
KiDS-1000 methodology: modelling and inference for joint weak
gravitational lensing and spectroscopic galaxy clustering analysis
Joachimi, B.; Lin, C.-A.; Asgari, M.; Tröster, T.; Heymans, C.; Hildebrandt, H.; ... ; Zuntz, J.

Citation
Joachimi, B., Lin, C. -A., Asgari, M., Tröster, T., Heymans, C., Hildebrandt, H., … Zuntz, J.
(2021). KiDS-1000 methodology: modelling and inference for joint weak gravitational
lensing and spectroscopic galaxy clustering analysis. Astronomy And Astrophysics, 646.
doi:10.1051/0004-6361/202038831
 
Version: Accepted Manuscript
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/3250957
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/3250957


Astronomy & Astrophysics manuscript no. kids1000method c©ESO 2021
October 26, 2021

KiDS-1000 Methodology: Modelling and inference for joint weak
gravitational lensing and spectroscopic galaxy clustering analysis
B. Joachimi1, C.-A. Lin2, M. Asgari2, T. Tröster2, C. Heymans2, 3, H. Hildebrandt3, F. Köhlinger3, A. G. Sánchez4, A.

H. Wright3, M. Bilicki5, C. Blake6, J. L. van den Busch3, M. Crocce7, 8, A. Dvornik3, T. Erben9, F. Getman10, B.
Giblin2, H. Hoekstra11, A. Kannawadi12, 11, K. Kuijken11, N. R. Napolitano13, P. Schneider9, R. Scoccimarro14, E.

Sellentin11, H. Y. Shan15, 16, M. von Wietersheim-Kramsta1, and J. Zuntz2

1 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
e-mail: b.joachimi@ucl.ac.uk

2 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
e-mail: calin@roe.ac.uk

3 Ruhr-Universität Bochum, Astronomisches Institut, German Centre for Cosmological Lensing (GCCL), Universitätsstr. 150,
44801 Bochum, Germany

4 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany
5 Center for Theoretical Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668, Warsaw, Poland
6 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
7 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain
8 Institut d‘Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
9 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany

10 INAF - Astronomical Observatory of Capodimonte, Via Moiariello 16, 80131 Napoli, Italy
11 Leiden Observatory, Leiden University, P.O.Box 9513, 2300RA Leiden, The Netherlands
12 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA
13 School of Physics and Astronomy, Sun Yat-sen University, Guangzhou 519082, Zhuhai Campus, P.R. China
14 Center for Cosmology and Particle Physics, Department of Physics, New York University, NY 10003, New York, USA
15 Shanghai Astronomical Observatory (SHAO), Nandan Road 80, Shanghai 200030, China
16 University of Chinese Academy of Sciences, Beijing 100049, China

Received ; accepted

ABSTRACT

We present the methodology for a joint cosmological analysis of weak gravitational lensing from the fourth data release of the
ESO Kilo-Degree Survey (KiDS-1000) and galaxy clustering from the partially overlapping BOSS and 2dFLenS surveys. Cross-
correlations between BOSS and 2dFLenS galaxy positions and source galaxy ellipticities are incorporated into the analysis, developing
a hybrid model of non-linear scales that blends perturbative and non-perturbative approaches, and assessing signal contributions by
astrophysical effects. All weak lensing signals are measured consistently via Fourier-space statistics that are insensitive to the survey
mask and display low levels of mode mixing. The calibration of photometric redshift distributions and multiplicative gravitational
shear bias is updated, and a more complete tally of residual calibration uncertainties is propagated into the likelihood. A dedicated
suite of more than 20 000 mocks is used to assess the performance of covariance models and to quantify the impact of survey geometry
and spatial variations of survey depth on signals and their errors. The sampling distributions for the likelihood and the χ2 goodness-
of-fit statistic are validated, with proposed changes to calculating the effective number of degrees of freedom. The prior volume
is explicitly mapped, and a more conservative, wide top-hat prior on the key structure growth parameter S 8 = σ8 (Ωm/0.3)1/2 is
introduced. The prevalent custom of reporting S 8 weak lensing constraints via point estimates derived from its marginal posterior
is highlighted to be easily misinterpreted as yielding systematically low values of S 8, and an alternative estimator and associated
credible interval is proposed. Known systematic effects pertaining to weak lensing modelling and inference are shown to bias S 8 by
no more than 0.1 standard deviations, with the caveat that no conclusive validation data exist for models of intrinsic galaxy alignments.
Compared to the previous KiDS analyses, S 8 constraints are expected to improve by 20 % for weak lensing alone and by 29 % for the
joint analysis.

Key words. Cosmological parameters – Gravitational lensing: weak – Large-scale structure of Universe – Methods: data analysis –
Methods: analytical – Methods: statistical
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1. Introduction

The ΛCDM concordance model of cosmology remains a re-
sounding success, explaining a plethora of observations with
little more than a handful of free parameters. Without alterna-
tive theories on the horizon that come anywhere near rivalling
ΛCDM in terms of completeness and predictiveness, the focus
is turning increasingly on nascent discrepancies between cos-
mological probes when interpreted within the standard model.
This approach is fruitful: either we are witnessing the first hints
towards new physics that will eventually lead to a revision or ex-
tension of ΛCDM, or we have encountered an important and per-
sistent limitation in the fidelity of one or more key cosmological
probes that is critical to push back for forthcoming cosmological
experiments to succeed.

While tension in the value of the Hubble constant H0 as in-
ferred from local probes and early-Universe physics in combi-
nation with fluctuations in the cosmic microwave background
(CMB) has received the most widespread attention to date (e.g.
Verde et al. 2019), a similarly puzzling systematic difference
between CMB and low-redshift measurements of the amplitude
of matter density fluctuations has persisted for at least the past
seven years (cf. Heymans et al. 2013) albeit at lower signifi-
cance. CMB constraints on the amplitude of the primordial mat-
ter power spectrum can be extrapolated to redshift zero assum-
ing standard model structure growth. Alternatively, low-redshift
probes of the cosmic large-scale structure provide a more direct
measure of the growth amplitude, usually expressed in terms of
the standard deviation of matter density fluctuations in spheres
of radius 8 h−1 Mpc (where H0 = 100h km s−1 Mpc−1), denoted
by σ8.

Cosmic shear, the coherent distortions of faint galaxy images
through weak gravitational lensing by the intervening large-scale
matter distribution, is highly sensitive to the strength of den-
sity fluctuations projected along the line of sight, as well as ra-
tios of angular diameter distances between observer, lenses, and
sources. Consequently, it primarily constrains a degenerate com-
bination of σ8 and the density parameter of matter (both dark
and baryonic matter), Ωm, by convention usually expressed via
the derived parameter S 8 = σ8 (Ωm/0.3)1/2. The most recent, fi-
nal analysis of the ESA Planck mission produced a constraint of
S 8 = 0.83 ± 0.02 (68 % credible region) from its primary CMB
probes (Planck Collaboration et al. 2018, 2019).

By contrast, recent cosmic shear measurements resulted in
S 8 = 0.74±0.04 for the first 450 deg2 of data from the ESO Kilo-
Degree Survey (KiDS; Hildebrandt et al. 2020, KV450 here-
after) and S 8 = 0.79+0.02

−0.03 for the first year of data from the Dark
Energy Survey (DES; Troxel et al. 2018b). Early data from the
Hyper-SuprimeCam (HSC) Survey yielded S 8 = 0.78 ± 0.03
(Hikage et al. 2019). At least part of the variation between the
weak lensing-derived S 8 values can be attributed to the differ-
ences in the calibration of galaxy redshift distributions, with
the central value of the DES analysis decreasing by 0.03 when
switching to the approach taken by KiDS (Joudaki et al. 2020),
and the KV450 S 8 best-fit decreasing by 0.02 when selecting
galaxy samples that allow for robust calibration (Wright et al.
2020b). Independently of the calibration approach taken, how-
ever, the three concurrent surveys are in good agreement, with
DES and KiDS in combination reaching ∼ 3σ tension with
Planck (Asgari et al. 2020b; Joudaki et al. 2020). Intriguingly,
fully independent measurements of the full redshift-space power
spectrum of spectroscopic galaxy clustering with the Baryon Os-
cillation Spectroscopic Survey (BOSS) show the same tendency
towards lower values of S 8 (d’Amico et al. 2020; Ivanov et al.
2020; Tröster et al. 2020).

While cosmic shear is attractive as a direct probe of the dark
and bright matter distribution with few assumptions about the
nature or state of this matter, its statistical power derives mainly
from non-linear scales that cannot be modelled analytically from
first principles. The most recent cosmic shear analyses have al-
ready reduced the statistical errors to the same level as residual
systematic uncertainty caused by both astrophysical and mea-
surement biases that need to be carefully removed or modelled
(see Mandelbaum 2018 for a recent review). The joint analysis
of cosmic shear with galaxy clustering in overlapping sky ar-
eas, including the cross-correlations between galaxy positions
and gravitational shear in the background commonly known
as galaxy-galaxy lensing (GGL), offers additional cosmological
constraining power and the removal of parameter degeneracies,
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as well as self-calibration of some of the systematics (Bernstein
2009; Joachimi & Bridle 2010). Therefore, the combination of
cosmic shear with foreground samples of galaxy ‘lenses’ is being
established as the default analysis approach to extracting gravita-
tional lensing information from large-scale structure (van Uitert
et al. 2018; Joudaki et al. 2018; Abbott et al. 2018).

This work details the approach to the joint probes mod-
elling and likelihood analysis of Data Release 4 (DR4; Kuijken
et al. 2019) of KiDS. The data set will be referred to as KiDS-
1000, covering a raw survey area of 1006 deg2 out of the final
KiDS area of 1350 deg2. The KiDS footprint has near-complete
coverage by spectroscopic galaxy surveys – BOSS (Eisenstein
et al. 2011) in the North and the 2-degree Field Lensing Survey
(2dFLenS; Blake et al. 2016) in the South. The latter is designed
to provide similar galaxy samples to BOSS albeit with sparser
sampling. We opt to combine KiDS-1000 cosmic shear with
GGL in the BOSS and 2dFLenS overlap and an existing galaxy
clustering analysis over the full BOSS survey area by Sánchez
et al. (2017, S17 hereafter). The approach is an extension of
the earlier analyses by Tröster et al. (2020) who combined S17
with cosmic shear only from KV450 and Joudaki et al. (2018)
who combined the first KiDS cosmic shear results (Hildebrandt
et al. 2017) with clustering and GGL measured in 2dFLenS and
BOSS.

The paper is structured as follows: Section 2 presents our
choice of observables and the model to jointly predict the cor-
responding cosmological and astrophysical signals. Section 3
summarises the characteristics and processing of our data sets
and details the calibration and modelling of measurement sys-
tematics. An extensive suite of survey simulations is introduced
in Sect. 4, and the impact of survey geometry and the spatial
variation of survey characteristics on the cosmological signals is
assessed. In Sect. 5 a detailed discussion of our approach to mod-
elling the joint covariance of the observables, and its accuracy, is
provided. Section 6 covers the choice of model parameters and
the form of the likelihood, as well as how we report goodness of
fit and parameter constraints in the context of large, highly non-
Gaussian parameter spaces. The analysis pipeline and associated
modelling choices are validated in Sect. 7 before concluding in
Sect. 8.

Companion papers will present the construction and calibra-
tion of gravitational shear catalogues (Giblin et al.) and redshift
distributions (Hildebrandt et al.), the cosmological analysis of
cosmic shear (Asgari et al.) and of joint clustering and weak lens-
ing (Heymans et al.), and an investigation of extensions to the
spatially flat ΛCDM model considered throughout here (Tröster
et al.). Unless otherwise specified, calculations and plots use
the fiducial values of our set of model parameters specified in
Table A.1.

2. Signal modelling

Including non-linear scales is critical to unlock the full con-
straining power of large-scale structure cosmological probes.
Traditionally, galaxy clustering analyses have opted for pertur-
bative approaches to modelling signals into the mildly non-
linear regime to wavenumbers of k ∼0.3 h Mpc−1, which enables
closed-form and consistent expressions for non-linear structure
growth, galaxy bias, and redshift-space effects (see Desjacques
et al. 2018 for a review). Cosmic shear, in contrast, routinely
accesses scales at k > 1 h Mpc−1, where its signal-to-noise is
high, via empirical models based on the halo model paradigm
that have been calibrated on N-body and/or full hydro-dynamical
simulations (beginning with Hamilton et al. 1991; see also the

seminal work by Smith et al. 2003). This makes the consistent
modelling of a joint clustering and cosmic shear analysis, espe-
cially for the GGL cross-correlation, a major challenge for cur-
rent and forthcoming analyses (e.g. Bose et al. 2019). We choose
a hybrid approach that blends models previously used success-
fully by the BOSS and KiDS teams, as detailed in Sects. 2.1 and
2.2.

The second major topic of this section is the choice of two-
point statistics used in the analysis. As we will demonstrate, the
clustering and weak lensing (i.e. cosmic shear and GGL) probes
can be treated independently, so that we can simply adopt the
original statistics employed in S17, i.e. correlation functions as
a function of three-dimensional separation and the angle sub-
tended with the line of sight, binned into wedges. For GGL and
cosmic shear we opt for band powers derived from angular corre-
lation functions, closely following van Uitert et al. (2018). They
are straightforward to compute and combine good scale locali-
sation in both configuration and Fourier space, which helps to
separate interpretable cosmological information from contami-
nation by systematics and astrophysical signals (cf. Asgari et al.
2020a; Park et al. 2020 for recent examples in GGL). Examples
include additive shear bias on large configuration-space scales,
blending of galaxy images on small configuration-space scales,
baryonic effects on the matter power spectrum at high angular
frequencies, and computationally expensive curved-sky expres-
sions at low angular frequencies.

While the majority of weak lensing analyses still rely on
correlation functions, which have sensitivity to a very broad
range of Fourier modes of the matter distribution (e.g. Asgari
et al. 2020b), some direct Fourier-space measures like pseudo-
Cls (Hikage et al. 2019) and quadratic maximum likelihood es-
timators (Köhlinger et al. 2017) have seen recent applications.
Becker et al. (2016) calculated both pseudo-Cl and band power
spectra, but only used real-space measures in their main likeli-
hood analysis, as did the most recent cosmic shear papers from
KiDS and DES. Correlation function-derived band powers have
two additional advantages over direct Fourier-space statistics in
that they are not sensitive to the survey geometry, and in that
they do not require an estimate of the noise power, which is triv-
ially removed by excluding zero-lag correlation functions in the
band power computation. A detailed comparison between cor-
relation functions, band powers, and compressed statistics with
exact separation of E- and B-modes (versus the approximate sep-
aration offered by band powers) is presented in Asgari et al. (in
prep).

2.1. Matter power spectra

Linear matter power spectra Pm,lin(k, z) as a function of
wavenumber k and redshift z are calculated with Camb1 (Lewis
et al. 2000; Lewis & Bridle 2002; Howlett et al. 2012). Mas-
sive standard-model neutrinos are included assuming the normal
hierarchy at the minimum sum of masses,

∑
mν = 0.06 eV. We

keep this parameter fixed in our default setup, in line with Planck
Collaboration et al. (2018), and consider constraints on neutrino
mass in a companion paper (Troester et al., in prep.).

We derive two non-linear matter power spectra from the lin-
ear one. First, we compute a non-perturbative model using the
Mead et al. (2015) HMCode included in Camb, whose validity
extends into the deeply non-linear regime, recovering N-body re-
sults at the few per-cent level to k = 10 h Mpc−1. The halo model

1 Code for Anisotropies in the Microwave Background;
https://camb.info
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Fig. 1. Comparison of 3D power spectra, computed at z = 0.38 and
the parameters listed in Table A.1. Top: Non-linear matter power spec-
tra relative to the linear matter power spectrum, for the gRPT pertur-
bative model, the Mead et al. (2015) HMCode, the Takahashi et al.
(2012) Halofit prescription, and the CosmicEmu emulated power spec-
trum (Heitmann et al. 2014). Centre: Non-linear matter power spectra
relative to the CosmicEmu model. The blue shaded region covers the
power spectrum range within the prior range of our AGN feedback de-
scription. Bottom: Full galaxy-matter power spectrum Pgm relative to
the Mead et al. (2015) power spectrum multiplied by the linear galaxy
bias, shown for the gRPT perturbation theory model (orange) and the
fit formula of Eq. (3), using gRPT (purple) or Mead et al. (2015) (grey)
for the non-linear matter power spectrum term. The dotted grey curve
includes an additional r(k) term obtained from a semi-analytic model
of a galaxy sample similar to the one used in our analysis. The verti-
cal grey line indicates the smallest scales used in the galaxy clustering
modelling.

approach in HMCode incorporates baryonic feedback (primarily
through Active Galactic Nuclei; AGN) on the matter distribu-
tion via a halo bloating parameter η0 and the amplitude of the
halo mass-concentration relation, denoted by Abary. Following
Joudaki et al. (2018), we fix the relation between the two feed-
back parameters to η0 = 0.98 − 0.12Abary and only use Abary as a
free parameter in our analysis. The resulting matter power spec-
trum is denoted by Pm,nl.

The second, perturbative non-linear power spectrum,
Pm,nl−pt, is calculated using renormalised perturbation theory
(RPT; Crocce & Scoccimarro 2006) to one-loop order. We adopt
the updated version applied in S17 (see also Eggemeier et al.
2020), dubbed gRPT, that incorporates a re-summation of the
mode coupling terms consistently with the propagator ones (i.e.
those proportional to the linear power spectrum) to make the the-
ory Galilean invariant (see also Taruya et al. 2012). S17 demon-
strated with N-body simulations that this model is accurate to
2 % or better out to scales of at least k = 0.25 h Mpc−1.

We compare the two non-linear power spectrum models with
the alternative dark-matter only Halofit prescription by Taka-
hashi et al. (2012), as well as the CosmicEmu emulated power

spectrum by Heitmann et al. (2014) in the top two panels of
Fig. 1. The comparison is at z = 0.38, which is the mean redshift
of one of our two ‘lens’ galaxy samples. We treat CosmicEmu as
the truth in this case although the emulator itself is limited to 2 %
accuracy on relevant non-linear scales. All non-linear recipes
capture the deviation from the linear matter power spectrum
well, with the perturbative model starting to break down beyond
k = 0.25 h Mpc−1, in line with the S17 results. Our default Mead
et al. (2015) model is systematically higher than CosmicEmu in
the mildly non-linear regime2 around k ≈ 0.2 h Mpc−1, while
Halofit shows a similar trend around k = 1 h Mpc−1. System-
atic trends at high k are to some degree absorbed by the freedom
in the baryon feedback amplitude, with the allowed prior range
shown as the shaded region in Fig. 1. However, this would not
be the case for the excess power of the Takahashi et al. (2012)
Halofit model as we limit the feedback model to only account
for suppression of power.

Recently, Euclid Collaboration et al. (2019) introduced the
EuclidEmulator and demonstrated it to be in excellent agreement
with CosmicEmu to ∼1 % at z . 1 and over the majority of rele-
vant k-scales, despite using completely independent simulations
and emulation methods3. The emulators agree that the Takahashi
et al. (2012) Halofit model consistently over-predicts power over
a broad range of redshifts and cosmological parameters by typ-
ically 3 % at k ∼ 1 h Mpc−1 (Heitmann et al. 2014; Mead et al.
2015; Euclid Collaboration et al. 2019). We can therefore reject
Halofit as an accurate description of matter power at highly non-
linear scales.

Nevertheless, it is relevant to include Halofit in comparisons
as it is still widely used, e.g. in the recent DES Year 1 (Troxel
et al. 2018b) and HSC (Hikage et al. 2019) cosmic shear analy-
ses. However, Troxel et al. (2018b) discarded highly non-linear
scales that are affected by baryonic feedback at 2 % or more,
which also suppresses potential inaccuracies in matter power
spectrum modelling to negligible levels. Hikage et al. (2019) re-
peated their analysis with HMCode in a similar setup to ours
and found a tolerable 0.2σ shift in the parameter combination
σ8 (Ωm/0.3)0.45.

To assess the impact of modelling inaccuracies in the mat-
ter power spectrum on KiDS-1000, we perform a mock likeli-
hood analysis of the joint clustering and weak lensing probes
with our default HMCode model (for details see Sect. 7), con-
structing a noiseless mock data vector with (1) CosmicEmu and
(2) Takahashi et al. (2012) Halofit as the non-perturbative non-
linear matter power spectrum. This results in a shift of the best-
fit S 8 from the input value by 0.1σ for CosmicEmu, with the
best-fit Abary very close to the dark-matter only value of 3.13.
This demonstrates that our HMCode model accurately captures
the state-of-the-art emulator predictions. The corresponding S 8
shift in the case of Halofit is 0.3σ; if we had used this as our
model, it would have rendered the non-linear matter power spec-
trum prescription the dominant systematic in KiDS cosmological
modelling and inference.

2 We note that this excess is parameter-dependent. For different cos-
mological parameter values deviations can also be negative, but they
tend to be at a similar level and on the same scales.
3 We cannot use either emulator in the main analysis because they do
not include baryonic feedback. Furthermore, CosmicEmu is limited to
a maximum redshift of z = 2, while the real-data redshift distributions
extend to higher redshifts. The EuclidEmulator only covers a restricted
parameter space, e.g. it does not model our fiducial value of σ8, so that
it cannot be added to Fig. 1.
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2.2. Galaxy power spectra

The galaxy power spectrum Pgg(k, z) underlying the galaxy clus-
tering signals is adopted from S17 and based on the perturbation
theory approach developed by Chan et al. (2012). It is of the
form

Pgg(k, z) =
∑
α,β

α β Pαβ(k, z) + b1γ
−
3 Pb1γ

−
3
(k, z) + Pnoise(k, z) , (1)

with α, β ∈
[
b1, b2, γ2

]
. We have introduced the linear and

quadratic bias parameters b1 and b2, and the non-local bias pa-
rameters γ2 and γ−3 . The different power spectrum terms on the
right-hand side of Eq. (1) are convolutions of the linear power
spectrum and given explicitly in Appendix A of S17, with the
identification Pb1b1 ≡ Pm,nl−pt.

In the same formalism the cross-power spectrum between the
galaxy and matter distribution required for GGL is given by

Pgm,pt(k, z) = b1Pm,nl−pt(k, z) + b2Pb2 (k, z) + γ2Pγ2 (k, z) (2)
+ γ−3 Pγ−3

(k, z) ,

where the right-hand side power spectrum terms are again pro-
vided in S17. To extend the model to smaller scales while ensur-
ing consistency with the non-linear model for the cosmic shear
signal, we undertake the following empirical modifications to
this model: first, we replace the perturbative non-linear power
spectrum in the linear bias term with the halo model-based ver-
sion, Pm,nl. We also add an additional function r(k) that will be
discussed further below.

Secondly, we re-formulate the remaining terms relative to
the square of the linear matter power spectrum, which results
in smoothly varying functions F that are robustly extrapolated
into the deeply non-linear regime. To very good approximation
these functions can also be assumed redshift-independent (an ap-
proach also adopted by S17). This leads to the following model:

Pgm(k, z) = b1r(k)Pm,nl(k, z) +
{
b2 Fb2 (k) − γ2 Fγ2 (k) (3)

− γ−3 Fγ−3 (k)
}

P2
m,lin(k, z) ,

with the definition

Fα(k) :=
Pα(k, zref)

P2
m,lin(k, zref)

=
h3

Mpc3 exp

 2∑
i=0

fα,i

[
ln

(
k

Mpc
h

)]i


(4)

for each higher-order bias term, i.e. α ∈ [b2, γ2, γ
−
3 ]. We express

the logarithm of the functions F as second-order polynomials in
ln k and fit the coefficients fα,i to the perturbation theory model
within its range of validity. We find that including quadratic
terms in Eq. (4) is sufficient to capture the deviations in scale
dependence from P2

m,lin. Since the non-local bias terms in Eq. (2)
are consistently negative, we extract an overall minus sign and
model the absolute values in Fγ2 and Fγ−3 .

Most of the cosmology dependence of the power spectrum
terms in Eq. (3) is captured by the linear matter power spectrum.
Due to the convolutions in these terms there is some mode mix-
ing which induces sensitivity to cosmological parameters that
modify the shape of the power spectrum. We find it is sufficient
to account for ns, the power-law slope of the primordial power
spectrum, and the combination ωc/h, where ωc = Ωch2 is the
physical cold dark matter density. The latter governs the posi-
tion of the peak in the matter power spectrum (strictly speaking,

Ωmh should capture this dependence even better, but we find us-
ing the baseline parameter ωc sufficient). Again, a polynomial
including terms up to second order is sufficient to capture the
dependence, yielding

fα,i :=
m+n≤2∑
m,n=0

gmn
α,i

(
ωc

h

)m
nn

s . (5)

The complete set of best-fit coefficients gmn
α,i is provided in Ta-

ble A.2. We note that the ansatz of Eq. (3) has the additional ben-
efit of a speed-up over the perturbative calculations by several
orders of magnitude in some parts of parameter space, removing
a major bottleneck in the weak lensing likelihood evaluations.

Non-linear galaxy bias and stochasticity, mostly driven by
satellite galaxies, both cause a de-correlation between the matter
and galaxy density fields (Dekel & Lahav 1999; Cacciato et al.
2012). This can be expressed in the form of deviations of the cor-
relation coefficient r(k, z) = Pgm(k, z)/

√
Pgg(k, z)Pm(k, z) from

unity. For k < 0.25 h Mpc−1, gRPT predicts r to be very close
to 1, in good agreement with recent observational and simula-
tion studies (Blake et al. 2011; Simon & Hilbert 2018; Dvornik
et al. 2018; see also Asgari et al. 2020a). However, these works
also see a more pronounced deviation from r = 1 beginning on
scales just below the maximum k that can be modelled perturba-
tively. Therefore, we have considered including an explicit func-
tion r(k) into the first term of Eq. (3) to enable additional flexibil-
ity in galaxy biasing on scales beyond where perturbation theory
is valid. For illustration we adopt the functional form presented
in Asgari et al. (2020a), which was derived from semi-analytic
modelling in N-body simulations for a BOSS CMASS-like sam-
ple (as originally developed in Simon & Hilbert 2018).

The bottom panel of Fig. 1 illustrates the non-linear bias
modelling in Pgm. gRPT predicts an increase in power of up to
10 % relative to linear galaxy bias alone at k = 0.25 h Mpc−1. Its
scale dependence is accurately reproduced by the fit formula of
Eq. (3) when using the gRPT non-linear matter power spectrum
for the b1 term. Switching to the Mead et al. (2015) matter power
spectrum mildly increases power with respect to gRPT where
the latter is valid, in line with the small excess seen in Pm,nl. The
non-perturbative matter power spectrum smoothly extends the
non-linear biasing trend to smaller scales, with the excess power
levelling off above k ≈ 0.5 h Mpc−1. Incorporating the Asgari
et al. (2020a) expression for r(k) enhances power significantly
further beyond those scales.

Since realistic simulations to highly non-linear scales of both
the lens and source galaxy samples are currently not available to
us for validation, we consider the approach to galaxy biasing in
the highly non-linear regime outlined here as currently too spec-
ulative to adopt in our cosmological analysis. Therefore, we set
r ≡ 1 and limit the GGL signals to scales that only have signif-
icant contributions from k < 0.3 h Mpc−1, where the perturba-
tive approach holds and our empirical modifications are minor.
While we thus discard high signal-to-noise GGL measurements,
the impact on the overall constraining power of our data sets is
minimal, largely because we make use of clustering signals mea-
sured over a much larger survey area than GGL (see Sect. 3). We
note however that forthcoming analyses where the clustering and
GGL areas are compatible would suffer from such a conservative
approach, making the development of a robust non-linear biasing
model a priority. The hybrid approach outlined above, or a more
comprehensive halo model of all astrophysical contributions to
the large-scale structure probes involved (see e.g. Fortuna et al.
2020), are promising Ansätze in this regard.
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2.3. Clustering summary statistics

The translation from three-dimensional galaxy power spectrum
to the clustering observable follows S17, with the key steps sum-
marised here. As a first step, redshift-space effects are taken into
account. If µ denotes the cosine of the angle between the sep-
aration of galaxy pairs and the line of sight, the redshift-space
power spectrum is given by

Pgg,s(k, µ, z) = W∞( fg k µ)
{
Pgg(k, z) + 2 fg(a) µ2Pgθ(k, z) (6)

+ fg(a)2µ4Pθθ(k, z) + higher-order terms
}
,

where Pgg is taken from Eq. (1) and

fg(a) =
d ln D(a)

d ln a
(7)

is the structure growth rate, with D(a) the linear growth factor
and scale factor a = (1 + z)−1. The galaxy-velocity cross-power
spectrum reads

Pgθ(k, z) = b1Pmθ(k, z) + b2 Pb2 (k, z) + γ2 Pγ2 (k, z) + γ−3 Pγ−3
(k, z) ,

(8)

where Pmθ(k, z) and Pθθ(k, z) in Eq. (6) are the matter density
contrast cross-power spectrum, and the auto-power spectrum, of
the velocity divergence θ, respectively4. These terms are also de-
rived from gRPT, using the same prescription as for the density
spectra (Crocce et al. 2012), and do not contain additional depen-
dencies on our bias parameters. The remaining power spectrum
terms match those in Eq. (2). We refer the reader to S17 for the
explicit form of the higher-order terms in Eq. (6). Fingers of god
generated by small-scale virial motion are modelled by the term

W∞(x) =
1√

1 + x2a2
vir

exp
− x2σ2

v

1 + x2a2
vir

 , (9)

where σv is the one-dimensional linear velocity dispersion,
which is calculated from Pθθ (cf. Eq. 39 in Scoccimarro 2004).
The quantity avir is a free parameter in the analysis that accounts
for small-scale, non-linear contributions to the velocities and
therefore deviations from Gaussianity in the velocity distribu-
tion.

The redshift-space galaxy power spectrum is transformed to
correlation functions as a function of comoving lag s, µ, and
redshift z as follows,

ξgg (s, µ, z) =

2∑
l=0

L2l(µ)
(−1)l(4l + 1)

(2π)2

∫ ∞

0
dk k2 j2l(ks) (10)

×

∫ 1

−1
dµ1L2l(µ1)Pgg,s(k, µ1, z) ,

where Li denotes the Legendre polynomial of degree i, and ji is
the spherical Bessel function of order i. The expansion in Leg-
endre polynomials is truncated at l = 2 as higher-order contribu-
tions are small on the scales considered5. The correlation func-
tion is then cast into three redshift-space wedges, equidistant in

4 In this subsection θ denotes velocity divergence in accordance with
the perturbation theory literature, but in the remainder of the paper we
will use θ as a variable for angular separation.
5 Once the Alcock-Paczynski distortions are taken into account, the
final clustering wedges may have contributions from higher multipoles.

µ. The three-dimensional galaxy pair separation and µ are calcu-
lated from the observed redshift assuming a fiducial cosmology,
which leads to Alcock-Paczynski distortions (Alcock & Paczyn-
ski 1979). The final prediction for the clustering observable is
hence

ξ′gg,i(s′, z) =
1

µ′i,up − µ
′
i,lo

∫ µ′i,up

µ′i,lo

dµ′ξgg
(
s
[
µ′, s′

]
, µ

[
µ′, s′

]
, z

)
(11)

for wedges between µlo and µup and indexed by i, where primes
denote quantities evaluated in the fiducial cosmology. The trans-
lation for s and µ is carried out according to

s⊥ =
fK(χ[zmean])
f ′K(χ[zmean])

s′⊥ ; s‖ =
H′(zmean)
H(zmean)

s′‖ (12)

for the perpendicular and line-of-sight components of the separa-
tion vector, respectively. We use the comoving angular diameter
distance fK, the comoving (radial) distance χ, and the Hubble
parameter H(z) evaluated at the mean redshifts zmean of the lens
galaxy samples.

The correlation functions overall are modelled at the mean
redshift in each bin, neglecting evolution within the bin. S17
showed this approximation to be accurate on simulations that in-
clude redshift evolution. Moreover, an analysis of the same data
set with angular correlation functions measured in thin redshift
shells produced fully consistent results (Salazar-Albornoz et al.
2017). Overall, a likelihood analysis of mock BOSS clustering
signals derived from an N-body simulation revealed subdomi-
nant biases of the posterior maximum with respect to the input
cosmology of less than 0.3σ for S 8 and less than 0.4σ for Ωm
(S17; Tröster et al. 2020).

2.4. Cosmic shear summary statistics

Cosmic shear two-point statistics can be expressed as linear
functionals of angular power spectra, which in turn are line-of-
sight projections of the three-dimensional matter power spec-
trum. We perform tomography, i.e. consider all unique combi-
nations of a number of source galaxy subsamples, denoted by
indices i and j in the following. Statistics derived from galaxy
ellipticity measurements receive two contributions, one from the
gravitational lensing effect (subscript ‘G’) and one from intrinsic
alignments (subscript ‘I’; referred to as IA henceforth) of galaxy
ellipticities. This results in ‘observed shear’ power spectra

C(i j)
εε (`) = C(i j)

GG(`) + C(i j)
GI (`) + C(i j)

IG (`) + C(i j)
II (`) , (13)

where the right-hand side power spectra are given by Limber-
approximated projections of the form (Kaiser 1992; Loverde &
Afshordi 2008)

C(i j)
ab (`) =

∫ χhor

0
dχ

W (i)
a (χ) W ( j)

b (χ)

f 2
K(χ)

Pm,nl

(
` + 1/2

fK(χ)
, z(χ)

)
, (14)

with a, b ∈ {I,G}. The integral runs over the entire line of sight
to the horizon χhor. The weak lensing kernel is

W (i)
G (χ) =

3H2
0Ωm

2 c2

fK(χ)
a(χ)

∫ χhor

χ

dχ′ n(i)
S (χ′)

fK(χ′ − χ)
fK(χ′)

, (15)

where Ωm is the total matter density parameter and n(i)
S (χ) is the

probability density distribution of comoving distances of galax-
ies in source sample i, which in practice we will express in terms
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of redshift6, i.e. nS(z) = nS(χ) dχ/dz. We choose an IA kernel
that produces the so-called NLA model (Bridle & King 2007),

W (i)
I (χ) = −AIA

(
1 + z(χ)
1 + zpivot

)ηIA C1ρcr Ωm

D (a[χ])
n(i)

S (χ) , (16)

where C1ρcr ≈ 0.0134 is constant, and zpivot is an arbitrary pivot
which we set to 0.3 for compatibility with earlier KiDS and IA
analyses (Joachimi et al. 2011). The IA kernel introduces two
additional parameters: the dimensionless IA amplitude AIA and
additional freedom in the redshift dependence of the IA strength
via ηIA. As there is currently no evidence for significant extra
redshift evolution in our source samples (see e.g. KV450), we
only consider ηIA in extended analyses and set ηIA = 0 by de-
fault.

More flexibility in the IA model to account for the still rather
limited physical understanding of galaxy alignments may seem
prudent (Blazek et al. 2019; Samuroff et al. 2019), but it en-
ables residual systematics in the source redshift distributions to
disguise as a physical signal, which subsequently risks biasing
constraints on primary cosmological parameters (Efstathiou &
Lemos 2018). This concern would not necessarily extend to IA
parameters that do not modify the overall amplitude of weak
lensing two-point statistics, or the scaling of their amplitude with
redshift (such as additional freedom on highly non-linear scales).
However, it is this property that also makes these parameters
less relevant for the cosmological inference; their absence would
cause a poor goodness of fit rather than biases in the cosmologi-
cal parameters if the data preferred the more complex IA model.

There is growing evidence that IA model parameters pick up
residual discrepancies in the scaling of cosmic shear signals with
source redshifts, rather than solely the IA contribution: IA am-
plitudes in both the most recent KiDS and DES analyses tend
to be higher than the consensus of direct IA measurements pre-
dicts (Fortuna et al. 2020). Hikage et al. (2019) do not detect
IA, but also see a dependence of the IA amplitude constraint
on the choice of photometric redshift algorithm employed. Re-
cently, Wright et al. (2020b) showed that the fiducial KV450
constraint of AIA ∼ 1 is reduced to values fluctuating around zero
for a conservative selection of source galaxies with more secure
redshift calibration (we will adopt this approach; see Sect. 3.3
for details). In conclusion, we continue to follow the philosophy
of earlier KiDS analyses to employ the simplest, most predictive
IA model as long as it yields a good fit to the data.

Band powers are defined as angular averages over the angu-
lar power spectra,

C
(i j)
E/B,l :=

1
Nl

∫ ∞

0
d` ` S l(`) C(i j)

εε,E/B(`) , (17)

where S l is the band power response function for an angular bin
l. The normalisation is given by

Nl =

∫ ∞

0
d` `−1 S l(`) , (18)

which is designed such that the band power traces `2Cεε,E/B at the
log-centre of bin l. Here, the spin-2 gravitational shear field has
been decomposed into curl-free E-modes and divergence-free B-
modes. The former carry the signal of interest, i.e. Cεε,E ≡ Cεε ,
whereas we assume that none of our cosmological and astro-
physical signals produce B-modes intrinsically, i.e. Cεε,B ≡ 0.

6 We employ the same symbol for the comoving distance distribution
and the redshift distribution to keep notation simple. They can be dis-
tinguished by their function argument.

For both gravitational lensing and the II-term prediction in the
NLA model, B-modes are only generated at second order and
therefore safely negligible in KiDS (Bernardeau et al. 1997;
Schneider et al. 1998; Hirata & Seljak 2004), as are other poten-
tial sources of B-modes like source redshift clustering (Schnei-
der et al. 2002b) or exotic physics (e.g. Thomas et al. 2017).
B-mode statistics are therefore used as null tests for residual sys-
tematics in the data.

The band powers are derived from the two-point correlation
functions, which are related to the angular power spectra via
Hankel transformations of the form

ξ
(i j)
+ (θ) =

∫ ∞

0

d``
2π

{
C(i j)
εε,E(`) + C(i j)

εε,B(`)
}

J0(`θ) ; (19)

ξ
(i j)
− (θ) =

∫ ∞

0

d``
2π

{
C(i j)
εε,E(`) −C(i j)

εε,B(`)
}

J4(`θ) ,

where Jµ is a cylindrical Bessel function of the first kind of order
µ. Due to the orthogonality of the Bessel functions, these equa-
tions are readily inverted to express power spectra as a functional
of ξ±. Inserting the result into Eq. (17) yields

C
(i j)
E/B,l =

π

Nl

∫ ∞

0
dθ θ T (θ)

{
ξ

(i j)
+ (θ) gl

+(θ) ± ξ(i j)
− (θ) gl

−(θ)
}
, (20)

where we defined the kernels

gl
±(θ) =

∫ ∞

0
d` ` S l(`) J0/4(`θ) . (21)

Formally, Eq. (20) is exact for the weight function T ≡ 1. How-
ever, in practice the correlation functions can only be measured
over a finite range of angular separations, so T has to vanish out-
side this range. To avoid ringing in the band power kernel due
to this cut-off, we apodise the angular scales entering the band
power computation in the form of a Hann window,

T (θ) =



0 ; x < xlo −
∆x

2

cos2
[
π

2
x − (xlo + ∆x/2)

∆x

]
; xlo −

∆x

2
≤ x < xlo +

∆x

2

1 ; xlo +
∆x

2
≤ x < xup −

∆x

2

cos2
[
π

2
x − (xup − ∆x/2)

∆x

]
; xup −

∆x

2
≤ x < xup +

∆x

2

0 ; x ≥ xup +
∆x

2
.

(22)

where x = log θ and ∆x is the log-width of the apodisation, which
is a free parameter. The apodisation at the lower and upper angu-
lar limits is centred on the scales xlo = log θlo and xup = log θup,
respectively. The apodisation suppresses out-of-band sensitivity
in Fourier space at the price of somewhat extending the range
of angular scales used in the input correlation functions at both
ends.

In this work we opt for a band power response function
that is a top hat between `lo,l and `up,l (for other choices, see
Becker & Rozo 2016). The normalisation is then given by Nl =

ln
(
`up,i/`lo,i

)
. The functions g± can be expressed in closed form

as (Schneider et al. 2002a; van Uitert et al. 2018)

gl
+(θ) =

1
θ2

[
θ`up,l J1(θ`up,l) − θ`lo,l J1(θ`lo,l)

]
; (23)

gl
−(θ) =

1
θ2

[
G−(θ`up,l) − G−(θ`lo,l)

]
,
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Fig. 2. Bandpower Fourier-space filters for 8 bands logarithmically
spaced ` ∈ [100, 1500], as indicated by the vertical lines. The second
to fourth panels from the top show the galaxy-galaxy lensing, cosmic
shear, and EB-mode mixing kernels; see Eqs. (26), and (33). The top
panel shows redshift z as a function of ` for a selection of wavenumbers
k given in units of h Mpc−1. Red horizontal lines mark the mean red-
shifts of the source redshift bins, and the green band shows the redshift
range of the two lens samples with a split at z = 0.5. The apodisation
width is chosen as ∆x = 0.5.

with

G−(x) =

(
x −

8
x

)
J1(x) − 8J2(x) . (24)

While Eq. (20) forms the basis of our estimator, it is conve-
nient for the modelling to link the band powers directly to the
angular power spectra via

C
(i j)
E,l =

1
2Nl

∫ ∞

0
d` `

{
W l

EE(`) C(i j)
εε,E(`) + W l

EB(`) C(i j)
εε,B(`)

}
; (25)

C
(i j)
B,l =

1
2Nl

∫ ∞

0
d` `

{
W l

BE(`) C(i j)
εε,E(`) + W l

BB(`) C(i j)
εε,B(`)

}
,

with kernels given by

W l
EE(`) = W l

BB(`) =

∫ ∞

0
dθ θ T (θ)

{
J0(`θ) gl

+(θ) + J4(`θ) gl
−(θ)

}
;

W l
EB(`) = W l

BE(`) =

∫ ∞

0
dθ θ T (θ)

{
J0(`θ) gl

+(θ) − J4(`θ) gl
−(θ)

}
.

(26)

The band power filters in Fourier space (Eq. 26) and in con-
figuration space (T (θ) gl

±(θ), cf. Eq. 20) are shown in Figs. 2 and
3, respectively, for our default correlation function binning and
band power definitions. In particular, we choose eight bands in
the range 100 < ` < 1500, uniformly spaced in the log. At higher
angular frequencies, where many modes are available for a given
band, our band powers have a very clean selection in Fourier

Fig. 3. Bandpower real-space filters for different bands with the angu-
lar frequency range given in square brackets. For each case we show
the lowest and highest band used in the fiducial analysis setup. The de-
fault correlation function binning has been assumed, with apodisation
centred on the angular range boundaries of 0.5 arcmin and 300 arcmin,
using a log-width of ∆x = 0.5. Top: filter for ξ+; centre: filter for ξ−;
bottom: filter for γt; cf. Eqs. (22), (23), and (34).

space, with W l
EE(`) approaching a top hat to very good approx-

imation. Equation (25) shows that band power B-modes could
in principle still be generated even if Cεε,B ≡ 0, but the mode
mixing via W l

EB(`) is negligible.
For the low-` bands these windows become broader while

still clearly peaking in the centre of the defined band, with some
out-of-band sensitivity especially at ` < 100 (see also Asgari &
Schneider 2015 for a detailed analysis of band power filter de-
pendencies). These inherently linear scales are still accurately
modelled; the gradual decline in the accuracy of the flat-sky
and Limber approximations does not impact our analysis due
to the strongly suppressed sensitivity. The corresponding real-
space filters shown in Fig. 3 are highly oscillatory and therefore
require fine binning of the input correlation functions. For the
scales used in our analysis the apodisation only significantly af-
fects large angular scales, reaching 50 % signal suppression at
300 arcmin in this case.

Figure 4 demonstrates that the recovery of the underlying
angular power spectra by the band powers is excellent, so that
we can use the band powers directly as a faithful representation
of the binned angular power spectra in the data. We emphasise
however that the translation from true power spectrum to band
power according to Eq. (25) and the associated mode mixing is
fully taken into account in all quantitative modelling of both the
signal and its covariance (in contrast to the earlier work by van
Uitert et al. 2018).

Figure 4 also translates the residual uncertainties in matter
power spectrum modelling discussed in Sect. 2.1 to band powers.
Due to the line-of-sight projection, effects at certain k-scales are
spread out over a wider range of angular frequencies, such that
all band powers are impacted to some degree. While the limited
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Fig. 4. Bandpowers for galaxy-galaxy lensing (top panels) and cos-
mic shear (bottom panels) for a selection of redshift bin combinations
(indicated by ‘L’ and ‘S’ for lens and source galaxy samples, respec-
tively; see Sect. 3 for details). Grey/black lines show the true underly-
ing angular power spectrum; the associated dotted lines the average of
these power spectra over the angular frequency band. The bottom pan-
els show the relative deviations in the cases of maximum AGN feedback
(blue/green) and using the Takahashi et al. (2012) Halofit version (or-
ange/red) with respect to Mead et al. (2015) without AGN feedback.
The grey shaded regions in the top panels show the conservative limits
applied to the low- and high-redshift lens samples (excluding all and
light/medium grey regions, respectively), as well as the more optimistic
cut if galaxy biasing were well understood (only excluding the dark grey
region).

accuracy in non-linear power spectrum modelling as indicated
by the difference between the Takahashi et al. (2012) and Mead
et al. (2015) non-linear prescriptions is at the few per-cent level
and close to the limit of tolerable inaccuracy for the current con-
straining power of data (see the discussion in Sect. 2.1), the po-
tentially large suppression of power by AGN feedback warrants
the inclusion of at least one nuisance parameter in the likelihood
analysis.

2.5. Galaxy-galaxy lensing summary statistics

We proceed analogously to the cosmic shear case for GGL, writ-
ing the angular power spectra as

C(i j)
nε (`) = C(i j)

gG (`) + C(i j)
gI (`) + C(i j)

mG(`) , (27)

where i now indexes lens galaxy samples, and j source sam-
ples. We include three contributions: the cross-correlation be-
tween the lens galaxy distribution and the source gravitational
shear (‘gG’) which contains most of the cosmologically rele-
vant information, the alignment of source galaxies physically
close to foreground lenses (‘gI’), and the correlation between
gravitational shear and the lensing-induced magnification bias
in the lens sample (‘mG’). The latter term is discussed in de-
tail in Appendix B. We have ignored potential contributions from

IA-magnification bias correlations, which would not exceed the
per-cent level (Joachimi & Bridle 2010).

The line-of-sight projections read

C(i j)
g a (`) =

∫ χhor

0
dχ

n(i)
L (χ) W ( j)

a (χ)

f 2
K(χ)

Pgm

(
` + 1/2

fK(χ)
, χ

)
(28)

for a ∈ {I,G}, where n(i)
L (χ) is the comoving distance distribution

of lens sample i. The three-dimensional galaxy-matter power
spectrum is given by Eq. (3) and the source sample kernels by
Eqs. (15) and (16). Since we project along the line of sight over
broad line-of-sight galaxy distributions, we do not have to take
redshift-space distortions into account. The magnification bias
term is modelled as

C(i j)
mG(`) = 2

(
α(i)

mag − 1
)

C(i j)
GG(`) , (29)

where α(i)
mag is usually understood as the power-law slope at the

faint end of the luminosity function of a flux-limited sample i
(Bartelmann & Schneider 2001). However, the lens samples that
we employ have a complex selection function which deviates
substantially from a simple flux limit in a single band. As de-
tailed in Appendix B, we have developed and validated an ap-
proach to measure an effective luminosity function slope αmag,
which can be employed in the standard formalism.

Assuming a top-hat band power response as in the cosmic
shear case, GGL band powers can be expressed in terms of the
tangential shear correlation function,

C
(i j)
nε,l =

2π
Nl

∫ ∞

0
dθ θ 〈γt〉

(i j) (θ) T (θ) hl(θ) , (30)

with

〈γt〉
(i j) (θ) =

∫ ∞

0

d``
2π

C(i j)
nε (`) J2(`θ) . (31)

Likewise, they can be directly calculated from the angular power
spectrum,

C
(i j)
nε,l =

1
Nl

∫ ∞

0
d` ` W l

nε(`) C(i j)
nε (`) , (32)

with the kernel

W l
nε(`) =

∫ θmax

θmin

dθ θ T (θ) J2(`θ) hl(θ) . (33)

Here, we have followed van Uitert et al. (2018) in defining the
function

hl(θ) = −
1
θ2

[
θ`up,lJ1(θ`up,l) − θ`lo,lJ1(θ`lo,l) (34)

+ 2J0(θ`up,l) − 2J0(θ`lo,l)
]
.

Figure 2 also displays the W l
nε kernel whose form is very sim-

ilar to the mode-preserving kernel (first equality of Eq. 26) for
cosmic shear. The top panel illustrates that wavenumbers above
k = 1 h Mpc−1 do not contribute significantly to the band power
signals except for Band 8. We will therefore study an optimistic
scenario that includes Bands 1-7 (` < 1069) for GGL in the
inference. However, by default we will restrict the analysis to
Bands 1-3 (` < 276) in the low-redshift lens bin (L1) and Bands
1-5 (` < 543) in the high-redshift bin (L2), which strongly sup-
presses all highly non-linear scales beyond k = 0.3 h Mpc−1 (cf.
the grey shading in Fig. 4). For completeness the GGL real-space
filter is shown in the bottom panel of Fig. 3. The conclusions
from Fig. 4 are analogous to the cosmic shear case: excellent
recovery of the underlying power spectrum by the band powers
and similar impact of residual matter power spectrum uncertain-
ties on the bands.
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Table 1. Effective survey areas and sky overlap. The overlap is also
illustrated in Fig. 5.

KiDS-1000 BOSS 2dFLenS
survey area 773.3a 9329.0b 510.8c

KiDS overlap - 319.5 341.9

Notes. All survey areas given in deg2. Areas involving BOSS are ex-
tracted from a Healpix map with Nside = 2048 (due to the limited size
of the random catalogue used to construct the footprint); all other areas
are obtained from Nside = 4096 maps. The KiDS overlap is limited to
full nine-band KiDS+VIKING coverage. a) Unmasked area with nine-
band coverage. b) From Alam et al. (2017). c) Using only survey area
adjacent to KiDS-S.

3. Data and measurements

In this section we summarise the characteristics of the surveys
involved and provide an overview of the data processing up to the
level of the summary statistics that enter the likelihood analysis.
Figure 5 shows the footprints of the KiDS, BOSS, and 2dFLenS
surveys. Table 1 provides the corresponding survey areas and the
respective overlaps.

3.1. BOSS and 2dFLenS

Our analysis relies on two spectroscopic galaxy surveys, the
Sloan Digital Sky Survey (SDSS)-III BOSS (Eisenstein et al.
2011) and the 2dFLenS (Blake et al. 2016) surveys, which cover
disjoint areas of sky and were conducted from the northern
and southern hemispheres, respectively. The clustering measure-
ments used in our analysis were made over the full BOSS area
but do not employ 2dFLenS, whereas the GGL measurements
use lenses from both surveys with roughly the same contribution
in terms of sky area to maximise the overlap with KiDS.

S17 based their analysis on the final data release of BOSS,
DR12 (Alam et al. 2015), which combined the two main BOSS
galaxy samples, LOWZ and CMASS, to obtain contiguous red-
shift coverage between z = 0.2 and z = 0.75; see Fig. 6,
upper panel. As in the direct measurements of baryon acous-
tic oscillations and redshift-space distortions in the final BOSS
data, S17 incorporated an additional ∼ 1000 deg2 of LOWZ in
the Northern Galactic Cap with modified target selection that
yielded a lower number density of successful redshift measure-
ments, bringing the effective survey area of both the LOWZ
and CMASS samples to ca. 9300 deg2 (Reid et al. 2016). The
LOWZ and CMASS samples are dominated by massive early-
type galaxies, but unlike other sample selections of luminous
red galaxies (LRGs), they contain a significant fraction of spi-
ral galaxies as well as of order 10 % satellites (White et al. 2011;
Masters et al. 2011).

2dFLenS was conducted at the Anglo-Australian Telescope,
designed to complement BOSS in southern regions of deep
imaging surveys used for weak lensing studies. The survey to-
tals 731 deg2 of which we use the largest contiguous portion
that overlaps the southern KiDS field. The target selection for its
LRG-like samples follows that of BOSS but relies on the VST
ATLAS survey (Shanks et al. 2015) for target imaging. The re-
sulting galaxy samples are similar to their BOSS counterparts,
but sparsely sampled at ∼ 40 % of BOSS’s galaxy number den-
sity (see Table 2 and Fig. 6).

We combine the GGL measurements in the BOSS and
2dFLenS overlaps weighted by the respective galaxy pair counts.
This corresponds to inverse variance weighting in the limit that

Table 2. Galaxy sample properties for BOSS/2dFLenS lens (‘L’) sam-
ples and KiDS-1000 source (‘S’) samples.

Bin ID z range mean z neff [arcmin−2] σε,i
L1 [0.2, 0.5] 0.38/0.36 14.5/5.8×10−3 -
L2 [0.5, 0.75] 0.61/0.60 16.6/6.1×10−3 -
S1 [0.1, 0.3] 0.39 0.85 0.28
S2 [0.3, 0.5] 0.49 1.56 0.27
S3 [0.5, 0.7] 0.67 2.23 0.28
S4 [0.7, 0.9] 0.83 1.52 0.27
S5 [0.9, 1.2] 1.00 1.39 0.28

Notes. Redshift ranges for the source samples are in terms of the best
photometric redshift estimate zB. The first (second) entries for lens mean
redshifts and neff are for BOSS (2dFLenS). The galaxy number density
neff is given in units of arcmin−2; σε,i = σε/

√
2 is the dispersion per

ellipticity component. Note that the source sample properties were ex-
tracted from KV450 as well as blinded KiDS-1000 data but are expected
to be representative of the final KiDS-1000 data. Also note that the mean
redshift of bin S1 lies outside its zB range, which is due to an extended
high-redshift tail; see Fig. 6.

sample variance is negligible. The redshift distributions are com-
bined consistently with that approach (see the green histogram in
Fig. 6), and the combined statistics are treated as a single mea-
surement in the subsequent analysis. We refrain from deriving
potentially slightly more optimal weights from the full covari-
ance (see Sect. 5) as this would complicate the data processing
and introduce a cosmology dependence in these weights through
sample variance contributions. We considered re-weighting the
2dFLenS samples to obtain a closer match to the BOSS redshift
distribution, but decided not to do so as this would have further
reduced the effective number density of 2dFLenS. Re-weighting
2dFLenS was found to have no impact on the likelihood analy-
sis. We define two lens galaxy samples, denoted by L1 and L2,
cutting at z = 0.5. The third redshift bin in the range [0.4; 0.6]
used by S17 is not considered as it is almost fully correlated with
L1 and L2.

3.2. KiDS-1000

The Kilo-Degree Survey (KiDS) was conducted from 2011 to
2019 at the 2.6 m VLT Survey Telescope (VST) using Omega-
CAM (Kuijken 2011). This analysis makes use of Data Release 4
(DR4; Kuijken et al. 2019), comprising essentially all tiles with
ugri-band data taken up to January 2018 and covering a raw sur-
vey area of 1006 deg2. By design, KiDS has the same footprint as
the VISTA Kilo-degree INfrared Galaxy survey (VIKING; Edge
et al. 2013), together providing deep nine-band photometry in
the ugriZY JHKs bands. DR4 is a complete re-reduction of the
KiDS data set with the VIKING reduction of Wright et al. (2019)
fully incorporated, and more than doubles the area with respect
to DR3.

Earlier KiDS data releases, which cosmological analyses so
far have been based on, still had quite fragmented sky cover-
age while DR4 is fairly homogeneous in three larger patches,
two of which are equatorial with small separation (KiDS-N) and
one that straddles Dec = −30 deg (KiDS-S); cf. Fig. 5. Corre-
lation function measurements from these patches are combined
through galaxy pair weighting and further processed as a sin-
gle statistic, with redshift distributions, shear calibration, galaxy
number densities, etc. averaged accordingly.

KiDS data is processed with two pipelines: Astro-WISE
(McFarland et al. 2013) and dedicated software for joint flux
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Fig. 5. Bottom: Survey footprints of three data sets used in this analysis: BOSS (blue), 2dFLenS (green), and KiDS (orange). Overlapping regions
of KiDS with either BOSS or 2dFLenS are shown in pink. Top: Cut-outs of the KiDS areas showing the variable depth patterns of our source
samples as indicated by the r-band magnitude limit, rlim (at 1σ for adaptive aperture size; see Kuijken et al. 2019 for details).
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Fig. 6. Redshift distributions of the lens (upper panel) and source (lower
panel) galaxy samples. Lens galaxies are split at z = 0.5 into two red-
shift bins for both the BOSS and 2dFLenS surveys. Modelling is car-
ried out with a weighted combination of their redshift distributions (in
green). Lens distributions are constructed for galaxies in the KiDS over-
lap regions, respectively. Source galaxies are split into five tomographic
bins based on their best photometric redshift estimates, as indicated by
the shaded bands. The source redshift distributions are KiDS-1000-like
and built from KV450 data.

measurements in KiDS and VIKING images (see Wright et al.
2019) produce coherent nine-band photometry particularly rel-
evant for photometric redshift estimation (see Sect. 3.3); Theli
(Erben et al. 2005) is optimised for weak lensing shear measure-
ment and run on the r-band images only. KiDS benefits from a
survey and instrument design that is optimised for weak lens-
ing studies, with benign PSF variations across the 1 deg2 field of
view and a mean r-band seeing of 0.7 arcsec in DR4. Improve-
ments in the more recent observations mean that DR4 has over-
all lower PSF variability across the survey than DR3. Gravita-
tional shear estimates are obtained with the model-based lensfit
(Miller et al. 2007, 2013; Fenech Conti et al. 2017) software,
with only minor changes compared to previous KiDS analyses
(see KV450).

For details of the image processing, nine-band photometry,
and shear catalogue production we refer the reader to Kuijken
et al. (2019); Wright et al. (2019) and Giblin et al. (in prep.),
respectively.

3.3. Photometric redshifts and tomographic binning

Photometric redshifts are determined from the joint KiDS and
VIKING photometry with the Bayesian template-fitting code
BPZ (Benítez 2000) as detailed in Wright et al. (2019). The
output maximum posterior redshift zB is used to divide the
source galaxy sample into five tomographic bins with bound-
aries {0.1; 0.3; 0.5; 0.7; 0.9; 1.2}, as in KV450. The photometric
redshifts are not used for any other purpose in the KiDS analysis.

The source redshift distributions nS(z) of the tomographic
bins, shown in the lower panel of Fig. 6, are determined from
a compilation of spectroscopic redshift data sets that overlap
with KiDS-1000 and dedicated calibration observations with
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Fig. 7. Correlations between the shifts of the source redshift bins S1–5
arising from the SOM calibration. The covariance was estimated from
multiple mock realisations as described in Wright et al. (2020a).

the VST in additional fields with deep VISTA and spectro-
scopic survey coverage (Wright et al. 2019). Totalling more than
25 000 objects, the spectroscopic redshift collection is then re-
weighted to become representative of the KiDS source galaxy
distribution. In a major update from previous analyses, we adopt
the methodology presented in Wright et al. (2020a) applied to
DR4, i.e. rather than defining spectroscopic representation via
a nearest-neighbour search in the nine-dimensional magnitude
space of KiDS+VIKING (referred to as the DIR approach), we
now use an unsupervised clustering approach employing a self-
organising map (SOM, Kohonen 1982). The SOM creates a two-
dimensional representation of colour space onto which both the
spectroscopic and source galaxy samples are mapped. The rel-
ative abundance of the two samples in a given cell of the SOM
space is then used to derive the re-weighting.

The procedure is applied to each tomographic bin individu-
ally to reduce the risk of misrepresenting multiple galaxy popu-
lations that overlap in colour space by a small number of spectra.
Contrary to the previous DIR method, regions without any spec-
troscopic representation can now be removed from the source
sample altogether to create a ‘gold’ sample with secure calibra-
tion. For KV450, this step reduces the effective number density
of galaxies by 15 − 17 % in S1–4 and 6 % in S5, which however
is partially offset by a reduced uncertainty in the centring of the
n(z) (cf. Wright et al. 2020b).

As detailed in Wright et al. (2020a), 100 mocks based on
quasi-independent lines of sight in the MICE2 simulations (Car-
retero et al. 2015; Crocce et al. 2015; Fosalba et al. 2015a,b;
Hoffmann et al. 2015) are used to assess the fidelity of the SOM
approach outlined above. Biases in the mean of the redshift dis-
tributions are small, δz . 0.01, with standard deviations of

σz = {0.005; 0.006; 0.006; 0.004; 0.005} (35)

in S1-5, respectively. Moreover, the simulations reveal substan-
tial correlations between the calibration in each bin, caused by
the same spectroscopic redshifts being used in the calibration of
multiple tomographic bins. While these correlations are strong
in the previous nearest-neighbour approach with correlation co-
efficients around 0.9 for adjacent bins, they are mild for the SOM
algorithm; see Fig. 7. We incorporate this information into our
likelihood analysis in the form of a multivariate Gaussian prior
on the vector of n(z) shifts δz with the correlation structure deter-
mined by Fig. 7. The standard deviations of the prior are given

by the values in Eq. (35) but multiplied by a factor 2 to account
for additional uncertainty due to the limitations in the representa-
tiveness of our MICE mocks (see Hildebrandt et al., in prep. for
details). We note that the mocks contain the smaller survey area
of the KV450 analysis, but as the method is insensitive to the
source survey area, we do not expect any impact on our results.

In the KiDS-1000 analysis the δz prior will be centred on
the mock-based estimates of the bias (Wright et al. 2020a), but
for the demonstration of the methodology in this work we keep
the mean of the Gaussian at zero. As the calibrated nS(z) for
KiDS-1000 are not produced until a fairly late stage of the data
processing, we adopt in this methodology study the source sam-
ple properties as measured from KV450 (see Table 2), again
with little change expected in the transition to KiDS-1000. For
the redshift probability density functions themselves we adopt a
KiDS-1000 distribution from one of the blinded shear catalogues
(the nS(z) vary due to the blinded shear estimation weights;
see Appendix C), calibrated with the approach described in
Wright et al. (2020a). Further details on the redshift calibra-
tion for KiDS-1000, including additional validation via cross-
correlations with spectroscopic reference samples, can be found
in Hildebrandt et al. (in prep.).

As Fig. 6 shows, some source bins have substantial proba-
bility of galaxies being located at lower redshift than the lens
samples L1 and/or L2. Sources in front of lenses do not generate
any of the cosmological or astrophysical signals that we model,
except for a very weak magnification bias contribution. To pre-
vent any potential unaccounted systematics entering the data set
via this route, we therefore exclude the lens-source bin combina-
tions L1-S1, L2-S1, L2-S2, and L2-S3 from the GGL data vec-
tor entering the likelihood. We test for the impact of excluding
bin combinations with large overlap between lenses and sources
(L1-S2 and L2-S4; see Sect. 7), but include them by default as
they contain valuable information about intrinsic alignments.

3.4. Shear calibration

We adopt the shear calibration approach of KV450, which builds
on the image simulations presented in Kannawadi et al. (2019).
The simulations are generated by sampling from galaxy images
emulated from superior Hubble Space Telescope observations in
the COSMOS field (Griffith et al. 2012), including realistic dis-
tributions of colour, size, ellipticity, and their correlations. While
the simulations were designed to accurately reproduce galaxy
properties per tomographic redshift bin (rather than only for the
overall survey), explicit cross-talk between shear measurement
selection bias and photometric redshift estimates is not yet taken
into account (see e.g. the discussion in Asgari et al. 2019). This
requires multi-band image simulations and will be addressed in
forthcoming analyses as it is expected to be a second-order ef-
fect. Leading-order effects are captured because the COSMOS
galaxies are selected based on their zB value obtained from KiDS
photometry. Troxel et al. (2018b) find the residual biases to be
more than an order of magnitude smaller than the response of
shear to noisy galaxy images (see Appendix C for details), which
we can therefore assume to be negligible since our multiplicative
shear bias corrections are small to begin with.

Both additive and multiplicative shear bias are generally sig-
nificant enough to require calibration and uncertainty propaga-
tion into the likelihood analysis. It is demonstrated in Giblin et
al. (in prep.) that biases proportional to PSF ellipticity (αPSF) or
residual PSF ellipticity after modelling (βPSF) introduce negligi-
ble bias on cosmology for KiDS-1000. Kannawadi et al. (2019)
found the multiplicative biases m for the KV450 analysis setup to
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be at the per-cent level. The m-correction is applied when com-
puting correlation functions, and propagated accordingly into ef-
fective number densities neff , observed ellipticity dispersions σε ,
and galaxy pair counts, as detailed in Appendix C.

No multiplicative bias corrections are applied to the mocks
used in this work to demonstrate the methodology, but we do
consider the uncertainty in this correction, which constitutes a
significant contribution to the total error budget (see Sect. 5). As
in KV450, we model the uncertainty as an additive contribution
to the covariance of the two-point statistics, assumed to follow a
Gaussian distribution with standard deviation σm. The only ma-
jor update with respect to KV450 that could affect shear calibra-
tion significantly is the switch to the SOM-derived gold sample.
However, re-running the Kannawadi et al. (2019) analysis with
the new sample selection yields negligible changes in the shear
bias. We therefore work with the σm values for the KV450 setup.

We take a more nuanced approach to extracting σm values
from the Kannawadi et al. (2019) results (see in particular their
Fig. 12) than KV450 who chose a blanket value of σm = 0.02
which comfortably envelopes the various simulation configura-
tions tested. We consider the two most extreme settings versus
the fiducial case: the case with correlations between galaxy size
and ellipticity switched off (as a conservative floor for this de-
pendence), and the case that uses the global galaxy properties
rather than those specific to each tomographic bin (as a conser-
vative floor of accounting for the redshift dependence of galaxy
properties). The resulting multiplicative biases vary systemati-
cally between these two cases as a function of redshift. In each
tomographic bin we choose half of the maximum spread between
the three cases as the standard deviation of the calibration un-
certainty on the fiducial case, with a floor of 0.01 which corre-
sponds to the statistical noise in the fiducial simulation results.
This leads to

σm = {0.019; 0.020; 0.017; 0.012; 0.010} (36)

for S1-5. As in KV450, we assume that the multiplicative bias
corrections are fully correlated between the tomographic bins
since the σm values are determined by systematic trends that
smoothly vary across redshift. Kannawadi et al. (2019) identi-
fied additional dependencies on the clustering of source galax-
ies, stellar number density on the sky, and properties of the input
COSMOS catalogue, which could act to de-correlate multiplica-
tive biases, but these contributions remain subdominant. Thus,
the covariance contribution due to multiplicative shear bias un-
certainty reads

Covmult

[
C

(i j)
a ; C(kl)

b

]
= C

(i j)
a C

(kl)
b (37)

×
{
σ(i)

m σ
(k)
m + σ(i)

m σ
(l)
m + σ

( j)
m σ(k)

m + σ
( j)
m σ(l)

m

}
,

where σ(i)
m = 0 for any index i indicating a lens sample in a GGL

measurement. The subscripts a and b could either be E/B for
cosmic shear or nε for GGL. To arrive at this expression, we have
assumed that the expectation of m is zero (after correction), and
that σ(i)

m � 1 (see Blake et al. 2020 for a more general equation).
Additive shear bias can be directly estimated from the data

with some residual statistical uncertainty. Overall, additive shear
bias terms are at the few times 10−4 level and corrected indi-
vidually for the two ellipticity components and for KiDS-N/S7

7 The two main KiDS patches are calibrated separately as they differ
substantially in sky position as well as Galactic latitude, which leads to
differences in their observational and astrophysical characteristics, such
as the distribution of seeing and the number density of stars.

before further processing of the data. The residual uncertainty in
KV450 on the additive bias measurement was 2 × 10−4 which
was propagated into the likelihood analysis via a nuisance pa-
rameter with a Gaussian prior with scatter given by this error.
The global additive bias only enters ξ+ and particularly affects
large angular scales where the cosmological signal is smallest.
Ideal band powers derived from correlation functions available
over the entire positive real numbers are insensitive to additive
shear contributions as those would only affect the monopole. For
the finite range of angular scales used for the band powers in
this work, we find the additive bias contribution to be negligi-
bly small, reaching at most ∼ 1 % on large angular scales in the
lowest-redshift tomographic bin combination. We therefore do
not use an additive bias nuisance parameter (δc in KV450) in the
band power analysis.

We also identified a spatially varying additive bias pattern
linked to three problematic CCD chips in the OmegaCAM field
of view (see Fig. 2 in KV450), which was measured via stellar
PSF ellipticities and then propagated into ξ± with a free over-
all amplitude that was treated as a nuisance parameter. KV450
showed this nuisance parameter to have no effect on cosmolog-
ical constraints. Since the amplitude of the pattern has not in-
creased in significance in KiDS-1000 and impacts even less on
the band powers, we opt to neither correct for it nor include the
related nuisance parameter (Ac in KV450). The pattern could in
principle generate a characteristic (weak) signal in the B-modes
(Asgari et al. 2019), which however are found to be consistent
with zero in Giblin et al. (in prep.).

While our shear calibration procedure takes the impact of
blended galaxy images into account, strongly blended objects
are likely to be rejected by the shear measurement algorithm or
remain undetected if obscured by a foreground object. Since this
rejection is more likely to occur along over-dense lines of sight,
weak lensing two-point statistics are biased low as a result (Hart-
lap et al. 2011). However, for the current generation of surveys
this effect only causes biases at the per-cent level over relevant
angular scales (Harnois-Déraps et al. 2018; see also Samuroff
et al. 2018) and can therefore be neglected.

3.5. Correlation function measurements

All summary statistics in this analysis are based on
configuration-space correlation function measurements, which
have the major advantage that their expectation values are inde-
pendent of the survey geometries. We adopt the clustering wedge
correlation function measurements (Kazin et al. 2012) from
S17 whose salient features we summarise below. The consensus
analysis in Alam et al. (2017) showed that the S17 results are
in good agreement with other ‘full-shape’measurements on the
same data, using real-space multipole as well as Fourier-space
statistics. The wedge-based analyses generally produced tighter
parameter constraints, e.g. the standard deviation on distance
was about a third smaller than for the multipole statistics.

Two-dimensional correlation functions ξgg(s, µ) are mea-
sured with a Landy-Szalay estimator (Landy & Szalay 1993) in
linear bins of separation s with size 5 h−1 Mpc and three equidis-
tant bins in µ, totalling 84 data points per redshift bin. The angle
entering µ is measured between the separation vector of a galaxy
pair and the line of sight at the midpoint of s. As in related BOSS
DR12 analyses, s and µ are calculated for a fiducial, spatially flat
ΛCDM model with Ωm = 0.31. For the Landy-Szalay estimator,
we adopt the random catalogues used in S17 with an oversam-
pling factor of 50. The correlation functions include a combi-
nation of weights that minimise variance (Feldman et al. 1994),
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account for redshift failures and fibre collisions, and correct for
spatial patterns induced by a number of observational systemat-
ics (Ross et al. 2017).

Weak lensing correlation functions are computed using the
public TreeCorr8 (Jarvis et al. 2004) tree code. Its key tun-
ing parameter is bin_slop, which sets the accuracy of placing
galaxy pairs into the correct angular separation bin measured rel-
ative to the bin size. We optimise bin_slop to minimise com-
putation time without measurably impacting on the correlation
function. Since we measure finely binned correlation functions
with more than a hundred bins per decade of angular separation,
fairly large values of bin_slop (1.5 for cosmic shear and 1.2
for GGL) can be used. Parts of the KiDS-1000 analysis also em-
ploy coarsely binned correlation functions; these are obtained by
merging the finely binned measurements.

We use the standard estimator for ξ± (Schneider et al. 2002a);
see Appendix C for its explicit form including our choice of
weights. GGL is measured through the average tangential shear
around lenses, estimated via (Mandelbaum et al. 2005)

〈̂γt〉(θ) =

∑
ls wl ws εt,l→s ∆ls(θ)∑

rs wr ws ∆rs(θ)
Nrnd −

∑
rs wr ws εt,r→s ∆rs(θ)∑

rs wr ws ∆rs(θ)
,

(38)

where the sums with indices l, s, and r run over all elements of
the lens, source, and random catalogues, respectively. Here, we
have used the bin selector function ∆i j(θ) which is unity if the
angular separation of a galaxy pair indexed by i and j falls into a
bin centred on θ, and zero otherwise. The estimator also accom-
modates different weights w for the lens, random, and source
samples as indicated by their index, and εt,l→s denotes the tan-
gential ellipticity of object s measured with respect to the posi-
tion of object l. The term Nrnd :=

∑
r wr/

∑
l wl reduces to the

oversampling factor of the random catalogue with respect to the
catalogue of lens galaxies for unit weights. We use 100 times
more random points than lens galaxies, which we verify reduces
any additional noise components due to the finite number of ran-
dom points to negligible levels (see Appendix E).

The second term in Eq. (38) removes potential spurious con-
tributions to the signal that do not average out due to survey
boundaries and masks. It also suppresses non-Gaussian and addi-
tive noise contributions to the covariance of the estimator (Singh
et al. 2017). The average tangential ellipticity in the first term
is not normalised by the effective number of lens-source pairs,
but by the number of pairs between the source and random cat-
alogues. This modification is sometimes referred to as the boost
correction and removes any signal suppression due to clustering
between lenses and sources in case their redshift distributions
overlap. We experiment with different weights in the GGL esti-
mator (see e.g. Shirasaki & Takada 2018; Blake et al. 2020), but
find that they do not improve signal-to-noise significantly over
the basic form of Eq. (38).

3.6. Band power measurements

Band powers can be derived via linear transformation of the cor-
relation functions. For cosmic shear, our E- and B-mode estima-
tors are given by a discretised version of Eq. (20),

Ĉ
(i j)
E/B,l =

π

Nl

∑
k

∆θk θk T (θk)
{
ξ̂

(i j)
+ (θk) gl

+(θk) ± ξ̂(i j)
− (θk) gl

−(θk)
}
,

(39)
8 https://github.com/rmjarvis/TreeCorr

where the sum runs over all angular bins of the correlation func-
tion, each with bin width ∆θk. The normalisation Nl, the apodi-
sation T (θk), and the kernels g± were defined in Sect. 2.4. These
expressions would be unbiased estimators of the angular power
spectrum in the limit that the sum asymptotes into an integral
over the non-negative real numbers and T ≡ 1 (Schneider et al.
2002a; van Uitert et al. 2018). In practice the angular extent over
which correlation functions can be measured is limited, which
is fully accounted for in the modelling of the band powers. Ef-
fects of the discretisation in Eq. (39) are negligible as long as the
binning is chosen finely enough to smoothly sample the highly
oscillatory kernels (see Fig. 3). The corresponding GGL estima-
tor is

Ĉ
(i j)
nε,l =

2π
Nl

∑
k

∆θk θk T (θk) 〈̂γt〉
(i j)

(θk) hl(θk) , (40)

derived from Eq. (30). Throughout, the superscripts (i j) indicate
redshift bin combinations.

We find that 300 logarithmically spaced bins between
0.5 arcmin and 300 arcmin (the default range used in KV450)
avoids any discretisation effects. This binning scheme is con-
tinued for both smaller and larger angular separation to allow
for apodisation. An apodisation width of ∆x = 0.5 (cf. Eq. 22)
is found to suppress sensitivity of the band powers far from
their designated band width while only mildly expanding the
angular range entering the estimators. Consequently, correla-
tion functions in the range [0.6; 234] arcmin enter at full sen-
sitivity, contributions reduce to half at the nominal bin edges of
0.5/300 arcmin, and scales outside the interval [0.4; 385] arcmin
do not contribute at all. The minimum scale is still well above
the regime where galaxy blending and the image cutout size with
which lensfit works (. 10 arcsec) could impact on the correlation
functions. Conversely, the maximum scale is of the same order as
the extent in declination of the KiDS patches (cf. Fig. 5) beyond
which galaxy pair counts would rapidly decline and isotropy-
breaking systematics in the shear measurement not fully average
out.

We choose 8 logarithmically spaced bands with a lower
boundary of ` = 100 and an upper limit of ` = 1500. The
band power response to lower angular frequencies than ` ∼ 100
becomes very broad (see Fig. 2) and would thus necessitate
more expensive modelling of very large-scale modes. On scales
smaller than ` = 1500 the modelling uncertainty of non-linear
matter power and baryonic feedback prevents us from exploit-
ing measurements efficiently. All 8 bands are used in the cos-
mic shear signals. Our conservative approach to modelling GGL
means we only use the lowest three bands for correlations in-
volving L1 and the lowest five bands for those involving L2 (see
the discussion in Sect. 2.2). We also explore a more progressive
setting that only discards the highest `-band for GGL and thus
scales of k ≈ 1 h Mpc−1 and smaller.

4. Simulations

We create suites of dedicated simulations with the primary pur-
pose of assessing the accuracy of the two-point statistics we mea-
sure and of their covariance. A key question we will address is
whether the previously used analytic covariance prescription is
still good enough for the increasingly constraining data sets of
the current survey generation, despite its necessarily idealising
assumptions about survey geometry and survey homogeneity.
Non-Gaussian contributions to the covariance are subdominant
and have been assessed before by comparison with a suite of N-
body simulations (Hildebrandt et al. 2017; Harnois-Déraps et al.
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2018), so that we now opt for a fast approximate simulation ap-
proach that can accommodate the full survey volume and allows
for a large number of mock realisations of the data. The result-
ing simulation suite has the additional benefit of providing us
with accurate sampling distributions of various summary statis-
tics that we generate from the data (see Sect. 6).

4.1. Scope

A number of challenges related to survey characteristics arise in
the joint galaxy clustering and weak lensing analysis that neces-
sitate careful validation of signals and covariances with mocks.
First, lens and source galaxies occupy vastly different footprints
in the sky (see Fig. 5 and Table 1). This complicates the mod-
elling of cross-variances in particular, and the strong assump-
tions used in analytic modelling to date (cf. van Uitert et al.
2018) are yet to be tested. Secondly, while our choice of two-
point statistics are by design insensitive to the survey geometry,
it does impact on their covariance. The KiDS footprint with its
two disjoint and elongated fields, whose extent in declination is
of the same order as the largest scales we measure, could violate
the sweeping approximations currently made in the most widely
used covariance models.

It is also unclear from first principles how to measure the ef-
fective area of a survey that to good approximation scales the
variances of all data. Should one obtain an accurate estimate of
all unmasked area or focus more on the extent of the footprint,
i.e. exclude features like the numerous star masks which are on
scales much smaller than those that are considered in the like-
lihood analysis? This then becomes a question of adequate spa-
tial resolution in the survey mask (either of a pixelated map or
a random catalogue). Different choices here can lead to tens of
per cent differences in variances and thus outweigh the impact of
other contributions like non-Gaussian terms which have received
much attention in the literature.

Finally, virtually all analytic modelling has hitherto relied
on the assumption of homogeneity, thereby ignoring the spatial
variability in the data induced by observing conditions (see Hey-
denreich et al. 2020, though). However, the depth of an imaging
survey varies from pointing to pointing due to changes in condi-
tions such as seeing and sky transparency. Larger-scale patterns
can be generated through a combination of seasonal weather pat-
terns and visibility restrictions of targets. The resulting variable
survey depths will be more pronounced in surveys like KiDS that
visit sky areas only once during the lifetime of the programme.
The impact is visualised in the lower part of Fig. 5 where colours
ranging from yellow to purple indicate one magnitude of per-
pointing variation in the r-band limiting magnitude rlim (1σ de-
tection in adaptive apertures), which is sensitive to both the see-
ing and the background noise level in the images.

In order to evaluate the impact of multiple survey footprints,
mask geometry, and variable depth on our analysis, we require
simulations that allow us to impose the realistic footprints and
overlaps of the surveys, as well as galaxy samples with precisely
the same observational characteristics as in the data. Validation
is greatly aided by having a-priori knowledge of the input two-
point statistic that is to be recovered, as well as by generating a
large number of realisations of the Universe to beat down noise
in the estimates of large covariance matrices. These conditions
lead us to make use of fast, full-sky random field simulations as
described in the following.

We opt for lognormal, rather than Gaussian, random fields
because the latter are unable to recover the input two-point statis-
tics at the level of accuracy that we require. At the spatial reso-

lution of our mocks, the KiDS-1000 area is covered by of order
5 × 106 pixels which define volume elements in shells of the
matter distribution. If the probability distribution of the matter
density contrast δ in these volume elements is Gaussian, values
of δ are not bounded from below. Hence, unphysical values of
δ < −1 in the tail of the distribution are realised in a small frac-
tion of the pixels. Any modification of these problematic cases,
e.g. setting them to an empty pixel (δ = −1), leads to significant
biases in the two-point statistic of the matter density field at the
few per cent accuracy that we aim for. Lognormal statistics of
the matter density contrast have the additional benefit of being
close to the realistic case (Kayo et al. 2001), which enables us to
at least qualitatively explore the non-Gaussian properties in the
covariance (see Sect. 5.3).

We emphasise that, by design, our mock suite returns the
two-point statistics that we put in. It is therefore not suitable to
validate our baseline models of these statistics. This validation
was performed in previous works using a range of N-body and
hydro-dynamical simulations; see the discussion and references
in Sect. 2.

4.2. Construction of mocks

The matter distribution of our fast mocks is generated with
Flask9 (Xavier et al. 2016), building concentric shells of log-
normal random fields with known angular matter power spec-
tra and a minimum density contrast of −1 (corresponding to an
empty line of sight). The input cosmology for the mocks is spec-
ified in Table A.1. The matter shells are created in 18 redshift
bins of roughly equal intervals in comoving distance between
150−200 h−1 Mpc. The bin edges closest to the redshift limits of
the lens samples are moved to exactly 0.2, 0.5, and 0.75. The cor-
relations between matter shells are fully included via their cross-
power spectra. Since the matter slices are fairly thin, the angu-
lar matter power spectra are computed using the full curved-sky,
non-Limber expressions. Weak lensing shear and convergence
fields are then obtained from integrating over the matter shells
along the line-of-sight with the weighting of Eq. (15).

We create a new software, Salmo10, to populate the resulting
matter distribution with galaxies based on the visibility masks
and redshift distributions provided by the surveys. In contrast
to the standard Flask functionality, Salmo allows us to imple-
ment pointing-dependent selection functions and thus spatially
varying redshift distributions, galaxy densities, and ellipticity
dispersions. Galaxies are sampled following a Poisson process
with constant galaxy bias corresponding to the fiducial values
of b1 in the lens samples and then assigned weak lensing sig-
nals and shape noise. Tracers with different angular and radial
selection functions can thus be simulated based on the same
realisation of the underlying matter distribution. Masks for the
source galaxy samples are taken from KiDS-1000; those for the
lens samples are made from areas of BOSS and 2dFLenS that
overlap KiDS (with the exception of the study presented in Ap-
pendix D.1, which is based on a set of simulations with the
full BOSS footprint). Both masks and the Flask-generated maps
have a Healpix11 (Górski et al. 2005) resolution of Nside = 4096,
which corresponds to a characteristic angular size of 0.86 ar-
cmin below which the power of density fluctuations realised in
the simulations is suppressed.

9 http://www.astro.iag.usp.br/∼flask
10 Speedy Acquisition of Lensing and Matter Observables; the code
will be made public on acceptance of the KiDS-1000 analysis papers.
11 http://healpix.sourceforge.net
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Fig. 8. Characteristic of variable depth effects measured from early
KiDS-1000 data. Top panel: Redshift distributions of source galaxies
in the third tomographic bin (S3) in 10 equi-populated bins of rlim (1σ
adaptive aperture size). Centre panel: Effective galaxy number density
as a function of rlim in the five source galaxy bins, together with linear
fits. Lower panel: Same as centre panel but for the observed ellipticity
dispersion σε .

Lens redshift distributions are either adopted individually
from the BOSS and 2dFLenS data, or an inverse variance-
weighted combination is applied uniformly to all lenses (cf.
Fig. 6, top panel). Since the final KiDS-1000 redshift solutions
were still under construction when the mocks were created, we
proceed as follows, making use of the default KV450 DIR ap-
proach (using a weighting of spectroscopically observed galax-
ies in the KiDS-VIKING colour space). We divide the 1 deg2

pointings in KV450 into 10 equi-populated bins of rlim and re-
peat the redshift distribution calibration on each subset for all
five tomographic bins with the full set of spectroscopic sources.
The resulting distributions are then assigned to each of the point-
ings within the respective bins and the mock galaxies are sam-
pled from them accordingly. To limit the size of simulations, we
truncate all redshift distributions at z = 2 beyond which only
0.3 % of source galaxies are located. The average of these indi-
vidual redshift distributions is shown in Fig. 6 and used in the
modelling of the data vector.

Figure 8 illustrates the characteristics of variable depth ef-
fects for KiDS, as measured from an early version of KiDS-1000
data with blinded ellipticity measurements (which will affect σε
only at the per-cent level). The upper panel shows the redshift
distributions for the different rlim bins in the third tomographic
bin (S3). We can see that, as expected, for faint rlim the distri-
bution is shifted towards higher redshifts as better seeing and
transparency allow for more faint galaxies to enter the sample,
which tend to be at higher redshifts. The number of low-redshift
galaxies is only weakly affected, but after normalisation their
proportion effectively decreases.

The centre and lower panels of Fig. 8 show the dependence
of the effective number density neff and the observed ellipticity
dispersion σε on rlim. In this case galaxies from all five tomo-
graphic bins are divided into 30 equi-populated rlim bins selected
from the KiDS-1000 footprint. We observe a very clear linear de-
pendence for both quantities in all tomographic bins. The galaxy
number density increases with deeper data as expected, while
there is no clear trend for σε , as the sign of the slope reverses for
the lowest and highest tomographic redshift bins. We surmise
that there is a complex interplay between faint-end galaxies al-
tering the galaxy population and hence the intrinsic ellipticity
distribution on the one hand and those galaxies increasing the
image level noise which broadensσε on the other (one of the rea-
sons why multiplicative shear bias is calibrated per tomographic
bin in KiDS; cf. Kannawadi et al. 2019). Based on the linear fits
to these trends, we incorporate a per-pointing variation for neff

and σε into the mocks as well.
With the methodology above, we produce four sets of

mocks12, following identical underlying dark matter field real-
isations but differing in their level of realism regarding survey
footprints and spatial variability in the redshift distributions:

– Buceros: single rectangular mask with fully overlapping sur-
veys, spatially uniform lens redshift distributions, spatially
uniform source redshift distributions;

– Cygnus: realistic survey masks, spatially uniform lens red-
shift distributions, spatially uniform source redshift distribu-
tions;

– Diomedea: realistic survey masks, different lens redshift dis-
tributions in KiDS-N/S from BOSS/2dFLenS, spatially uni-
form source redshift distributions;

– Egretta: realistic survey masks, different lens redshift distri-
butions in KiDS-N/S, variable depth source redshift distribu-
tions and galaxy sample properties.

Contrary to full N-body or other particle- and/or mesh-based
runs, lognormal random field simulations are extremely fast. Us-
ing the setting described above, a set of full-sky tomographic
density and lensing maps can be generated within less than an
hour of wall-clock time using four CPUs in parallel. Catalogue
generation with two BOSS-like lens bins and five KiDS-like
source bins requires about 20 minutes with one CPU. Parallel
computation of many survey realisations is then trivial to execute
on distributed high-performance computing systems. The speed
of the simulation generation shifts the computational bottleneck
to the processing of the mock data, in our case driven by the cal-
culation of correlation functions. We create 5000 realisations of
each survey setup which we find to reduce the sampling noise in
covariance estimates to negligible levels for our comparison.

The fidelity of our mocks is assessed by applying the mea-
surement pipeline to the mock catalogues in the case of uni-
form galaxy distributions and comparing the resulting two-point
12 We choose to name the different mock setups after birds in order to
easily distinguish between them.
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Fig. 9. Comparison of mean estimates of band power between differ-
ent mock setups. Plotted is the relative deviation from the Buceros
case (rectangular mask, uniform depth). Blue, yellow, and red colours
correspond to the Cygnus (realistic mask, uniform depth), Diomedea
(like Cygnus but using individual lens sample properties for BOSS and
2dFLenS, hence only shown for GGL), and Egretta (realistic mask and
depth variations) cases, respectively. The top two rows show GGL sig-
nals; the bottom three the cosmic shear signals, with bin combinations
indicated in the panels (those not used in the likelihood analysis are
greyed out). Bands around the data points indicate the standard error
determined from a jackknife estimate of variance on the ratios shown,
based on mean signals calculated from 1000 realisations.

statistics to the theoretical predictions. The mock mean agrees to
3 % or better for both cosmic shear and GGL signals over rele-
vant angular scales, with the exception of cosmic shear correla-
tion functions involving bin S1 for which we see an excess signal
around 5 % over the theoretical model. The latter is due to the
small number of redshift shells in our Flask simulations which
has the strongest impact on the low-redshift source sample with
the smallest redshift baseline in the line-of-sight integration to
obtain the lensing signal. This limitation would be easy to rem-
edy, but as the runtime of mocks scales approximately quadrati-
cally with the number of shells, we prioritise the ability to create
a larger number of mock realisations. While the small excess
power in S1 should be borne in mind in the comparison with an-
alytic covariances (see Sect. 5.3), it is of little consequence for
the likelihood analysis since the cosmic shear signals including
S1 have low signal-to-noise.

4.3. Impact of spatial variability

We run our measurement pipeline on the four variants of mock
catalogues and study the relative difference between the result-
ing band power signals in Fig. 9 (differences in their covariance
will be discussed in Sect. 5.3). To suppress noise, we have av-
eraged signals over 1000 realisations and switched off shape
noise. Switching from a simple to the realistic survey geome-
try (Buceros to Cygnus) has no impact on correlation functions

and their derived statistics – a major advantage of our choice of
harmonic space measure.

Comparing Diomedea to Cygnus shows the effect of averag-
ing GGL over the BOSS and 2dFLenS overlap and modelling
the resulting signal with the averaged redshift distribution. This
approximation is accurate to within 2 % and thus fully sufficient
for our analysis. We caution however that this conclusion is to
a large degree due to the factor 2.5 lower number density in
2dFLenS, which means that the contribution to both the signal
and the shape of the redshift distributions is dominated by BOSS
(cf. Fig. 6). Averaging over spatial variability in the lens sam-
ples, as ubiquitously done when calculating summary statistics,
has the potential to cause significant biases in GGL if the parts
of the survey(s) that vary in depth carry a more evenly balanced
statistical weight than in our case.

The Egretta case additionally incorporates variable depth in
the source galaxy samples. Its impact on GGL is small and even
partially reverses the small trends due to variability in the lens
samples in correlations with L1. The effect on cosmic shear is
more pronounced, especially for correlations involving the low-
redshift S1 for which deviations of up to 4 % can be observed
at the highest angular frequencies considered. The cosmic shear
case was recently studied in depth by Heydenreich et al. (2020)
who developed a semi-analytic model and demonstrated very
good recovery of Flask/Salmo-generated mock signals. They
concluded that on small scales the trend is well accounted for
by the pointing-to-pointing variation of survey depth, whereas
above degree scales correlations between the depths of adjacent
pointings contribute as well.

The mean redshifts of S1 vary the most, ranging between
0.35 and 0.65 (see Fig. 2 of Heydenreich et al. 2020), leading to
the most pronounced variable depth effect. This is likely driven
by the extended high-redshift tail of the S1 redshift distribution
(Fig. 6) which is strongly affected by the limiting magnitude and
drives up the S1 mean redshift well beyond the photometric red-
shift boundary.

The cosmic shear band powers are consistently enhanced by
the variable depth effect. As mean redshifts vary roughly lin-
early with depth, the amplitude of two-point statistics acquires
a quadratic dependence to first order via the lensing efficiencies
(cf. Eq. 15), so will tend towards higher amplitudes on average13.
The source redshift distributions enter the GGL signals linearly,
so as long as most of the sources are located behind the lens
galaxies, the contributions from the different lines of sight aver-
age to the signal based on the mean redshift distribution used for
Buceros. However, if the sources are mostly positioned in front
of the lenses, it is the high-redshift tails of n(i)

S (z) that determine
the signal amplitude, and these have a nonlinear dependence on
depth (cf. Fig. 8, top panel). This leads to the ∼ 5 % negative
trend in the L2-S1 and L2-S2 GGL signals, which however are
not used further in our analysis.

Since the high signal-to-noise cosmic shear signals involv-
ing S3-5 are only affected at the per-cent level, we can expect a
mild impact on cosmological parameter constraints overall, with
S 8 somewhat over-estimated. Parameters that are sensitive to the
small modifications of redshift scaling and angular scale depen-
dence, like AIA and Abary, could in principle be more strongly
affected. We add the relative difference between the means of
the Egretta and Buceros mocks seen in Fig. 9 to a noiseless
mock data vector and carry out a likelihood analysis of the joint

13 Variable depth also generates B-mode cosmic shear signals (Vale
et al. 2004), but they are unlikely to be detectable with KiDS.
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weak lensing signals (see Sect. 7), which results in insignificant
changes to all model parameters, e.g. a 0.12σ shift in S 8.

5. Error modelling

We develop separate covariance models for galaxy clustering
and the weak lensing signals, as detailed in the following. This is
possible because these parts of the overall data vector are uncor-
related to very good approximation, primarily due to the much
larger survey area of BOSS outside the KiDS footprint; see Ap-
pendix D.1 and in particular Fig. D.1 for a detailed analysis.

5.1. Clustering covariance

Since we can treat the clustering signal as fully independent of
the weak lensing signals, we simply adopt the public S17 covari-
ance that was estimated from 2045 Multidark-Patchy mocks of
BOSS (Kitaura et al. 2016). Bias in the mean of the noisy inverse
of the covariance estimate entering the likelihood is corrected
(Hartlap et al. 2007). S17 also rescaled the posterior to account
for noise bias in the second moments of the inverse covariance
distribution (Percival et al. 2014), which we do not adopt be-
cause it only amounts to a 1.6 % change in parameter uncer-
tainties which is within the numerical uncertainty of posterior
sampling. Moreover, this ad-hoc modification would introduce
inconsistencies in the constraints jointly with weak lensing as
the latter do not suffer noise biases due to using a fully analytic
covariance.

5.2. Analytic weak lensing covariance

Analytic approaches to the weak lensing covariance have now
been widely adopted by the community as they provide suf-
ficiently accurate, computationally fast, and noiseless models
(Abbott et al. 2016; Hildebrandt et al. 2017; Hikage et al. 2019).
We adopt the model used for cosmic shear in KV450 with minor
updates and extend its use to GGL. A detailed description of the
implementation is provided in Appendix E; here, we summarise
the salient points.

The model is composed of five terms of cosmological origin,

Cov = CovG,sva + CovG,mix + CovG,sn + CovNG + CovSSC , (41)

where ‘G’ stands for the Gaussian contributions, i.e. terms that
would also be present if summary statistics of a Gaussian ran-
dom field were considered. The terms split further into a pure
noise component (‘sn’; covering shot noise due to the finite sam-
pling of the matter density distribution by galaxies and shape
noise due to the randomly oriented intrinsic ellipticities of galax-
ies), a pure sampling variance contribution due to observing
a finite volume of the Universe (‘sva’), and a component that
mixes the two (‘mix’). Additional terms arise due to the non-
Gaussianity of the underlying fields, which generate higher-
order correlations between modes measured by the survey (cap-
tured in the ‘NG’ term), as well as between modes within the sur-
vey and those on scales larger than the survey footprint (known
as super-sample covariance; ‘SSC’). A sixth, non-cosmological
contribution accounting for statistical uncertainty due to the mul-
tiplicative shear bias calibration (see Eq. 37) completes our ana-
lytic description.

We calculate real-space correlation function covariances
which are subsequently transformed to band powers analogously
to the two-point statistics measurements (see Appendix E.3 for

Fig. 10. Contributions to selected elements of the analytic band power
covariance. Shown are the relative contributions of the absolute values
of the six covariance terms: sample variance (red), mixed term (orange),
and shot/shape noise (yellow) in the Gaussian covariance; non-Gaussian
in-survey covariance (purple) and super-sample covariance (green); and
the multiplicative shear bias uncertainty (grey). Each panel corresponds
to a single row in the covariance matrix of the full GGL and cosmic
variance data vector, for the signal and angular frequency band indicated
in the label; columns in each panel have the same ordering of signals but
show all 8 bands, respectively. A representative subset of signals was
chosen: two GGL signals, as well as a low- and high-redshift cosmic
shear signal, and the corresponding redshift bin cross-correlation.

the explicit formulae). The modelling of the Gaussian terms fol-
lows the approach of Joachimi et al. (2008), with the excep-
tion of the noise term which takes the actual galaxy pair counts
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Fig. 11. Dominant contribution (absolute value) to the band power co-
variance. The colour coding is identical to Fig. 10, i.e. sample vari-
ance (red), mixed term (orange), and shot/shape noise (yellow) in the
Gaussian covariance; non-Gaussian in-survey covariance (purple, al-
ways sub-dominant) and super-sample covariance (green); and the mul-
tiplicative shear bias uncertainty (grey). The top left block contains the
covariance of the GGL signals (Cnε ; without cuts in tomographic bins
or angular scales), the bottom right block the cosmic shear covariance
(CE). Smaller blocks discernible correspond to the different bin combi-
nations, and within these, individual 8×8 blocks correspond to the eight
band powers of the signal for a single tomographic bin combination.

measured from the data (cf. Appendix E.1) as opposed to work-
ing with the expectation for a uniform survey (cf. Troxel et al.
2018a). The non-Gaussian components are constructed through
a halo model in line with earlier approaches (Takada & Hu 2013;
Li et al. 2014; see also Krause & Eifler 2017). We refrain from
implementing full halo occupation statistics for the galaxy clus-
tering covariance terms entering the GGL covariance and its
cross-correlations, and only include linear bias via b1. Higher-
order bias terms modify the power spectra by less than 10 %,
and the strongest deviations occur on scales where noise terms
increasingly mitigate inaccuracies in the sample variance terms.

Figure 10 illustrates the contributions of the six model com-
ponents to a representative subset of covariance elements. Since
absolute values are plotted, the components may act to partially
cancel each other. Diagonal elements are generally dominated by
noise, especially on small scales. Only the GGL variances at low
` have an almost equal contribution from noise, Gaussian sam-
ple variance, and the mixed term. Away from the diagonal, the
mixed term and super-sample covariance have strong impact on
the level of correlation for cosmic shear. The multiplicative bias
term can also reach contributions at the 50 % level, while for
cross-correlations involving GGL signals it mostly dominates
the budget. Only on large scales does sample variance add to
correlations in this case; the non-Gaussian terms are generally
of minor importance for all GGL covariance elements.

In Fig. 11 the full covariance is plotted with each element
coloured according to the term making the largest contribution
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Fig. 12. Relative difference between the standard deviations of different
mock setups for the covariance of the weak lensing band power signals.
The relative deviation of the Egretta case (realistic footprint and depth
variations) from the Buceros case (rectangular mask, uniform depth) is
displayed. Red (blue) symbols show results for the mock (analytic) co-
variance. The top two rows show GGL signals; the bottom three cosmic
shear signals, with bin combinations indicated in the panels. GGL sig-
nals that are not used in the analysis have been greyed out. Bands around
the mock data points indicate the standard error determined from a jack-
knife estimate of variance.

by absolute value. It is interesting to see that all components
dominate the covariance in some parts, with the exception of the
in-survey non-Gaussian term which never contributes more than
∼ 10 % to any element (the same conclusion was also reached by
Barreira et al. 2018a). While super-sample covariance is critical
to include in the cosmic shear covariance, especially for correla-
tions involving low-redshift source samples (top left part of the
cosmic shear block) where the survey volume is smaller, it is the
three Gaussian components whose accuracy drives the overall fi-
delity of the model. These terms are primarily assessed through
the comparison with our mocks (see below). The importance
of precise shear calibration is also evident: smaller uncertainty
on the multiplicative bias has the potential to de-correlate most
elements of the data vector and thereby improve constraining
power.

5.3. Comparison with simulated covariances

The Flask + Salmo mocks are designed for high accuracy in
the galaxy sample population properties as well as the two-point
statistics of the weak lensing signal, so that they are well suited
to validate the Gaussian terms in the analytic covariance. Due
to the lognormal approximation of the matter density distribu-
tion in the simulations, the connected four-point function un-
derlying the non-Gaussian covariance contributions is less accu-
rate, which is tolerable as these terms are overall subdominant.
Nonetheless, the lognormal assumption is capable of reproduc-
ing all salient features in the sample covariance of weak lens-
ing correlation functions (Hilbert et al. 2011). It should be noted
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Fig. 13. Relative difference between the square root of the diagonals
of the mock and analytic covariances for the weak lensing band power
signals. The top two rows show GGL signals; the bottom three cos-
mic shear signals, with bin combinations indicated in the panels. Three
cases are shown: spatially uniform galaxy samples in a simple footprint
(Buceros, green); spatially uniform galaxy samples in the realistic sur-
vey footprints (Cygnus, blue); and spatially varying depth in the realistic
footprints (Egretta, red). GGL signals that are not used in the analysis
have been greyed out.

that, while Hilbert et al. (2011) assumed lognormality for the
weak lensing convergence, we make the more accurate assump-
tion of a lognormally distributed matter density field, which is
known to be a very good approximation to the one-point prob-
ability density, as well as the third and fourth moments, of the
matter density contrast (Kayo et al. 2001).

The first point we address is how the combination of the real-
istic, patchy survey footprint of KiDS-1000 and the spatial vari-
ations in the survey depth affect the covariance. This is shown in
Fig. 12 where we plot the relative difference between the Egretta
and Buceros setups14. Compared to a simple, uniform survey of
identical area, the square root of the diagonal of the covariance
increases by about 20 %, decreasing smoothly to ∼ 10 % excess
in the highest source bin combinations for cosmic shear. This
trend is driven by shape and shot noise through modifications
of the number of galaxy pairs available in the correlation func-
tion measurement; super-sample covariance modifies the ratio in
the opposite direction but remains subdominant on the diagonal.
The analytic model accurately captures the majority of the sur-
vey property effects as it employs the pair counts measured from
the real data. The only substantial deviation occurs for GGL on
large scales where the analytic approach predicts much smaller
changes. We find that this discrepancy is caused by the mixed
noise-sample variance term CovG,mix which in the analytic model
disregards survey geometry effects altogether.

An alternative view is provided by Fig. 13 in which we di-
rectly compare mock and analytic covariances for the three sur-
14 In all comparisons of this section we only include the covariance
contributions of cosmological origin, i.e. there is no multiplicative shear
bias calibration uncertainty.
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Fig. 14. Comparison of correlation coefficients of the weak lensing band
power covariance between mocks (lower left) and analytic covariance
(upper right) in the most realistic setup (Egretta). The top left block
is for GGL; the bottom right block for cosmic shear. Galaxy sample
combinations are indicated on the axes.

vey setups Buceros, Cygnus, and Egretta. The agreement for
cosmic shear is generally very good and independent of the sur-
vey setup. At small angular frequency the analytic model under-
predicts the standard deviation by typically 10 %, especially at
higher redshift, which again originates from the idealised treat-
ment of survey geometry in the Gaussian sample variance terms.
We find these limitations to also be behind the interesting trends
that emerge in the GGL parts of the covariance: mocks and the-
ory match nearly perfectly in the case of Buceros, but deviate on
large scales when switching to the realistic footprint (Cygnus)
and a little further when introducing variable depth (Egretta),
reaching +20 %.

We compare the off-diagonal terms via the correlation ma-
trix shown in Fig. 14, for the most realistic (Egretta) survey
setup. Generally, the correlations between the weak lensing band
powers are small, not exceeding 0.5. Mock and analytic model
agree to a high degree in the structure of the correlation matrix
with the vast majority of elements differing in agreement with
the statistical uncertainty due to the finite number of mocks. As
the only clear systematic pattern, the sub-diagonals in the cross-
covariance between GGL and cosmic shear are more pronounced
in the mock covariance. Consulting Fig. 11, these are terms that
are also dominated by the mixed term, thus pointing to the afore-
mentioned limitations once again.

In Appendix D we provide a more detailed discussion of
mock and analytical covariances, including the performance of
individual terms and results for the corresponding configuration-
space signals. In Sect. 7 we will investigate the impact on the
width of posterior parameter constraints of residual differences
in our covariance models, due to different levels of realism in
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accounting for survey properties as well as due to limiting as-
sumptions in our analytic model.

However, one could also incur a bias in the central value of
the posterior if the covariance in the likelihood does not accu-
rately describe the noise properties of the data vector. For a rough
estimate of the magnitude of such bias in our analysis, we cal-
culate the systematic difference between data vectors generated
with noise from two different covariances labelled A and B. As-
suming a Gaussian likelihood, these noisy data vectors of size
Nd are given by di = µ+Li z with i ∈ {A,B}, where z is a random
variate drawn from a multivariate standard normal distribution
(with zero mean and unit covariance). We denote the mean of the
data vector by µ, and L is a triangular matrix obtained from the
Cholesky decomposition of the covariance matrix, Cov = LLτ.

We now consider the difference between two data vectors
generated with the same random variate but different covari-
ances, ∆d := dB − dA. Since the mean is shared, it cancels in
the difference ∆d. The expected variance of this difference is
then given by

σ2
∆Cov,α :=

〈
∆d2

α

〉
=

Nd∑
i=1

(
LB,αi − LA,αi

)2 , (42)

for an element of the data vector indexed by α, where we ex-
ploited the relation

〈
zαzβ

〉
= δαβ. For the example of analytic

covariances in the Buceros and Egretta setups as models A and
B, we obtain for the relative shift in the weak lensing signal,
i.e. σ∆Cov,α/µα, values between 4 × 10−3 and 10−4 for GGL and
values smaller than 5×10−5 for cosmic shear. From this we con-
clude that biases due to remaining inaccuracies in the covariance
model are well below the sensitivity of the current generation of
surveys.

6. Parameter inference methodology

We build a dedicated inference pipeline15 using the CosmoSIS16

(Zuntz et al. 2015) analysis framework, assembling a mix of its
standard components and new bespoke modules. We choose the
nested sampling algorithm MultiNest17 (Feroz & Hobson 2008;
Feroz et al. 2009, 2019) to explore the resulting posterior dis-
tributions, as we find it to strike a good balance between com-
putational speed and robustness in navigating high-dimensional
parameter spaces with several highly non-linear degeneracies.

6.1. Parameters and priors

In Table 3 we list our fiducial set of model parameters and their
priors, with a total of 20 parameters varied for joint clustering
and weak lensing analyses. The five free parameters describ-
ing a spatially flat ΛCDM cosmology are largely adopted from
CMB analyses for which they are natural, i.e. approximately in-
dependently constrained with clear links to features in the ob-
servables (Kosowsky et al. 2002). This is not necessarily true for
low-redshift probes of large-scale structure. In particular, weak
lensing is primarily constrained through the amplitudes of its
otherwise smooth two-point signals, described by a non-linearly
degenerate combination of Ωm and σ8. It has therefore become
customary to report constraints from cosmic shear in terms of

15 The KiDS Cosmology Analysis Pipeline (KCAP) will be made pub-
lic on acceptance of the KiDS-1000 analysis papers.
16 https://bitbucket.org/joezuntz/cosmosis/wiki
17 https://github.com/farhanferoz/MultiNest

Table 3. Choice of fiducial model parameters and priors.

Parameter Symbol Prior
CDM density ωc [0.051, 0.255]
Baryon density ωb [0.019, 0.026]
Density fluctuation amp. S 8 [0.1, 1.3]
Scalar spectral index ns [0.84, 1.1]
Hubble constant h [0.64, 0.82]
Linear galaxy bias b1 [2] [0.5, 9]
Quadratic galaxy bias b2 [2] [−0.6, 4]
Non-local galaxy bias γ−3 [2] [−3, 3]
Virial velocity parameter avir [2] [0, 12]
Intrinsic alignment amp. AIA [−6, 6]
Baryon feedback amp. Abary [2, 3.13]
Redshift offsets δz [5] N(0; Cδz)

Notes. The first section corresponds to the primary cosmological pa-
rameters. The second section contains astrophysical parameters related
to galaxy bias, intrinsic alignments, and baryon feedback on the matter
power spectrum. The third section lists observational nuisance parame-
ters. Prior values in square brackets are the limits of top-hat priors, while
N(µ; C) corresponds to a normal prior with mean µ and (co-)variance
C (cf. Fig. 7). The number in square brackets indicates how many in-
stances of the parameter enter the analysis.

the parameter S 8 = σ8 (Ωm/0.3)1/2, approximately measuring
the lateral width of the posterior across the aforementioned de-
generacy. We note however that the exact direction of the Ωm –
σ8 degeneracy is affected by the source redshift range of the data
set, as well as the range and weighting of angular scales entering
the likelihood.

Standard sampling parameters for the CMB, like the ampli-
tude of the primordial power spectrum of scalar density fluc-
tuations, As, and the physical cold dark matter density param-
eter, ωc, remain largely unconstrained individually. The choice
of priors for these parameters therefore directly impacts on the
posteriors of weak lensing cosmological analyses, as illustrated
in Figs. 15 and 16. They show posteriors of the key cosmolog-
ical parameters Ωm, σ8, and S 8 for the cosmic shear analyses
of KV450 and DES Year 1 (Troxel et al. 2018b), respectively.
Alongside, we plot the corresponding prior volumes resulting
from the cosmological sampling parameters chosen in each case,
mapped by drawing 500 000 samples. The analyses assumed
wide top-hat priors for the standard flat ΛCDM cosmological
parameters, which we adopt here; in particular, KV450 used
ln(1010As) as a sampling parameter with prior range [1.5, 5],
while DES Year 1 used As in the range [5×10−10, 5×10−9]. These
assumptions translate into complex prior volumes for the derived
low-redshift parameters. Figures 15 and 16 highlight that the ex-
tent of the Ωm – σ8 degeneracy, and thus the marginal posterior
width for Ωm, are almost entirely determined by the prior and
not influenced significantly by the different constraining powers
of the data sets.

In light of the observed tension in S 8 constraints from Planck
and galaxy weak lensing probes it is particularly important
to avoid implicit informative priors on this parameter. Indeed,
Figs. 15 and 16 highlight that both the KV450 and DES Year 1
setups disfavour high values of S 8 & 1 a priori. However, the S 8
marginal posteriors remain unaffected by the prior as both data
sets are highly constraining, and the S 8 prior is flat across the
region with substantial posterior mass18. To guard against any

18 By probability mass, we refer to the probability density function
(PDF) integrated over certain regions of the PDF’s domain.
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Fig. 15. Prior volume resulting from using wide top-hat priors on the
sampling parameters {ln As, ωc, ωb, ns, h} (in red), shown together with
the KV450 posterior (in blue). Dark (light) shades correspond to the
two-dimensional 1σ (2σ) credible regions. The prior does not impact
on marginal S 8 constraints, but is informative in the Ωm – S 8 and Ωm –
σ8 planes.

undue impact by the prior choice and to simplify the parame-
ter volume that needs to be explored by the sampler, we choose
S 8 as our sampling parameter instead of As or ln As and impose
a top-hat prior that comfortably encompasses the full range of
the previous, less constraining weak lensing analyses, as well
as the Planck S 8 posterior. We will further assess the impact of
the choice of fluctuation amplitude parameter for sampling in
Sect. 7.

The other cosmological sampling parameters remain the
same as in KV450, with unchanged wide priors for ωb and
h. We tighten the prior range for ns in order to avoid regions
of very small expected posterior mass at large values of ns,
where evaluations of the S17 clustering likelihood become pro-
hibitively slow. To avoid prior volume artefacts in this weakly
constrained parameter, we then symmetrise the top-hat prior
around the theoretical expectation of values just below unity and
set ns ∈ [0.84, 1.1].

Since the prior for ωc directly impacts the inference on Ωm
and σ8, we seek to derive a more physically motivated prior
range than the very wideωc ∈ [0.01, 0.99] chosen in KV450. We
opt to motivate the prior from the independent measurement of
luminosity distance via Supernova Type Ia measurements with
the Pantheon sample (Scolnic et al. 2018). Their analysis yielded
Ωm = 0.298 ± 0.022 for a flat ΛCDM model, which we trans-
late into the top-hat prior range Ωm ∈ [0.188, 0.408] that en-
compasses the ±5σ uncertainty of the marginal constraint in-
cluding systematic errors. The boundaries of the Ωm prior are
then translated into those for ωc using the extremes of the prior
ranges of ωb and h. This choice also has the benefit of exclud-
ing parameter combinations for which the matter power spec-
trum model underlying all large-scale structure probe predic-
tions is essentially untested – for instance, the Coyote Universe
(Heitmann et al. 2014) suite of simulations used to calibrate the
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Fig. 16. Same as Fig. 15, but now showing the prior volume using the
sampling parameter As with a wide top-hat prior, alongside the DES
Year 1 cosmic shear posterior. Note the smaller axis range for the σ8
and S 8 parameters compared to Fig. 15.

Mead et al. (2015) non-linear model is limited to the ranges
Ωmh2 ∈ [0.12, 0.155] and σ8 ∈ [0.616, 0.9].

The priors for the astrophysical parameters are adopted from
KV450 and Tröster et al. (2020) respectively for IA and galaxy
bias. The intrinsic redshift dependence of the IA signal is by de-
fault kept fixed at ηIA = 0. We follow S17 in tying the otherwise
poorly constrained non-local bias parameter γ2 to the linear bias,

γ2 = −
2
7

(b1 − 1) . (43)

This relation is physically motivated and holds to sufficient ac-
curacy in realistic simulations. While a similar relation exists
for γ−3 , it is varied in the inference as a catch-all parameter
for other non-linear power spectrum contributions not explicitly
modelled in the perturbative approach. Finally, we include one
offset parameter δz each for S1-5 that shifts the source redshift
distributions within the multivariate Gaussian prior discussed in
Sect. 3.3.

6.2. Gaussian likelihood assumption

Along with the vast majority of large-scale structure cosmolog-
ical analyses, we adopt a multivariate Gaussian likelihood. This
is expected to be a generally excellent approximation if the sum-
mary statistics entering the likelihood have been averaged over
many modes in the underlying fields. Exact likelihood expres-
sions for two-point statistics of the non-Gaussian matter dis-
tribution and its tracers are unknown, and since only the cen-
tral value and the covariance are usually readily calculable, a
normal distribution is the least informative form of likelihood.
Due to the small number of modes entering power spectra at
low angular frequencies, significant deviations from Gaussian-
ity occur (e.g. Hamimeche & Lewis 2008), which propagate into
configuration-space statistics that are sensitive to these modes,
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Fig. 17. p-values for a KS-test of Gaussianity of the marginal likeli-
hood distributions. Values above the typical threshold of 0.05 are blue;
values below are red. Left panels show band powers for cosmic shear
(bottom) and galaxy-galaxy lensing (top) for various tomographic bin
combinations and angular frequency bands, with the largest scales on
the left. Right panels display corresponding real-space correlation func-
tions, with the largest scales on the right.

such as the cosmic shear correlation function ξ+ at large angular
separation (Schneider & Hartlap 2009; Sellentin et al. 2018; Lin
et al. 2019).

It is therefore an additional benefit of band powers that they
have sensitivity over a compact range of angular frequencies,
allowing us to reduce the impact of scales below ` . 50 to a
minimum; see Fig. 2. To demonstrate the impact, we create sam-
pling distributions of both band power and configuration-space
statistics measured from 1000 mock realisations. We test the
one-dimensional likelihoods of the elements of our data vector
individually for Gaussianity, applying a Kolmogorov-Smirnov
(KS) test to the standardised distributions and setting a threshold
p-value of 0.05. As shown in Fig. 17, the band power likelihoods
are consistent with being Gaussian, with a slight trend towards
smaller p-values for the low-` bands. In contrast, the correla-
tion function likelihoods (in the standard KV450 setup with 9
logarithmically spaced bins in the range from 0.5 – 300 arcmin)
fail in the two to three largest scale bins for ξ+ and to a lesser
degree in γt. We note in passing that our test is necessary but
not sufficient because the multivariate distribution of band pow-
ers could be non-Gaussian despite Gaussian marginals. In future
one could additionally apply tests that are sensitive to higher-
order moments of the distribution (see e.g. Sellentin & Heavens
2018).

As we can proceed with a Gaussian likelihood for the band-
power statistics, it is important to emphasise that the covariance
should not be varied alongside the mean when sampling the pa-
rameter space. It is a fundamental property of the normal distri-

bution that its sample mean and covariance are statistically inde-
pendent. The fact that in large-scale structure analyses both the
mean (i.e. the model) and the covariance depend on cosmologi-
cal and other parameters (primarily through sample variance) is a
relic of the true, non-Gaussian sampling distributions that we ap-
proximate. Varying parameters in the covariance in the posterior
sampling of a Gaussian likelihood would generate spurious, al-
beit small, extra constraining power because the parameter sensi-
tivity of the covariance is treated erroneously as an independent
source of information (see the discussion in Carron 2013).

If the parameters are not varied in the covariance, the ques-
tion arises which combination of parameters is the correct one to
choose, as particularly amplitude-changing parameters like σ8
or galaxy bias can modify sample variance contributions consid-
erably (e.g. Harnois-Déraps et al. 2019). van Uitert et al. (2018)
used an iterative approach to solve the issue, starting with a fidu-
cial set of parameters and then repeating the likelihood analy-
sis with the covariance re-calculated at the best-fit values of the
previous iteration. In a forthcoming publication we will demon-
strate that this procedure robustly converges to the correct poste-
rior. Since we have best-fit values from the Tröster et al. (2020)
analysis for guidance, we expect that at most one iteration will
be required for convergence on the key cosmological parameter
constraints. For the mock analysis in this work, we evaluate the
covariance at the fiducial parameter values.

If a mock-derived covariance is used in the likelihood, we
correct for noise bias in the mean of the inverse covariance
(Kaufman 1967; Hartlap et al. 2007). Due to the large number
of realisations, the correction is only 4 % and has negligible im-
pact on the posterior.

6.3. Goodness of fit

The goodness of fit is a key statistic to judge how well the com-
bination of the model and the assumed likelihood (including the
covariance) describe the data. Traditionally, the weighted least
squares, or χ2, statistic is evaluated at a choice of best fit of the
sampling parameters and interpreted under the assumption that
it follows a χ2 distribution with kdof = Nd − NΘ degrees of free-
dom. Here, Nd is again the size of the data vector d entering the
likelihood, varying between 120 for cosmic shear only and 310
(adding 168 for clustering and 22 for GGL) for the joint analysis
in their default setup, and NΘ is the number of sampling param-
eters, where NΘ = 12 for cosmic shear and NΘ = 20 for the joint
analysis. The goodness of fit is then quantified by the probability
to exceed (PTE) the value of χ2 at the best fit, i.e. Pr(χ2 > χ2

best).
The assumption of the particular form of χ2 test statistic is

only valid if (1) the underlying data is normally distributed, (2)
the sampling parameters enter the model linearly, and (3) the pa-
rameter ranges are not significantly restricted by priors. Neither
of these assumptions generally hold for cosmological analyses,
and ours is no exception. We therefore need to establish a more
accurate form of the sampling distribution of the best-fit χ2. This
distribution can be built empirically from our mocks; if mocks
are unavailable, realisations of χ2

best could analogously be gener-
ated directly from the data analysis via the posterior predictive
distribution (cf. Gelman et al. 1992, 1996).

For every mock (or posterior predictive) realisation we max-
imise the posterior, or alternatively minimise the log-likelihood,
to obtain an estimate of χ2

best. An example of a resulting proba-
bility density function (PDF) created from 1000 mocks is shown
in Fig. 18 for the case of joint cosmic shear and GGL. We could
now directly measure the compatibility of the χ2

best determined
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Fig. 18. Goodness of fit sampling distributions. Shown are histograms
of minimum χ2-values obtained from 1000 mock realisations of data
vectors analysed with our cosmic shear and GGL analysis pipeline. Blue
points correspond to our baseline setup; red points to the result using
a sabotaged data vector computed with the S3 and S4 redshift distri-
butions systematically shifted upwards by 5σ of their Gaussian prior
width. The curves are best fits of a χ2-distribution with its mean as free
parameter. The solid blue curve is a good fit to the baseline results (p-
value of 0.16), while the sabotaged distribution is still well fitted by a
χ2-distribution (red dashed curve; p = 0.53) which however is incom-
patible with the baseline (p < 10−5).

from the real-data analysis with being a sample drawn from this
PDF via Pr(χ2

best,mock > χ2
best,obs). However, for the joint clus-

tering and weak lensing analysis in particular, we struggled to
identify readily available optimisation algorithms19 that ran fast
enough to be applicable to a large number of mock realisations.
Fortunately, in the cases where the χ2

best PDF is obtainable, it is
still well described by a χ2-distribution; see Fig. 18, and it is fair
to assume that this remains the case for the most comprehensive
analysis setup. The shape of the distribution is retained even for
a substantially under-fitting model as shown by the red points
and curve in Fig. 18.

Therefore, the problem reduces to finding an estimate of the
one free parameter of the χ2

best sampling distribution, which we
denote by kdof,eff := Nd − NΘ,eff . This task can be intuitively un-
derstood as obtaining an effective number of constrained model
parameters, NΘ,eff , which will be smaller than the raw number of
parameters due to parameter degeneracies and informative pri-
ors that severely restrict the freedom of a parameter to optimise
the model. We investigate a number of estimators for NΘ,eff that
have seen applications in the astrophysical literature:

NΘ,var = 2
[〈(
χ2

)2
〉

Pr(Θ|d)
−

〈
χ2

〉2

Pr(Θ|d)

]
; (44)

NΘ,like =
〈
χ2

〉
Pr(Θ|d)

− χ2
min ; (45)

NΘ,post =
〈
χ2

〉
Pr(Θ|d)

− χ2 (
argmax [Pr(Θ|d)]

)
, (46)

where Pr(Θ|d) denotes the posterior, and angular brackets in-
dicate an average over the posterior distribution (or samples
thereof). Equation (44) was recently proposed by Handley &
Lemos (2019a). The other two expressions are variants of the
basic estimator introduced by Spiegelhalter et al. (2002), which

19 We did not explore algorithms that require function derivatives ex-
plicitly, such as conjugate gradient approaches, but recommend this for
future work.

Table 4. Estimates of the effective number of model parameters.

No. of pars. Cosmic shear All WL
estimate µ σ αp µ σ αp
NΘ 12 - 22.6 18 - 32.8
NΘ,var 3.0 0.5 −4.0 7.4 1.3 −4.3
NΘ,like 5.4 1.3 3.2 10.7 1.8 7.2
NΘ,post 3.5 0.6 −2.3 7.6 1.1 −3.9
none 0 - −12.6 0 - −29.4
NΘ,eff 4.5 0.8 0.4 9.1 1.3 1.6
from 〈χ2〉 4.5 0.6 0.4 8.7 0.4 0.2

Notes. Rows correspond to the total number of parameters varied in the
analysis, NΘ, the three estimators for the effective number of parameters
given in Eqs. (44) to (46), and the assumption of no parameters varied.
We also show our adopted estimator of NΘ,eff = (NΘ,like + NΘ,post)/2 and
the effective number of parameters as inferred from the mean of the
sampling distribution of minimum χ2-values (as in Fig. 18). Columns
denote the central value µ, the standard deviation σ, and the quality of
match to the χ2

min sampling distribution, αp (cf. Eq. 47).

employs a point estimate of χ2 at a point where ‘information
is maximised’. We experiment with the maximum likelihood
(Eq. 45) and the mode of the posterior (Eq. 46; see Raveri & Hu
2019 for a recent application), the former attaining the global
minimum χ2 and the latter more attentive to the informative pri-
ors in our analysis. The posterior mean is a potential alternative
(Kunz et al. 2006), but as it would always yield lower values of
NΘ,eff than Eq. (46), it does not perform favourably in our setup.

Figure 19 shows the performance of the estimators in relation
to Nd−kdof,eff as inferred from the χ2

min sampling distribution (cf.
Fig. 18). Neither estimator is a good match per se. Since NΘ,var
avoids a point estimate, it is the least noisy, but also furthest from
the target. We saw hints that the accuracy of this estimator is
significantly affected by the presence of informative priors. The
other two estimators bracket the target in both scenarios that we
can assess, and since neither is a priori more preferable, we resort
to define our final estimate as their average, NΘ,eff := (NΘ,like +
NΘ,post)/2.

Table 4 quantifies the performance of the various parameter-
number estimates, listing their central values, standard devia-
tions, and the quality measure

αp :=
1 − 2µp

σ̄p
, (47)

with µp and σ̄p the mean of the p-values and its standard er-
ror calculated for a fit of a χ2-distribution with kdof,eff degrees of
freedom to the χ2

min sampling distribution. Since the p-value is
expected to follow a uniform distribution in [0; 1], the expecta-
tion value of µp is 0.5 and its standard error is 1/

√
12, so that the

error on the mean is σ̄p ≈ 0.03 for the 100 realisations that we
use. Smaller absolute values of αp are preferable, with |αp| < 1
indicating that the bias of the estimator is subdominant to its sta-
tistical error.

Our choice of estimator performs well in this regard with
αp . 1, while the other effective parameter number measures
with absolute values of αp between 2 and ∼ 4, and the traditional
NΘ with αp ≈ 23 and 33 for cosmic shear and the combined
weak lensing signals, respectively, are strongly disfavoured. The
latter performs even slightly worse than assuming no free param-
eters at all. However, it should be noted that the NΘ,eff is quite
noisy if determined from a single maximum likelihood estimate,
so that combining at least a few realisations (from mocks or the
posterior predictive distribution) is recommended.
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Fig. 19. Estimates of the effective number of parameters for 100 realisations of a cosmic shear (left) and a joint cosmic shear+GGL (right) data
vector. The estimators defined in Eqs. (44) to (46) are shown in blue, red, and orange, respectively. The dashed lines mark the average over the
realisations. The black line marks the effective number of parameters inferred from the fit of a χ2-distribution to a histogram of χ2

min (cf. Eq. 47).

It is interesting to note that the effective number of con-
strained parameters, defined as the equivalent dimension of a
linear, unconstrained parameter space, is 4.5 for cosmic shear
and approximately 9 for cosmic shear and GGL combined. The
classic approach to goodness of fit, employing NΘ to calculate
the reduced χ2, thus yields a conservative test statistic if model
under-fitting is the primary concern. This means that previous
cosmological analyses with similarly structured model parame-
ter spaces tended to report reduced χ2 values whose expectation
was slightly larger than unity. The change due to using NΘ,eff is
mild for our fiducial KiDS-1000 setup (e.g. 7 % in the reduced χ2

for cosmic shear only), but could become important for a smaller
data vector, for instance if data compression is applied.

6.4. Reporting parameter constraints

In cosmology it is widely accepted to adopt the Bayesian
paradigm for inference and provide the posterior distribution,
usually in the form of samples, as the final deliverable of an ex-
periment. Nonetheless, point estimates of some notion of best-fit
parameter value are indispensable to report headline results or
compare with other experiments at a high level. Moreover, re-
searchers are often interested in the recovery of a ‘true’ underly-
ing value of model parameters. This is perhaps most obvious in
the validation of an analysis pipeline – we seek to demonstrate
that we faithfully recover the input parameters of the mock data.

Usually, point estimates are extracted from the one-
dimensional marginal distributions of the parameters (as this
low-dimensional distribution is well sampled), typically the
mode, median, or mean combined with a credible interval that
encompasses a defined fraction of the highest marginal posterior
density. While these point estimates are unambiguous in their
Bayesian interpretation, they do not necessarily peak at, or even
cover within a given credible interval, the true parameter value20.
In our case this is a consequence of a high-dimensional parame-
ter space with multiple, non-linear near-degeneracies, in addition
to a wide prior with complex shape. Figure 20 displays a per-
tinent example: the strong, banana-shaped degeneracy between
Ωm and σ8 present in the posterior of cosmic shear analyses.

We therefore seek to employ a complementary point estimate
that more accurately reports the global best fit to the data at hand.
The estimate itself is simply the set of parameter values at the
maximum (multivariate) posterior, denoted by MAP (maximum

20 Pathological examples with arbitrarily low marginal posterior density
at the position of the maximum of the joint posterior are straightforward
to construct.

a posteriori):

ΘMAP = argmax
Θ

Pr(Θ|d) , (48)

where argmax returns the argument of a function at which it
attains its maximum. The posterior maximisation advocated in
Sect. 6.3 for determining the goodness of fit also provides a pre-
cise MAP estimate. In practice, we find good recovery of the
global maximum by taking the largest posterior returned by a
suite of tens of optimisation runs, each started at the position of
a different posterior sample with high probability mass.

The decision-theoretical optimal uncertainty estimate for the
MAP is the credible region Hα defined by the highest posterior
density (Robert 2001; see also Price et al. 2020 for another recent
application in cosmology)

Hα = {Θ : Pr(Θ|d) > cα} , (49)

for some threshold cα, depending on α, the posterior mass en-
closed withinHα:∫
Θ∈Hα

dNΘΘ Pr(Θ|d) = α . (50)

For our purposes, the definition Eq. (49) is not practical, how-
ever. We wish to use a credible interval for the MAP estimate
that can be easily compared to established uncertainty estimates,
such as the standard deviation of posterior samples or the highest
posterior density in the marginal distribution of a given parame-
ter (denoted by M-HPD hereafter). While straightforward in one
dimension, this is not the case for the high-dimensional param-
eter spaces we are considering here. For example, while the no-
tion of 1σ credible intervals readily translates to α ≈ 0.68 in one
dimension, this is not the case for higher dimensions, where α
rapidly decreases with increasing number of dimensions.

We propose a hybrid credible interval estimator that is based
on the joint, multi-dimensional highest posterior density region,
but projected onto the marginal posterior of the parameter un-
der consideration (PJ-HPD henceforth, for projected joint high-
est posterior density). For each parameter i, define the credible
interval as the highest posterior density region that encompasses
a fraction α of its marginal posterior mass:

H
marg.
i = {Θ : Pr(Θ|d) > ci} , (51)

such that∫
Θi∈H

marg.
i

dΘi Pr(Θi|d) = α , (52)
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Fig. 20. Illustration of 1σ credible intervals (CI) used to report param-
eter constraints, for a subset of two parameters for an exemplary mock
joint analysis of GGL and cosmic shear with a noiseless data vector. The
standard marginal highest posterior density (M-HPD) CIs are shown in
blue. The marginal posterior mode is shifted with respect to the true
input parameter values (black dashed lines), whereas the maximum a
posteriori (MAP) estimate (orange star) tracks the truth well. The CI we
associate with the MAP is constructed via the PJ-HPD method (red),
using the samples with the highest posterior density (red points). Other
posterior samples are shown as blue points, with point size proportional
to their posterior mass. In the top and right panels the height of the
points and of the MAP indicate their posterior density with arbitrary
scaling.

where Pr(Θi|d) is the posterior of Θi marginalised over all other
parameters of the model. Note that in general this does not cor-
respond to the region of the highest marginal posterior. The PJ-
HPD estimate is guaranteed to include the MAP (since by defi-
nition MAP lies within the highest posterior density region) and
readily allows for the comparison of the credible intervals be-
tween analyses with a different dimension of parameter space. It
is intuitive in that the PJ-HPD reduces to the standard M-HPD
credible interval in one dimension. Moreover, in the case of a
multivariate Gaussian posterior, the PJ-HPD credible interval co-
incides with the marginal 1σ interval.

To compute our PJ-HPD credible intervals, we take the pos-
terior samples

{
Θ̂n

}
for n = 1, 2, . . . from nested sampling chains

or MCMC and sort them in decreasing order of their associated
posterior density, i.e. Pr(Θ̂n+1|d) < Pr(Θ̂n|d). Stepping through
this list, and for each parameter Θi under consideration, we
record the interval of parameter values

[
Θ̂i,a; Θ̂i,b

]
that encom-

passes all parameter values in the posterior samples up to that
point in the list, so Θ̂i,a ≤ Θ̂i,n ≤ Θ̂i,b for all n. Then we mea-
sure the posterior mass within this interval in the marginal dis-

tribution of the parameter,
∫ Θ̂i,b

Θ̂i,a
dΘi Pr(Θi|d). The iteration stops

when the posterior mass in the marginal distribution reaches the
desired level α (i.e. usually 68 % or 95 %) upon which the cor-
responding parameter interval is reported as the PJ-HPD cred-

ible interval21. In practice, due to the sparse sampling of the
highest-density posterior regions, we linearly interpolate the in-
terval boundaries between the samples just before and after the
stopping criterion is reached.

This approach is illustrated in Fig. 20 where we show the
marginal posterior distributions for the parameters Ωm and σ8
out of a total of 18 model parameters sampled in a mock GGL
and weak lensing analysis using a noiseless data vector. The one-
dimensional marginal posterior modes do not coincide with the
input cosmology, whereas the MAP estimate recovers it well
(any residual deviation is due to the limited numerical accuracy
of the optimisation). While the one-dimensional marginal poste-
riors have only moderate skewness, the input parameter values
and the MAP estimate lie outside the 68 % M-HPD credible in-
terval for both Ωm and σ8. In contrast, the PJ-HPD credible in-
terval represents a projection of the highest-density region of the
full multivariate posterior that encompasses the MAP.

As the PJ-HPD interval extends to regions of the marginal
posterior with lower posterior mass, the resulting constraints are
generally slightly less tight than the standard M-HPD credible
interval, especially if the posterior deviates strongly from a nor-
mal distribution. Moreover, as the PJ-HPD interval is determined
from typically tens rather than thousands of posterior samples,
its boundaries also scatter more. We find a scatter of order 10 %
of the 1σ limits for a multivariate Gaussian that has the same
dimension and is sampled with the same number of points as the
posteriors in our analysis.

We adopt the MAP+PJ-HPD approach for reporting con-
straints in the KiDS-1000 analysis alongside the standard
marginal posterior mode and associated M-HPD, and employ it
as the main criterion for validating our inference pipeline; see
Sect. 7. It should be emphasised that any differences between
these two credible intervals are not an indication of bias in the
parameter they report; rather, this occurs if the posterior that they
are applied to deviates from multivariate normality.

Finally, we note that posterior sampling techniques have an
inherent limit on the accuracy of parameter constraints, depen-
dent on the number of samples drawn. For settings that our com-
puting resources can deliver in reasonable time (always yielding
well in excess of 104 posterior samples), we find this limit to be
∼ 0.1σ in the key parameter S 8, corresponding to the scatter of
best-fit values between repeat runs of otherwise identical setups.
This floor sets a stopping criterion for validation, as well as for
the mitigation of systematic effects in our data (as reported in
Giblin et al., in prep.).

7. Validation of the likelihood analysis pipeline

We proceed to validate our inference pipeline by running it on
simulated, noiseless data vectors generated from the same mod-
elling pipeline as used in the inference. The absence of noise
guarantees that the likelihood peaks exactly at the parameter
combination chosen to generate the data vector and is therefore
used to demonstrate recovery of the true underlying model pa-
rameters. Since we centre our fiducial set of model parameters at
the peak of any of the informative Gaussian priors, we also ex-
pect the posterior to peak at the input parameter values. As dis-
cussed in Sect. 6.4, this will in general not hold for marginal pos-

21 We note that the PJ-HPD approach will not necessarily return a sim-
ply connected credible interval in the case of a multimodal posterior,
nor do we expect it to yield meaningful credible intervals in pathologi-
cal cases. However, such outcomes should serve as a stark warning not
to summarise the inference process via a point estimate in the first place.
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Fig. 21. Marginal posterior distributions for a selection of parameters that are significantly constrained by the data, including the derived parameters
Ωm andσ8. Shown are one-dimensional marginals along the diagonal and two-dimensional marginal 1σ and 2σ credible regions elsewhere. Results
are for the reference setup using a noiseless mock data vector of galaxy clustering (GC; red), cosmic shear (CS; green), and the combination of
clustering and the weak lensing probes (‘3×2pt’; blue). Input parameter values are indicated by the black dashed lines, which are excellently
recovered by the MAP estimate (red crosses).

terior distributions, so we consider the multivariate maximum a
posteriori (MAP) estimate.

Runs with noisy data vectors, which have a zero-mean multi-
variate Gaussian noise realisation drawn with the full covariance
added, resemble more closely the processing of the real data. We
repeat our validation tests with ensembles of noisy data but find
our conclusions identical to the noiseless case. We also create
data vectors that systematically deviate from the ideal model in
order to assess biases in parameter constraints caused by effects
not accounted for in the model. The results of these runs are
discussed in the sections where the effect under consideration is
covered.

In Fig. 21 we show one- and two-dimensional marginal pos-
teriors of a subset of the 20 sampling parameters that are signif-
icantly constrained, alongside projections of the MAP. We also
include Ωm and σ8 as derived parameters. The MAP recovers
the input values of all parameters shown in the figure to better
than 1.7 %. The combination of clustering and weak lensing sig-
nals partially lifts the typical degeneracy between Ωm and σ8
for weak lensing-only constraints, through the small clustering
errors on Ωm. This benefits the marginal posterior of the key
parameter S 8 as well since in our analysis setup it is still sig-
nificantly correlated with Ωm. The joint analysis also leads to
visibly tighter and more symmetric marginal posteriors for the
linear bias parameters, whereas improvements on the constraints
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9. CS+GGL, analytic, Buceros
10. CS+GGL, analytic, Egretta
11. CS+GGL, mocks, Buceros
12. CS+GGL, mocks, Egretta

13. CS+GGL, S8 prior, corr δz
14. CS+GGL, S8 prior, uncorr δz
15. CS+GGL, lnAs prior, corr δz
16. CS+GGL, lnAs prior, uncorr δz

S8 ≡ σ8(Ωm/0.3)0.5

Constraints on S8
PJ-HPD
Marginal HPD

Input

Fig. 22. S 8 constraints (1σ) for different compositions of the GGL data
vector in the joint analysis (blue), probe combinations (red), different
covariance models (green), and different prior assumptions (orange).
Standard marginal (M-)HPD credible intervals are shown as dot-dashed
lines; PJ-HPD intervals as solid lines. The grey dashed line indicates the
input value of S 8. The corresponding interval widths, as well as expla-
nations of the case labels, are given in Table 5. The M-HPD intervals are
generally shifted to S 8 values lower than the input; see text and Sect. 6.4
for a discussion.

on intrinsic alignments, baryon feedback, and the calibration of
the redshift distributions remain marginal.

Figure 22 and Table 5 provide a more quantitative overview
of the S 8 constraints for the various probe combinations and
analysis setups that we consider (identified by their ID). All
credible intervals are extracted from a histogram of the posterior
samples smoothed with Gaussian kernel density estimation, with
the variance determined by Silverman’s rule (Silverman 1986).
Both M-HPD and PJ-HPD credible intervals are provided; we
use the former to compare S 8 constraints with previous mea-
surements (see below) and recommend the latter to assess the
recovery of the input S 8.

The 1σ M-HPD credible interval for cosmic shear alone is
20 % smaller than the KV450 constraint, while the fiducial joint
analysis halves the statistical uncertainty on S 8 with respect to
KV450 (which corresponds to 29 % smaller errors than the cor-
responding BOSS+KV450 constraints by Tröster et al. 2020).
The marginal 1σ credible intervals shrink by 10 % (18 %) for
Ωm over BOSS+KV450 (BOSS alone), and by 31 % (40 %) for
AIA over BOSS+KV450 (KV450 alone). The precision on linear
and non-linear galaxy bias parameters increases by roughly 30 %
on most parameters with respect to BOSS only, but most of the

Table 5. Validation tests and resulting S 8 marginal credible intervals.

ID Setup M-HPD PJ-HPD
1 3×2pt, reference 0.037 0.038
2 3×2pt, no GGL overlap 0.037 0.038
3 3×2pt, fiducial 0.037 0.037
4 CS+GGL, reference 0.056 0.062
5 CS+GC, reference 0.036 0.039
6 GGL+GC, reference 0.079 0.108
7 CS, reference 0.061 0.061
8 GC, reference 0.090 0.111
9 CS+GGL, analytic, Buceros 0.054 0.072
10 CS+GGL, analytic, Egretta 0.056 0.062
11 CS+GGL, mocks, Buceros 0.054 0.057
12 CS+GGL, mocks, Egretta 0.057 0.066
13 CS+GGL, S 8 prior, corr δz 0.056 0.062
14 CS+GGL, S 8 prior, uncorr δz 0.057 0.074
15 CS+GGL, ln As prior, corr δz 0.047 0.054
16 CS+GGL, ln As prior, uncorr δz 0.045 0.047

Notes. Setups correspond to those shown in Fig. 22. The reference in-
cludes a more progressive selection of scales in the GGL data vector
(Bands 1-7) than our fiducial analysis. GC corresponds to galaxy clus-
tering, CS to cosmic shear, and ‘3×2pt’ to the combination of all probes.
Analytic/mocks and Buceros/Egretta indicates analytic and simulated
covariances with simple or more realistic survey and sample properties.
The choice of an (un)correlated prior on the source redshift distribu-
tion shifts is labelled as (un)corr δz. GGL signals with strong overlap of
the lens and source redshift distributions have been removed in the ‘no
GGL overlap’ case. Note that setup 4 is identical to 13. The two right-
most columns give the width of the 1σ credible intervals (CI) for the
standard M-HPD credible interval and the PJ-HPD method, i.e. twice
the standard deviation if the posterior was Gaussian.

added constraining power was already achieved in the Tröster
et al. (2020) analysis, and non-linear bias constraints are still too
weak for informative conclusions on galaxy physics.

The constraints on the key parameters S 8 and Ωm are high-
lighted in Fig. 23 and put into context with earlier analyses based
on 450 deg2 of KiDS data (Wright et al. 2020b; Tröster et al.
2020). Both the cosmic shear-only and joint analysis cases are
shown, for the reference setup with IDs 7 and 1, respectively. It
is evident that in the latter case the tension with Planck results
will increase if the best-fit remains close to the Tröster et al.
(2020) values, with the S 8 marginal constraints now on par with
those originating from the CMB.

Naively, one might expect the KiDS-only parameter errors
to decrease by a factor

√
2 because the KiDS-1000 survey area

has doubled with respect to earlier KiDS analyses. However,
this does not take into account the highly non-linear parameter
dependencies, updated priors, or covariance contributions that
do not scale inversely with area, in particular the multiplicative
shear bias uncertainty. Most importantly in the cosmic shear case
though, for our choices of two-point statistic and scales included
in the analysis S 8 is not an optimal summary parameter of the
constraining power of the data, as significant correlations with
Ωm remain (see Fig. 23). While a power-law index of 0.5 in the
S 8 definition was close to optimal for the ξ± data analysed in
KV450, we find that larger values of ∼ 0.6 for the index cap-
ture the degeneracy between Ωm and σ8 better for band powers
(this will be explored further in Asgari et al., in prep.). The gain
in constraining power for an adjusted definition of S 8 is larger
and consistent with the naive

√
2 expectation, indicating that the
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Fig. 23. Predicted KiDS-1000 constraints (reference setup, IDs 1 and 7) on the key cosmological parameters Ωm and S 8 in relation to previous
KiDS results (Wright et al. 2020b; Tröster et al. 2020) and the Planck Collaboration et al. (2018) primary CMB constraints, as indicated in the
legends. The left panel shows results for cosmic shear only; the right panel those for the joint analysis of BOSS clustering, galaxy-galaxy lensing
between BOSS/2dFLenS and KiDS-1000, and cosmic shear. The star in each panel marks the fiducial cosmology assumed for the forecast. Note
the different axis scales in the two panels.

systematic error treatment and the analysis choices have actually
evolved in tandem with the statistical power of KiDS-1000.

It is evident that GGL does not add significant constraints to
either clustering or cosmic shear, and its addition to their com-
bination has no effect at all on S 8 (cf. Fig. 22 and Table 5, IDs
1 and 4–8). This somewhat sobering finding is caused by the di-
lution of constraining power due to almost doubling the number
of parameters when adding GGL to cosmic shear (by introduc-
ing galaxy bias), and due to the more than an order of magnitude
larger sky area available for clustering measurements. Accord-
ingly, no palpable difference is seen when cutting the GGL data
vector to our conservative, fiducial setup that removes highly
non-linear scales and when removing bin combinations with a
large fraction of source galaxies in front of lenses (IDs 2,3; see
Sects. 2.2 and 3.3). We use the more progressive GGL setting
that includes scales with k . 1 h Mpc−1 (Bands 1–7) for other
comparisons to increase chances to detect any issues with the
GGL model during validation (hence referred to as the refer-
ence). We also refrain from showing GGL-only results as we
find that Multinest struggles to explore the resulting highly de-
generate 18-dimensional posterior, producing unreliable results.

Choosing either an analytic or mock-derived covariance
(based on 5000 realisations), with a simple rectangular footprint
and uniformly distributed galaxies (Buceros; see Sect. 4.2 for de-
tails about the mock setup) or else the realistic survey mask and
depth variations (Egretta), has no significant impact on any of
the marginal parameter constraints (cf. IDs 9–12)22. This high-
22 For these analyses we kept the δz parameter fixed at 0 to speed up the
runs and did not include the uncertainty due to multiplicative shear bias

lights that, despite the significant patterns of deviations between
the covariance approaches and modelling choices analysed in
Sect. 5.3, the weak lensing error modelling is robust at the level
of constraining power by KiDS-1000 (or indeed the full KiDS
survey, which will add another 35 % of area). It will be interest-
ing to explore in future work how the limitations identified in
the covariance model affect next-generation surveys that cover
substantial fractions of the sky, balancing overall tighter accu-
racy requirements due to the increased constraining power with
a reduced sensitivity to survey boundaries as coverage becomes
more contiguous.

The S 8 constraints are also stable under changes from an un-
correlated prior on the source redshift distribution shifts δz, to
the correlated prior in Fig. 7, as well as under the choice of
parametrisation of the normalisation of the matter power spec-
trum, where we compare ln As with S 8 (cf. IDs 13–16). Our
choice of using S 8 directly as the sampling parameter with an as-
sociated wide top-hat prior leads to more conservative marginal
S 8 constraints, with the 1σ interval extended by 19 % mostly
towards lower values. We also consider an additional parame-
ter ηIA that allows for extra freedom in the redshift scaling of
the IA signals (cf. Eq. 16), imposing a wide top-hat prior in the
range ±5. For a cosmic shear-only analysis this has negligible
impact on the cosmological parameter constraints, widening the
marginal S 8 posterior by 3 %.

Figure 22 illustrates that the standard M-HPD credible inter-
vals are all skewed towards lower values of S 8 than the input.

calibration to highlight the differences in the cosmological covariance
contributions.
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The displacement is stronger for probe combinations that have
weaker constraints on S 8 and leave more pronounced degenera-
cies in their posterior, which is the case for GGL in combination
with either clustering or cosmic shear (IDs 4 and 6). As a con-
sequence, the input S 8 values lies outside the 1σ interval for the
cosmic shear+GGL case while the shift is mild in the cosmic
shear only (ID 7) and joint clustering and weak lensing cases
(e.g. ID 1). The PJ-HPD credible intervals encompass the input
value by design (however, it can be right at the interval bound-
ary, or just beyond due to numerical inaccuracy; cf. ID 16) and
are generally less displaced but also wider than the M-HPD in-
tervals. This increase in width is minor in the well-constrained
cases (negligible for cosmic shear only and 3 % for the joint anal-
ysis), but significant in the probe combinations with strong shifts
(e.g. 11 % for cosmic shear+GGL). Larger fluctuations in the PJ-
HPD intervals widths are also discernible, e.g. for the runs with
different covariance models (IDs 9–12) where the standard ap-
proach yields nearly identical constraints.

We note that, for an assessment of consistency with Planck
constraints, the Planck likelihood will need to be sampled in
S 8 as well. The impact of the choice of sampling parameter
and the displacement of one-dimensional marginal constraints
away from the underlying best-fit value highlight that discrepan-
cies between probes should be interpreted with care if quantified
solely in the marginal distributions, as is widespread practice.
Tension is assessed most meaningfully in the shared parame-
ter space of the full posterior distributions. Bayesian approaches
to perform such consistency tests exist (Köhlinger et al. 2019).
We advocate the use of a summary measure of tension that min-
imises the sensitivity to prior choices (see e.g. Handley & Lemos
2019b; Lemos et al. 2019).

That said, we find no measurable difference between M-HPD
and PJ-HPD S 8 credible intervals for Planck (as expected since
the cosmological posterior is close to Gaussian), and small shifts
for KV450 in line with the results of Fig. 22, so that the previ-
ously reported S 8 tension between these probes remains valid.
The marginal S 8 posterior for the joint analysis of clustering and
weak lensing peaks close to the input and is well approximated
by a Gaussian (cf. Fig. 23), so direct comparison with Planck
may be possible for this case as well.

8. Summary and conclusions

In this work we presented the methodology for a joint analysis of
spectroscopic galaxy clustering from BOSS and of weak gravi-
tational lensing from the fourth data release of the Kilo-Degree
Survey (KiDS-1000). This includes a detailed investigation of
the analysis choices from the galaxy catalogue level onwards to
cosmological inference, taking into account the tightening of re-
quirements due to the doubled survey area with respect to earlier
KiDS cosmological analyses. We summarise here the major up-
dates since the cosmic shear analysis by Hildebrandt et al. (2020,
KV450) and the BOSS+KV450 analysis by Tröster et al. (2020).

Galaxy-galaxy lensing (GGL), the cross-correlation between
lens galaxy positions and source galaxy ellipticities, is now in-
corporated into the joint analysis, using lens galaxies from both
the BOSS and 2dFLenS surveys, which cover 85 % of the KiDS-
1000 area. However, we found that it adds negligible amounts of
cosmological constraining power in KiDS-1000 mainly because
of an order of magnitude larger survey area available for cluster-
ing. Nonetheless, we identified a number of issues that will come
to the fore in analyses where clustering, cosmic shear, and GGL
are measured over the same footprint: our hybrid matter-galaxy
power spectrum model blends perturbative and non-perturbative

approaches customary in clustering and weak lensing, respec-
tively, but a satisfactory solution for the deeply non-linear regime
remains to be found (Sect. 2.2); magnification bias is strongest in
the GGL signals and requires dedicated simulations if lens sam-
ples deviate from pure flux-limit selection (Appendix B); and
widely used idealisations in covariance models related to survey
geometry fail most prominently in the GGL part (Sect. 5.3).

Weak lensing signals are consistently modelled using band
powers derived from correlation function measurements that
make them insensitive to survey geometry (Sects. 2.4 and 2.5).
As opposed to earlier KiDS studies, we now fully incorpo-
rate mode mixing in the modelling of both signals and covari-
ances, but we find that on scales that we can model accurately
(` ∈ [100, 1500]) the recovery of the underlying angular power
spectra is highly accurate. The limiting systematic in the cosmo-
logical modelling is the knowledge of the highly non-linear mat-
ter power spectrum (Sect. 2.1), where current fit formulae and
emulators disagree at the few per-cent level (cf. the comparison
in Euclid Collaboration et al. 2019).

The main source of uncertainty in the modelling of weak
lensing, however, remains the intrinsic alignment of galaxies
(Sect. 2.4). Direct observations of the effect in galaxy samples
typically used for weak lensing do not yet exist, and our phys-
ical understanding of alignment mechanisms is still too poor to
create predictive ab-initio simulations. In the absence of clear
guidance we are thus required to strike a balance between a sim-
ple model that risks not capturing the complexity in the data and
a flexible model that risks providing catch-all parameters in the
likelihood analysis among which other residual systematics, no-
tably those related to the source redshift distributions, can hide.

Recent advances in selecting source galaxy samples whose
redshift distribution can be more reliably calibrated (Wright
et al. 2020a) have been adopted and the corresponding calibra-
tion uncertainties fully propagated into the likelihood analysis
(Sect. 3.3). We also clarify how the multiplicative shear bias
calibration affects estimators and derived survey characteristics
critical for covariance calculation (Appendix C), and we take a
more nuanced approach in quantifying and propagating the un-
certainty in this calibration (Sect. 3.4).

We build a dedicated suite of more than 20 000 mocks to
perform an unprecedentedly detailed assessment of our analytic
covariance models (Sects. 4 and 5). KiDS-1000 cosmological
constraints are demonstrated to remain unchanged when using
an analytic or mock-based covariance (Sect. 7). We show that
the analytic model is capable of capturing the impact of survey
geometry and spatial variations in survey depth well and identify
the mixed noise-sample variance contribution as the main culprit
behind residual differences. We confirm recent work by Heyden-
reich et al. (2020) in showing that variable depth biases two-
point weak lensing statistics at the few per-cent level (Sect. 4.3),
which has negligible impact for KiDS-1000, but will challenge
widespread analysis approaches that rely on spatial homogeneity
of the galaxy sample in future applications.

We explicitly map the complex prior space of cosmic shear
cosmological analyses (Sect. 6.1), which serves to explain the
significant prior dependence of results (e.g. Joudaki et al. 2020).
That said, the key parameter S 8 is robust to different choices of
prior, especially the upper tail of its marginal posterior which
directly impacts on tension measurements with Planck. In con-
trast to previous analyses, we directly sample in S 8, which al-
lows us to impose a wide top-hat, and thus safely uninformative,
prior. We employ our mock suite to demonstrate that the weak
lensing band power likelihood is consistent with being Gaussian
(whereas there is evidence for non-Gaussianity for correlation

Article number, page 30 of 44



Joachimi, Lin, Asgari, Tröster, Heymans et al.: KiDS-1000 Methodology

functions on large scales) and that the χ2 goodness of fit sam-
pling distribution is indeed χ2-distributed to good approxima-
tion (Sects. 6.2 and 6.3). However, significant deviations from
the textbook approach are seen for the degrees of freedom, or
equivalently the effective number of model parameters, and we
discuss and advocate alternative estimators.

It is demonstrated that the KiDS-1000 likelihood analysis
pipeline recovers the input parameters of a mock data vector with
per-cent level accuracy (Sect. 7), using a dedicated maximum a
posteriori (MAP) estimate of the multivariate posterior density.
Experiments have hitherto typically reported the marginal mean
or mode of the S 8 posterior, which we show to be significantly
shifted towards lower values from the truth, beyond 1σ for some
probe combinations. This is not indicative of any biases in the in-
ference process, but simply a consequence of a large parameter
space with multiple non-linear degeneracies and complex prior
volume. Tension assessment in S 8 between experiments should
therefore proceed with caution if based on its marginal posterior.
We develop an alternative technique that produces a credible in-
terval from the multivariate highest posterior density (PJ-HPD)
which is guaranteed to encompass the MAP estimate (Sect. 6.4).

With the fiducial KiDS-1000 analysis setup, we can ex-
pect cosmic shear-only S 8 constraints that are 20 % tighter than
KV450, and joint clustering and weak lensing constraints that
improve in S 8 by 29 % over the previous KiDS+BOSS analy-
sis (Sect. 7). These changes undersell the true gain in statistical
power somewhat because, as opposed to the correlation function-
based analysis in KV450, S 8 does not precisely capture the di-
rection transverse to the typical weak lensing Ωm–σ8 degeneracy
any more.

The key scientific question in the KiDS-1000 analysis is the
tentative discrepancy in the amplitude of the matter density fluc-
tuation power spectrum seen between low-redshift large-scale
structure probes and the cosmic microwave background as ob-
served by Planck. Barring the caveats with regards to the inter-
pretation of marginal S 8 constraints and the remaining uncer-
tainties in the modelling of galaxy astrophysics, we confirm our
cosmic shear and GGL analysis pipeline to be robust and find
no known systematic effect in the cosmological and astrophys-
ical modelling or the analysis methodology that would bias S 8
by more than 0.1σ, which is also the numerical accuracy limit
for parameter constraints extracted from our sampled posteriors.
Together with the expected boost in constraining power, KiDS-
1000 thus has the potential to give us a clear steer in the direction
of statistical fluke, unknown systematic, or new physics as the
most likely explanation for the tension. It should be noted that
all methodology investigations presented here were performed
while the real shear catalogues were still blinded.

The on-going efforts in maximising the cosmological in-
formation and fidelity for the current generation of large-scale
structure surveys will feed directly into the forthcoming array of
even more ambitious projects. New surveys that will start within
the coming three or so years include the ESA Euclid mission23

(Laureijs et al. 2011), the Vera C. Rubin Observatory LSST24

(LSST Dark Energy Science Collaboration 2012), as well as the
DESI25 (DESI Collaboration et al. 2016) , 4MOST26 (Richard
et al. 2019), and PFS27 (Takada et al. 2014) surveys. The combi-
nation of spectroscopic ‘lens’ galaxy samples with ‘source’ sam-

23 https://sci.esa.int/euclid
24 Legacy Survey of Space and Time; www.lsst.org
25 Dark Energy Spectroscopic Instrument; www.desi.lbl.gov
26 www.4most.eu
27 Subaru Prime Focus Spectrograph; https://pfs.ipmu.jp

ples used for weak lensing in overlapping sky regions, as pursued
in this work, will remain an important approach to exploiting
these data sets. The tighter accuracy requirements in step with
the vastly increased raw constraining power, the greater depth
of observations, and the sheer number of galaxies observed will
pose a multitude of challenges in the analysis methodology that
are yet to be tackled.
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Appendix A: Additional tables related to signal
modelling

In Table A.1 the fiducial parameter values for our analyses
are shown. Unless stated otherwise, these are adopted through-
out. They generally follow the rounded best-fit values from the
Tröster et al. (2020) analysis of BOSS and KV450. For weakly
constrained parameters we instead choose the centre values of
the flat priors adopted to avoid undue skewness in the prior vol-
ume. Magnification parameters are determined as described in
Appendix B. In addition to the parameters defined in the main
body of the paper, we list the curvature density parameter ΩK ,
the baryon density parameter Ωb, and the dark energy density
parameter ΩΛ.

Table A.2 shows the best-fit coefficients for the galaxy-
matter power spectrum fit function (Eq. 5) introduced in
Sect. 2.2.

Table A.1. Choice of fiducial model parameters.

Parameter Symbol Value
CDM density ωc 0.13
Baryon density ωb 0.0225
Scalar spectral amp. ln(1010As) 2.72
Scalar spectral index ns 0.97
Hubble constant (scaled) h 0.7
Neutrino mass sum

∑
mν 0.06 eV

Curvature density parameter ΩK 0
Matter density parameter Ωm 0.31
Baryon density parameter Ωb 0.046
Dark energy density parameter ΩΛ 0.69
Density fluctuation amp. σ8 0.733
Weak lensing amp. parameter S 8 0.746
Linear galaxy bias b1 {2.1, 2.3}
Quadratic galaxy bias b2 {0.2, 0.5}
Non-local galaxy bias γ−3 {0.9, 0.1}
Virial velocity parameter avir {3.8, 3.0}
Luminosity function slope αmag {1.8, 2.6}
Intrinsic alignment (IA) amp. AIA 0.8
IA redshift dependence ηIA 0
Baryon feedback amp. Abary 2.6
Redshift offset δz {0, 0, 0, 0, 0}

Notes. The first section contains the primordial ΛCDM parameters, the
second a selection of derived cosmological parameters. The third sec-
tion lists astrophysical model parameters, with pairs of values for the
two lens bins in our analysis. The fourth section comprises the parame-
ters varied in the inference related to measurement systematics (one per
source galaxy sample).

Appendix B: Magnification bias

Gravitational lensing not only modifies the ellipticities of galaxy
images but also their apparent size and, therefore, their mea-
sured flux. Since the definition of galaxy samples almost uni-
versally involves flux-dependent quantities, the selection func-
tion acquires a dependency on the foreground large-scale struc-
ture and thus on cosmology. This magnification bias is a second-
order effect for gravitational shear measurements in our source
samples which may need to be accounted for in future weak lens-
ing surveys but which we can safely neglect in KiDS (Schmidt
et al. 2009; Krause & Hirata 2010; Deshpande et al. 2019). How-
ever, it is not a priori clear that magnification bias is negligible

Table A.2. Fit coefficients gmn
α,i of the approximate galaxy-matter power

spectrum model; cf. Eq. (5).

α i polynomial order m n
0 0 0 1 1 0 0 2 1 1 2 0

b2 2 0.56 −0.96 −2.55 0.34 2.08 2.05
1 5.03 −2.71 −5.52 0.89 5.78 3.90
0 −0.45 −2.21 −5.69 0.24 1.49 4.12

γ2 2 −0.03 −0.01 0.88 0.02 0.09 −1.03
1 3.45 −0.34 1.69 0.05 −0.19 −2.47
0 0.26 −1.86 −3.68 0.51 1.50 2.39

γ−3 2 −0.01 0.00 0.81 0.01 0.11 −1.01
1 3.43 −0.32 1.17 0.01 −0.06 −2.06
0 −1.81 −1.56 −3.08 0.49 1.50 1.93

in our lens samples, especially since it directly modulates the
observable, i.e. the number counts of galaxies (see e.g. Duncan
et al. 2014; Unruh et al. 2019; Thiele et al. 2020 for studies of
the impact of magnification bias).

If the samples are purely flux-limited, magnification bias is
readily modelled as a balance of the local dilution/focussing of
solid angle and the modification of apparent magnitudes above
or below the flux limit (Bartelmann & Schneider 2001), result-
ing in expressions of the form given in Eq. (29). The only addi-
tional information required is the logarithmic slope of the sam-
ple’s luminosity function at its faint end, αmag. However, like
other lens samples used for large-scale structure inference jointly
with weak lensing (e.g. Rozo et al. 2016), the two BOSS samples
employed in the KiDS-1000 analysis were derived from a com-
plex multi-band selection function, making closed-form analytic
modelling impossible (cf. Hildebrandt 2016).

In a separate publication (von Wietersheim et al., in prep.)
we develop a simulation-assisted method to determine an effec-
tive luminosity function slope for our BOSS samples that can be
used in the standard expressions. Here, we summarise the salient
points (for details see van den Busch et al., in prep.): we recreate
the LOWZ and CMASS selections in the MICE2 galaxy mocks
(Fosalba et al. 2015a,b; Crocce et al. 2015) over an octant of
the sky. Two variants of the BOSS DR12 low- and high-redshift
samples are then derived, one with the selection applied to ob-
served fluxes that include magnification, and one with the se-
lection based on the hypothetical fluxes if no magnification was
present. From this we can directly measure αmag via the slope
of the linearised relation between the change in galaxy num-
ber counts between the magnified and unmagnified catalogues
and the weak lensing convergence of these objects. The result is
compared to the slope of the magnitude count of the same mock
samples near where the counts begin to drop off, and we identify
a magnitude range within which the slope measurements agree
within the noise.

We find that for both the low- and high-redshift samples i-
band counts yield the best match, driven by the i-band cut of the
original CMASS sample which also substantially contributes to
L1. The latter measurement is repeated on the real BOSS cata-
logues, using the same band and magnitude range as identified
in the mock. This results in

αL1
mag = 1.80 ± 0.15 ; αL2

mag = 2.62 ± 0.28 , (B.1)

where the errors are the standard deviations of the magnitude
counts among the bins selected for the slope measurements.
Rather than pure statistical noise, these errors therefore have
contributions from the limited accuracy of the assumption that
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Fig. B.1. Magnification bias contribution relative to galaxy clustering
(top panel) and the galaxy-galaxy lensing signal (bottom panel) for the
redshift bin combinations indicated in the legends (cf. Table 2). Shown
are angular power spectrum models assuming linear galaxy bias using
the values from Table A.1.

the BOSS-selected samples have a simple power-law scaling in
the magnitude range that we consider.

We propagate these αmag measurements into angular power
spectrum predictions for clustering and galaxy-galaxy sig-
nals; see Fig. B.1. In both lens bins the magnification con-
tributions (dominated by the magnification-clustering cross-
correlation) are at the 0.6 % level and therefore negligible. The
magnification-shear correlation constitutes a few-per cent con-
tribution to the galaxy-galaxy lensing signal and is larger for the
high-redshift source bins. This result prompts us to include the
latter contributions into our modelling, as further described in
Sect. 2.5, but they are too small to justify additional freedom in
the GGL model, so that we keep the αmag parameters fixed at
their best-fit values (Eq. B.1) in the analysis.

Appendix C: Propagation of multiplicative shear
calibration

In this appendix we show how the multiplicative shear calibra-
tion propagates into the correlation function estimators, the sam-
ple redshift distributions, and the sample properties that are in-
puts for the analytic covariance calculation. We will work in the
weak shear limit where γ � 1, and will model our shear estima-
tor, the observed ellipticity εobs, as

εobs = (1 + m)[ε + γ] , (C.1)

working in the absence of additive biases such as PSF contam-
ination. Here the unsheared ellipticity ε is uncorrelated with γ
(i.e. there are no intrinsic alignments), and is a combination of
the true intrinsic ellipticity ε int and random measurement noise.
As noise increases in the imaging, galaxy shapes become in-
creasingly round and our ability to recover the underlying shear
decreases, independently of the shear estimation method used.
We express this inherent fundamental noise bias in terms of a
multiplicative shear calibration correction m that can be seen as

both a correction that provides an unbiased shear estimator, and
also a weight, reflecting that some galaxies carry little shear in-
formation. Regarding this latter point, using the term ‘Respon-
sivity’ or ‘Sensitivity’ to describe (1 + m) is useful (see e.g. Huff
& Mandelbaum 2017; Sheldon & Huff 2017; Zuntz et al. 2018)
as this term quantifies how responsive, or sensitive, the observed
galaxy is to an induced shear. Unfortunately we cannot measure
m precisely for each galaxy and can only determine an estimate
m̂, where

m̂ = m + η . (C.2)

Here, η is a noise term that has zero mean. It can potentially
have a very significant variance such that one should not attempt
to de-bias εobs individually for each galaxy because of the non-
linear propagation of the noise in m̂.

Appendix C.1: Shear correlation function estimator

The typical starting point for measuring cosmic shear are the
two-point correlation function estimators ξ̂± that we could ide-
ally write as

ξ̂±(θ) =

∑
i j wiw j (εobs

it εobs
jt ± ε

obs
i× ε

obs
j× ) ∆i j(θ)∑

i j wiw j (1 + m̂i)(1 + m̂ j) ∆i j(θ)
, (C.3)

where wi is a survey-defined weight that has been assigned to
galaxy i, and the sum is taken over all galaxies i and j. We have
also introduced the selector function ∆i j(θ), which is unity if the
angular separation between galaxies i and j lies within a bin cen-
tred on θ, and zero otherwise. The tangential and cross compo-
nents of the ellipticity (and analogously for the shear) are given
by εt +iε× = −ε e−2iϕ, where ϕ is the polar angle of the separation
vector between the galaxy pair under consideration.

Ignoring contributions from intrinsic galaxy alignments, we
can expand this estimator using Eq. (C.1) as

ξ̂±(θ) =

∑
i j WiW j (εitε jt ± εi×ε j×) ∆i j(θ)∑

i j ŴiŴ j ∆i j(θ)
(C.4)

+

∑
i j WiW j (γitγ jt ± γi×γ j×) ∆i j(θ)∑

i j ŴiŴ j ∆i j(θ)
,

where Wi := wi(1 + mi) and Ŵi := wi(1 + m̂i). The first
term introduces shape noise into our analysis (which we ex-
plore in Sect. C.3). The second term is the true weighted cosmic
shear signal that we wish to extract, where we can see that our
weighted source galaxy distribution now includes the Respon-
sivity, correctly down-weighting galaxies that are unresponsive
to shear (as these typically have negative values for m).

In practice, Eq. C.3 is not the actual estimator that we em-
ploy, as we assume that the weights and responses are uncorre-
lated, which is a good approximation, such that the denominator
becomes

K(θ) :=
∑

i∈I, j∈J

ŴiŴ j ∆i j(θ) (C.5)

≈
(
1 + 〈m〉I

) (
1 + 〈m〉J

) ∑
i∈I, j∈J

wi w j ∆i j(θ) ,

where we have made the samples over which the summations
run explicit, and where 〈m〉I denotes the average of m̂ over all
galaxies in sample I. In taking this sum we reduce the impact of
noise in our calibration correction and recover the average noise-
bias for the population. This correction can however lead to the
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misconception that K(θ) is only to calibrate the average value of
the shear for the galaxy sample. It is, however, also taking into
account the effective down-weighting of unresponsive galaxies
that is an inherent part of the shear estimator εobs.

Appendix C.2: Redshift distribution

From Eq. C.4 we can see that source galaxies used in the cosmic
shear measurement are weighted by W, which is a combination
of the survey-defined weight w and the shear sensitivity 1 + m.
An estimate of the effective redshift distribution of this source
sample is therefore given by

nS(z) =

∑
i Ŵi ni(z)∑

i Ŵi

=

∑
i wi(1 + mi + ηi) ni(z)∑

i wi(1 + mi + ηi)
, (C.6)

where ni(z) is the probability distribution of true redshifts for
an individual galaxy i. We note that in Eq. (C.6) we have made
the common approximation that the redshift PDF of a union of
galaxy subsamples is the weighted sum of the subsample PDFs.
We use Ŵ in Eq. (C.6) as only the noisy weight is accessible
from observations. However, as the m-noise η has zero mean, this
term does not impact the redshift estimation. If m is uncorrelated
with redshift z then this term will cancel in the estimate. As m
is correlated with size and magnitude, however, it is likely to
correlate with z and therefore it is necessary to include it as part
of the weight in the effective redshift distribution.

For the DES Year 1 analysis, Eq. (C.6) corresponds to their
weighted stack of individual galaxy PDFs estimated using BPZ
(Hoyle et al. 2018; see also Sheldon & Huff 2017). In KiDS-
1000, we determine the true redshift zµ per cell µ in the self-
organising map (SOM; see Sect. 3.3) and construct an effective
redshift distribution for the full source sample as

nS(z) =

∑
µ nµ(z)

∑
i∈µ Ŵi∑

i Ŵi

, (C.7)

where the sum
∑

i∈µ runs over all galaxies i in SOM-cell µ, and
nµ(z) = δD(z− zµ), where δD denotes the Dirac delta-distribution.
We construct a multiplicative shear calibration estimate m per
galaxy by applying ‘Method A’ from Fenech Conti et al. (2017)
to the image simulations of Kannawadi et al. (2019). This in-
volves fitting m as a function of signal-to-noise and size (see for
example Fig. 9 in Fenech Conti et al. 2017). Fenech Conti et al.
(2017) find the accuracy of the these m-per galaxy estimates to
be lower than the m-per sample estimates that we adopt in our
fiducial analysis. They are, however, sufficient to determine the
impact of including the Responsivity in our redshift estimates.
We find the difference to be negligible between the redshift dis-
tribution calculated with Eq. (C.7) when incorporating the Re-
sponsivity, or when setting m = 0. This is because m is typically
small for the self-calibrating lensfit approach that KiDS takes,
but this need not be the case, e.g. for metacalibration approaches.

Appendix C.3: Shape noise estimates

Shape noise, quantified via σε , is often defined in the literature
as ‘the intrinsic ellipticity dispersion’ and is a crucial ingredient
into the analytical covariance calculation. The definition needs to
be reconsidered for the case of a weighted and calibrated ellip-
ticity distribution. Schneider et al. (2002a) derive the analytical
covariance for ξ±. In their Equation (13), σε is defined as〈
εobs

it εobs
jt + εobs

i× ε
obs
j×

〉
= σ2

ε δi j + ξ+(|θi − θ j|) , (C.8)

where θi denotes the angular position vector of galaxy i. This
means that the effective σε for our shear correlation function es-
timator is equal to ξ̂+(θ = 0) in a universe with vanishing grav-
itational shear (for zero lag, δi j = 1 in Eq. C.8). Applying this
condition to Eq. (C.3), the shape noise can therefore be estimated
from our weighted and calibrated ellipticity distribution as

σ2
ε = K−1(0)

∑
i

w2
i

[
(εobs

i1 )2 + (εobs
i2 )2

]
, (C.9)

where we have approximated the intrinsic ellipticity dispersion
by the observed ellipticity dispersion as |γ| � 1, i.e. Wε ≈ wεobs.
In evaluating K(0) we use the limit ∆i j(0) = δi j. The variances
of the ellipticities are calculated after the additive bias correction
has been applied (as discussed in Giblin et al., in prep.).

Appendix C.4: Effective galaxy pair count and number
density

Since sample variance contributions are independent of how
densely the shear field is sampled, we can restrict ourselves to
the shape noise contribution to the correlation function covari-
ance. This term is readily isolated by once again considering the
case of vanishing gravitational shear. In this limit the covariances
of ξ+ and ξ− are identical and only have a diagonal contribution.
Schneider et al. (2002a) derived a general expression for this
covariance term, which we can adapt to our estimator (C.3) as
follows:

CovG,sn
[
ξ+(θ); ξ+(θ)

]
= CovG,sn

[
ξ−(θ); ξ−(θ)

]
= K−2(θ)

∑
i jkl

WiW jWkWl ∆i j(θ) ∆kl(θ)

×
〈
εitε jtεktεlt + εitε jtεk×εl× + εi×ε j×εktεlt + εi×ε j×εk×εl×

〉
=

σ4
ε

K2(θ)

∑
i j

W2
i W2

j ∆i j(θ) . (C.10)

We note that off-diagonal terms correlating ξ± at different an-
gular separations vanish, and that CovG,sn

[
ξ+(θ); ξ−(θ)

]
= 0.

In the absence of weighting and calibration this expression re-
duces to the intuitive form CovG,sn

[
ξ±(θ); ξ±(θ)

]
= σ4

ε/Npair(θ),
where Npair(θ) is the number of pairs among the galaxy sam-
ples correlated and within the survey footprint with a separation
that falls into the bin centred on θ. Retaining this expression, we
can define an effective number of galaxy pairs in the presence of
weights and calibration as

Npair(θ) :=
K2(θ)∑

i j W2
i W2

j ∆i j(θ)
≈

K2(θ)∑
i j Ŵ2

i Ŵ2
j ∆i j(θ)

, (C.11)

such that the calibration correction carries through correctly into
the covariance matrix when we measure this effective number of
pairs directly from the data. While the first equality in Eq. (C.11)
is exact, the second one replaces the unobservable noiseless W
with the observable quantity Ŵ and is in practice used on the
data. The effective number density then follows by setting ∆i j ≡

1, i.e. by calculating all galaxy pairs in the survey, and using the
relation N total

pair = A2
eff

n2
eff,S to obtain:

neff,S =
1

Aeff

(
∑

i Ŵi)2∑
i W2

i

≈
1

Aeff

(
∑

i Ŵi)2∑
i Ŵ2

i

, (C.12)
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where Aeff is the effective survey area further discussed in Ap-
pendix E. Again, the second equality is an approximative expres-
sion that is applied to the data. The expressions above generalise
to the tomographic case in a straightforward manner.

The results for σε , Npair, and neff derived here reduce to the
expressions used in previous analyses (Heymans et al. 2012;
Kuijken et al. 2015) for unit Responsivity. The changes in these
quantities due to multiplicative shear calibration are small in
our analysis because m is typically small for the self-calibrating
lensfit approach that KiDS takes, but this need not be the case,
e.g. for metacalibration approaches.

Appendix C.5: Tangential shear case

We repeat the steps above for the case of galaxy-galaxy lens-
ing, using the tangential shear estimator of Eq. (38). Requir-
ing that the noise term in the diagonal elements of the covari-
ance of this estimator is rendered as CovG,sn

[
〈γt〉 (θ); 〈γt〉 (θ)

]
=

σ2
ε/(2NGGL

pair ), one obtains

NGGL
pair (θ) :=

(∑
i∈R, j∈S wiŴ j ∆i j(θ)

)2

N2
rnd

(∑
i∈L, j∈S w2

i W2
j ∆i j(θ)

) , (C.13)

where S , L, and R denote the source, lens, and random cata-
logue, respectively. We again set ∆i j ≡ 1 and identify neff,S
as given by Eq. (C.12) in the resulting expression. Assuming
NGGL,total

pair = A2
eff

neff,Sneff,L, we arrive at the following equation
for the effective number density of lens galaxies:

neff,L =
1

Aeff

(∑
i∈R wi

)2

N2
rnd

(∑
i∈L w2

i

) =
1

Aeff

(∑
i∈L wi

)2(∑
i∈L w2

i

) , (C.14)

i.e. the expression is fully analogous to the one for neff,S.

Appendix D: Analysis of covariance models

This section covers additional topics in covariance modelling;
see Sect. 5 for an overview. The construction of the analytic
model employed here is detailed in Appendix E.

Appendix D.1: Clustering - weak lensing cross-variance

To demonstrate that the clustering and weak lensing signals are
uncorrelated and thus statistically independent (in the Gaussian
likelihood approximation), we create 4000 mock realisations
with the full BOSS footprint, KiDS, and their overlap. We do
not simulate 2dFLenS lens galaxies as the additional GGL mea-
surement outside the area from which clustering was obtained
only acts to further reduce correlations. The current Flask imple-
mentation does not allow us to incorporate line-of-sight modes
so that we cannot model the redshift-space correlation function.
However, since weak lensing only depends on transverse modes
of the density distribution, it is sufficient to consider the pro-
jected angular correlation function,

w(i j)(θ) =

∫ ∞

0

d` `
2π

J0(`θ) C(i j)
gg (`) , (D.1)

where Cgg is the angular galaxy power spectrum. The correlation
function is measured with the standard Landy-Szalay estimator
(Landy & Szalay 1993), along with our fiducial band power es-
timates for the weak lensing signals.

L1
-L

1
L1

-L
2

L2
-L

2
L1

-S
1

L1
-S

2
L1

-S
3

L1
-S

4
L1

-S
5

L2
-S

1
L2

-S
2

L2
-S

3
L2

-S
4

L2
-S

5
S1

-S
1

S1
-S

2
S1

-S
3

S1
-S

4
S1

-S
5

S2
-S

2
S2

-S
3

S2
-S

4
S2

-S
5

S3
-S

3
S3

-S
4

S3
-S

5
S4

-S
4

S4
-S

5
S5

-S
5

   w                  Cnε, `                             CE, `            Mocks

L1-L1
L1-L2
L2-L2
L1-S1
L1-S2
L1-S3
L1-S4
L1-S5
L2-S1
L2-S2
L2-S3
L2-S4
L2-S5
S1-S1
S1-S2
S1-S3
S1-S4
S1-S5
S2-S2
S2-S3
S2-S4
S2-S5
S3-S3
S3-S4
S3-S5
S4-S4
S4-S5
S5-S55%

 th
re

sh
old

    
C E

,`
    

    
    

    
    

    
    

 C n
ε,
`
    

    
    

    
  w

   

-0.4 -0.2 0 0.2 0.4
Correlation coefficients

Fig. D.1. Correlation coefficient matrix for the angular galaxy cluster-
ing correlation function w, the galaxy-galaxy lensing band power Cnε ,
and the cosmic shear band power CE calculated over the full BOSS
and KiDS-1000 footprints. The upper triangle shows the correlation
matrix as calculated from the mocks; the lower triangle indicates cor-
relation coefficients above ±5 %. The black rectangles highlight the
cross-correlations between galaxy clustering and weak lensing statis-
tics. These are negligible, with few elements fluctuating above the 5 %
threshold.

Figure D.1 shows the resulting correlation matrix. Cross-
correlations between the clustering correlation functions and any
of the weak lensing signals only very rarely exceeds 0.05, and
this is largely due to residual noise in the mock covariance. We
can therefore safely assume that the clustering and weak lens-
ing parts of the data vector are independent. This trend is driven
by the fact that only 3 % of the BOSS survey area overlaps with
KiDS and thus with the weak lensing measurements. Joint clus-
tering and weak lensing measurements over the same sky area
do produce significant cross-correlations (e.g. Krause & Eifler
2017) and therefore demand for a more homogeneous approach
to summary statistics and their covariance than taken in this
work.

Appendix D.2: Correlation function covariance

It is instructive to study the covariance models of the weak lens-
ing correlation functions as an intermediate step to calculating
band power covariance and as a view that isolates any deviations
that are localised in configuration space. We compare analytic
and mock covariances in the Buceros (simple rectangular sur-
vey geometry, uniform galaxy distributions), Cygnus (realistic
survey footprints, uniform galaxy distributions), and Egretta (re-
alistic footprint and spatially varying galaxy distributions) cases
for tangential shear and the cosmic shear correlation functions ξ±
measured in nine angular bins spread equidistantly in the log be-
tween 0.5 arcmin and 300 arcmin (i.e. the same scheme as used
in KV450). In these comparisons the GGL estimator was ap-
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Fig. D.2. Relative difference between the square root of the diago-
nals of the mock and analytic covariances of the weak lensing corre-
lation functions, i.e. the real-space analogue of Fig. 13. The top two
rows show GGL signals, the centre three rows ξ+, and the bottom three
rows ξ−, with bin combinations indicated in the panels. Three cases are
shown: spatially uniform galaxy samples in a simple survey footprint
(Buceros, green), spatially uniform galaxy samples in the realistic foot-
prints (Cygnus, blue), and spatially varying samples in the realistic foot-
prints (Egretta, red). GGL signals that are not used in the analysis have
been greyed out.

plied to the mock catalogues with 100 times more random points
than lens galaxies in order to suppress any residual contributions
of terms that the random correction of 〈γt〉 removes (see Ap-
pendix E for details).

Figure D.2 shows the ratio of the square root of the diago-
nal elements of the mock and analytic covariances for the three
survey configurations. Off-diagonals in the form of correlation
coefficients are shown in Fig. D.3 for the most realistic Egretta
case (the Fourier space analogues of these plots are Figs. 13
and 14). We generally find very good agreement between the
mocks and the analytic approach in all cases. Significant devia-
tions are limited to the largest-scale data point in ξ± and to scales
larger than 10 arcmin for GGL, with the mock standard devi-
ations up to 20 % larger. This under-prediction by the analytic
model is because its Gaussian sample variance terms ignore sur-
vey boundary effects which enhance them by up to a factor two
when switching from a simple rectangular footprint to the realis-
tic KiDS survey geometry (Buceros to Cygnus)28. Variable depth

28 There is a further complication not included in the analytic model
in that the GGL correlations include lenses beyond the limits of the
source sample footprint. We employ the lens survey area in the analytic

effects (Cygnus to Egretta) have negligible impact on the cosmic
shear covariance beyond modifications to the galaxy pair counts,
but cause a small additional increase in the GGL covariance.

To gain a better understanding of which covariance terms
drive certain discrepancies, we create two special cases that are
readily realised in both the analytic and simulation approaches.
First, we remove all shear signals, which leaves us with only
noise terms and, in the GGL case, with mixed terms that com-
bine clustering with shape noise (referred to as the ‘no-shear’
case). Secondly, we set σε = 0 which removes all terms con-
taining shape noise but keeps all Gaussian and non-Gaussian
sample variance contributions, plus GGL mixed terms involv-
ing clustering shot noise (referred to as the ‘signal-only’case).
As discussed in Sect. 5.3, we do not expect the non-Gaussian
covariance terms to match quantitatively between mock and an-
alytic model. Hence, instead of directly comparing the two in
the signal-only case, we investigate how well the two approaches
agree in the changes between the different survey configurations.

The no-shear case in Fig. D.4 demonstrates excellent agree-
ment in the cosmic shear noise terms; using the galaxy pair
counts of the measurements in the analytic covariance correctly
accounts for survey geometry and variable depth. The large-scale
deviations are however still present in the GGL covariance and
are caused by the residual mixed noise-sample variance con-
tribution that in our model disregards survey boundary effects.
These mixed terms, together with the Gaussian sample variance
term which is of similar size (cf. Fig. 10), also drive the devia-
tions seen in Fig. D.2. We note in passing that using Eq. (C.13)
for the calculation of the GGL noise is critical for the high ac-
curacy shown here. A naive simple pair count of lens and source
galaxy pairs leads to 25 % difference in the standard deviations
on small angular scales when the source and lens bins have sub-
stantial overlap.

For the interpretation of the signal-only case in Fig. D.5 it is
helpful to bear in mind that the only contributing analytic covari-
ance term that is sensitive to survey geometry is the super-sample
covariance (SSC). As SSC is suppressed in GGL, the analytic
model predicts no geometry dependency, which the mock result
suggests is plausible above ca. 10 arcmin. Below however, non-
Gaussian contributions are seen to cause excess covariance in the
Egretta case, but it remains unclear to what degree this effect is
influenced by the lognormal and linear galaxy bias assumptions,
as well as the resolution limit, in our simulations. As regards the
cosmic shear signals, mocks and analytic model generally agree
fairly well in that the signal-only covariance is suppressed in the
Egretta relative to the Buceros case29, while on large scales dis-
crepancies occur, again due to the neglect of survey geometry
effects in the Gaussian sample variance. It is interesting to note
that even in the signal-only case the differences in the standard
deviation between analytic and mock covariances never exceed
30 %.

Patterns in the correlation structure away from the diagonal
are well represented in the analytic covariance, with some small

calculation of the sample variance terms, but the effective survey area
is somewhat reduced because sources with gravitational shear estimates
are not available over the full lens survey area. We estimate this to lead
to a 2−3 % under-prediction by the analytic model of the GGL standard
deviation on large scales, which can therefore not be the main reason
behind the discrepancies seen.
29 While having the same total area, the Egretta footprint is spread out
over a larger fraction of the sky, primarily due the separation between
KiDS-N and KiDS-S. Therefore, the Egretta footprint is able to ac-
commodate larger modes of the large-scale matter density distribution,
thereby decreasing super-sample covariance.
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Fig. D.3. Comparison of the correlation coeffi-
cients in the weak lensing correlation function
covariance between the mocks (lower left) and
analytic approach (upper right) in the Egretta
setup. As indicated in the labels, large blocks
correspond to the correlation functions 〈γt〉, ξ+,
and ξ−, while small blocks correspond to the to-
mographic bin combinations.

deviations discernible that, analogously to the Fourier space
case, occur in terms dominated by Gaussian covariance contri-
butions, but interestingly with a reversed sign, i.e. for correlation
functions the analytic correlation coefficients are larger than their
mock counterparts (compare Figs. D.3 and 14). For complete-
ness, we also plot the relative difference between the Egretta and
Buceros cases for the full covariance in Fig. D.6 (the analogue of
Fig. 12). This figure confirms that the analytic covariance model
overall performs very well in recovering the relevant effects of
survey geometry and spatial variations. The small residual dis-
crepancies, primarily on large angular scales, mirror those dis-
cussed in Fig. D.2.

Appendix D.3: Band power covariance

Here we provide additional band power covariance comparison
plots that further illustrate the fidelity and importance of indi-
vidual contributions to the covariance model: Fig. D.7 compares
the mock and analytic approaches in the no-shear case; Fig. D.8
shows the relative difference between the Egretta and Buceros
setups in the signal-only case. The observed trends are in line
with the configuration space covariances. The noise terms agree
well, whereas the idealised mixed sample variance-noise terms
in the analytic model fail to capture survey geometry effects on
large scales in the GGL covariance. While the analytic model
suggests minimal impact on sample variance in GGL due to sur-
vey geometry and/or variable survey depth, the mocks yield a
10 − 20 % excess standard deviation switching from Buceros to

Egretta, but it is not clear if this is physical or due to limitations
in the mock creation. The trend is reversed for cosmic shear,
driven by SSC. Mocks and analytic prediction agree on the scale
dependence of this effect, with the latter slightly over-predicting
its magnitude.

Figure D.9 highlights the differences in correlation coeffi-
cients between the mock and analytic covariance in the Egretta
case. For the vast majority of coefficients the differences are con-
sistent with scatter due to the finite number of mock realisations.
Systematic differences lie in the very thin tails, mostly at the pos-
itive end, indicating a larger mock value. These typically occur
in the cross-variance between cosmic shear and GGL and are
dominated by the mixed term.
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Fig. D.4. Same as Fig. D.2, but with all weak lensing signals removed
from both the analytic and mock covariances, i.e. only noise and sample
variance due to clustering contribute.

Fig. D.5. Relative difference between the square root of the diagonals
in the Egretta (realistic mask and depth variations) and Buceros (rectan-
gular mask, uniform depth) covariances of the weak lensing correlation
functions, with all shape noise contributions removed (σε = 0). Red
(blue) symbols show results for the mock (analytic) covariance. Bands
around the mock data points indicate the standard error determined from
a jackknife estimate of variance. The top two rows show GGL signals,
the centre three rows ξ+, and the bottom three rows ξ−, with bin combi-
nations indicated in the panels.
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Fig. D.6. Same as Fig. D.5, but for the full covariance with all cosmo-
logical contributions included.
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Fig. D.7. Same as Fig. 13, but with all weak lensing signals removed
from both the analytic and mock covariances, i.e. only noise and sample
variance due to clustering contribute.
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Fig. D.8. Same as Fig. 12, but with all shape noise contributions to the
analytic and mock covariances removed (σε = 0).
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Fig. D.9. Relative difference between the correlation coefficients of the
mock and analytic covariances of the weak lensing band power signals.
Bottom: Histogram of the relative differences marking values beyond
±6 %(±3 %) in dark (light) red and blue. Top: Band power correlation
matrix with elements coloured according to the value of the difference
using the same scheme as in the matrix above.
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Fig. E.1. Noise contributions to a GGL tangential shear
correlation function measurement for BOSS lenses in the
KiDS-1000 overlap (L1) and KiDS high-redshift sources
(S5). Shown is the standard deviation as a function of
angular separation, normalised by the analytic expecta-
tion for uniformly distributed galaxies and neglecting sur-
vey boundaries (blue). The noise term as implemented by
Eq. (E.3) is shown in orange. It is in excellent agreement
with the sample variance obtained from a measurement
with randomised source galaxy shapes and lens galaxy
positions, i.e. removing all sample variance contributions
(purple). Decreasing the oversampling factor of the ran-
dom catalogue from our default of Nrnd = 100 to only five
results in an increased noise level (brown). We also show
the signals when only randomising shapes (red) and when
additionally not subtracting the GGL signal around ran-
dom points in the lens sample (green).

Appendix E: Analytic covariance model

Here we provide a detailed description of our analytic covariance model. This model is used for the cosmic shear and galaxy-
galaxy lensing (GGL) signals only, while the clustering covariance is obtained from the public mocks provided by BOSS. With
our own mocks we demonstrate that the cross-variance between the clustering and lensing observables can safely be neglected. For
completeness we will include the analytic expressions for angular clustering as well. We calculate real-space correlation function
covariances first, and then obtain the band power covariance from these expressions analogously to how the signals are derived.
While in principle it is possible to go directly from angular power spectrum models to band powers following Eqs. (25,32), we
choose this approach for two reasons: first, we already have validated correlation function covariance software in hand from previous
KiDS cosmology analyses (Hildebrandt et al. 2017; van Uitert et al. 2018; Hildebrandt et al. 2020), and secondly, it is easier to
incorporate survey effects in real space, e.g. measured galaxy pair counts.

Appendix E.1: Gaussian real-space covariance

We begin with the Gaussian covariance, i.e. the full contribution if the underlying gravitational lensing convergence and galaxy
number density fields were Gaussian. They consist of a sample variance term (‘sva’), the sampling error due to observing a finite
volume of the Universe, shape noise or shot noise (‘sn’), as we observe galaxies as point processes sampling the underlying fields,
and a mixed term (‘mix’). We opt to derive the real-space sample variance expression from its Fourier counterpart as proposed by
Joachimi et al. (2008), leading to

CovG,sva

[
Ξ

(i j)
µ (θ̄1); Ξ(kl)

ν (θ̄2)
]

=
1

2πAmax,µν

∫ ∞

0
d` ` Kµ(`θ̄1)Kν(`θ̄2)

{
C(ik)(`)C( jl)(`) + C(il)(`)C( jk)(`)

}
, (E.1)

where we introduced a unified notation for correlation functions with the correspondence {w, 〈γt〉 , ξ+, ξ−} ↔ {Ξ0,Ξ2,Ξ0,Ξ4}. The
subscripts denote the type of integration kernel that is applicable, with ξ+ and the angular clustering correlation function w sharing
the same kernel. The kernels are defined as

Kµ(`θ̄i) :=
2

θ2
u,i − θ

2
l,i

∫ θu,i

θl,i

dθ′ θ′Jµ(`θ′) =
2(

θ2
u,i − θ

2
l,i

)
`2
×


[xJ1(x)]`θu,i

`θl,i
µ = 0

[−xJ1(x) − 2J0(x)]`θu,i

`θl,i
µ = 2[(

x − 8
x

)
J1(x) − 8J2(x)

]`θu,i

`θl,i
µ = 4

, (E.2)

where the Jµ are cylindrical Bessel functions of the first kind. As opposed to earlier works, we have explicitly averaged over the
angular bin centred on θ̄i in which Ξµ is measured, delimited by

[
θl,i; θu,i

]
. The type of angular power spectrum C(i j)(`) to be used

in the integrand of Eq. (E.1) is determined by its tomographic bins i and j: if both are lens bins, it is a clustering power spectrum; if
both are source bins, it is a cosmic shear power spectrum; else one uses a position-shear cross power spectrum. For a more explicit
notation in this regard see Joachimi & Bridle (2010). The power spectra are determined under the extended Limber approximation
from the full non-linear matter power spectrum evaluated at our fiducial choice of parameters. The power spectra are calculated
using the non-linear prescription by Takahashi et al. (2012) as AGN feedback effects have negligible impact on the covariance in
the regime where sample variance contributions are significant (see also Schneider et al. 2020). Lensing signals generally include
intrinsic alignment contributions in the Gaussian terms, but they have been switched off for this study to simplify the comparison
with the mocks that do not feature intrinsic alignments. We assume an effective linear galaxy bias and choose the fiducial values of
b1 for this purpose as the corrections due to the non-linear bias terms are small.
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Following the derivation in van Uitert et al. (2018), we normalise the covariance term by Amax,µν = max(Aeff,µ, Aeff,ν), i.e. the
effective survey area applicable to the signal in the case of auto-correlations and the larger effective area when cross-correlating
signals measured over different parts of the sky. The areas to be used are the full BOSS footprint for clustering, the full KiDS-
1000 area for cosmic shear, and the overlap area for GGL; see Table 1 for numerical values. The effective survey area is not a
quantity defined from first principles and ultimately depends on the chosen resolution at which the survey footprint is considered.
We measure the effective area from a binary Healpix mask with Nside = 4096. Hence, mask features of less than arcminute size
will not reduce Aeff . Since we use this area in neff as well (see Eq. C.12), star masks and other small-scale features are interpreted
as diluting the number density of galaxies rather than the survey area. This is in line with the covariance modelling assumptions
as long as these small-scale features are below the scales at which the cosmological signal is measured. We have also computed a
cosmic shear covariance based on an Nside = 2048 mask, but found no measurable difference on S 8 best fits or its errors.

The pure noise term only contributes to the diagonals of auto-correlations and is given by (Schneider et al. 2002a)

CovG,sn

[
Ξ

(i j)
µ (θ̄1); Ξ(kl)

ν (θ̄2)
]

= δθ̄1 θ̄2

(
δikδ jl + δilδ jk

) T sn
µν

N(i j)
pair(θ̄1)

, (E.3)

where δi j denotes a Kronecker delta, and where N(i j)
pair is given by Eqs. (C.11) and (C.13). We defined

T sn
µν :=


σ4
ε/2 µ = ν = 0 or µ = ν = 4 (cosmic shear)

σ2
ε/2 µ = ν = 2 (GGL)
1 µ = ν = 0 (clustering)
0 µ , ν

, (E.4)

where σε is the total dispersion of the complex observed galaxy ellipticity (with contributions from the intrinsic ellipticities of
galaxies and measurement noise) that is in practice measured via Eq. (C.9). It was furthermore assumed that the noise in galaxy
clustering follows a Poisson distribution. The mixed term reads

CovG,mix

[
Ξ

(i j)
µ (θ̄1); Ξ(kl)

ν (θ̄2)
]

= δ jl

Tmix
j

2πn( j)
eff

Amax,µν

∫ ∞

0
d` ` Kµ(`θ̄1)Kν(`θ̄2) C(ik)(`) + 4 perm. , (E.5)

where we defined

Tmix
j :=

{
σ2
ε/2 j ∈ S1 − S5
1 j ∈ L1 − L2 (E.6)

for our lens (L) and source (S) bins, respectively. Figure E.1 illustrates the noise contributions to the variance of an exemplary
GGL tangential shear signal (L1–S5). Sample variance contributions are switched off selectively by randomising the orientations of
source galaxy shapes and/or the positions of lens galaxy positions.

First, the measured sample variance is offset by 13 % over the expectation for uniformly distributed galaxies in the absence of
any survey boundaries for which N(i j)

pair(θi) = π(θ2
u,i−θ

2
l,i)Aeffn(i)

eff
n( j)

eff
is inserted into Eq. (E.3). This is an example of the aforementioned

importance of the choice of effective survey area. We used the BOSS area in the calculation which is larger than the source area due
to the more aggressive masking in weak lensing surveys, thereby underestimating the true noise even on small scales where survey
boundaries are irrelevant. Our noise term model closely follows the measured GGL standard deviation without any sample variance
(i.e. randomised lenses and sources). An oversampling factor of 100 of the random catalogue is sufficient to suppress any additional
noise contributions, which we therefore use as our default.

Only randomising the sources preserves a mixed term in the resulting variance, namely a combination of shape noise and angular
clustering signal; cf. Eq. (E.5). Figure E.1 shows that this term dominates noise components on large scales, so that idealisations in
the modelling of this term will limit the accuracy of the analytic model, as can be seen in Fig. D.4. Moreover, the figure demonstrates
that the subtraction of the GGL signal around random lens points in the estimator (Eq. 38) is crucial to suppress additive noise
contributions that scale with shape noise and the survey footprint of the lens sample, which would otherwise substantially increase
errors on large scales (see the detailed discussion in Singh et al. 2017). Equation (E.3) was previously shown to be an excellent fit
to the noise term of cosmic shear signals; see Fig. D.4 and Troxel et al. (2018a).

The ostensibly simplest component, the Gaussian sample variance contribution, currently limits the accuracy of this model
(see Appendix D). It dominates on the largest scales where the finite extent of the survey footprint affects the sample variance
substantially and breaks the assumption of isotropy; see also the discussion in Blake et al. (2020). Eqs. (E.1) and (E.5) acquire their
simple form by neglecting survey boundaries altogether. In future, these effects, as well as variations in survey depth, will be easier
to account for in a configuration space approach; see Kilbinger & Schneider (2004); Hikage et al. (2019).

Appendix E.2: Non-Gaussian real-space contributions

Since the galaxy density and weak lensing convergence distributions are highly non-Gaussian on small scales, the covariance
picks up additional terms via the connected four-point function of these fields. These are conveniently split into matter trispectrum
contributions from modes within the survey footprint and those that link in-survey modes to those with wavelengths larger than the
survey which act to rescale the mean of the field inside the survey. The former are given by (Takada & Jain 2004)

CovNG

[
Ξ

(i j)
µ (θ̄1); Ξ(kl)

ν (θ̄2)
]

=
1

4π2Amax,µν

∫ ∞

0
d`1 `1 Kµ(`1θ̄1)

∫ ∞

0
d`2 `2 Kν(`2θ̄2)

∫ π

0

dϕ`
π

T (i jkl)(`1, `2,−`1,−`2) , (E.7)
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where ϕ` is the angle between `1 and `2. The angular trispectrum is calculated by integrating along the line of sight over the matter
trispectrum, Tm, yielding

T (i jkl)(`1, `2, `3, `4) =

∫ χhor

0
dχ

W (i)
a (χ) W ( j)

b (χ) W (k)
c (χ) W (l)

d (χ)

f 6
K(χ)

Tm

(
`1

fK(χ)
,
`2

fK(χ)
,
`3

fK(χ)
,
`4

fK(χ)

)
(E.8)

under Limber’s approximation. The type of kernel Wa,b,c,d is chosen according to the probes Ξ under consideration from among
Eq. (15) for weak lensing and the comoving distance distribution of lens samples plus an expression for galaxy bias for clustering.

The super-sample covariance (SSC) term reads (Takada & Hu 2013)

CovSSC

[
Ξ

(i j)
µ (θ̄1); Ξ(kl)

ν (θ̄2)
]

=
1

4π2

∫ ∞

0
d`1 `1 Kµ(`1θ̄1)

∫ ∞

0
d`2 `2 Kν(`2θ̄2) (E.9)

×

∫ χhor

0
dχ

W (i)
a (χ) W ( j)

b (χ) W (k)
c (χ) W (l)

d (χ)

f 6
K(χ)

∂Pm
[
`1/ fK(χ)

]
∂δb

∂Pm
[
`2/ fK(χ)

]
∂δb

σ2
bg,µν(χ) ,

where the derivatives denote the response of the matter power spectrum to a change in the density contrast of the background δb,
which is defined as the average density contrast within the volume of the survey. Here, we defined the variance of background matter
fluctuations within the observability masks relevant to the two probes under consideration (indicated by super-/subscripts µ and ν),

σ2
bg,µν(χ) =

1
Aeff,µ Aeff,ν

∑
`

Pm,lin

(
`

fK(χ)

)∑
m

aµ
`m aν∗`m , (E.10)

where the linear matter power spectrum has been used as only linear scales affect the background fluctuations. As surveys now cover
substantial fractions of the sky, we drop the flat-sky approximation in this term and express the cross-power of the survey masks via
their spherical harmonic coefficients aµ,ν

`m . These are determined from the same binary Healpix masks used to calculate the effective
survey area. For probes covering the same sky area the summation over m simplifies to the isotropic power spectrum of the mask.
We do not include contributions caused by super-survey tidal fields, which are expected to have little impact on our scales of interest
but could attain similar levels as the (small) NG contribution (Barreira et al. 2018b).

To evaluate the matter trispectrum and the matter power spectrum response to the background we opt for a halo model formalism,
closely following Takada & Hu (2013); Li et al. (2014); see also Krause & Eifler (2017) for a similar implementation. We refer the
reader to these works for a quantitative description and only summarise the relevant modelling choices here, which are unchanged
with respect to earlier KiDS cosmology analyses (Hildebrandt et al. 2017; van Uitert et al. 2018; Hildebrandt et al. 2020). Our halo
model is based on the halo mass function and halo bias of Tinker et al. (2010). It assumes a Navarro et al. (1996) halo profile with the
concentration-mass relation by Duffy et al. (2008) and employs the analytical form of the profile’s Fourier transform by Scoccimarro
et al. (2001). While implemented, some of the particularly computationally expensive 2-halo terms in the matter trispectrum have
been switched off for most practical covariance calculations because they only make negligible contributions to the non-Gaussian
covariance, which has little impact on the overall statistical errors to begin with. The logarithmic matter power spectrum response is
reduced by 2 for both clustering (de Putter et al. 2012; Takada & Hu 2013) and GGL (Singh et al. 2017) signals as their estimators are
normalised to the mean galaxy densities within the survey footprint rather than the global mean density through the use of random
catalogues. An effective linear bias is used to translate from polyspectra of matter to those involving galaxy density contrast, and
we choose the fiducial values of b1 for this purpose.

Appendix E.3: Covariance of band powers

Together with the covariance term sourced through uncertainty in the multiplicative bias correction (Eq. 37), the expressions above
constitute the full covariance for angular large-scale structure correlation functions. Various useful two-point statistics can be derived
from the correlation functions, which capitalises on the insensitivity of the latter to the often complex survey geometry. Since the
relations are linear, simple error propagation allows us to derive corresponding relations between the covariances of these two-point
statistics. For the case of band powers, employing Eqs. (39) and (40) leads to

Cov
[
C

(i j)
E/B,m; C(kl)

E/B,n

]
=

π2

NmNn

∑
a,b

∆θa θa T (θa) ∆θb θb T (θb)
{

gm
+ (θa) gn

+(θb) Cov
[
ξ

(i j)
+ (θa); ξ(kl)

+ (θb)
]

(E.11)

+ gm
− (θa) gn

−(θb) Cov
[
ξ

(i j)
− (θa); ξ(kl)

− (θb)
]
± gm

+ (θa) gn
−(θb) Cov

[
ξ

(i j)
+ (θa); ξ(kl)

− (θb)
]
± gm

− (θa) gn
+(θb) Cov

[
ξ

(i j)
− (θa); ξ(kl)

+ (θb)
] }

for cosmic shear, and

Cov
[
C

(i j)
nε,m; C(kl)

nε,n

]
=

4π2

NmNn

∑
a,b

∆θa θa T (θa) ∆θb θb T (θb) hm(θa) hn(θb) Cov
[
〈γt〉

(i j) (θa); 〈γt〉
(kl) (θb)

]
, (E.12)

for GGL. The cross-variances between these signals, and expressions involving clustering (not used in this work), are obtained
analogously. The angular binning is the same as that of the correlation functions, which is described in Sect. 3.6.
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