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ABSTRACT

We present constraints on extensions to the flat ΛCDM cosmological model by varying the spatial curvature ΩK , the sum of the neu-
trino masses

∑
mν, the dark energy equation of state parameter w, and the Hu-Sawicki f (R) gravity fR0 parameter. With the combined

3 × 2pt measurements of cosmic shear from the Kilo-Degree Survey (KiDS-1000), galaxy clustering from the Baryon Oscillation
Spectroscopic Survey (BOSS), and galaxy-galaxy lensing from the overlap between KiDS-1000, BOSS, and the spectroscopic 2-
degree Field Lensing Survey (2dFLenS), we find results that are fully consistent with a flat ΛCDM model with ΩK = 0.011+0.054

−0.057,∑
mν < 1.76 eV (95% CL), and w = −0.99+0.11

−0.13. The fR0 parameter is unconstrained in our fully non-linear f (R) cosmic shear analysis.
Considering three different model selection criteria, we find no clear preference for either the fiducial flat ΛCDM model or any of the
considered extensions. Besides extensions to the flat ΛCDM parameter space, we also explore restrictions to common subsets of the
flat ΛCDM parameter space by fixing the amplitude of the primordial power spectrum to the Planck best-fit value, as well as adding
external data from supernovae and lensing of the cosmic microwave background (CMB). Neither the beyond-ΛCDM models nor the
imposed restrictions explored in this analysis are able to resolve the ∼ 3σ tension in S 8 between the 3×2pt constraints and the Planck
temperature and polarisation data, with the exception of wCDM, where the S 8 tension is resolved. The tension in the wCDM case
persists, however, when considering the joint S 8–w parameter space. The joint flat ΛCDM CMB lensing and 3× 2pt analysis is found
to yield tight constraints on Ωm = 0.307+0.008

−0.013, σ8 = 0.769+0.022
−0.010, and S 8 = 0.779+0.013

−0.013.

Key words. cosmology: observations, cosmological parameters, large-scale structure of the Universe, dark energy, gravitational
lensing: weak, methods: statistical

1. Introduction

A wide range of cosmological observations support a theoreti-
cal model for the Universe comprised of cold dark matter and a
cosmological constant, with baryons very much in the minority.
These components are connected through a spatially flat grav-
itational framework within general relativity. This flat ΛCDM
model can independently describe the temperature fluctuations

? Tilman Tröster: ttr@roe.ac.uk

in the cosmic microwave background (CMB, Planck Collabora-
tion 2020a), the baryon acoustic oscillation and redshift-space
distortions in the clustering of galaxies (BAO and RSD, Alam
et al. 2017; eBOSS Collaboration 2020), the accelerating expan-
sion rate seen in the distance-redshift relation of Type Ia super-
novae (SNe, Scolnic et al. 2018), the present day expansion rate
as measured using a distance ladder calibrated through Cepheid
variables (Riess et al. 2019) or strongly lensed quasars (Wong
et al. 2020), and the weak gravitational lensing of background
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light by foreground large-scales structures (Troxel et al. 2018;
Hamana et al. 2020; Asgari et al. 2020a; Planck Collaboration
2020b).

The flat ΛCDM model is highly successful in describing
these observables independently, but differences arise in the pre-
cise values of some cosmological components when analysing
certain probes in combination. In comparison to values pre-
dicted from the best-fitting flat ΛCDM model to observations
of the CMB (Planck Collaboration 2020a), Riess et al. (2019)
and Wong et al. (2020) report ∼ 4–5σ differences in direct lo-
cal measurements of the Hubble parameter H0, and Asgari et al.
(2020a) report ∼ 3σ differences in S 8 = σ8

√
Ωm/0.3, a direct

measure of the clustering and density of large-scale structures,
following the trend to lower S 8 values seen in other weak gravi-
tational lensing surveys (e.g., Heymans et al. 2013; Troxel et al.
2018; Hikage et al. 2019). Provided all sources of systematic
uncertainty have been accounted for in each analysis, the ten-
sions reported between early and late-time probes of the Uni-
verse can be considered as potential evidence for the existence
of additional components in our cosmological model, beyond flat
ΛCDM.

Such extensions have been considered before (e.g., Planck
Collaboration 2016b; Joudaki et al. 2017b; Dark Energy Survey
Collaboration 2019; Planck Collaboration 2020a; eBOSS Col-
laboration 2020; Dhawan et al. 2020), with no strong evidence
for a Universe that deviates from flat ΛCDM with a minimal neu-
trino mass. While the combination of CMB and large-scale struc-
ture data rules out strong deviations from a flat ΛCDM model,
the constraints from just the early or late-time Universe are much
weaker, with Planck data favouring a closed Universe, for exam-
ple (Planck Collaboration 2020a; Di Valentino et al. 2020; Han-
dley 2019).

Here we explore extensions to the flat ΛCDM model inde-
pendently of CMB temperature and polarisation data, present-
ing constraints on the cosmological parameters that describe four
separate additions. We allow for non-zero curvature (oΛCDM),
include uncertainty in the sum of the neutrino masses (νΛCDM),
replace the cosmological constant with an evolving dark en-
ergy component (wCDM), and explore modifications to stan-
dard gravity using the Hu & Sawicki (2007) f (R)-gravity model,
where the gravitational force is enhanced in low-density regions.

To confront this range of models we compare CMB temper-
ature and polarisation observations from Planck Collaboration
(2020a) to different combinations of late Universe probes. We
analyse the weak gravitational lensing of galaxies, imaged by the
fourth data release of the Kilo-Degree Survey (KiDS-1000, Kui-
jken et al. 2019), the gravitational lensing of the CMB (Planck
Collaboration 2020b), Type Ia SNe (Scolnic et al. 2018), and
galaxy clustering observations from the twelfth data release of
the Baryon Oscillation Spectroscopic Survey (Alam et al. 2017).

In Sect. 2, we summarise the cosmological observations that
we analyse in this paper, as well as the methodology. We intro-
duce the ΛCDM extensions that we adopt in Sect. 3 and present
our model constraints in Sect. 4. We conclude our analysis in
Sect. 5. In the Appendices we demonstrate that our constraints
on S 8 are insensitive to two potential sources of systematic er-
ror in our analysis. In Appendix A we compare parameter con-
straints using two different models to account for our uncertainty
on how baryon feedback impacts the shape of the non-linear mat-
ter power spectrum. In Appendix B we exclude large-scale in-
formation from the galaxy clustering observable, and introduce
informative priors on the tilt of the primordial power spectrum,
ns.

2. Data and methodology

The data and methodology, unless mentioned otherwise, match
those presented Heymans et al. (2020). Here we summarise the
salient points and refer the reader to Joachimi et al. (2020) for
details about the methodology, Asgari et al. (2020a) for the cos-
mic shear analysis, and Heymans et al. (2020) for an in-depth
description of the multi-probe analysis of KiDS, BOSS, and
2dFLenS.

2.1. KiDS, BOSS, and 2dFLenS data

The fourth data release of the Kilo-Degree Survey images
1006 deg2 in nine bands, spanning the optical to the near-infrared
(Kuijken et al. 2019). The survey strategy is optimised for weak
lensing observations with accuracy and precision in the shear
and redshift estimates aided by high-resolution deep imaging
in the r-band, a camera with a smoothly varying and low-
ellipticity point-spread function, complete matched-depth obser-
vations across the full wavelength range (Wright et al. 2019), and
auxiliary imaging of deep spectroscopic calibration fields. Gib-
lin et al. (2020) present the KiDS-1000 weak lensing shear cata-
logue, along with a series of null tests to quantify any systematic
signals associated with the instrument, verifying that they do not
introduce any bias in a cosmological analysis. Hildebrandt et al.
(2020) present the KiDS-1000 photometric redshift estimates
for the ‘gold’ galaxy sample, selected to ensure complete rep-
resentation in the spectroscopic calibration sample (Wright et al.
2020). The resulting redshift distributions are validated using
measurements of galaxy clustering between spectroscopic and
photometric samples (van den Busch et al. 2020; Hildebrandt
et al. 2020).

The Baryon Oscillation Spectroscopic Survey (BOSS, Daw-
son et al. 2013) of a sample of 1.2 million luminous red galax-
ies (LRGs) over an effective area of 9329 deg2 provides the op-
timal data set to observe large-scale galaxy clustering at high
signal-to-noise out to redshift z < 0.75. Alam et al. (2017)
present a compilation of different statistical analyses of the
baryon acoustic oscillation peak and the redshift-space distor-
tions of the twelfth data release (DR12) of the BOSS sample.
Combined with CMB observations from Planck Collaboration
(2016a), Alam et al. (2017) set constraints on oΛCDM, wCDM
and νΛCDM cosmological models, with the joint data set show-
ing no preference for extending the cosmological model beyond
flat ΛCDM. The same conclusion is drawn, with improved pre-
cision, in the recent eBOSS Collaboration (2020) galaxy cluster-
ing analysis. This extended-BOSS survey includes galaxy and
quasar samples out to z < 2.2, and Lyman-α forest observations
between 2 < z < 3.5.

The ‘galaxy-galaxy lensing’ (GGL) of background KiDS
galaxies by foreground LRGs is measured on the overlapping
areas of KiDS with BOSS DR12 and the 2-degree Field Lensing
Survey (2dFLenS, Blake et al. 2016). 2dFLenS covers 731 deg2,
with spectroscopic redshifts for 70 000 galaxies out to z < 0.9
and was designed to target areas already mapped by weak lens-
ing surveys to facilitate ‘same-sky’ lensing-clustering analyses
(Johnson et al. 2017; Amon et al. 2018; Joudaki et al. 2018;
Blake et al. 2020).

Cosmological constraints on the parameters of the flat
ΛCDM analysis of KiDS-1000 are presented in Asgari et al.
(2020a) and Heymans et al. (2020). Asgari et al. (2020a) anal-
yse the observed evolution of weak lensing by large-scale struc-
tures, referred to as cosmic shear, in five redshift bins, using
a range of different two-point statistics. Heymans et al. (2020)
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combine these cosmic shear measurements with BOSS DR12
galaxy clustering observations from Sánchez et al. (2017) and
GGL observations of KiDS-1000 galaxies by LRGs from BOSS
and 2dFLenS. The combination of these three two-point large-
scale structure probes is often referred to as ‘3 × 2pt’, with the
methodology described and validated using a large suite of mock
survey catalogues in Joachimi et al. (2020).

We choose angular power spectrum estimates for our cosmic
shear and GGL summary statistics, following Heymans et al.
(2020). Specifically, we use the ‘band power’ estimator, a lin-
ear transformation of the real-space two-point correlation func-
tions (Schneider et al. 2002), and estimate the angular shear and
GGL power spectra in eight logarithmically spaced bands be-
tween ` = 100 and ` = 1500, for five tomographic redshift bins
between z = 0.1 and z = 1.2, and the two spectroscopic lens bins
z ∈ (0.2, 0.5] and z ∈ (0.5, 0.75]. We discard GGL measurements
at small scales and where there is overlap between the source and
lens bins due to limitations in our modelling of non-linear galaxy
bias and intrinsic alignment.

Our galaxy clustering measurements are adopted from
Sánchez et al. (2017), who analyse the clustering of BOSS galax-
ies using the anisotropic galaxy correlation function divided
into ‘wedges’. We use the two non-overlapping redshift bins
of the combined galaxy sample of Alam et al. (2017), includ-
ing galaxy separations between 20 h−1Mpc and 160 h−1Mpc. In
a re-analysis of this data set, Tröster et al. (2020) demonstrate
that constraints on the flat ΛCDM model from BOSS clustering
alone are fully consistent with Planck, but have a preference for
lower values of the clustering parameter S 8. This result is con-
firmed in two independent BOSS-only re-analyses of the Beut-
ler et al. (2017) Fourier-space BOSS clustering measurements
(Ivanov et al. 2020; d’Amico et al. 2020). It is therefore relevant
to combine BOSS galaxy clustering constraints with cosmolog-
ical probes alternative to the CMB, to explore joint constraints
on extensions to the flat ΛCDM model.

2.2. Likelihood and inference setup

Our inference pipeline is based on a modified version of Cosmo-
SIS1 (Zuntz et al. 2015), which we call kcap2. Parameter sam-
pling is performed using MultiNest (Feroz & Hobson 2008;
Feroz et al. 2009, 2013), using 500 or 1000 live points, and an
efficiency parameter of 0.3. The sampled parameters and priors
are summarised in Table 1. We vary 12 parameters in our fiducial
cosmic shear analysis, 13 parameters for the galaxy clustering
analysis, and 20 parameters in our 3 × 2pt analysis.

The linear matter power spectrum and background quanti-
ties are calculated using CAMB3 (Lewis et al. 2000), with the
non-linear matter power spectrum modelled using hmcode (Mead
et al. 2016). The reaction of the non-linear matter power spec-
trum in the presence of f (R) gravity is modelled using ReACT
(Bose et al. 2020). The clustering of galaxies uses the same
renormalised perturbation theory model employed in Sánchez
et al. (2017), while the non-linear bias for GGL uses the inter-
polation scheme described in Joachimi et al. (2020); Heymans
et al. (2020).

The covariance of the cosmic shear and GGL data is com-
puted based on the analytical model described in Joachimi et al.
(2020). The galaxy clustering covariance is estimated from 2048

1 https://bitbucket.org/joezuntz/cosmosis
2 KiDS cosmology analysis pipeline, made public upon acceptance of
this paper.
3 https://github.com/cmbant/CAMB

mock data realisations (Kitaura et al. 2016), accounting for ef-
fect of noise in the covariance on the bias in the inverse Wishart
distribution (Kaufman 1967; Hartlap et al. 2007). As the cross-
covariance between our lensing measurements (cosmic shear
and GGL) and galaxy clustering is negligible (Joachimi et al.
2020), we treat the lensing and galaxy clustering data vectors as
independent.

The maximum of the posterior (MAP) is estimated using the
the optimisation algorithm of Nelder & Mead (1965), using the
18 samples from the posterior with the highest posterior values
as starting points. For likelihoods that include the galaxy clus-
tering likelihood, we quote the weighted median of the different
MAP runs as the location of the MAP, since numerical noise in
the likelihood surface causes poor convergence of the posterior
optimisation algorithm (Heymans et al. 2020).

2.3. Model selection

As we consider different models to describe our data, we wish
to quantify which of these models describe the data best. To
this end we make use of three different model selection criteria.
The individual criteria differ in their dependence on point esti-
mates, priors, and model dimensionalities. Considering a range
of model selection criteria should therefore lead to a more robust
quantification of whether the data prefer one model over another.

The first criterion is the deviance information criterion (DIC)
(Spiegelhalter et al. 2002, for applications in astronomy and cos-
mology see, e.g., Kunz et al. 2006; Liddle 2007; Trotta 2008):
DIC = −2 lnL(θp)+2pDIC , pDIC = 2 lnL(θp)−2〈lnL〉P . (1)
The first term is given by −2 times the logarithm of the likeli-
hood L(θ) = P(d|θ,M) at some point in parameter space θp and
encapsulates how well the model fits the data. Common choices
for θp are the mean, maximum of the posterior, or maximum of
the likelihood. Here we choose θp to be the maximum of the
posterior (MAP). The second term in Eq. (1) is a measure of the
model complexity, where the angled brackets denote the average
with respect to the posterior P(θ|d,M). When comparing mod-
els, those with a lower DIC are preferred.

The second criterion we employ is the Watanabe-Akaike in-
formation criterion (WAIC, also known as widely applicable in-
formation criterion, Watanabe & Opper 2010), a Bayesian gen-
eralisation of the DIC, as it does not depend on point estimates
and has other, desirable properties (Gelman et al. 2014; Vehtari
et al. 2017). The WAIC is given by

WAIC = −2 ln〈L〉P + 2pWAIC pWAIC = 2 ln〈L〉P − 2〈lnL〉P .
(2)

An alternative definition for the model complexities pDIC and
pWAIC is based on the variance of the log-likelihood (Watanabe &
Opper 2010): pDIC = 2pWAIC = 2VarP [lnL], which corresponds
to the Bayesian model dimensionality used in Handley & Lemos
(2019). We found this definition to be less stable, however, as in
certain cases it predicted model dimensionalities larger than the
number of varied parameters. The stability can be improved in
the case where the analysis uses many independent data (Gelman
et al. 2014; Vehtari et al. 2017) but this does not apply to the
present case, where we only have access to O(1) data. For this
reason we use the definitions in Eqs. (1) and (2).

The final model selection criterion is the Bayes ratio, the
ratio of the evidences of the two models under consideration,
where the evidence is defined as

Z =

∫
dnθL(θ)π(θ) , (3)
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the integral of the likelihood times the prior π(θ) = P(θ|M).
To aid interpretability and comparability of these model se-

lection criteria, we put them on a probability scale: each model
in the set of models we want to choose from is assigned a weight
between 0 and 1, with the weights in the set normalised to 1.
These weights can then be interpreted as model probabilities.
For the DIC and WAIC, we do so analogously to Akaike weights
(Akaike 1978; McElreath 2015; Yao et al. 2018). The weight for
each of the N models under consideration is

wi =
e−

1
2 ∆i

∑N
j=1 e−

1
2 ∆ j

, (4)

where ∆i is the difference in DIC (WAIC) between model i and
the model with the lowest DIC (WAIC). The evidences Zi are
already probabilities, such that we only need to normalise them
as

wi =
Zi∑N

j=1 Z j
. (5)

Unless otherwise specified, the sets of models consist of two
members: the fiducial, flat ΛCDM model, and the alternative
model under consideration.

Evaluation of the model selection criteria is subject to un-
certainties in the sampling and optimisation procedures. We use
nested sampling to estimate our posteriors and evidences, where
the prior volume of the likelihood contours associated with each
sample is not known exactly but only probabilistically (Skilling
2006). We follow Handley & Lemos (2019) and generate many
realisations of the prior volumes using anesthetic4 (Handley
2019) to estimate the uncertainties on our DIC, WAIC, and evi-
dence estimates inherent to the sampling procedure. Other quan-
tities estimated from nested sampling, such as parameter con-
straints, are in principle also subject to these uncertainties in the
prior volumes. We find these uncertainties to be negligible for
our parameter constraints, however. For example, in the case of
S 8, this sampling uncertainty is on the order of 1% of the pa-
rameter uncertainty. We estimate the uncertainty of the value for
lnL(θMAP) from the scatter of 18 optimisation runs with differ-
ent starting points.

2.4. Tension metrics

There has been a persistent trend of weak lensing analyses find-
ing lower values of S 8 than Planck, at varying level of signifi-
cance (e.g., Heymans et al. 2013; MacCrann et al. 2015; Jee et al.
2016; Joudaki et al. 2017a; Troxel et al. 2018; Hikage et al. 2019;
Hamana et al. 2020; Joudaki et al. 2020; Asgari et al. 2020b),
with many finding S 8 values that are formally consistent with
Planck, but none finding values higher than Planck Collabora-
tion (2020a). Assessing the agreement or disagreement between
data sets is thus a key part this analysis. Here we follow Heymans
et al. (2020) in quantifying the concordance or discordance be-
tween our results and the temperature and polarisation data from
Planck.

We consider three tension metrics to quantify the agreement
in a single parameter. While all of them agree in the case of
Gaussian posterior distributions, their exact values differ when
departing from Gaussianty. In case of differences between the
metrics, we quote the range spanned by them. The first com-
pares the distance between the means in the parameter θ of two

4 https://github.com/williamjameshandley/anesthetic

data sets A and B to their variances:

T (θ) =
|θA − θB|√

Var[θA] + Var[θB]
. (6)

This metric is exact in the case of Gaussian posteriors. To ad-
dress the cases where the posteriors under consideration depart
from Gaussianity, we also consider the Hellinger distance

d2
H
[
p; q

]
=

1
2

∫
dθ

[ √
p(θ) −

√
q(θ)

]2
, (7)

where p(θ) and q(θ) are the marginal posterior distributions un-
der consideration. Finally, we also check the distribution of the
parameter shifts, and its associated tension measure

pS(θ) =

∫

P(∆θ)>P(0)
P(∆θ)d∆θ , (8)

where P(∆θ) is the distribution of ∆θ = θA − θB. We refer the
reader to appendix G in Heymans et al. (2020) for details.

Where we want to assess the agreement or disagreement
over the whole model, rather than specific parameters, we use
the Bayes ratio between a model that jointly describes two
data sets and a model that has separate parameters for each of
the data sets. The Bayes ratio is, however, dependent on the
prior choices. The suspiciousness (Handley & Lemos 2019) ap-
proximately cancels this prior dependence by subtracting the
Kullback-Leibler divergence between the posterior and prior. As
a result, the suspiciousness ln S can be expressed solely in terms
of the expectation values of the log-likelihoods (Heymans et al.
2020):

ln S = 〈lnLA+B〉PA+B − 〈lnLA〉PA − 〈lnLB〉PB . (9)

Finally, we also quote the QDMAP statistics (Raveri & Hu 2019),
which measures the change in the best-fit χ2 values when com-
bining data sets.

3. Models

Here we briefly review the theory behind the ΛCDM extensions
investigated in this work, provide arguments that motivate their
analysis, and report recent bounds on their parameters.

3.1. Curvature

The most general line element consistent with translational and
rotational symmetries (that is, homogeneity and isotropy) reads

ds2 = −c2dt2 + a2
[
dχ2 + f 2

K(χ)dΩ2
]
, (10)

where c is the speed of light, Ω denotes the solid angle, a is
the scale factor at the cosmic time t, χ is the comoving radial
coordinate, and

fK(χ) =



K−1/2 sin
(
K1/2χ

)
for K > 0

χ for K = 0
(−K)−1/2 sinh

[
(−K)1/2χ

]
for K < 0

(11)

is the comoving angular diameter distance, with spatial curvature
K = 0, K > 0, and K < 0 producing a flat, closed and open
geometry, respectively. The background expansion at late times,
ignoring radiation terms, then takes the form
(

H
H0

)2

= Ωma−3 + (1 −Ωm −ΩK) + ΩKa−2 , (12)
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Table 1. Sampled parameters and priors.

Parameter Symbol Prior

Hubble constant h [0.64, 0.82]
Baryon density ωb [0.019, 0.026]
CDM density ωc [0.051, 0.255]
Density fluctuation amp. S 8 [0.1, 1.3]
Scalar spectral index ns [0.84, 1.1]

Linear galaxy bias (2) b1 [0.5, 9]
Quadratic galaxy bias (2) b2 [−4, 8]
Non-local galaxy bias (2) γ−3 [−8, 8]
Virial velocity parameter (2) avir [0, 12]
Intrinsic alignment amp. AIA [−6, 6]
Baryon feedback amp. Abary [2, 3.13]
Redshift offsets (5) δz N(µ; Cδz)
SNe absolute calibration M [−22, −18]

Curvature ΩK [−0.4, 0.4]
Sum of masses of neutrinos

∑
mν [0, 3.0] eV

Dark energy e.o.s parameter w [−3, −0.33]
f (R)-gravity parameter log10 | fR0| [−8, −2]
AGN feedback strength log10

(
TAGN

K

)
[7.3, 8.3]

Notes. Uniform priors are denoted with square brackets. The first sec-
tion lists the primary cosmological parameters, while the second section
lists the astrophysical and observational nuisance parameters to model
galaxy bias, intrinsic galaxy alignments, baryon feedback, uncertainties
in the redshift calibration, and the absolute calibration of SNe. The num-
ber of separate parameters for each redshift bin is indicated in parenthe-
ses. The redshift offset parameters are drawn from a multivariate Gaus-
sian prior with mean µ and covariance Cδz. The last section lists the
priors for the extended parameterisations considered in this work, only
one of which is varied at a time. Not all parameters are sampled in all
analyses. For example, cosmic shear-only results do not vary the galaxy
bias parameters.

where H = ȧ/a, with the spatial curvature parameter defined
as ΩK ≡ −(c/H0)2K. The combination of Planck and BAO
data provides the tightest constraints to date on this parameter,
ΩK = −0.0001 ± 0.0018 at 68% confidence level (eBOSS Col-
laboration 2020), while eBOSS BAO data by themselves con-
strains curvature to ΩK = 0.078+0.086

−0.099. However, Planck data
alone show at least a 3σ preference for a closed universe, with
ΩK = −0.044+0.033

−0.034 (Planck Collaboration 2020a).
For our analyses we shall assume that the non-linear growth

of structure in a curved universe can be directly inferred from
knowledge of the linear power spectrum alone (cf. Mead 2017),
which allows us to use the standard hmcode prescription (Mead
et al. 2016).

3.2. Massive neutrinos

The observed neutrino flavour oscillations require at least two of
the three neutrino eigenstates {m1,m2,m3} to be massive (Pon-
tecorvo 1958; Fukuda et al. 1998; Ahmad et al. 2002), thus cos-
mologies with

∑3
i=1 mi > 0 are well-motivated extensions to the

base ΛCDM model. Oscillation experiments measure the mass-
squared splitting between the mass eigenstates, which provides
a lower bound on the sum of neutrino masses. In the normal hi-
erarchy (m1 < m2 < m3)

∑
mν & 0.06 eV, while in the inverted

hierarchy (m3 < m1 < m2)
∑

mν & 0.1 eV. Direct measurements
of the beta decay of tritium have constrained the mass of the

anti-electron neutrino to mνe < 1.1 eV(Aker et al. 2019) at 90%
CL.

Contrary to cold dark matter, cosmological neutrinos pos-
sess high thermal velocities which prevents them from cluster-
ing on scales smaller than their free-streaming length, thus sup-
pressing the growth of structure (see, e.g., Lesgourgues & Pastor
2006). Therefore the large-scale structure is a sensitive probe
of the sum of neutrino masses, with current constraints in the
range

∑
mν < 0.14–4.5 eV at 95% CL depending on the particu-

lar data set combination and analysis method employed (Lattanzi
& Gerbino 2018).

In this work we assume the normal hierarchy, although our
data are not sensitive to this choice. The non-linear matter power
spectrum is computed with a version of hmcode (Mead et al.
2016) where we removed the contribution of massive neutrinos
from the halo mass in the one-halo term in order to provide a
better match of hmcode to the Mira Titan emulator (Lawrence
et al. 2017) for high neutrino masses (c.f., Mead et al. 2020).
This has a suppressing effect on the highly non-linear portion
of the hmcode prediction that scales with the neutrino fraction,
being approximately per-cent level for

∑
mν = 0.06 eV.

3.3. Dark energy equation of state

Although the cosmological constant phenomenology is in re-
markable agreement with a diverse array of observations, the
physical mechanism driving the late-time cosmic acceleration
remains unknown. The simplest possible extension to Λ is a
smooth evolving dark energy component parametrised by a con-
stant equation of state (e.o.s) parameter w < −1/3, which
matches the cosmological constant for w = −1. The background
expansion in these models is modified as
(

H
H0

)2

= Ωma−3 + (1 −Ωm) a−3(1+w) . (13)

In principle, Eq. (13) can include the curvature terms of Eq. (12)
as well but in this work we only consider the cases of either a
non-flat Universe or one with an evolving dark energy compo-
nent.

Previous 3 × 2pt analyses found w < −0.73 at 95% CL,
using the previous KiDS release (KiDS-450) combined with
2dFLenS and BOSS spectroscopy (Joudaki et al. 2018), and
w = −0.82+0.21

−0.20 at 68% CL from DES Y1 imaging data alone
(Dark Energy Survey Collaboration 2018). This can be com-
pared with constraints from Planck temperature and polarisa-
tion data, where w = −1.58+0.52

−0.41 (95% CL; Planck Collaboration
2020a), and eBOSS BAO data, which constrain w = −0.69±0.15
(68% CL; eBOSS Collaboration 2020). Combining Planck tem-
perature and polarisation data, eBOSS BAO data, and the Pan-
theon SNe sample leads to the tightest constraints to date on the
dark energy equation of state, with w = −1.026 ± 0.033 (68%
CL; eBOSS Collaboration 2020).

3.4. f (R) gravity

The standard cosmological model rests on the assumption that
Einstein’s general relativity (GR) is the correct theory of grav-
ity. Departures from GR are tightly constrained on Solar System
and astrophysical scales (Will 2014; Abbott et al. 2017; Sakstein
2020; Desmond & Ferreira 2020), but interesting deviations are
still possible on larger scales (see, e.g., Joudaki et al. 2018; Dark
Energy Survey Collaboration 2019; Spurio Mancini et al. 2019).
A breakdown of GR flagged by the large-scale structure statistics
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would revolutionise the foundations of physics, and could pro-
vide an explanation for the observed cosmic acceleration (see,
e.g., Koyama 2018; Ferreira 2019).

In this work we focus on f (R) gravity, a popular extension to
GR where the Ricci scalar, R, is promoted to a generic non-linear
function, f (R). More specifically, we adopt the Hu-Sawicki func-
tional form, where the range of the fifth force – the Compton
wavelength – today is given by (Hu & Sawicki 2007)

λC0 ≈ 42

√
1

4 − 3Ωm

| fR0|
10−4 h−1Mpc . (14)

Here fR0 is a parameter controlling the extent of the modifica-
tion, with GR being recovered for fR0 = 0. At the level of lin-
ear growth the Compton wavelength, λC0, acts as a cut-off scale.
On scales � λC0 structures evolve as in GR, whereas on scales
� λC0 the gravitational force is enhanced by 1/3. In the non-
linear regime the activation of the chameleon screening (Khoury
& Weltman 2004) drives gravity to GR for values | fR0| . 10−5

(see, e.g., Schmidt et al. 2009). Deviations from the ΛCDM
background expansion are O(| fR0|) (Hu & Sawicki 2007), and
since all the models considered here have | fR0| � 1 we fix the
effective equation of state to w = −1. Using a combination of
CMB measurements (or priors) and large-scale structure data the
most recent analyses find that values as large as | fR0| ≈ 10−5 are
still consistent with observations at 95% CL (e.g., Cataneo et al.
2015; Liu et al. 2016; Alam et al. 2016; Hu et al. 2016).

We compute the non-linear matter power spectrum in f (R)
gravity with ReACT (Bose et al. 2020), a public C++ library5

based on the reaction method of Cataneo et al. (2019), which we
couple to hmcode. The latter provides the cosmology-dependent
reference power spectrum to be corrected by the reaction, there-
fore properly accounting for modified gravity non-linearities.

4. Results

We first explore how restricting the KiDS-1000 posterior space,
either by fixing a subset of parameters to Planck best-fit val-
ues (Sect. 4.1) or jointly analysing both KiDS and Planck with
external data sets (Sect. 4.2), affects the parameter constraints
of KiDS-1000 and their agreement with Planck. We then ex-
plore the effect of extending the parameter space by allowing
for curvature (oΛCDM, Sect. 4.3), varying the mass of the neu-
trinos (νΛCDM, Sect. 4.4), varying the dark energy equation of
state (wCDM, Sect. 4.5), or considering f (R)-gravity (Sect. 4.6)
has on the KiDS-1000 parameter constraints and whether these
extended models can solve the observed tension of KiDS-1000
with Planck.

Unless noted otherwise, parameter constraints are reported
as the mode of the joint posterior (MAP), together with the pro-
jected joint highest posterior density (PJ-HPD, for details see
Joachimi et al. 2020) credible intervals. The model selection cri-
teria and the S 8 tension metrics for Planck are summarised in
Table 2 and Table 3, respectively. In the case where the numeri-
cal values of tension metrics differ, we quote the range spanned
by them as a robust estimate of the tension in the presence of
non-Gaussian posteriors.

4.1. Fixing the primordial matter power spectrum

The KiDS-1000 cosmic shear and 3 × 2pt analyses (Asgari et al.
2020a; Heymans et al. 2020) found the amplitude of the mea-
sured signal, chiefly dependent on S 8, to be low by about 3σ
5 https://github.com/nebblu/ReACT

compared to the value derived from the CMB by Planck. The
parameter S 8 = σ8

√
Ωm/0.3 is well suited to summarise weak

lensing results but its mapping to the parameters used to pa-
rameterise CMB anisotropies is complicated. It is thus not clear
whether the observed differences in S 8 are due to differences
in the amplitude of the matter power spectrum at early and late
times, described by As, or other parameters that affect S 8. To
answer this question, we test whether fixing As, the amplitude
of the primordial matter power spectrum, to the Planck best-fit
value ameliorates the observed tension in S 8 when analysing the
KiDS-1000 cosmic shear and 3 × 2pt data.

The resulting constraints are shown in Fig. 1. We find that
fixing As serves to tighten the cosmic shear constraints along the
Ωm–σ8 degeneracy but does not significantly change the con-
straints perpendicular to it. Fixing As to the Planck best-fit value
moves the marginal S 8 posterior for cosmic shear to slightly
higher values but also reduces its width, such that the tension
remains at 2.8–2.9σ. For the 3 × 2pt data, the S 8 constraints re-
main largely unchanged, with the tension to Planck remaining at
2.9–3.0σ. Fixing the tilt of the primordial power spectrum, ns,
to the Planck best-fit value on top of fixing As does not change
these results for either cosmic shear or 3 × 2pt. The changes in
goodness-of-fit when fixing As lie within our uncertainties on
how well we can estimate the χ2 at the MAP. The DIC, WAIC,
and Bayes ratio do not disfavour a model with fixed As either
(see Table 2 for details).

This highlights that the amplitudes of the two-point statistics
of the early-time CMB and the late-time large-scale structure
probe different aspects of cosmology. While a model with fixed
As still retains enough freedom to describe the cosmic shear and
galaxy clustering data, it reduces the freedom in the other pa-
rameters. Notably, while in the fiducial model the Hubble pa-
rameter h is largely uncorrelated with Ωm and σ8, fixing As in-
duces strong correlations of these parameters with h, as seen on
the bottom row of Fig. 1 (c.f., Sanchez 2020). Breaking the in-
duced Ωm–h degeneracy by adding independent information on
Ωm that is consistent with Planck, for example through the BAO
in the 3 × 2pt data, results in pulling the inferred h constraints
down to the Planck values. On the other hand, breaking the σ8–
h degeneracy by restricting σ8 to Planck values results in higher
h values, inconsistent with Planck. In the parameter S 8, the Ωm–
h and σ8–h degeneracies cancel out, so that the S 8 constraints
and tension with Planck are largely independent of h.

4.2. External data: SNe and CMB lensing

Current weak lensing surveys cannot by themselves constrain
both σ8 and Ωm; the two parameters are degenerate with each
other, with the width of degeneracy given by the uncertainty
on ∼ S 8, and its length largely set by the priors (Joudaki et al.
2017a; Joachimi et al. 2020). Including external data allows us
to break this degeneracy. In our 3× 2pt analysis, this is achieved
by the inclusion of spectroscopic galaxy clustering data, which
primarily provides constraints on Ωm through the BAO feature.

Here we explore two different data sets that allow the break-
ing of the σ8–Ωm degeneracy; supernovae and lensing of the
CMB. Supernovae provide an independent, low-redshift esti-
mate of Ωm, with our prior on ωc (see Table 1) being informed
by the 5σ constraints on Ωm derived in Scolnic et al. (2018).
In CMB lensing, light from the CMB is lensed by the interven-
ing structure between z = 0 and the surface of last scattering, as
detected in the CMB temperature and polarisation anisotropies
(Lewis & Challinor 2006). CMB lensing is highly complemen-

Article number, page 6 of 14

https://github.com/nebblu/ReACT


Tröster & the KiDS Collaboration et al.: KiDS-1000 Cosmology: constraints beyond flat ΛCDM

Table 2. Summary of the model selection criteria considered in this work.

Probe ∆χ2
MAP ∆DIC ∆WAIC ∆ log Z wDIC wWAIC wZ

Fix As (Sect. 4.1)
Cosmic shear 0.05 ± 0.05 −0.84 ± 0.31 −0.54 ± 0.19 0.18 ± 0.12 0.60 0.57 0.55
3 × 2pt 0.32 ± 0.36 −0.71 ± 0.71 −0.59 ± 0.48 1.66 ± 0.27 0.59 0.57 0.84

oΛCDM (Sect. 4.3)
Cosmic shear −1.25 ± 0.08 0.72 ± 0.25 −0.00 ± 0.17 −0.07 ± 0.10 0.41 0.50 0.48
Galaxy clustering 0.23 ± 0.24 3.92 ± 0.55 3.24 ± 0.38 −1.10 ± 0.26 0.13 0.17 0.25
3 × 2pt 0.10 ± 0.34 1.24 ± 0.62 0.62 ± 0.38 −1.33 ± 0.24 0.35 0.42 0.21

νΛCDM (Sect. 4.4)
Cosmic shear −1.32 ± 0.06 −0.27 ± 0.25 −0.59 ± 0.16 0.29 ± 0.11 0.53 0.57 0.57
Galaxy clustering −0.03 ± 0.29 2.38 ± 0.52 1.77 ± 0.34 0.23 ± 0.26 0.24 0.29 0.56
3 × 2pt −0.96 ± 0.47 1.59 ± 0.70 0.38 ± 0.39 0.40 ± 0.22 0.31 0.45 0.60

wCDM (Sect. 4.5)
Cosmic shear −1.58 ± 0.13 2.43 ± 0.26 0.92 ± 0.16 −0.38 ± 0.11 0.23 0.39 0.41
Galaxy clustering −0.20 ± 0.31 4.75 ± 0.59 3.24 ± 0.37 −0.75 ± 0.29 0.09 0.17 0.32
3 × 2pt 0.34 ± 0.37 1.53 ± 0.61 1.28 ± 0.40 −1.85 ± 0.25 0.32 0.35 0.14

f (R)ΛCDM (Sect. 4.6)
Cosmic shear −0.56 ± 0.07 0.58 ± 0.28 0.09 ± 0.18 −0.21 ± 0.13 0.43 0.49 0.45

Baryon model (App. A)
Cosmic shear 0.32 ± 0.07 −0.54 ± 0.31 −0.05 ± 0.19 0.21 ± 0.14 0.57 0.51 0.55
3 × 2pt 0.52 ± 0.32 −1.50 ± 0.69 −1.01 ± 0.46 0.20 ± 0.27 0.68 0.62 0.55

Notes. The first column lists the probes and models under consideration in this work. The second column list the change in the χ2 value at the
maximum of the posterior compared to the fiducial results of Asgari et al. (2020a) and Heymans et al. (2020). The quoted uncertainty is the scatter
between optimisation runs. Columns 3−5 list the three model selection criteria considered in this work: DIC (Eq. 1), WAIC (Eq. 2), and change in
the evidence (Eq. 3), with the uncertainties due to the stochasticity of nested sampling estimates. The last three columns list the model probabilities
based on the three selection criteria with respect to the fiducial, flat ΛCDM model, as defined in Sect. 2.3. The relative uncertainty on the model
probabilities are on the order of 10–20% but for clarity we do not quote them here.

tary to galaxy lensing, as it exhibits a different degeneracy in the
σ8-Ωm plane (Planck Collaboration 2020b).

We jointly analyse our cosmic shear bandpower data vector
with the Pantheon (Scolnic et al. 2018) likelihood, marginalis-
ing over the absolute calibration parameter M. The resulting pa-
rameter constraints are summarised in Fig. 2. The addition of
Pantheon data constrains the matter density to Ωm = 0.297+0.021

−0.018
and the amount of matter clustering to σ8 = 0.769+0.028

−0.041. This
tightens the constraints on S 8 by ∼ 45 % to S 8 = 0.765+0.015

−0.022.
The increase in constraining power is largely driven by the tight
constraints on Ωm and the residual correlation between Ωm and
S 8 in our bandpower cosmic shear results. This is made ev-
ident by considering the constraints on the parameter Σ8 =

σ8 (Ωm/0.3)0.58, which provides a better description of the de-
generacy direction in Ωm and σ8 (Asgari et al. 2020a): the con-
straints on Σ8 tighten by only ∼ 5 % when jointly analysing cos-
mic shear with Pantheon data.

The results of the joint analysis of our 3 × 2pt data with
Pantheon do not differ from the fiducial 3 × 2pt analysis. The
galaxy clustering data already provides stringent constraints on
Ωm, such that the addition of the fully consistent, but weaker,
constraints on Ωm from Pantheon does not further improve the
constraining power in flat ΛCDM. Similarly, adding the Pan-
theon likelihood to the Planck TTTEEE+lowE likelihood does
not appreciably change the Planck constraints. The tension in
S 8 thus remains at 3.0σ when analysing both KiDS-1000 and
Planck jointly with SNe data. Since the two estimates of S 8 are
not independent anymore, the tension is to be understood as con-
ditioned on the SNe data. Using a prior on h from Riess et al.

(2019) based on the local distance ladder does not change the
KiDS-1000 cosmic shear or 3 × 2pt results.

Planck Collaboration (2020b) analysed the reconstructed
lensing potential, as inferred from the CMB temperature and
polarisation data, which constrains the parameter combination
∼ σ8Ω0.25

m . This parameter combination is more sensitive to σ8
than is the case for S 8 and when combined with the galaxy
lensing, breaks both degeneracies. When jointly analysing our
cosmic shear, respectively 3 × 2pt, data with the CMB lensing
data6, we do so with the KiDS-1000 prior choices (Joachimi
et al. 2020; Heymans et al. 2020). They chiefly differ from those
adopted in Planck Collaboration (2020b) in h and ns: the KiDS-
1000 prior on h is uniform on the range [0.64, 0.82], approx-
imately encompassing the 5σ ranges of both the CMB con-
straints from Planck Collaboration (2020a) and the local dis-
tance ladder of Riess et al. (2019), while the CMB lensing anal-
ysis of Planck Collaboration (2020b) adopted a very wide prior7

of [0.4, 1.0]. Conversely, the KiDS-1000 prior on ns is uniform
on [0.84, 1.1], while Planck Collaboration (2020b) imposes a
tight Gaussian prior of ns ∼ N(0.96, 0.02). These different prior
choices do not affect the posteriors in the region of parameter
space where the galaxy and CMB lensing constraints overlap,
but they affect the range of Ωm values allowed by CMB lensing.

Figure 3 illustrates the joint constraints of KiDS-1000 cos-
mic shear and CMB lensing, as well as KiDS-1000 3 × 2pt and

6 For technical reasons, we use the cobaya (Torrado & Lewis 2020)
CMB lensing likelihood https://github.com/CobayaSampler/
planck_lensing_external.
7 Sampling in Planck Collaboration (2020b) was performed with a uni-
form prior on θMC, but restricted to the range H0 ∈ [0.4, 1.0].
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Fig. 1. KiDS-1000 cosmic shear and 3×2pt parameter constraints when
keeping the amplitude of the primordial power spectrum As fixed to the
Planck best-fit value. The pink (cosmic shear) and red (3×2pt) contours
are the fiducial setup, while the purple (cosmic shear) and orange (cos-
mic shear) contours show the constraints when As is being kept fixed.
The grey contours denote the Planck TTTEEE+lowE results.

CMB lensing. The combination of KiDS-1000 cosmic shear and
CMB lensing constrains the matter density to Ωm = 0.269+0.026

−0.029,
and the clustering amplitude to σ8 = 0.81+0.047

−0.029, with S 8 =

0.768+0.017
−0.013. The addition of CMB lensing also improves the

3 × 2pt constraints; we find Ωm = 0.307+0.008
−0.013, σ8 = 0.769+0.022

−0.010,
and S 8 = 0.779+0.013

−0.013. The addition of CMB lensing data thus
causes a ∼ 75 % and ∼ 35 % improvement in the constraining
power on S 8 for cosmic shear and 3 × 2pt, respectively. As in
the case of the joint-analysis with SNe data, the improvement on
the cosmic shear S 8 constraints is driven by the residual corre-
lation between Ωm and S 8, with the constraints on Σ8 tightening
by only ∼ 5 %.

Both the cosmic shear and 3×2pt-inferred marginal distribu-
tions for S 8 are narrowed and move to somewhat higher values.
For cosmic shear, the tension conditioned on the CMB lensing
data remains at 3.0–3.1σ, while for 3× 2pt it is slightly reduced
to 2.8σ (c.f., Table 3).

4.3. Curvature

We vary ΩK uniformly in the interval [−0.4, 0.4], the results
of which are shown in Fig. 4. Our cosmic shear data do not
meaningfully constrain ΩK but galaxy clustering by itself gives
ΩK = −0.07+0.12

−0.09, which is improved on by the full 3 × 2pt data
vector to

ΩK = 0.011+0.054
−0.057 .

Table 3. Summary of the tension metrics considered in this work.

Probe T (S 8) H(S 8) pS(S 8)

Fiducial (flat ΛCDM)
Cosmic shear 2.8σ 3.1σ 3.2σ
Galaxy clustering 2.1σ 2.1σ 2.1σ
3 × 2pt 3.1σ 3.1σ 3.1σ

Fix As (Sec. 4.1)
Cosmic shear 2.9σ 2.8σ 2.9σ
3 × 2pt 2.9σ 2.9σ 3.0σ

SNe (Sec. 4.2)
Cosmic shear 3.0σ 3.0σ 3.0σ
3 × 2pt 3.1σ 3.1σ 3.0σ

CMB lensing (Sec. 4.2)
Cosmic shear 3.0σ 3.1σ 3.0σ
3 × 2pt 2.8σ 2.8σ 2.8σ

oΛCDM (Sec. 4.3)
Cosmic shear 2.4σ 2.5σ 2.6σ
Galaxy clustering 2.4σ 2.4σ 2.6σ
3 × 2pt 3.3σ 2.9σ 3.0σ

νΛCDM (Sec. 4.4)
Cosmic shear 2.8σ 2.9σ 2.9σ
Galaxy clustering 1.8σ 1.8σ 1.8σ
3 × 2pt 3.4σ 3.4σ 3.3σ

wCDM (Sec. 4.5)
Cosmic shear 1.3σ 1.3σ 1.3σ
Galaxy clustering 2.1σ 2.1σ 2.1σ
3 × 2pt 1.8σ 1.8σ 1.7σ

Baryon model (App. A)
Cosmic shear 2.3σ 2.4σ 2.5σ
3 × 2pt 2.9σ 2.9σ 2.9σ

Notes. The first column lists the probes and models under consideration
in this work. The last three columns list the tension in S 8 with Planck
TTTEEE+lowE data using the tension metric T (θ) (Eq. 6), the Hellinger
distance (Eq. 7), and the parameter shift distribution (Eq. 8).

The Planck CMB constraints on oΛCDM have significant pos-
terior mass at low values of h, outside the KiDS prior range.
For a comparison to our results, we analyse the Planck tempera-
ture and polarisation data with the KiDS priors, where we find a
disagreement at 2.9–3.3σ in S 8. The oΛCDM constraints as re-
ported by Planck Collaboration (2020a) prefer a much higher
value of S 8 due to the preference for high Ωm. Compared to
these results, the tension is > 4σ. While the priors differ in this
case, this has little effect, since our 3 × 2pt results would not
change significantly if the h prior were relaxed, as the S 8 and h
are largely uncorrelated for 3 × 2pt and there is little likelihood
mass outside the h prior. Our setup of harmonising the priors
thus provides a lower bound on the tension in S 8.

The model selection criteria show no preference for the
oΛCDM model, with it being slightly disfavoured for galaxy
clustering and 3 × 2pt but not at any level of meaningful sig-
nificance.

4.4. Massive neutrinos

The results of varying the sum of the neutrino masses
∑

mν uni-
formly between 0 and 3 eV are shown in Fig. 5. We find that our
3 × 2pt data provide marginal constraints on the sum of neutrino
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Fig. 2. Joint constraints of KiDS-1000 cosmic shear and 3 × 2pt data
with the Pantheon supernova data set (Scolnic et al. 2018). The fiducial
cosmic shear bandpower and 3 × 2pt results are shown in pink and red,
respectively. The joint constraints with Pantheon are denoted in purple
and orange, respectively. For 3×2pt, the addition of SNe data leaves the
constraints virtually unchanged, such that the orange and red contours
overlap. Finally, the corresponding Planck TTTEEE+lowE + Pantheon
constraints are in grey.

masses of
∑

mν < 1.76 eV (95% CL) .

Allowing the neutrino mass to vary does not affect the cosmic
shear constraints but loosens the 3×2pt constraints along the cos-
mic shear σ8–Ωm degeneracy. This serves to increase the tension
with Planck in S 8 to 3.3–3.4σ.

Our constraints on
∑

mν improve upon earlier results based
on KiDS-450, 2dFLenS and BOSS RSD of Joudaki et al. (2018),
who found

∑
mν < 2.2 eV. They also compare favourably to con-

straints from DES Y1 3 × 2pt data, when
∑

mν was allowed to
vary over a larger range8, which yielded

∑
mν < 2.3 eV. They

are, however, significantly weaker than other cosmological con-
straints reported in the literature that include CMB data. We
believe that combining our constraints with Planck in light of
the persistent S 8 tension would not be a consistent approach,
however. The joint analysis of Planck and DES Y1 data yielded
weaker upper limits than just Planck data by themselves due to
a slight preference of the DES Y1 data for lower clustering am-
plitudes than Planck (Dark Energy Survey Collaboration 2018;
Planck Collaboration 2020a). As our 3 × 2pt data similarly pre-
fer low clustering amplitudes and do no exclude high neutrino

8 The constraint is derived from the reanalysis of DES Y1 data in
Planck Collaboration (2020a), available on the Planck Legacy Archive
(https://pla.esac.esa.int).
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Fig. 3. Joint constraints of KiDS-1000 cosmic shear and 3 × 2pt data
with CMB lensing data from Planck Collaboration (2020b). The fiducial
cosmic shear bandpower and 3 × 2pt results are shown in pink and red,
respectively, while the joint constraints with CMB lensing are shown in
purple and orange, respectively. The Planck CMB lensing constraints,
with the priors matched to the KiDS analysis, are denoted in solid blue,
whereas the fiducial CMB lensing results from Planck Collaboration
(2020b) are denoted with a dotted line. The Planck TTTEEE+lowE +
CMB lensing constraints are shown in grey.

masses, we do not expect a joint analysis with Planck to improve
upon Planck-only constraints on

∑
mν.

The model selection criteria indicate no preference of a
νΛCDM model over a model where the neutrino mass is fixed
to 0.06 eV.

4.5. Dark energy equation of state

We vary the dark energy equation of state parameter w with a
uniform prior of w ∼ U(−3.0,−0.33). The upper end of the prior
range is chosen such that the cosmic expansion is accelerating.
To allow comparison with the flat ΛCDM results, we again keep
the priors on the other parameters the same. The prior excludes
parts of the Planck wCDM posterior space with high values of
h > 0.82. This region is, however, inconsistent with local mea-
surements (Dhawan et al. 2020) and the combined constraints
from Planck and SNe or BAO (eBOSS Collaboration 2020).

We present our wCDM constraints in Fig. 6. While our cos-
mic shear data by themselves do not provide meaningful con-
straints on w, the clustering of the BOSS galaxies does, for which
we find w = −1.05+0.21

−0.26. The combination of cosmic shear and
galaxy clustering improves the parameter constraints by a factor
of about two, with our 3 × 2pt constraints being

w = −0.99+0.11
−0.13 .
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are shown in solid grey, whereas the fiducial results from Planck Col-
laboration (2020a) are indicated with a dotted line.

Among the extensions to the flat ΛCDM model considered
in this work, a wCDM model reduces the observed tension on S 8
the most, to 1.3σ and 1.7–1.8σ, respectively for cosmic shear
and 3×2pt. The tension in S 8 has disappeared due to the marginal
Planck constraints on this parameter weakening and preferring
lower values, especially when allowing for a wide prior in h,
mirroring previous findings in weak lensing and 3 × 2pt analy-
ses (Joudaki et al. 2017b, 2018). We test whether this newfound
agreement in S 8 extends to other parameters. Specifically we as-
sess the agreement in the S 8–w parameter space, as well as the
agreement on the whole shared parameter space, following the
approach in Heymans et al. (2020).

To quantify the agreement in the two-dimensional S 8–w pa-
rameter space, we use the parameter shift statistic Eq. (8). In this
space, the tension between our 3 × 2pt constraints and Planck
is 3.2σ. Over the full, six-dimensional shared parameter space,
there is a 2.1σ tension according the suspiciousness statistic
(Handley & Lemos 2019) and a 2.4σ tension according to the
QDMAP statistic (Raveri & Hu 2019). The Bayes ratio by contrast
is 9 ± 3, corresponding to model probabilities of 0.89 vs 0.11
in favour of a single cosmology for both Planck and our low-
redshift data. The Bayes ratio is generally biased towards con-
cordance however, due to essentially double-counting the prior
volumes in the case of separate models.

Our model selection criteria do not favour a wCDM model
but they also do not exclude it at any level of meaningful signif-
icance.

4.6. Modified gravity

We model the full non-linear effect of f (R) gravity on the mat-
ter power spectrum using the reaction formalism (Cataneo et al.
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Fig. 5. Parameter constraints for a νΛCDM model for KiDS-1000 cos-
mic shear (purple) and 3 × 2pt (orange). The Planck TTTEEE+lowE
constraints are shown in solid grey.

2019). The implementation in ReACT (Bose et al. 2020) is cur-
rently restricted to modelling the matter power spectrum and
does not support modelling of non-linear galaxy bias in modi-
fied gravity yet. We therefore only consider cosmic shear data
here.

We sample log10 | fR0| from a uniform prior log10 | fR0| ∼
U(−8,−2) but find that our current cosmic shear data cannot
constrain this parameter within this range, as shown in Fig. 7.
While previous work, such as Harnois-Déraps et al. (2015), re-
ported constraints of log10 | fR0| < −4 from cosmic shear alone,
they did not marginalise over cosmological or nuisance parame-
ters. Future stage IV weak lensing surveys will be able to provide
tight constraints on modified gravity models, however, such as
f (R) gravity and the DGP (Dvali et al. 2000) braneworld models
(Bose et al. 2020).

Allowing fR0 to vary extends the allowed values of S 8 to
slightly higher values and could thus in principle serve to reduce
the tension with Planck. This is due to the modified gravity linear
power spectrum being enhanced in the presence of f (R) gravity,
and the derived values of σ8 are therefore higher (Planck Collab-
oration 2016b; Wang 2020). The same effect moves the Planck
contours to higher S 8 as well, however, such that this is an un-
likely mechanism to resolve the observed S 8 tension.

5. Conclusions

We analysed the KiDS-1000 cosmic shear data and its combina-
tion with BOSS and 2dFLenS into a 3×2pt data vector in light of
extensions to the flat ΛCDM concordance model of cosmology,
external data sets, and restricting the freedom of the model.

We found that restricting the freedom of the model to set
the amplitude of the primordial power spectrum through As does
not, maybe surprisingly, resolve the tension with Planck in the
late-time amplitude parameter S 8.
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Jointly analysing our cosmic shear and 3 × 2pt data with ex-
ternal data sets, namely Type Ia SNe and CMB lensing, serves to
break parameter degeneracies, improving the KiDS-1000 cosmic
shear constraints in S 8 by ∼ 45 % in case of SNe, and ∼ 75 %
in the case of CMB lensing. The improvement on the cosmic
shear constraints is more modest at ∼ 5 % when considering the
parameter Σ8 = σ8 (Ωm/0.3)0.58, which captures the Ωm-σ8 de-
generacy better. Neither of these external data sets are able to
pull the Planck and KiDS-1000 constraints on S 8 closer together,
however.

Using three model selection criteria, we assessed whether the
data prefer a model other than flat ΛCDM but we found that
none of the extensions considered are favoured or disfavoured.
We provide constraints independent of the CMB on the curvature
ΩK = 0.011+0.054

−0.057 and dark energy equation of state parameter
w = −0.99+0.11

−0.13, both of which are fully consistent with their
flat ΛCDM values. The constraints on w are tighter than those
from either eBOSS BAO or Planck temperature and polarisation
data alone but weaker than their combination. Neither of these
extensions are preferred by the data over the fiducial flat ΛCDM
model according to a range of model selection criteria.

Our data are only able to provide weak constraints on the
sum of the neutrino masses

∑
mν < 1.76 eV at 95% CL. They

are, however, independent of CMB data. We use a full non-linear
modelling for the matter power spectrum to constrain f (R) grav-
ity but find that current weak lensing data can not constrain fR0
by itself. Future weak lensing data, as well as the joint analysis
with external data sets will be able to improve these constraints
significantly (Bose et al. 2020).

We find that the ∼ 3σ tension with Planck CMB data that
was found in Asgari et al. (2020a) and Heymans et al. (2020)
is not resolved by either extending the parameter space beyond

0.2 0.4

Ωm

−6

−4

lo
g 1

0
|f R

0|

0.7

0.8

S
8

0.6

0.8

1.0

σ
8

0.6 0.8 1.0

σ8

0.7 0.8

S 8

−6 −4
log10 | fR0 |

f (R) gravity

Cosmic shear ΛCDM
Cosmic shear f (R)

Fig. 7. Parameter constraints for a f (R)-gravity model for KiDS-1000
cosmic shear (purple), compared to a flat ΛCDM model (pink).

flat ΛCDM, or by restricting it through fixing the amplitude of
the primordial power spectrum to the Planck best-fit value. To
further our understanding of this difference between the early
and late-time Universe, we look forward with anticipation to the
upcoming independent weak lensing analyses from the Dark En-
ergy Survey and Hyper Suprime-Cam Survey.
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Appendix A: Baryonic effects

Asgari et al. (2020a) and Heymans et al. (2020) used the model
of Mead et al. (2016), hmcode, to predict the non-linear matter
power spectrum and marginalise over the effect of baryons. The
effect of baryons in hmcode is modelled by a phenomenolog-
ical ‘bloating’ of the dark-matter halos and changing the halo
concentration. Recently, Mead et al. (2020) proposed a new,
physically motivated modelling approach within the hmcode-
framework, which provides a parameterisation of the effect of
feedback from active galactic nuclei (AGN) on the matter power
spectrum. To test whether this new parameterisation affects our
cosmology constraints, we vary the parameter log10

(
TAGN

K

)
over

the range [7.3, 8.3], a conservative choice as it extends well be-
yond the range 7.6 < log10

(
TAGN

K

)
< 8.0 found to reproduce

observations in the BAHAMAS suite of hydrodynamical simu-
lations (McCarthy et al. 2017). Higher values of log10

(
TAGN

K

)
cor-

respond to more violent feedback, which expels more gas from
halos, thus lowering the power on intermediate scales.

The resulting parameter constraints are presented in Fig. A.1.
We find good agreement with the result based on the previous
version of hmcode (Mead et al. 2016). The preference for low
values of log10

(
TAGN

K

)
is consistent with the preference for high

values of Abary in the KiDS-1000 cosmic shear and 3 × 2pt data.
We caution against a too literal interpretation of this parameter,
as other effects can mimic the suppression of the matter power
spectrum at intermediate to small scales.

Unlike the purely phenomenological modelling of the ef-
fect of baryonic processes in hmcode, the model in hmcode-2020
is more physically motivated, including gas and stellar compo-
nents. As such, it does not have a dark matter-only limit, as dif-
fuse gas always causes a degree of suppression of power at inter-
mediate scales and stars cause an increase of power at the small-
est scales. Furthermore, the suppression of power due to AGN
feedback sets in at larger scales, with the strongest feedback sce-
nario considered here, log10

(
TAGN

K

)
= 8.3, exhibiting a stronger

suppression of the matter power spectrum for k . 10 hMpc−1

than the strongest feedback scenario considered in the fiducial
analysis, Abary = 2. This model-inherent suppression of power
serves to exclude low values of S 8, while the freedom of the
model to predict a strong suppression due to our wide prior on
log10

(
TAGN

K

)
allows for high values of S 8. Together, these ef-

fects cause a shift of the marginal S 8 posterior to slightly larger
values, reducing the tension of our cosmic shear results with
Planck from 2.8–3.2σ in the fiducial case to 2.3–2.5σ when us-
ing hmcode-2020. This better agreement in S 8 is partially driven
by the stronger correlation between Ωm and S 8 in the case of
the hmcode-2020 model. Using Σ8 = σ8 (Ωm/0.3)0.58 instead,
which provides a better description of the degeneracy direction
in Ωm and σ8 (Asgari et al. 2020a), reduces the tension from
3.2–3.4σ to 2.9σ. The effect on the 3 × 2pt results is smaller,
reducing the tension from 3.1σ to 2.9σ. The shift of the 3× 2pt
best-fit value of S 8 in terms of the S 8 uncertainty when using
the hmcode-2020 model is 0.26σ, similar to the shift observed
when using halofit instead of hmcode (Joachimi et al. 2020).
This result therefore confirms the conclusions of Joachimi et al.
(2020): the uncertainty in the non-linear matter power spectrum
prescription is currently one of the dominant systematics in the
modelling and cosmology inference for KiDS.
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Fig. A.1. Comparison of the KiDS-1000 cosmic shear and 3×2pt param-
eter constraints for different choices of the non-linear modelling of the
matter power spectrum. The pink (cosmic shear) and red (3 × 2pt) con-
tours are derived using our fiducial setup, using the Mead et al. (2016)
hmcodemodel. The purple (cosmic shear) and orange (3×2pt) contours
use the updated Mead et al. (2020) model with a physically motivated
modelling of baryonic effects. The Planck TTTEEE+lowE contours are
shown in grey.

Appendix B: Extended data cuts and prior choices

Tröster et al. (2020) and Heymans et al. (2020) found a pref-
erence for low values of the spectral index ns inferred from the
clustering and 3×2pt analyses. It was speculated that large-scale
systematics in the galaxy clustering measurement (for BOSS
DR12, see Ross et al. 2017) could be responsible but they argued
that the main cosmological results, namely constraints on S 8, are
not affected. Here we explore this preference for low values of ns
further by exploring the effect of data cuts that discard the large-
scale information in the clustering measurements, as well as the
effect of fixing ns, on the remaining cosmological parameters.

The resulting constraints are shown in Fig. B.1. Excising
large-scale galaxy clustering data from the 3 × 2pt data vector
by limiting the maximum separation in the correlation function
wedges to smax = 100 h−1Mpc or smax = 75 h−1Mpc primarily
degrades the constraining power in Ωm as a consequence of re-
moving the information about the BAO peak. These scale cuts
only cause small changes in other parameters and leave S 8 un-
changed.

In a similar vein, fixing ns breaks its degeneracies with Ωm
and σ8, resulting in slightly tighter constraints on these parame-
ters but leaving S 8 unaffected. We thus conclude that our analy-
sis is robust to these systematics.
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Article number, page 14 of 14


	1 Introduction
	2 Data and methodology
	2.1 KiDS, BOSS, and 2dFLenS data
	2.2 Likelihood and inference setup
	2.3 Model selection
	2.4 Tension metrics

	3 Models
	3.1 Curvature
	3.2 Massive neutrinos
	3.3 Dark energy equation of state
	3.4 f(R) gravity

	4 Results
	4.1 Fixing the primordial matter power spectrum
	4.2 External data: SNe and CMB lensing
	4.3 Curvature
	4.4 Massive neutrinos
	4.5 Dark energy equation of state
	4.6 Modified gravity

	5 Conclusions
	A Baryonic effects
	B Extended data cuts and prior choices

