j
± (θ) is given by

(1 + δi
m)(1 + δ

j
m), where the uncertainties are treated as being

100% correlated between tomographic bins, with δi
m listed in

Table 1. As this is a factor of two to four times larger than the
measured amplitude of the first term in Eq. 10, we conclude that
the δi

m-marginalisation in any cosmic shear analysis will miti-
gate the presence of the multiplicative systematics that we find
associated with flux-dependent PSF size modelling errors.

We note that, as in Sect. 3.4.1, we have adopted linear ex-
trapolation to model the flux dependence of the residual PSF
size δTPSF. As faint galaxy data does not support this extrapo-
lated model, in Sect. 3.5.2, the multiplicative bias estimate that
we have presented here is very likely to be a worse-case sce-
nario. It nevertheless highlights the necessity to develop a new
strategy for including an accurate flux-dependent dimension in
future systematic tests with the PH08 model.

3.5. Quantifying the impact of PSF residuals with a
first-order systematics model

In this section we directly test for PSF residuals in the KiDS-
1000 shear catalogue using a first-order systematics model ap-
plied to the weighted lensfit galaxy shear estimates. This is in
contrast to the PH08 model analysis from Sect. 3.3 which pro-
vides an indirect test of the shear catalogue through the PSF
model. Here systematic errors are parameterised using a first-
order expansion (Heymans et al. 2006) of the form

εobs = (1 + m)(ε int + γ) + αεPSF + βδεPSF + c , (12)

where εobs is the observed ellipticity, i.e. the shear estimator, m
is a multiplicative bias, ε int is the intrinsic ellipticity, γ is the cos-
mic shear term that we wish to extract, α and β are the fractions
of the PSF ellipticity εPSF, and the residual PSF ellipticity δεPSF,
that remain in the shear estimator, and finally c is an additive
term that is uncorrelated with the PSF. We note that the ellip-
ticity, shear and additive terms in Eq. 12 are written in complex
form, for example ε = ε1+iε2. The terms α, β and m, however, are
typically treated as scalars, scaling both of the ellipticity compo-
nents equally.

In the first-order systematics model, a non-zero α can be at-
tributed to an error in the deconvolution of the PSF from the
galaxy ellipticities and/or noise-bias. A non-zero δεPSF can be
associated with how well the model fits the true effective PSF.
Zuntz et al. (2018) argue that in this case, a value of order β ∼ −1
is expected as PSF model errors propagate into an error of the
same magnitude, but opposite sign, in the shear estimate. A non-
zero c could be associated with detector level effects such as
charge transfer inefficiencies.
11 The BFE results in fainter stars that are narrower than bright stars.
The T -size estimate underestimates the size of an object as its flux de-
creases, which mimics BFE.
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Taking the first-order systematics model from Eq. 12 under
the assumption that m, α and c are constant across the full survey,
we find the two-point shear correlation function estimator ξ̂± (see
Eq. 9), is given by

ξ̂± = (1 + m)2〈εperfectεperfect〉 + α2 〈εPSFεPSF〉 (13)

+ 2αβ 〈εPSFδεPSF〉 + β2 〈δεPSFδεPSF〉 + cc± .

Here we follow the short-hand notation from Eq. 10, where, for
example, 〈εperfectεperfect〉 = ξ

γγ
± , the cosmic shear two-point corre-

lation function which is directly related to the non-linear matter
power spectrum and its associated cosmological parameters. We
also define cc± for the contribution of the scalar c-term to ξ̂±.
Here cc+ = c2

1 + c2
2, and cc− = 0, by definition.

Bacon et al. (2003) define the following systematics estima-
tor to determine the level of contamination to the two-point shear
correlation function estimator ξ̂± from any residual PSF in the
shear estimate

ξ
sys
± = 〈εobsεPSF〉2/〈εPSFεPSF〉 , (14)

where 〈εobsεPSF〉 is the ‘star-galaxy’ cross-correlation function,
measured between the observed and PSF ellipticities. If the
model in Eq. 12 provides a good representation of the system-
atics in the data, then ξsys

± = α2〈εPSFεPSF〉 when δεPSF ∼ 0. We
note that any significant additive biases, c, do not contribute to
the ξsys

± estimator as, by definition, c is uncorrelated with the PSF.

3.5.1. Constraints on the parameters of the first-order
systematics model

We constrain the amplitude of the PSF residual α, and the
additive parameter c, in Fig. 6, by fitting Eq. 12 to the
w-weighted KiDS-1000 shear measurements, in the case of
position-independent parameters. In this analysis we note that
for the large KiDS area, 〈ε int + γ〉 ≈ 0. We also fix δεPSF = 0,
which is a good approximation when considering the average
PSF modelling error across the full survey (see Fig. 2). We refer
the reader to Sect. 3.4, however, where we quantify the impact
of low-level flux dependent PSF modelling errors in the 3 out of
the 32 CCDs in OmegaCAM which display strong detector level
effects.

Blind A: We find that α is consistent with zero when con-
sidering the full survey (see the shaded region in Fig. 6), and
also the first three tomographic photometric redshift bins with
zB < 0.7. Blind B: We find that α is consistent with zero in the
first three tomographic photometric redshift bins with zB < 0.7,
but with a significant detection at the percent level when con-
sidering the full survey with α = 0.012 ± 0.003 (see the shaded
region in Fig. 6). Blind C: We find that α is consistent with zero,
at the 2σ level, when considering the full survey (see the shaded
region in Fig. 6), and also the first three tomographic photomet-
ric redshift bins with zB < 0.7. For the two highest redshift bins
we find Blind A&C: |α|∼ 0.04± 0.01, Blind B: α4 = 0.05± 0.01
and α5 = −0.02±0.01. We find consistent PSF residual fractions
when considering the ε1 and ε2 components independently. This
validates our model in which α is treated as a scalar, modulating
both ellipticity components equally.

Turning to the additive bias c = c1 + ic2, we find c1 is con-
sistent with zero when considering the full survey (see the pink
shaded region in Fig. 6), but with significant detections in the
third and fifth tomographic bins. We find a significant detection
of c2 at the level of c2 ∼ (6 ± 1) × 10−4 across all but the first

Fig. 6: Systematics parameters: the amplitude of the PSF resid-
ual fraction α, and the additive parameter c, from Eq. 12, as a
function of tomographic photometric redshift bin, zB. The tomo-
graphic measurements can be compared per ellipticity compo-
nent, ε1 (closed, pink) and ε2 (crosses, grey), and with a non-
tomographic measurement (shown as coloured grey/pink bars of
width 1σ)

tomographic bin (true for all blinds). The presence of a signif-
icant c2 term is expected from lensfit analyses of image simu-
lations where Kannawadi et al. (2019) measure c2 in the range
of [5, 10] × 10−4. From this image simulation analysis we can
conclude that a low-level additive systematic bias, that is uncor-
related with the PSF, is inherent to the software that we have
used12. This is supported by an analysis of the shear catalogue
as a function of object position within the field of view, finding
no significant variation of c across the camera.

Based on these results, we choose to empirically correct the
observed shear estimates such that εobs

corr = εobs−εobs, where εobs is
the weighted average ellipticity of the relevant tomographic bin.
It is these empirically corrected shear estimates that we use in the
cosmic shear analysis of Asgari et al. (in prep.), which includes a
nuisance parameter δε2 for each tomographic bin to marginalise
over our uncertainty in the accuracy of the empirical calibration
correction. The prior for δε2 is given by a zero-mean Gaussian of
widthσ = 7.5×10−8, corresponding to the largest variance, mea-
sured from any tomographic bin, between 300 bootstrap sample
measurements of 〈εobs

1 − εobs
1 〉

2 + 〈εobs
2 − εobs

2 〉
2. We note that this

prior is roughly twice the size of the nuisance prior adopted in
Hildebrandt et al. (2020), as it accounts for correlations between
the empirical corrections that were previously neglected.

12 We note that lensfit remains under development, and the origin of
the c2 term is now known to lie in the likelihood sampler. An updated
version of lensfit will be used for the analysis of the full KiDS survey
area (Data Release 5).
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In the first three tomographic bins where α ∼ 0, the em-
pirical correction that we apply corresponds to the additive c-
term, i.e. εobs ≡ c. In the highest two tomographic bins, how-
ever, εobs ≡ αεPSF + c. This correction therefore also accounts
for the average offset induced from the PSF residuals which is
of similar amplitude to the c-terms13. Note that we choose not
to implement an additional empirical PSF-dependent correction
for the PSF contamination, as our α measurements are noisy.
Furthermore if α is not a constant, and is instead correlated with
galaxy properties, atmospheric seeing, or image depth, for ex-
ample, applying an average correction would artificially imprint
a PSF-correlation across our full data set that could potentially
be more problematic than the low-level average bias that we cur-
rently detect.

3.5.2. Accuracy requirements and validation of the linear
systematics model

In Fig. 7 we compare two measured ‘star-galaxy’ cross-
correlation functions with the amplitudes predicted by the lin-
ear systematics model from Eq. 12. The standard ‘star-galaxy’
cross-correlation function, 〈εobs

corr ε
PSF〉, is related to the linear sys-

tematic model parameters as14

〈εobs
corr ε

PSF〉 = α〈εPSFεPSF〉 + β〈εPSFδεPSF〉 − αεPSF εPSF
± . (15)

We can also construct a residual star-galaxy cross correlation
function 〈εobs

corr δε
PSF〉, where

〈εobs
corr δε

PSF〉 = α〈εPSFδεPSF〉+β〈δεPSFδεPSF〉−αεPSF δεPSF
± . (16)

As with previous sections, we focus on the ξ+(θ) term only, as
the ξ−(θ) term is consistent with zero for the OmegaCAM PSF.

Figure 7 shows reasonable agreement between the mea-
sured star-galaxy correlation function (shown dark blue), with
the model prediction (blue band, Eq. 15) which we calculate by
taking α from Fig. 6, β = −1, δεPSF from the detector level model
in Sect. 3.4, and the other terms measured directly from KiDS-
1000. Note that the band encompasses the 2σ uncertainty from
the measurement of α. All other error terms are subdominant.

In contrast we find little agreement between the measured
residual star-galaxy correlation function (shown pink), with the
model prediction (grey dotted line, Eq. 16). This suggests that
our faint magnitude linear extrapolation of the residual δεPSF

model is not representative of the detector level bias that the
galaxies have experienced. We find that the average residual
star-galaxy correlation is significantly lower than the expecta-
tion from the extrapolated chip-dependent residual PSF model.
We therefore conclude that whilst we find significant flux de-
pendence in the PSF residual for 3/32 OmegaCAM chips (see
Fig. 4), there is no evidence in the shear catalogue that this leads
to a significant bias in the cosmic shear measurements. As such
we conclude that there is no necessity for Asgari et al. (in prep.)
to follow Hildebrandt et al. (2020) in introducing a nuisance pa-
rameter in the fiducial KiDS-1000 cosmological parameter in-
ference, to marginalise over this 2D residual PSF distortion. For

13 The average PSF ellipticity is εPSF
1 = 0.005± 0.001, εPSF

2 = −0.005±

0.001 for the KiDS-1000 equatorial field, and εPSF
1 = 0.003 ± 0.001,

εPSF
2 = 0.001 ± 0.001 for the KiDS-1000 southern field.

14 Here we use the same notation as Eq. 13, with ab± = a1b1 ± a2b2.
We also adopt the notation from Eq. 10, where εi indicates the lensfit
weighted average value of the scalar quantity εi, and ε = ε1 + iε2 . For
completeness we remind the reader that εobs

corr = εobs − εobs.

Fig. 7: A comparison of two ‘star-galaxy’ cross-correlation func-
tions with their corresponding linear systematics model predic-
tions (Eqs. 15 and 16) for the five tomographic bins. The star-
galaxy cross correlation function 〈εobs

corr ε
PSF〉 (dark blue) is in rea-

sonable agreement with the model (blue bar), where the width of
the model reflects the 2σ uncertainty. The residual star-galaxy
cross correlation function 〈εobs

corr δε
PSF〉 (shown pink), and corre-

sponding model (grey), are scaled by a factor of 10 in order to
display the measurements on the same scale. We also scale the
correlation functions by

√
θ to aid visualisation of the large-scale

signal.

future surveys, with decreased statistical noise, this conclusion
should, however, be reviewed.

Based on these results, we conclude that the linear system-
atics model provides a good representation of the systematics in
our data, when δεPSF = 0. As such we can use the Bacon et al.
(2003) systematics estimator ξsys

± (θ) (Eq. 14, analysing the cor-
rected shear estimator εobs

corr) to empirically estimate the system-
atic contribution to the measured cosmic shear signal.

In Fig. 8 we compare the measured ξ
sys
+ (θ) for each tomo-

graphic bin combination with the amplitude of the expected fidu-
cial cosmic shear signal, presenting the ratio of the two quanti-
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Fig. 8: Ratio of the predicted systematic contribution to the ex-
pected amplitude of the cosmic shear signal, ξsys

+ (θ)/ξΛCDM
+ (θ),

for 15 different tomographic bin combinations (as denoted in the
lower left corner of each panel). The systematic contribution is
typically either less than ∼ 2% of the cosmic shear signal (shown
as dashed lines), and/or within 10% of the expected noise on the
measurement (blue shaded region).

ties15. This can also be compared to the expected noise in KiDS-
1000, where we show ±10% of the standard deviation of the cos-
mic shear signal (Joachimi et al. 2020) as a blue shaded region.
In the majority of cases we find that the systematic bias remains
within ∼ 10% of the statistical noise. For the highest redshift
bins, which carry the main cosmological constraining power for
the survey, we typically find the systematic contribution to be
less than ∼ 2% of the cosmic shear signal (shown as dashed
lines). The exceptions are the large-scale, θ > 60 arcmin, signal
in some bins where the expected fiducial cosmic shear signal is
small and the statistical noise is high.

Using our rapid χ2 analysis (Eq. 11) we assess the impact of
this systematic by inspecting the goodness-of-fit of the fiducial
cosmological model, given a ξsys

+ (θ) biased data vector. We find
the change in the goodness-of-fit to be consistent with the change

15 We note that we do not also show ξ
sys
− (θ), as this is a very noisy quan-

tity. Both the numerator and denominator in Eq. 14 are essentially zero
for the ξ−(θ) estimator.

expected when the data vector is instead drawn from a cosmolog-
ical model where S 8 changes by 0.4σS 8 compared to the fiducial
case. This systematic appears therefore to exceed our tolerance
requirement of PSF modelling errors inducing less than a 0.1σS 8

change in S 8. As such this systematic is flagged by our rapid
χ2-test and referred to a complete bias impact assessment. We
follow Troxel et al. (2018) by conducting a full MCMC cosmo-
logical inference analysis of a ξsys

± corrected KiDS-1000 cosmic
shear data vector (see Asgari et al. in prep.; Joachimi et al. 2020,
for details of the inference pipeline). Comparing the resulting
constraints on S 8 to the fiducial cosmic shear constraints we re-
cover a bias of 0.06σS 8 in the value of S 8. This is well within
our requirements and consistent with noise in the final converged
MCMC chain (Joachimi et al. 2020).

To reconcile the two different conclusions from our rapid
and full impact analysis, we remind the reader that they are
testing different aspects of the analysis. The χ2 test questions
the goodness-of-fit of the model. The MCMC analysis quan-
tifies how the offsets found between the model and data tran-
spire to bias the inferred cosmological parameter constraints. For
systematics that do not have the same angular or redshift scal-
ing behaviour as the cosmological signal, the impact in terms
of parameter bias is expected to be weak (see for example
Amara & Réfrégier 2008). For KiDS-1000, the changing sign in
α from the fourth to the fifth bin results in a signal that adds to the
auto-bins, and subtracts from the cross-correlation. This type of
behaviour predominantly impacts the intrinsic alignment mod-
elling rather than the ΛCDM parameters. Marginalising over
the many different nuisance parameters in the MCMC analy-
sis therefore allows for some degree of marginalisation over
this systematic effect, albeit reducing the goodness-of-fit of the
model which our χ2 test is based upon. It is also worth noting that
the MCMC inference analyses the full ξ±(θ) data vector, where
ξ−(θ) is unaffected by this systematic, in contrast to our χ2 anal-
ysis from Eq. 11, which focuses on the impact from ξ+ alone. As
the MCMC analysis provides a direct estimate of the S 8-bias in-
troduced by the significant but low-level KiDS-1000 first-order
systematics model, we conclude that the KiDS-1000 shear cat-
alogue meets our current requirements. Future improvements to
minimise α are however likely to be required as the statistical
power of the survey increases.

3.6. Comparison of the Paulin-Henriksson et al. and
first-order systematic models

Before concluding this section it is worth pausing to review the
different systematic contributions to the two-point shear corre-
lation function estimator as predicted by the PH08 model and
the first-order systematics model. Given that these two mod-
els have the same format (compare Eqs. 10 and 13), it may be
tempting to link the different parameters where m ≡ δTPSF/Tgal,
α ≡ δTPSF/Tgal and β ≡ TPSF/Tgal. We find, however, that these
quantities have very different amplitudes. The empirical mea-
surement of α, shown in Fig. 6, and the shear calibration bias
m, calibrated through image simulations, are both two orders of
magnitude larger than the equivalent PH08 model terms.

It is therefore important not to forget that the PH08 model,
also referred to in other studies as the ‘ρ-statistics’ (Rowe 2010),
was only ever intended to capture the contributions to the cosmic
shear signal that arise from errors in the PSF modelling. In the
case of KiDS-1000, we find that the low-level PSF modelling
errors are harmless in terms of the accuracy of the observed cos-
mic shear signal. In contrast, however, there are other factors in
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the shear measurement that imprint PSF residuals and calibra-
tion biases in the shear estimator, such as object selection and
noise bias (see for example the discussion in Kannawadi et al.
2019), in addition to weight-bias (discussed in Sect. 2.2). These
factors are not captured by the PH08 model, and by using empir-
ical estimates and image simulations we find that these factors
are significant, adding to the cosmic shear signal at the level of a
few percent.

We therefore recommend that the PH08 model is only used
for its original intention, which is to optimise the functional form
of the PSF model (as in Sect. 3.2), and to validate the final PSF
model. For the validation of the shear catalogues, extra null-tests
need to be undertaken, and our preferred approach is to adopt the
linear systematics model with the parameters empirically deter-
mined from the catalogues. Once the model is validated with the
data (see for example Fig. 7), the Bacon et al. (2003) systematics
estimator can then be used to determine the level of systematics
that contribute to the observed cosmic shear signal.

4. Two-point null-tests

In this section we extend our validation of the KiDS-1000 shear
catalogue by presenting three additional two-point null-tests;
analysis of B-modes, galaxy-galaxy lensing in the camera ref-
erence frame, and a shear-ratio test.

4.1. COSEBIs B-modes

Figure 9 presents the B-mode signal, measured for each tomo-
graphic bin combination, using Complete Orthogonal Sets of
E/B Integrals (COSEBIs, Schneider et al. 2010). The COSEBIs
formalism allows for the clean and complete separation of the
KiDS-1000 lensing E-modes (presented in Asgari et al. in prep.)
from any non-lensing B-modes. It is therefore our preferred B-
mode null-test statistic (see the discussion and comparison of
B-mode statistics in Asgari et al. 2019, which concludes that the
COSEBIs methodology provides the most sensitive and stringent
method to detect B-mode distortions).

The COSEBIs B-mode estimator is given by an integral over
the two-point shear correlation function, ξ±(θ) from Eq. 9, as

Bn =
1
2

∫ θmax

θmin

dϑϑ
[
T+n(ϑ)ξ+(ϑ) − T−n(ϑ)ξ−(ϑ)

]
, (17)

where the logarithmic COSEBI mode filter functions that we
use, T±n, are given in equations 28 to 37 of Schneider et al.
(2010). We set θmin = 0.5 arcmin, and θmax = 300 arcmin, span-
ning the full angular range used in the cosmic shear analysis of
Asgari et al. (in prep.). We measure ξ±(θ) from Eq. 9, using 4000
bins equally spaced in log θ, and calculate Bn from Eq. 17 by ap-
proximating the integral as a discrete sum over the 4000 angular
bins.

We assess the significance of the measured B-modes using
an analytical covariance matrix from Joachimi et al. (2020), that
has been verified through a series of mock simulation analyses,
in addition to an empirical ‘spin-test’ whereby the shape-noise
component of the covariance is validated through numerous re-
analyses of the survey with randomised ellipticities (Troxel et al.
2018). We note that ‘chi-by-eye’ is dangerous with the COSEBIs
statistic as the modes are highly correlated.

We find that the measured B-modes, Bn, are consistent with
zero with a p-value16 of A: p = 0.34, B: p = 0.51, C: p = 0.38
16 The p-value is equal to the probability of randomly producing a B-
mode that is more significant than the measured B-mode signal, for

Fig. 9: KiDS-1000 B-mode null-test: the COSEBIs Bn modes are
shown for each tomographic bin combination (denoted in the up-
per left corner of each panel). The measured B-modes are con-
sistent with random noise, as determined through the p-values
shown in the upper right corner of each panel. Considering the
full data vector of n = 20 modes and 15 different tomographic
bin combinations, we find A: p = 0.34, B: p = 0.51, C: p = 0.38
corresponding to an insignificant A: 0.4σ, B: 0σ, A: 0.3σ devi-
ation from a null signal. We caution the reader against ‘chi-by-
eye’ as the Bn modes are highly correlated.

considering the full data vector of n = 20 modes and 15 dif-
ferent tomographic bin combinations. This corresponds to an in-
significant A: 0.4σ, B: 0σ, A: 0.3σ deviation from a null signal.
Analysing each tomographic bin combination separately we find
that all the B-modes are consistent with zero, (see the p-values
reported in the upper right corner of each sub-panel in Fig. 9).
The lowest p-value of p = 0.04 (true for all blinds) is found
for the auto-correlation of the fifth tomographic bin, correspond-
ing to a 1.8σ deviation from a null signal. With 15 different bin
combinations, however, we do expect to find approximately one
bin combination with a ∼ 2σ deviation from the null case. We
therefore conclude that the measured KiDS-1000 B-modes are
consistent with statistical noise.

Asgari et al. (2012) show that the first n = 5 E-modes con-
tain almost all the cosmological information. It is therefore rel-
evant to also limit the B-mode null-test to the first n = 5 B-
modes. In this case our conclusions remain unchanged, finding
A: p = 0.02, B: p = 0.03, C: p = 0.02, which is consistent with
zero B-modes at the ∼ 2σ level. Inspection of the 15 different
bin combinations for the first n = 5 B-modes, yields two ∼ 2σ
deviations from the null case in the 2_2 and 3_5 combinations
with p = 0.02, 0.01 respectively (true for all blinds). For the 5_5
bin combination highlighted as a potential outlier in the n = 20
B-mode test, we note that A: p = 0.25, B: p = 0.23, C: p = 0.23,
in the n = 5 B-mode test.

Asgari et al. (2019) demonstrate that some systematics in-
fluence the E-modes and B-modes differently, and, as such, it is
necessary to pass both these tests, which we do. Interestingly,
they note that PSF residual distortions typically impact the low-
n modes. The decrease in the p-values seen between the n = 20

the model that Bn is drawn at random from a zero-mean Gaussian
distribution.
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and the n = 5 null-test, may therefore be a reflection of the
significant, but low-level, PSF residual distortions detected in
Sect. 3.3.1.

4.2. Galaxy-galaxy lensing in the OmegaCAM pixel
reference frame

Galaxy-galaxy lensing measures the azimuthally averaged tan-
gential shear of background galaxies relative to foreground
galaxies (Brainerd et al. 1996). In contrast to cosmic shear mea-
surements, where systematics increase the amplitude of the ob-
served signal (Eq. 13), this azimuthal averaging typically results
in a cancellation of additive systematics. As such, galaxy-galaxy
lensing is often regarded as a truly robust weak lensing probe
(Mandelbaum et al. 2013).

In Fig. 10 we present the galaxy-galaxy lensing of KiDS
sources around foreground luminous red galaxies from BOSS
(Alam et al. 2015), using the 409 deg2 of overlapping survey
area between the equatorial KiDS-1000 region and BOSS. We
compare the standard ‘1D’ azimuthally averaged measurement
with the signal measured on a 2D grid, within the reference
frame of OmegaCAM17. As expected, the 2D measurement (up-
per panels) is noisier than the 1D measurement (second panels).
We can use the residual between these two measurements, how-
ever, to search for new systematic errors (third panel), finding no
significant features.

This result is consistent with expectations from the low-level
systematics detected in Sect. 3. As a new null-test, it does how-
ever allow us to explore alternative systematics that are specific
to galaxy-galaxy lensing studies. The featureless 2D residuals
allow us to rule out any significant differences in the behaviour
of systematic errors in regions near bright objects, (see for exam-
ple the discussions in Sheldon & Huff 2017; Sifón et al. 2018).
We can also rule out any significant impact from detector level
defects, such as charge transfer inefficiencies, in the region of
the bright BOSS galaxies. This analysis therefore provides ad-
ditional confidence in the standard ‘1D’ azimuthally averaged
galaxy-galaxy lensing measurements that are part of our joint
KiDS-BOSS multi-probe lensing and clustering cosmological
constraints presented in Heymans et al. (in prep.).

Fig. 10 presents the result for the fifth tomographic bin, as
this has the strongest PSF contamination fraction α (see Fig. 6),
out to a maximum radius of 5 arcmin from the central BOSS
galaxy. Our conclusions are unchanged when analysing each of
the other tomographic bins or the full source sample, and when
extending the analysis to 30 arcmin. We remind the reader that
we have empirically corrected the source catalogue ellipticities
(see Sect. 3.5.1). Given the featureless residuals (third panels),
and the featureless 2D signal measured around random points
(lower panels), we conclude that our approximation that the ad-
ditive c-term is constant across the survey, is also appropriate in
the regions around bright galaxies.

4.3. Galaxy-galaxy shear-redshift scaling

For a fixed lens population, the ratios of the azimuthally av-
eraged tangential shear, γt, from different source populations
is sensitive only to the ratios of the angular diameter dis-
tances between the source and lens planes. This ‘shear-ratio
test’ was originally conceived as a cosmological probe through

17 All measurements are made using TREECORR (Jarvis et al.
2004; Jarvis 2015), with the 2D measurement facilitated by the
bin_type=TwoD mode.

Fig. 10: KiDS-BOSS galaxy-galaxy lensing in the OmegaCAM
pixel reference frame for the tangential, εobs

t (left), and cross, εobs
×

(right - null-test), components of the observed ellipticities in the
fifth tomographic bin with 0.9 < zB < 1.2. Upper: 2D correla-
tion functions centred on the BOSS lenses with 0.2 < z < 0.7.
Upper-middle: azimuthally averaged 1D correlation functions
around BOSS lenses, projected onto the 2D grid. Lower-middle:
the featureless residual 2D signal. Lower: 2D correlation func-
tions centred on random positions.

the distance-redshift relation (Jain & Taylor 2003), although it
was subsequently found that the cosmological dependence is
rather weak (Taylor et al. 2007). This approach was therefore
proposed as a unique joint null-test of the accuracy of the es-
timated source galaxy redshift distributions and the redshift-
dependent shear calibration correction (Hoekstra et al. 2005;
Heymans et al. 2012).

4.3.1. The shear-ratio test: measurement and modelling

Adopting an isolated singular isothermal sphere (SIS) as a model
for the lens density profile, the mean tangential shear within an
annulus of angular size θ, γt,SIS(θ), is given by

γ
i j
t,SIS(θ) =

2π
θ

(
σi

v

c

)2

βi j , (18)

where σi
v is the velocity dispersion of the lens galaxies in bin i,

and j denotes the source redshift bin (Bartelmann & Schneider
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2001). The lens-averaged lensing efficiency, βi j is given by

βi j =

∫ ∞

0
dzl ni(zl)

∫ ∞

zl

dzs n j(zs)
D(zl, zs)
D(0, zs)

, (19)

where D(za, zb) is the angular diameter distance between red-
shifts za and zb, and ni(z) and n j(z) are the redshift distributions
of the lenses and sources respectively. The recovery of a consis-
tent set of constraints on the velocity dispersion σi

v using a range
of different tomographic source bins, j, serves as a validation of
the shear and redshift estimates (Heymans et al. 2012).

There are four key assumptions made when using Eq. 18
to model measurements of tangential shear around lens galax-
ies. In this equation the lens is assumed to have a perfect SIS
density profile. It is considered isolated, an assumption which
is only reasonable to make on small scales (see for example
Velander et al. 2014). Any intrinsic alignment (IA) terms be-
tween the source and lens galaxies are neglected (see for ex-
ample Joachimi et al. 2015). The weak lensing magnification of
background sources by the matter associated with the foreground
lenses is also neglected (Unruh et al. 2019).

To address the issue of the choice of lens model, we fol-
low Hildebrandt et al. (2017) who developed the shear-ratio test
such that it was agnostic to the galaxy halo density profile by
modelling the tangential shear γi j

t (θ) = Ai(θ) βi j. Here Ai(θ) is a
θ-dependent set of free parameters for each lens bin i (see also
Prat et al. 2018, who choose to model Ai(θ) as a power law).

To address the IA terms in the observed signal, our fidu-
cial analysis includes the ‘NLA’ intrinsic alignment model from
Bridle & King (2007) with a fixed IA amplitude AIA = 1.0, and
a linear galaxy bias of b = 2.0, which are reasonable amplitudes
for the KiDS source and BOSS lens populations that we study
(Joachimi et al. 2020). For this model we find that the IA contri-
bution is non-negligible for the source-lens combinations where
there is significant overlap between the source and lens samples
(see the cyan lines in Fig. 11). As such it is important to include
this additional IA signal in our null-test. Our adopted model for
the shear-ratio test is therefore given by

γ
i j
t (θ) = Ai(θ) βi j − AIA

∫ ∞

0

`d`
2π

J2(`θ) Ci j
gI(`) , (20)

where J2 is the second order Bessel function of the first kind,
and CgI(`) denotes the angular power spectrum of the intrinsic
ellipticity alignment of source galaxies, that are physically close
to the lenses18.

To explore our sensitivity to weak lensing magnification
bias, and in order to verify our methodology, we analyse
mock KiDS and BOSS galaxy catalogues constructed from the
MICE2 simulation (Fosalba et al. 2015a; Hoffmann et al. 2015;
Carretero et al. 2015; Crocce et al. 2015; Fosalba et al. 2015b)
using the pipeline19 from van den Busch et al. (2020). MICE2 is
based on an N-body dark matter simulation, which is used to de-
rive an all-sky lensing mock catalogue between 0.1 ≤ z ≤ 1.4,
along with mock galaxy catalogues. These catalogues are sam-
pled to carefully match the properties of KiDS and BOSS, in-
cluding their redshift distributions, overlap and sample selection
18 This term is defined in, for example, equation 24 of Joachimi et al.
(2020). Note, however that we have taken the scaling factor of −AIA out
to the front of the integral in order to clarify that CgI(`) scales linearly
with this free parameter, and that it serves to reduce the amplitude of
the observed signal.
19 The van den Busch et al. (2020) KiDS-MICE
mock catalogue pipeline can be downloaded from
https://www.github.com/KiDS-WL/MICE2_mocks.git

(see Wright et al. 2019a; van den Busch et al. 2020, for details).
As MICE allows for the inclusion or exclusion of weak lensing
magnification, this mock also allows us to quantify the impact of
neglecting magnification in our shear-ratio model. For the source
and lens samples used in this analysis, we find that the magnifi-
cation bias is sufficiently small to be considered negligible given
the signal-to-noise of our analysis, changing the amplitude of the
galaxy-galaxy lensing signal by (0.04± 0.03)σγt , per bin, where
σγt is the measured error for a θ and source-lens bin. Whilst
the effect of IAs and magnification on the tangential shear are
comparable in size, the latter contributes most strongly at scales
where the galaxy-galaxy lensing signal itself is large. Magnifica-
tion therefore has a significantly smaller relative impact on our
shear-ratio null-test, compared to IAs.

With our model in place, we analyse the galaxy-galaxy lens-
ing signal around luminous red galaxies from the BOSS spectro-
scopic survey (Alam et al. 2015), divided into five narrow red-
shift bins of width ∆z = 0.1 between 0.2 ≤ z ≤ 0.7, for the five
KiDS-1000 tomographic bins in Table 1. The lens bins were cho-
sen to be sufficiently narrow to minimise galaxy bias evolution
across the bin, but also sufficiently broad to produce a reasonable
signal-to-noise null-test. We adopt the Mandelbaum et al. (2005)
galaxy-galaxy lensing estimator,

γ̂t(θ) =
1

1 + ms

( ∑
ls wl ws εt,l→s ∆ls(θ)∑

rs wr ws ∆rs(θ)
Nrnd (21)

−

∑
rs wr ws εt,r→s ∆rs(θ)∑

rs wr ws ∆rs(θ)

)
,

where ms is the shear calibration correction for source bin s, εt,l→s
is the tangential shear measured around lenses, εt,r→s is the tan-
gential shear measured around random points within the BOSS
footprint, ∆(θ) is the angular binning function (see Eq. 9), and
the sums with indices l, s, and r run over all objects in the lens,
source, and random catalogues, respectively. The normalisation
term Nrnd :=

∑
r wr/

∑
l wl reduces to the oversampling factor of

the random catalogue with respect to the catalogue of lens galax-
ies, for unit weights. In this analysis we use roughly 100 times as
many random points as lenses. Finally the weights consist of the
source lensfit weights ws, and the BOSS completeness weights
for the galaxy sample, wl, and random catalogue, wr, which have
unit value for all random points.

The galaxy-galaxy lensing estimator in Eq. 21 automatically
corrects for dilution-effects arising from the source galaxies that
are clustered with the lens20. Here the angular dependence of the
clustering of galaxies modifies the average redshift distribution
of source galaxies as a function of their angular separation from
the lens, with close-separation source-lens pairs more likely to
be sampled from the source n(z) at the location of the lens (see
for example Hoekstra et al. 2015). By also including a ‘random

20 This can be seen by recasting the first term in Eq. 21 as the simple
γt estimator with γt(θ) = (

∑
ls wl wsεt)/

∑
ls wl ws scaled by the ratio be-

tween the weighted number of galaxy pairs in the source-lens,
∑

ls wl ws,
and source-random sample

∑
rs wr ws, modulo the normalisation term

Nrnd. In the case where the source and lens samples are unclustered,
for example at large angular separations, this normalised ratio is unity,
and the estimator in Eq. 21 returns to the simple format. In the case
where the sources and lenses physically cluster, the effective pair count
is higher in the source-lens sample than in the source-random sample.
The inclusion of this term therefore boosts the simple γt signal by a
factor that accounts for the small fraction of sources that are physically
connected to the lens and are thus diluting the overall signal. With this
correction, the effective redshift distribution of the sources is given by
the average source redshift distribution at each angular scale.
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correction’, the second term in Eq. 21, we reduce the sampling
noise terms that arise from the large-scale structure (Singh et al.
2017). We also reduce the shape noise terms that arise from the
different fraction of unique sources used in each θ-bin (see figure
E.1 in Joachimi et al. 2020). We follow Hildebrandt et al. (2017)
by using four angular scales logarithmically-spaced between 2
and 30 arcminutes, where the scales were chosen to minimise
the amplitude of these boost and random correction terms (see
Blake et al. 2020, for further discussion on these points). This
results in 100 data points (four per lens-source bin, with 25 lens-
source bin combinations), to which we simultaneously fit a 20-
parameter Ai(θ) model (one per lens bin i, with four θ scales).

One of the most challenging aspects for this null-test is the
determination of an accurate covariance matrix, as the Lim-
ber equation is an approximation that becomes less accurate as
the width of our lens bins narrow (Giannantonio et al. 2012;
Kilbinger et al. 2017). This precludes the use of fast Limber
approximated analytical covariances (although see Fang et al.
2020, for new efficient beyond-Limber calculations to mitigate
this issue in the future). Even with the MICE2 simulation’s an-
gular size spanning an octant of the sky (∼ 5000 deg2), a sin-
gle realisation provides insufficient area to construct a covari-
ance matrix from these mocks that can be accurately inverted.
We therefore follow Troxel et al. (2018) in determining a co-
variance from 500 ‘spin’ realisations of the shear field, whereby
each source galaxy is randomly rotated, resulting in a nulled,
noisy signal. This approach results in a conservative covariance
estimator that does not include sampling variance, rendering the
shear-ratio test a more challenging test to pass. We note however
that for the θ-scales used in our analysis, the sampling variance
terms are expected to be sub-dominant (see Joachimi et al. 2020,
for details).

Figure 11 presents the KiDS-BOSS galaxy-galaxy lens-
ing measurements between five spectroscopic lens bins (left to
right), and five tomographic source bins (upper to lower). The
measurements can be compared to the best-fit model from Eq. 20
(shown red), calculated using the redshift distributions of the
SOM-gold sample described in Sect. 2.1. We calculate the χ2

goodness of fit, and recast this as a p-value which describes the
probability of the data being drawn from the model. We find that
the 5-bin model provides a reasonable fit to the data, with A:
p = 0.045, B: p = 0.030, C: p = 0.050, such that the 5-bin null-
test is consistent with the model expectation at the A: 1.7σ, B:
1.9σ, C: 1.6σ level21. We recognise that the three highest red-
shift bins contribute the majority of the cosmological constrain-
ing power for KiDS-1000. It is therefore also prudent to conduct
a shear-ratio test for these three bins alone. In this 3-bin null-test
we find a good fit to the data with A: p = 0.197, B: p = 0.189,
C: p = 0.299, such that the 3-bin null-test is consistent with the
model expectation at the A: 0.9σ, B: 0.9σ, C: 0.5σ level. With
this degree of consistency, for both the full 5-bin null-test and
the restricted 3-bin null-test, we conclude that the KiDS-1000
joint shear and redshift calibration has passed this final null-test.
We refer the reader to Asgari et al. (in prep.) who carry out a

21 We note that when conducting a similar analysis using spectroscop-
ically confirmed lens galaxies from GAMA, we find a good fit of the
5-bin model to the data, with A: p = 0.312, B: p = 0.249, C: p = 0.185,
confirming the KV450 analysis of Hildebrandt et al. (2020). This is ex-
pected as the overlap between KiDS-1000 and GAMA is unchanged
from the previous KiDS data release. Hildebrandt et al. (2020) also find
a reasonable model fit for a shear-ratio test conducted with KV450 and
BOSS. With the overlapping KiDS-BOSS area doubling in KiDS-1000,
our KiDS-BOSS shear-ratio null-test is now more constraining, improv-
ing our ability to detect any inconsistencies in our data set.

complementary cosmic shear consistency test for the different
tomographic bins following the methodology of Köhlinger et al.
(2019).

4.3.2. Sensitivity of the shear-ratio test to shear-redshift
calibration errors and the intrinsic alignment model

In order to establish the sensitivity of the KiDS-1000 shear-
ratio test to shear and redshift calibration errors we determine
p-values for a series of test cases. We start with our fixed fidu-
cial intrinsic alignment model, and coherently bias the mean es-
timated redshift of each tomographic bin with an increase of 5σz,
where σz is given in Table 1. In this case we find A: p = 0.016,
B: p = 0.015, C: p = 0.024. Coherently decreasing the mean
estimated redshift of each tomographic bin by 5σz, we find A:
p = 0.053, B: p = 0.025, C: p = 0.047. Constructing an in-
coherent model, where the estimated n(z) are biased alternately
by ±5σz we find A: p = 0.011, B: p = 0.009, C: p = 0.016.
Turning to the shear calibration correction, m, we increase the
calibration correction by ±5σm in alternating bins, where σm is
given in Table 1. In this case we find A: p = 0.010, B: p = 0.008,
C: p = 0.012. From these tests one can conclude that the shear-
ratio test is fairly insensitive to calibration errors in the shear and
mean redshift at less than the 5σ level in the case of a known in-
trinsic alignment model.

In Asgari et al. (in prep.) the uncertainty on the amplitude of
the intrinsic alignment model AIA is accounted for by marginal-
ising over AIA with an uninformative top-hat prior ranging from
−6 < AIA < 6. We estimate the impact of marginalising over this
level of uncertainty in our shear-ratio test by increasing the errors
on γt(θ) by a factor given by the expected IA signal with AIA = 6.
In this case our fiducial analysis passes with A: p = 0.856, B:
p = 0.868, C: p = 0.913. We can also adopt a more realistic, but
informative prior with −2 < AIA < 2, motivated by the ±3σ con-
straints on AIA in Wright et al. (2020). In this case our fiducial
analysis passes with A: p = 0.114, B: p = 0.144, C: p = 0.179.
When including an uncertainty in the intrinsic alignment model,
we find all our 5σ test sensitivity cases, as described above, pass
with A: p > 0.017, B: p > 0.022, C: p > 0.033.

We pause to note that marginalising over the uncertainty
in the IA model is particularly relevant for the first two to-
mographic bins, which, when analysed alone present a mod-
erate tension between the data and model expectation with A:
p = 0.007, B: p = 0.007, C: p = 0.009. With the inclusion of
the IA model uncertainty, the shear-ratio test for the first two to-
mographic bins alone pass with A: p = 0.019, B: p = 0.020, C:
p = 0.024.

This study demonstrates that in order to exploit shear-ratio
observations to provide a precise validation of the calibration of
shear and redshift estimates, these small θ-scale galaxy-galaxy
lensing observations must be used in conjunction with other cos-
mological probes in order to constrain the intrinsic alignment
terms in the model (MacCrann et al. 2020). A joint simultane-
ous analysis also removes the necessity to assume that the shear-
ratio test is insensitive to cosmology, as this assumption is further
challenged by the introduction of intrinsic-alignment modelling.

5. Conclusions and summary

In this analysis we have presented the shear catalogues for the
fourth data release of the Kilo-Degree Survey22, KiDS-1000.

22 The KiDS-1000 shear catalogues will be freely available for down-
load along with the publication of the KiDS-1000 cosmology con-
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Fig. 11: The azimuthally averaged tangential shear around BOSS galaxies (blue data points) for each tomographic (labelled ‘t 1-5’)
and spectroscopic (‘sp 1-5’) redshift bin combination. These can be compared with the best-fit Ai(θ) with IA model (red lines) which
is consistent with the data at the A: 1.7σ, B: 1.9σ, C: 1.6σ level. The cyan lines display the predicted contribution to the tangential
shear model from intrinsic alignments, scaled by a factor of five to aid visualisation.

This survey spans 1006 square degrees with high-resolution deep
imaging down to r = 25.02 ± 0.13 (5σ limiting magnitude in
a 2 arcsec aperture with a mean seeing of 0.7 arcsec). Over a
total effective area of 777.4 square degrees, accounting for the
area lost to multi-band masks, KiDS-1000 is fully imaged in
nine bands with matched depths that span the optical to the NIR
(ugriZY JHKs). KiDS overlaps with a wide range of complemen-
tary spectroscopic surveys. We additionally observe 4 square de-
grees of matched 9-band imaging targeting deep spectroscopic
survey fields outside the KiDS footprint. KiDS-1000 therefore
represents a unique survey of large-scale structure, owing to its
design that mitigates two of the greatest challenges in weak lens-
ing studies. These are accurate shear measurements, facilitated
by high signal-to-noise, high resolution and stable imaging, as
well as accurate photometric redshift estimation, aided by the
extended wavelength coverage and extensive calibration fields

straints in Asgari et al. (in prep.) and Heymans et al. (in prep.). Inter-
ested groups can however request early access by e-mail to the lead
authors of this paper.

(Wright et al. 2019b). The different trade-offs between area cov-
ered, depth attained, image quality delivered and wavelength
range covered make KiDS-1000 nicely complementary to the
other concurrent Stage-III weak lensing surveys, DES and HSC.
With the development and application of a myriad of analysis
tasks and tools, required to realise robust cosmological infor-
mation from pixel-level imaging, the three-pronged approach of
these independent Stage-III teams optimally serves the cosmo-
logical community in the final phases before the next generation
of ‘full-sky’ imaging surveys see first light over the coming few
years.

This paper presents a series of null-tests to verify the
robustness of the KiDS-1000 shear measurements, estimated
using the model-fitting pipeline lensfit (Miller et al. 2013;
Fenech Conti et al. 2017; Kannawadi et al. 2019). The develop-
ments since the previous KiDS-450 release focus on upgrading
the star selection for PSF modelling in Sect. 3.1, PSF model op-
timisation in Sect. 3.2, detailed studies of detector level effects
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in Sect. 3.4, and improvements in our weight bias correction in
Sect. 2.2.

We review two approaches to set requirements on the accu-
racy of a shear catalogue. The Paulin-Henriksson et al. (PH08,
2008) systematics model, also referred to in other studies as the
‘ρ-statistics’ (Rowe 2010), captures the contributions to the cos-
mic shear signal that arise from errors in the PSF modelling.
Using a simple χ2 test to quantify the impact of the inferred sys-
tematic contributions, in Sect. 3.3.2, we find that the accuracy
of the KiDS-1000 PSF model is well within our requirements of
not introducing more than a 0.1σS 8 change in the recovered cos-
mological parameter S 8 = σ8

√
Ωm/0.3. This 0.1σ limit is the

typical variance between different MCMC parameter inference
analyses using different random seeds (Joachimi et al. 2020). As
the PH08 test does not capture other factors in the shear mea-
surement that imprint PSF residuals and calibration biases in the
shear estimator, however, we therefore also review a linear sys-
tematics model in Sect. 3.5 where the parameters are estimated
empirically from the catalogues. We verify that this model pro-
vides a suitable description of the systematics in the KiDS-1000
catalogues through a series of one-point and two-point consis-
tency tests, enabling the use of the Bacon et al. (2003) estimator
to determine the resulting systematic contribution to the cosmic
shear signal. Our simple χ2 test, which quantifies the change in
the goodness of fit of the cosmological model to the observa-
tions, raises a flag at the level of systematics identified in this
analysis. To quantify the bias that these systematics introduce in
the inferred cosmological model, we conduct a full MCMC anal-
ysis of the KiDS-1000 cosmic shear data vector with the mod-
elled systematic correction applied. As the shape and amplitude
of the detected PSF residual systematics across the tomographic
bin combinations are sufficiently different from the behaviour of
the cosmological parameters (see for example the discussion in
Amara & Réfrégier 2008), we find that the systematic-corrected
analysis differs by less than 0.06σS 8 from the fiducial analysis.
From this we conclude that for the statistical noise levels in the
KiDS-1000 data, the low-level PSF-residual systematics that we
uncover in our analysis make a negligible impact on our cosmo-
logical parameter constraints. This is supported by our B-mode
analysis in Sect. 4.1, where we decompose the signal into its
cosmological E-mode and non-lensing B-modes, finding the B-
modes to be consistent with pure statistical noise.

Our final null-test scrutinises both the shear and photo-
metric redshift estimates, finding consistent constraints on the
properties of BOSS luminous red galaxies from a series of
different tomographic source samples. This ‘shear-ratio’ test,
in Sect. 4.3 simultaneously validates the redshift-dependent
shear calibration correction from Kannawadi et al. (2019) and
the self-organising map photometric redshift calibration from
Wright et al. (2019a). We recognise that the shear-ratio null-test,
where low photometric-redshift source galaxies are placed in
front of high-redshift lenses, currently provides our primary test
of the accuracy of the high-redshift z > 1.4 tail of the photo-
metric redshift distributions. The z > 1.4 galaxy sample is a
redshift regime that we are currently unable to examine through
other routes owing to a lack of mock galaxy catalogues that reli-
ably extend galaxy colours beyond z > 1.4 (Fosalba et al. 2015a;
DeRose et al. 2019), and a lack of signal-to-noise in our cross-
correlation analysis (Hildebrandt et al. in prep.). In this analy-
sis, however, we find that when accounting for the contribution
to the signal from the intrinsic alignment of galaxies, without a
strong prior on the amplitude of the intrinsic alignment model,
the shear ratio test becomes significantly less sensitive to biases

in the redshift or shear calibration. The MacCrann et al. (2020)
proposal to incorporate the small θ-scale shear-ratio test into
a multi-probe data vector for cosmological inference analyses
therefore presents a promising route forward for upcoming stud-
ies. Future work to calibrate the zB > 1.2 galaxy sample in KiDS
also necessitates the analysis of new high-redshift mock galaxy
catalogues (for example the Euclid Flagship simulations from
Potter et al. 2017).

KiDS completed survey observations in July 2019, spanning
1350 square degrees of imaging with a second pass in the i-band
to facilitate a long-mode transient study. Additional survey time
was awarded to expand the overlap of 9-band imaging with deep
spectroscopic surveys. This includes ∼ 12 square degrees tar-
geting the VIPERS fields (Guzzo et al. 2014) and ∼ 4 square
degrees targeting additional VVDS fields (Le Fèvre et al. 2013).
We therefore look forward to the fifth and final release and anal-
ysis of the ESO public23 Kilo-Degree Survey, along with new re-
sults from DES and HSC, as well as the first-light imaging from
the upcoming Euclid survey and the Vera C. Rubin Observatory
Legacy Survey of Space and Time.
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