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ABSTRACT

We present a bright galaxy sample with accurate and precise photometric redshifts (photo-zs), selected using ugriZY JHKs photometry
from the Kilo-Degree Survey (KiDS) Data Release 4 (DR4). The highly pure and complete dataset is flux-limited at r < 20 mag,
covers ∼ 1000 deg2, and contains about 1 million galaxies after artifact masking. We exploit the overlap with Galaxy And Mass
Assembly (GAMA) spectroscopy as calibration to determine photo-zs with the supervised machine learning neural network algorithm
implemented in the ANNz2 software. The photo-zs have mean error of |〈δz〉| ∼ 5×10−4 and low scatter (scaled mean absolute deviation
of ∼ 0.018(1 + z)), both practically independent of the r-band magnitude and photo-z at 0.05 < zphot < 0.5. Combined with the 9-band
photometry, these allow us to estimate robust absolute magnitudes and stellar masses for the full sample. As a demonstration of the
usefulness of these data we split the dataset into red and blue galaxies, use them as lenses and measure the weak gravitational lensing
signal around them for five stellar mass bins. We fit a halo model to these high-precision measurements to constrain the stellar-mass–
halo-mass relations for blue and red galaxies. We find that for high stellar mass (M? > 5 × 1011 M�), the red galaxies occupy dark
matter halos that are much more massive than those occupied by blue galaxies with the same stellar mass. The data presented here
will be publicly released via the KiDS webpage.

Key words. Galaxies: distances and redshifts – Catalogs – Large-scale structure of Universe – Gravitational lensing: weak – Methods:
data analysis

1. Introduction

Galaxies are not distributed randomly throughout the Universe:
they trace the underlying dark matter distribution, which itself
forms a web-like structure under the influence of gravity in an
expanding universe. For a given cosmological model, the growth
of structure can be simulated using cosmological numerical sim-
ulations, and the statistical properties of the resulting matter dis-
tribution as a function of scale and redshift can thus be robustly
predicted. Given a prescription that relates their properties to the
matter distribution, the observed spatial distribution of galaxies
can thus be used to infer cosmological parameter estimates (e.g.
Percival et al. 2001; Cole et al. 2005; Alam et al. 2017; eBOSS
Collaboration et al. 2020).

? e-mail: bilicki@cft.edu.pl
?? e-mail: dvornik@astro.ruhr-uni-bochum.de

??? e-mail: hoekstra@strw.leidenuniv.nl

The galaxy redshift is a key observable in such analyses, and
large spectroscopic surveys have therefore played an important
role in establishing the current ΛCDM model. For large-scale
clustering studies it is advantageous to target specific subsets of
galaxies rather sparsely, because the survey can cover larger ar-
eas more efficiently. Consequently, most current results are based
on redshift surveys that target specific galaxy types, such as lu-
minous red galaxies (LRGs; Dawson et al. 2013; Blake et al.
2016). The downside of such strategies, however, is that detailed
information about the environment is typically lost.

In contrast, a highly complete spectroscopic survey can only
cover relatively small areas, because fiber collisions or slit over-
laps prevent or limit simultaneous spectroscopy of close galax-
ies; repeat visits are required to achieve a high completeness. For
studies of galaxy formation and evolution this can nonetheless
be fruitful, as the Galaxy And Mass Assembly survey (GAMA,
Driver et al. 2011) has demonstrated (e.g. Gunawardhana et al.
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2011; Robotham et al. 2011; Baldry et al. 2012). Although many
of these applications rely on spectroscopic redshifts, several
questions can still be addressed with less precise (photometric)
redshift information over large areas.

To study the connection between galaxy properties and the
dark matter distribution around galaxies, weak gravitational
lensing has become an important observational tool. The fore-
ground galaxies, embedded in dark matter dominated halos, act
as lenses that distort space-time around them, leading to cor-
relations in the shapes of more distant galaxies. This so-called
(weak) galaxy-galaxy lensing (GGL) is used to study the stellar-
mass–halo-mass relation (e.g. Leauthaud et al. 2012; Coupon
et al. 2015; van Uitert et al. 2016), to examine the galaxy
bias (e.g. Hoekstra et al. 2002; Dvornik et al. 2018), or to test
modified gravity theories (e.g. Tian et al. 2009; Brouwer et al.
2017). Combined with measurements of the clustering of galax-
ies and the cosmic shear signal, so-called 3×2pt analyses provide
competitive constraints on cosmological parameters (e.g. Abbott
et al. 2018; Joudaki et al. 2018; van Uitert et al. 2018; Heymans
et al. 2020). These applications rely on an overlapping sample
of lenses with precise redshifts and a background sample with
a large number of distant sources with reliable shape measure-
ments. The latter are improving thanks to large, deep, multi-band
imaging surveys that cover ever larger areas of the sky, with the
aim of measuring cosmological parameters using weak gravita-
tional lensing, such as the Kilo-Degree Survey (KiDS, de Jong
et al. 2013), the Dark Energy Survey (DES, The Dark Energy
Survey Collaboration 2005) and the Hyper-Suprime Cam Sub-
aru Strategic Program (Aihara et al. 2018).

In this paper we focus on KiDS, which covers 1350 deg2 in
nine broadband filters at optical and near-infrared (NIR) wave-
lengths. Unfortunately, the spectroscopic samples that overlap
with the survey only yield ∼ 110 lenses per square degree in
the case of the Baryon Oscillation Spectroscopic Survey (BOSS,
Dawson et al. 2013), and ∼ 40 deg−2 for the 2-degree Field Lens-
ing Survey (2dFLenS, Blake et al. 2016). They jointly cover the
full final KiDS area of 1350 deg2, and have been exploited to
test general relativity (Amon et al. 2018; Blake et al. 2020) and
to constrain cosmological parameters (Joudaki et al. 2018; Hey-
mans et al. 2020; Tröster et al. 2020), but their low number den-
sity limits the range of applications.

In contrast, GAMA provides much denser sampling of up
to 1000 lenses per deg2 (albeit at a lower mean redshift than
BOSS or 2dFLenS), allowing for unique studies of the lensing
signal as a function of environment (e.g. Sifón et al. 2015; Viola
et al. 2015; Brouwer et al. 2016; van Uitert et al. 2017; Linke
et al. 2020), but its overlap with KiDS is limited to ∼ 230 deg2.
Hence for studies of the small-scale lensing signal, or studies of
galaxies other than LRGs, we cannot rely on spectroscopic-only
coverage over the full KiDS survey area. Fortunately, for many
applications less precise photometric redshifts (photo-zs) suffice
(e.g. Brouwer et al. 2018), provided that the actual lens redshift
distribution is accurately known.

In Bilicki et al. (2018, B18 hereafter) we used the third
KiDS data release (DR3, de Jong et al. 2017) covering 450
deg2 and showed that by applying a limit of r . 20 to the
imaging data, it was possible to extract a galaxy sample with
a surface number density of ∼ 1000 deg−2 at a mean red-
shift 〈z〉 = 0.23. Taking advantage of the overlap with GAMA
spectroscopy, and using optical-only photometry (ugri) avail-
able from KiDS DR3, we obtained photo-zs that had negligible
bias with 〈δz〉 ∼ 10−4 and a small scatter of σδz/(1+z) ∼ 0.022.
These redshift statistics were achieved by deriving photo-zs us-
ing a supervised machine-learning (ML) artificial neural net-

works (ANN) algorithm (ANNz2, Sadeh et al. 2016), trained
on galaxies with spectroscopic redshifts (spectro-zs) in common
between KiDS and GAMA. Such a good photo-z performance
was possible thanks to the very high spectroscopic completeness
of GAMA in its three equatorial fields (G09, G12 & G15): at
the limit of r < 19.8, only ∼ 1.5% of the targets (pre-selected
from SDSS) do not have a spectroscopic redshift measured there
(Liske et al. 2015). As GAMA is essentially a complete subset
of the much deeper KiDS dataset, restricting the latter to the flux
limit of the former allows us to take full advantage of the main
supervised ML benefit: if a well-matched training set is avail-
able, then photo-zs derived with this technique will be accurate
and precise.

Here we extend the successful analysis of B18 to a larger
area and broader wavelength coverage using the imaging data
from the fourth public KiDS data release (DR4; Kuijken et al.
2019). We improve upon the earlier results and derive statis-
tically precise and accurate photo-zs for a flux-limited sample
of bright galaxies without any color pre-selection. The imaging
data cover about 1000 deg2 in nine filters, combining KiDS op-
tical photometry with NIR data from the VISTA Kilo-degree In-
frared Galaxy survey (VIKING, Edge et al. 2013). As shown
in B18, the addition of the NIR data should improve the photo-z
performance with respect to the earlier work. Following that pre-
vious study, we take advantage of the overlapping spectroscopy
from GAMA, which allows for a robust empirical calibration.
This leads to better individual redshift estimates for bright, low
redshift galaxies, both in terms of lower bias and reduced scat-
ter, compared to the default photo-z estimates that are provided
as part of KiDS DR4. Those photo-zs were derived with the
Bayesian Photometric Redshift approach (BPZ; Benítez 2000),
with settings optimized for relatively faint (r > 20) and high-z
cosmic shear sources, which makes them sub-optimal for bright,
low-redshift galaxies (B18; Vakili et al. 2019).

Over the full KiDS DR4 footprint of ∼ 1000 deg2 we select a
flux-limited galaxy sample, closely matching the GAMA depth
(r < 20), and derive photo-zs for all the objects with 9-band
detections. We call this sample KiDS-Bright for short. The final
catalog includes about a million galaxies after artifact masking,
that is ∼ 1000 objects per square degree. The inclusion of the
NIR photometry reduces the photo-z scatter to σδz/(1+z) ∼ 0.018,
whilst still retaining a very small bias of |〈δz〉| < 10−3.

As a further extension of the previous results (B18), we de-
rive absolute magnitudes and stellar masses for the KiDS-Bright
sample, using the LePhare (Arnouts et al. 1999; Ilbert et al.
2006) spectral energy distribution fitting software. As an exam-
ple of a scientific application of this dataset, we present a study
of the stellar-to-halo-mass relation using GGL, where we split
the sample into blue and red galaxies.

This paper is organized as follows. In Sect. 2 we describe
the data used: KiDS in Sect. 2.1, GAMA in Sect. 2.2 and the
selection of the KiDS-Bright sample in Sect. 2.3. In Sect. 3 we
present the photometric redshift estimation, quantify the photo-z
performance (Sect. 3.1) and provide a model for redshift errors
(Sect. 3.2). In Sect. 4 we discuss the stellar mass and absolute
magnitude derivation, validate it with GAMA, and provide de-
tails of the red and blue galaxy selection. We present the GGL
measurements using this sample in Sect. 5, compare them to the
signal from GAMA in Sect. 5.1 and use them to constrain the
stellar-to-halo mass relation in Sect. 5.2. We conclude in Sect. 6.
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The paper is accompanied by the public release of the data
presented here1, including the photo-zs and estimates of physical
properties for the full KiDS-Bright galaxy sample over the ∼
1000 deg2 footprint of KiDS DR4.

2. Data and sample selection

2.1. KiDS imaging data

To select our galaxy sample we use photometry in nine bands
from a joint analysis of KiDS (ugri) and VIKING (ZY JHKs)
data that form the fourth public KiDS data release (DR4; Kuijken
et al. 2019)2. This combined data set, which we will refer to as
‘KV’, covers an area of approximately 1000 deg2, limited by
the KiDS 4-band observations obtained by January 24th, 2018
(VIKING had fully finished earlier). KiDS imaging was obtained
with the OmegaCAM camera (Kuijken 2011) at the VLT Survey
Telescope (Capaccioli et al. 2012), while VIKING employed the
VIRCAM (Dalton et al. 2006) on the Visible and Infrared Survey
Telescope for Astronomy (VISTA, Emerson et al. 2006).

The imaging data were processed using dedicated pipelines:
the Astro-WISE information system (McFarland et al. 2013) for
the production of co-added images (‘coadds’) in the four opti-
cal bands, and a theli (Erben et al. 2005) r-band image reduc-
tion to provide a source catalog suitable for the core weak lens-
ing science case. The VIKING magnitudes for KiDS DR4 were
obtained from forced photometry on the theli-detected sources,
using a re-reduction of the NIR imaging that started from the
VISTA “paw-prints” processed by the Cambridge Astronomical
Survey Unit (CASU).

Photometric redshift estimates rely on robust colors, for
which we use the Gaussian Aperture and Photometry (GAaP,
Kuijken 2008) measurements, which in DR4 are provided for all
the bands. They are obtained via a homogenization procedure
in which calibrated and stacked images are first ‘Gaussianized’,
that is the point-spread-function (PSF) is homogenized across
each individual coadd. The photometry is then measured using a
Gaussian-weighted aperture (based on the r-band ellipticity and
orientation) that compensates for seeing differences between the
different filters; see Kuijken et al. (2015) for more details. Our
ML photo-z derivation requires that magnitudes are available in
all filters employed. Hence we require that the sources have data
and detections in all the nine bands.

The GAaP magnitudes are useful for accurate color esti-
mates, but they miss part of the flux for extended sources.
Various other magnitude estimates are, however, provided for
the r-band data. Here we use the Kron-like automatic aperture
MAG_AUTO and the isophotal magnitude MAG_ISO, as measured
by SExtractor (Bertin & Arnouts 1996). These are not cor-
rected for Galactic extinction and zero-point variations between
different KiDS tiles (unlike the published GAaP magnitudes).
To account for this we define rKiDS

auto = MAG_AUTO + DMAG −
EXTINCTION_R (and analogously for MAG_ISO), where DMAG are
per-tile zero-point offset corrections, and the Galactic extinction
at the object position is derived from the Schlegel et al. (1998)
maps with the Schlafly & Finkbeiner (2011) coefficients. Where
unambiguous, we will skip the ‘KiDS’ superscript.

In order to separate galaxies from stars, we use three
star/galaxy separation indicators provided in the KiDS DR4
multi-band dataset. The first one is the continuous CLASS_STAR
1 Data will be available upon publication. Please contact the authors
for earlier access.
2 See http://kids.strw.leidenuniv.nl/DR4/index.php for
data access.

derived with SExtractor, ranging from 0 (extended) to 1 (point
sources). The second separator is the discrete SG2DPHOT classi-
fication bitmap based on the r-band detection image source mor-
phology (e.g. de Jong et al. 2015), which for instance is set to
0 for galaxies and 1, 4 or 5 for stars. Lastly, also tttSG_FLAG
is a discrete star-galaxy separator that is equal to 0 for high-
confidence stars and 1 otherwise3.

The catalogs contain two flags that can be used to identify
problematic sources (artifacts). The first one is IMAFLAGS_ISO,
a bitmap of mask flags indicating the types of masked areas
that intersect with the isophotes of each source, as identified
by the Pulecenella software (de Jong et al. 2015). We require
this flag to be 0. The second flag is the KV multi-band bit-wise
MASK, which combines Astro-WISE and theli flags for the KiDS
and VIKING bands4. It indicates issues with source extraction
such as star halos, globular clusters, saturation, chip gaps, etc.
The recommended selection in DR4 is to remove sources with
(MASK&28668) > 0. We do not apply this mask by default in the
final dataset, but instead provide a binary flag indicating whether
an object meets this masking criterion or not.

In Section 5 we measure the lensing signal around our sam-
ple of bright galaxies using shape measurements that are based
on the r-band images. The galaxy shapes are measured using
lensfit (Miller et al. 2013), which has been calibrated with im-
age simulations described in Kannawadi et al. (2019). Those are
complemented with photo-z estimates based on an implemen-
tation of the BPZ code (Benítez 2000). For further details on
the image reduction, photo-z calibration and shape measurement
analysis for these background sources we refer the interested
reader to Kuijken et al. (2019); Giblin et al. (2020) and Hilde-
brandt et al. (2020).

2.2. GAMA spectroscopic data

The Galaxy And Mass Assembly survey (GAMA, Driver et al.
2011) is a unique spectroscopic redshift and multi-wavelength
photometric campaign, which employed the AAOmega spec-
trograph on the Anglo-Australian Telescope to measure galaxy
spectra in five fields of total ∼ 286 deg2 area. Four of these fields
(equatorial G09, G12 and G15 of 60 deg2 each, and Southern
G23 of ∼ 51 deg2) fully overlap with KiDS, and we exploit this
to optimize the bright galaxy selection and calibrate the photo-zs.
Unique features of GAMA are the panchromatic imaging span-
ning almost all of the electromagnetic spectrum (Driver et al.
2016; Wright et al. 2016), and the detailed redshift sampling
in its equatorial fields: it is 98.5% complete for SDSS-selected
galaxies with r < 19.8 mag, providing an almost volume-limited
selection at z . 0.2 and includes a sizable number of galaxies up
to z ∼ 0.5.

In our work we use the ‘GAMA II’ galaxy dataset (Liske
et al. 2015) from the equatorial fields, which includes, but is
not limited to, the first three public GAMA data releases. The
GAMA targets for spectroscopy were selected there from SDSS
DR7 imaging (Abazajian et al. 2009) requiring a Petrosian
(1976) magnitude rPetro < 19.8. Only extended sources were
targeted, primarily based on the value of ∆sg = rpsf − rmodel
(Strauss et al. 2002), where the two latter magnitudes are re-
spectively the SDSS PSF and model r-band measurements. To
improve the point source removal further, the J − K NIR color

3 See Kuijken et al. (2015) sect. 3.2.1 for a description of this star-
galaxy separation.
4 See http://kids.strw.leidenuniv.nl/DR4/format.php#
masks for details.
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from the UKIRT Infrared Deep Sky Survey (UKIDSS, Lawrence
et al. 2007) was also used (Baldry et al. 2010).

In the equatorial fields GAMA also includes sources fainter
than r = 19.8 and/or selected differently than the main flux lim-
ited sample (‘filler’ targets); see Baldry et al. (2010); Liske et al.
(2015); Baldry et al. (2018) for details. We used these in the
KiDS photo-z training together with the flux-limited sample, but
not to calibrate the bright-end selection. KiDS also overlaps with
the southern G23 field, but the targets there were selected at a
brighter limit (i < 19.2) than in the equatorial areas, and ob-
served at a lower completeness. We therefore do not use that
field for our sample selection and photo-z calibration.

We use the equatorial fields of GAMA TilingCatv46, which
cover roughly 180 deg2 fully within the KiDS DR4 footprint. To
ensure robust spectroscopy, we require a redshift quality NQ ≥ 3
and limit the redshifts to z > 0.002 to avoid residual con-
tamination by stars or local peculiar velocities. Cross-matching
the GAMA redshift with KV imaging data yields over 189 000
sources with a mean redshift 〈z〉 = 0.23. When unambiguous,
by ‘GAMA’ we will from now on mean this selection of GAMA
galaxies in the equatorial fields.

A small fraction (∼ 4500 in total) of GAMA galaxies do not
have counterparts in the KiDS multi-band catalog. About 1300
of these are located at the edges of the GAMA fields, where KV
coverage did not reach. The rest are scattered around the equato-
rial fields and include a considerable fraction of z < 0.1 galaxies,
of low surface brightness galaxies, and of GAMA filler targets.
These missing objects should not affect the analysis presented in
this paper.

In Sect. 4 we use the stellar mass estimates of GAMA
galaxies for a comparison with our results from the KiDS-
Bright catalog. For this we employ the StellarMassesLamb-
darv20 dataset, which includes physical parameters based on
stellar population fits to rest-frame u-Y SEDs, using Lambda
Adaptive Multi-Band Deblending Algorithm in R (LAMBDAR,
Wright 2016) matched aperture photometry measurements of
SDSS and VIKING photometry (Wright et al. 2016) for all
z < 0.65 galaxies in the GAMA-II equatorial survey regions.
This sample contains over 192 000 galaxies, with a median
log(M?/M�) ∼ 10.6 assuming H0 = 70 km s−1 Mpc−1, and a
range between the 1st and 99th percentile of (8.4; 11.2) in the
same units. Here and below by ‘log’ we mean the decimal log-
arithm, log10. For further details on the GAMA stellar mass
derivation, see Taylor et al. (2011) and Wright et al. (2016).

2.3. KiDS-Bright galaxy sample

To ensure that the highly complete, flux-limited GAMA cata-
log is the appropriate photo-z training set for the KiDS-Bright
sample, the selection of the latter should mimic that of the for-
mer as closely as possible. The differences between the KiDS
and SDSS photometry, filter transmission curves, as well as the
data processing of both surveys, prevent an exact matching. In
particular, Petrosian magnitudes are not measured by the KiDS
pipeline; even if they were, though, the different r-band PSF
(sub-arcsecond in KiDS vs. median ∼ 1.3” in SDSS,) and depth
(∼ 25 mag of KiDS vs. ∼ 22.7 in SDSS) would mean that the
sources in common will on average have a much higher signal-
to-noise in KiDS. Due to the photometric noise (Eddington bias,
etc.), even applying the same cut to the same magnitude type
(if possible) would not result in the same selection for the two
surveys.

Instead, we used the overlap with GAMA and designed
an effective bright galaxy selection from KiDS, aiming at a
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Fig. 1. Comparison between the KiDS rauto and the Petrosian r-band
from SDSS for galaxies in common between the two data sets. The
GAMA selection is based on the latter magnitude, whereas we use the
former to determine the flux limit of our galaxy sample. The relevant
magnitude limits are indicated with the gray lines, and the black diago-
nal is the identity line.

trade-off between completeness and purity of the dataset. To
select only extended sources (galaxies), we verified how the
three star/galaxy separation metrics available in KiDS DR4
(CLASS_STAR, SG2DPHOT and SG_FLAG) perform for the GAMA
sources. We found that the optimal approach is to jointly apply
the following conditions: CLASS_STAR < 0.5 & SG2DPHOT = 0
& SG_FLAG = 1. These remove less than 0.5% of the matched
KiDS×GAMA rPetro < 19.8 galaxies, so this selection ensures a
completeness of more than ∼ 99.5%.

As far as the magnitude limit of the KiDS-Bright galaxy se-
lection is concerned, we verified which of the r-band magnitude
types – AUTO or ISO – is the most appropriate for the selection.
We find that ISOmatches the SDSS Petrosian magnitude slightly
better: the median difference ∆iso ≡ rKiDS

iso − rGAMA
Petro ' −0.02

as compared to ∆auto ' −0.06. However, the scatter in ∆auto is
smaller than in ∆iso: the former is more peaked (i.e. narrower in-
terquartile and 10- to 90-percentile ranges around the median)
than the latter. We therefore decided to use rauto < 20 for the
bright sample selection. This ensures a completeness level of
over 99% with respect to the GAMA r < 19.8 selection.

Figure 1 presents a comparison of the SDSS Petrosian and
KiDS AUTO r-band magnitudes for the galaxies in common with
GAMA, including those beyond the completeness limit of the
latter. The vertical and horizontal gray lines show respectively
the GAMA flux limit and the cut we adopted for the selection of
the KiDS-Bright galaxy sample. The combination of rauto < 20
and the star removal results in an incompleteness in the galaxy
selection of ∼ 1.2% with respect to GAMA.

Quantifying the purity of the resulting KiDS-Bright sample
is more challenging, as this formally requires a complete flux-
limited sample of spectroscopically confirmed galaxies, quasars
and stars deeper than GAMA. As such a dataset is not available
at present, we will assess the purity using indirect methods in-
stead. Possible contaminants are artifacts, incorrectly classified
stars, or quasars for which galaxy photo-zs may be inaccurate
(especially if at high-z).
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A small fraction of the bright sources have nonphysical or
otherwise spurious photo-zs (derived as described in Sect. 3),
i.e. zphot < 0 or zphot > 1; these constitute only ∼ 0.05% of the
sample after applying the default mask. The stellar contamina-
tion should be minimal, as we have combined 3 flags for galaxy
selection, which should yield a robust classification for objects
detected with a high signal-to-noise ratio. Indeed, a cross-match
with the SDSS DR14 spectroscopic star sample (Abolfathi et al.
2018) yields only 170 matches out of some ∼ 50 000 SDSS stars
in the KiDS-North area; extrapolated to KiDS-South this would
imply a contamination of this type of at most 0.05%. Although
SDSS stars do not constitute a uniform and flux limited sample at
this depth, this still supports our expectation that the star contam-
ination should be negligible. We also do not expect quasars to be
significant and problematic contaminants: a similar cross-match,
but with SDSS DR14 spectroscopic quasars, results in about 650
common sources, of which 90% have zspec < 0.5. Matching the
KiDS-Bright data with a much more complete, photometrically
selected sample of KiDS quasars derived by Nakoneczny et al.
(2020), which covers the whole DR4 footprint, gives ∼ 1400
common objects, of which 90% have zQSO

phot < 0.66 (the ‘QSO’ su-
perscript referring to the quasar photo-z as derived in that work).
Both these tests suggest that the possible contamination with
high-z quasars also is a fraction of a per cent. The photo-zs of
such residual quasars are worse than for the general galaxy sam-
ple, but their very small number does not influence the overall
statistics and the quality of the dataset.

Finally we examine the impact of KiDS-Bright objects that
are fainter than the completeness limit of GAMA, i.e. they have
rPetro > 19.8 (see Fig. 1). Following the analysis above, these
are most likely galaxies, and as such should not be considered
contaminants, but they are not well represented by the GAMA
spectroscopic sample, or not represented at all. The photo-z esti-
mates of such galaxies could be affected by the fact that their cal-
ibration is based on the incomplete and non-uniform sampling of
GAMA filler targets beyond the nominal flux limit of the survey.
On the other hand, the KiDS-Bright objects beyond the GAMA
limit, but with colors similar to those included in the flux-limited
spectroscopic sample, should still attain reliable photo-zs.

One way to estimate the number of such faint-end sources
is to compare the catalogs for the GAMA equatorial fields. Af-
ter all the selections, the KiDS-Bright sample comprises below
192 000 galaxies, whereas the GAMA sample, with rPetro < 19.8,
contains above 182 000 objects. The difference of approximately
9000 objects provides an upper limit of ∼ 4.7% for galaxies
that are not fully represented in the GAMA catalog. The true
fraction is likely below this number, because only galaxies with
mis-estimated photo-zs based on extrapolation beyond GAMA
should be considered as potentially problematic. Their number
is difficult to estimate without a comparison against a complete
flux-limited galaxy spectroscopic sample, deeper than GAMA
and overlapping with KiDS. Such a dataset is presently un-
available; we can, however, estimate how many of the KiDS-
Bright galaxies are similar to GAMA ‘filler’ targets. In the cross-
matched KiDS×GAMA sample there are about 4800 GAMA
‘fillers’ with rPetro > 19.8 out of the ∼ 146k selected in the same
way as the KiDS-Bright (rauto < 20 plus the galaxy selections
and masking detailed above); this yields about 3.3%. The photo-
z performance of such a ‘filler’ sample will be worse, but not
catastrophic: their 〈δz〉 ' 1.6 × 10−3 and σz ' 0.024(1 + z), at
a mean redshift of 〈z〉 = 0.33. For those KiDS-Bright galaxies
which are not represented in GAMA at all, we cannot reliably
estimate the overall photo-z performance: deeper spectroscopic
samples overlapping with KiDS are not sufficiently complete.

To summarize, we estimate that the KiDS-Bright sample has
a very high purity level close to 100%, as contamination from
stars, high-redshift quasars or artifacts is at a small fraction
of a per cent. There is, however, an inevitable mismatch with
GAMA flux-limited selection, with up to 3% of the galaxies
in KiDS-Bright not fully represented by GAMA spectroscopy.
These could potentially have photo-zs based on ML extrapola-
tion that are less reliable.

3. Photometric redshifts

To obtain photo-z estimates that are optimized for our sample
of bright low-redshift galaxies, we take advantage of the large
amount of spectroscopic calibration data. To do so, we use su-
pervised ML in which a computer model (based on ANNs in our
case) learns to map the input space of ‘features’ (magnitudes) to
the output (redshift) based on training examples, which in our
case are the KiDS galaxies with a GAMA spectro-z. The trained
model is subsequently applied to the entire ‘inference’ dataset,
which in our case is the galaxy sample selected as described in
Sect. 2.3.

Similarly to B18, we used the ANNz2 software5 (Sadeh et al.
2016) to derive the photo-zs for the KiDS-Bright galaxy sample.
This package implements a number of supervised ML models
for regression and classification. Throughout this work, we em-
ployed ANNz2 in the ‘randomized regression’ mode, in which a
pre-set number (here: 100) of networks with randomized config-
urations is generated for each training, and a weighted average
is provided as the output. We trained ANNs using the GAMA-II
equatorial sources that overlap with KiDS DR4. We have verified
that adding the Southern GAMA G23 data does not improve the
final photo-z statistics – G23 is shallower and less complete than
the equatorial data, and including it does not add any new infor-
mation in the feature space that the networks could use to im-
prove the photo-z performance. For similar reasons we have not
employed other wide-angle spectroscopic data, such as SDSS or
2dFLenS, to the training set. Those samples include flux-limited
subsets shallower and less complete than GAMA, while at the
fainter end they encompass only color-selected galaxies, mostly
red ones, which if employed in photo-z training, would bias the
estimates against blue sources.

The galaxies were used in various configurations for the
photo-z training, validation and tests. To enable some level of
extrapolation by the ML model in the range of rPetro > 19.8 &
rauto < 20 (see Fig. 1), we did not limit them to the GAMA com-
pleteness cut. As the ANNs in our setup cannot handle missing
data, we require photometry in all nine bands, also for the tests
we discuss below. However, as the galaxies are much brighter
than the magnitude limits of both KiDS and VIKING, we only
lose ∼ 1500 objects out of a total of 189 000 spectroscopic galax-
ies.

In the testing phase, we randomly selected 33% of the galax-
ies with redshifts from GAMA as a joint training and validation
set, while the rest was used for testing. In all cases, the actual
validation set (used internally by ANNz2 for network optimiza-
tion) was randomly selected as half of the input training and
validation sample. For the final training of the photo-zs of our
bright galaxies, we used the entire cross-matched sample, again
with a random half/half split for actual training and validation
(optimization) in ANNz2. As shown in B18, these proportions
between training, validation and test sets can be varied within

5 Available for download from https://github.com/
IftachSadeh/ANNZ. We used version #2.3.1.
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Fig. 2. Comparison of the KiDS-Bright photometric redshifts with the overlapping GAMA spectroscopic data. Left: direct spectro-z – photo-z
comparison. The thick red line is the running median of the function zphot(zspec) and the thin red lines illustrate the scatter (SMAD) around the
median. Black dashed is the identity line. Right: Comparison of redshift distributions of the GAMA spectroscopic training set (red bars), photo-zs
for the common KiDS×GAMA sources (blue dashed line) and the full KiDS-Bright photo-z sample (black line). The histograms are normalized
to unit area.

reasonable ranges without much influence on the results; we are
dealing with sufficiently large samples to ensure robust statistics.

To evaluate the performance we measure the ‘scatter’, de-
fined as the scaled median absolute deviation (SMAD) of the
quantity ∆z ≡ δz/(1+ztrue) with δz ≡ zphot−ztrue and SMAD(x) =
1.4826 × median(|x − median(x)|). As ztrue we use the spectro-
zs from the test sample. In B18 we showed that adding NIR
VIKING magnitudes to the ugri-only setup available in KiDS
DR3 reduced the scatter of the photo-zs at the GAMA depth
by roughly 9%, from σz ' 0.022(1 + z) to 0.020(1 + z). The
VIKING measurements employed there were based on GAMA-
LAMBDAR forced photometry (Wright et al. 2016) using SDSS
apertures as input and without PSF corrections that are applied
in KV processing (Wright et al. 2019; Kuijken et al. 2019). We
therefore expect that the improved color measurements in DR4
should reduce the errors even further. Indeed, we find that the
scatter of 9-band KiDS DR4 photo-zs for our bright galaxies is
further reduced with respect to the KiDS DR3 + LAMBDAR
VIKING statistics, in total by ∼ 18% from the DR3 ugri-only
derivation; see Table 1 below. We have also verified that omit-
ting any of the 9 bands worsens the performance. None of the
VIKING bands stands out, which is expected, because for the
redshifts covered by GAMA (z < 0.5), the NIR data do not trace
clear features in the spectrum; rather they sample the Rayleigh-
Jeans tail, and thus each of the VIKING bands adds a similar
amount of information.

The photo-zs could be potentially improved if additional fea-
tures are included in the training. B18 studied this in detail for a
similar bright sample of galaxies, and found that adding colors
(magnitude differences) and galaxy angular sizes (semi-axes of
best-fit ellipses) did lead to better photo-z estimates, compared
to the magnitude-only case. For the 9-band data, however, there
are 36 possible colors and feeding the ANNs with all of them,
together with the magnitudes, would be very inefficient without
specific network optimization each time; some prior feature im-
portance quantification to choose the most relevant subset would
be needed. This is beyond the scope of this work and therefore
we limit the photo-z derivation to magnitudes only. Unlike B18,
we decided not to use any size information, because the available
estimates are not PSF-corrected. Using the uncorrected sizes
could introduce a systematic variation of photo-z quality with
the PSF at a source position. As one of the applications of the
KiDS-Bright sample is to use it for cosmological measurements,

we decided to employ only the PSF-corrected GAaP magnitudes
for redshift estimation.

As already mentioned in Sect. 2.1, each KiDS object is as-
signed a MASK flag, indicating issues with source extraction. The
default masking, used to create the KiDS-1000 weak lensing
mosaic catalogs, is to remove the sources matching bit-wise the
value 28668. We have checked the importance of this masking
for photo-z performance by performing two ANN trainings: one
including all the training sources with any mask flag, and another
one where only the sources with the default masking were used.
For each of the cases, the performance was evaluated using the
same blind test set. We did not observe any difference between
the photo-z statistics for the two training cases. Our interpreta-
tion is that the ANNs are able to ‘learn’ the noise related to the
MASK flag. By ignoring it in the training phase, they are still able
to robustly estimate photo-zs. At the same time, as far as the eval-
uation is concerned, there is a clear deterioration in the photo-z
performance for the sources that should be masked out with re-
spect to those that pass the default selection, for both training se-
tups. Motivated by these findings, we ignored the MASK value for
the training set for the final sample. We however provide a flag
with our photo-z estimates that indicates which of the galaxies
meet the condition (MASK&28668) > 0 and should be preferably
masked out for science applications.

3.1. Photometric redshift performance

We compare the KiDS-Bright photo-zs with the overlapping
spectro-zs from GAMA in Fig. 2. The left panel shows that the
photo-zs are overestimated at low-z and underestimated at high-
z, which is common for ML approaches. Nonetheless, the overall
performance is excellent, with a low average bias and a small and
near constant scatter as a function of redshift.

The redshift distributions presented in the right panel of
Fig. 2 indicate that for the matched KiDS×GAMA galaxies,
dN/dzphot (blue dashed line) closely follows the general shape
of the true dN/dzspec (red bars), preserving even the ‘dip’ ob-
served in GAMA at z ∼ 0.25 (emerging by chance due to large-
scale structures passing through the equatorial fields; e.g. Eard-
ley et al. 2015). As far as the redshift distribution of the full
photometric sample is concerned (black solid line), we observe
some piling up of photo-zs at the very same range where the
GAMA dip is present, but also at zphot ∼ 0.35. This might be the
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Fig. 3. Photometric redshift errors in the KiDS-Bright sample as a function of photo-z (left) and of the KiDS r-band AUTO magnitude (right),
calibrated on overlapping GAMA data. Each dot is a galaxy, with contours overplotted in the highest number density areas. The thick red line
is the running median and the thin red lines illustrate the scatter (SMAD) around the median. The stripes in the left panel originate from the
large-scale structures present in the GAMA fields.

result of the extrapolation by ANNz2 in the regime rauto ∼ 20,
where sources can be fainter than the GAMA completeness limit
(Fig. 1), or for sources that are for some other reason under-
represented in GAMA (as discussed in Sect. 2.3).

To illustrate the KiDS-Bright photo-z performance in more
detail, we show the redshift errors δz/(1 + z) as a function of
photo-z and r-band magnitude in Fig. 3. The errors show little
dependence on the r-band magnitude or photometric redshift,
except for the range zphot < 0.05. As at this redshift range the
number density of the photometric KiDS galaxies is very small,
and it is additionally very well covered by wide-angle spectro-
scopic samples such as SDSS Main (Strauss et al. 2002), 6dFGS
(Jones et al. 2009) and GAMA itself, this worse photo-z perfor-
mance is irrelevant for scientific applications of the KiDS-Bright
sample. We however recommend using only the zphot > 0.05
sources; this cut affects less than 1% of the sample. At the high-
redshift end of the dataset, zphot & 0.4, both the KiDS-Bright and
GAMA calibration samples become very sparse (Fig. 2). How-
ever, the photo-z quality remains comparable to the rest of the
dataset (Fig. 3), so the galaxies with zphot . 0.5 should be safe
for scientific applications once the flux-limited character of the
sample is taken into account.

The fact that the photo-zs are practically unbiased as a func-
tion of the photo-z, typical for ML-based derivations, leads to
an inevitable bias as a function of spectro-z at the extremes of
the coverage, as already illustrated in Fig. 2. However, in most
applications it is important to be able to select in photo-z and cal-
ibrate the true redshift distribution of a given sample a posteriori
(e.g. in photo-z bins). For this, knowledge of the photo-z error
distribution (discussed below in Sect. 3.2) plus the dN/dzphot are
usually sufficient to build a reliable model.

The relative paucity of zspec ∼ 0.25 galaxies in the GAMA-
equatorial data, used here for the photo-z training, is caused by
large-scale structure in these fields. This could potentially af-
fect our redshift estimates if it was spuriously propagated by
ANNz2. As we have already pointed out, this ‘dip’ is correctly
reproduced in the dN/dzphot of the matched GAMA×KiDS sam-
ple, but it is not present in the overall photo-z distribution of
the full KiDS-Bright sample. This suggests that the training is
not significantly affected. As an additional test, we compared
dN/dzspec and dN/dzphot of a cross-match between KiDS-Bright

and spectroscopic redshifts in the Southern GAMA G23 field,
in which such lack of z ∼ 0.25 sources is not observed. As
mentioned earlier, the latter dataset was not used for the photo-
z training, because it is shallower and less complete than the
GAMA-equatorial data. A comparison of the redshift histograms
shows no spurious lack of photo-zs at z ∼ 0.25. Nonetheless,
close inspection of the left-hand panel of Fig. 3 does suggest
some variation in photo-z performance in this range; a similar
effect is observed also in a zspec vs. δz comparison. Such ‘wig-
gles’ in the photo-z error as a function of redshift are still present
if the G23 data are added to the ANNz2 training. However, for
the current and planned applications of the KiDS-Bright sam-
ple these issues are not significant. Nonetheless, this might need
revisiting for future analyses with the full-area KiDS DR5 data.

Table 1 provides basic photo-z statistics for our KiDS-Bright
sample. We list the total number of sources, their mean redshift,
as well as photo-z bias and scatter (evaluated on overlapping
GAMA spectroscopy). Comparison of the statistics for the full
KiDS-Bright sample with that after masking demonstrates that
masking improves the photo-z statistics somewhat; interestingly,
it also slightly enlarges the mean redshift. We also report results
when the sample is split by color based on the the r-band ab-
solute magnitude and the rest-frame u − g color, derived with
LePhare, as detailed in Sect. 4. With the adopted split, the red
galaxies are slightly less numerous than the blue ones, but their
photo-z performance is noticeably better.

For reference we also provide the results for the galaxies that
overlap with the LRG sample from Vakili et al. (2020), but using
our ANNz2 redshift estimates. This particular subsample stands
out with SMAD(∆z) ∼ 0.014, albeit with a slightly larger overall
bias of 〈δz〉 ∼ 10−3 (which is still over an order of magnitude
smaller than the scatter). These values are comparable to those
obtained in Vakili et al. (2020) using the dedicated red-sequence
model, which confirms the excellent quality of our photo-zs. The
blue galaxies, despite performing worse overall in terms of their
photo-z statistics, still have very well constrained redshifts with
SMAD(∆z) ' 0.02. For the blue and red galaxies we find similar
trends as the ones presented in Fig. 3 for the full sample, albeit
with different levels of scatter.

The quality of photo-zs can vary as a function of various sur-
vey properties. In Appendix A we present a short summary of
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Table 1. Statistics of photometric redshift performance for the KiDS-Bright sample and selected subsamples. The sample sizes refer to the full
photometric selection.

sample number of mean mean of mean of st.dev. of SMAD of
galaxies redshift δz = zph − zsp δz/(1 + zsp) δz/(1 + zsp) δz/(1 + zsp)

full KiDS-Brighta 1.24 × 106 0.226 1.2 × 10−4 6.7 × 10−4 0.0246 0.0180
after maskingb 1.00 × 106 0.229 4.6 × 10−4 9.0 × 10−4 0.0237 0.0178
red galaxiesc 3.91 × 105 0.243 −2.7 × 10−4 2.0 × 10−4 0.0194 0.0159
blue galaxiesc 4.25 × 105 0.212 1.5 × 10−3 1.8 × 10−3 0.0274 0.0200
luminous red galaxiesd 7.18 × 104 0.305 1.1 × 10−3 1.1 × 10−3 0.0161 0.0141

Notes.
(a) Flux-limited galaxy sample (rAUTO < 20); see Sect. 2.3 for other details of the selection.
(b) Using the KiDS MASK flag, removing the sources meeting the condition (MASK&28668) > 0 (bit-wise).
(c) Selected using the r-band absolute magnitude and rest-frame u − g color based on LePhare output; see Sect. 4 for details.
(d) Selected using the Bayesian model detailed in Vakili et al. (2020), encompassing jointly the ‘dense’ and ‘luminous’ samples. Numbers refer to
the LRGs overlapping with the KiDS-Bright sample and the photo-z statistics are based on the ANNz2 derivations.

the photo-z error variation for the KiDS-Bright sample versus a
number of both KiDS-internal (PSF, background, limiting mag-
nitudes) and external (star density, Galactic extinction) observa-
tional effects. We find that both the photo-z bias and scatter are
generally stable with respect to these quantities.

3.2. Analytical model of the redshift errors

For a number of applications, such as angular clustering, GGL,
or cross-correlations with other cosmological tracers, it is use-
ful to have an analytical model of the photo-z errors, which can
be used in the theoretical predictions (e.g. Balaguera-Antolínez
et al. 2018; Peacock & Bilicki 2018; Hang et al. 2021). The pho-
tometric redshift error distribution usually departs from a Gaus-
sian shape due to a considerable number of several-σ outliers
and generally broader ‘wings’ (e.g. Bilicki et al. 2014; Pasquet
et al. 2019; Beck et al. 2021). This is why SMAD, or alterna-
tively percentiles (e.g. Wolf et al. 2017; Soo et al. 2018; Alarcon
et al. 2020), are better suited to quantify the photo-z scatter than
the standard deviation, which is sensitive to the outliers. Func-
tional forms to fit the empirical photo-z error distribution include
the ‘modified Lorentzian’ (Bilicki et al. 2014; Peacock & Bilicki
2018; Hang et al. 2021) or the Student’s t-distribution (Vakili
et al. 2020). The former is given by (Bilicki et al. 2014)

N(∆z) ∝
(
1 +

∆z2

2as2

)−a

, (1)

where we have assumed that the photo-zs are on average un-
biased, which is a good approximation in our case as 〈∆z〉 �
SMAD(∆z) (see Table 1). This can be easily generalized to the
case of non-negligible bias by introducing an extra parameter
(Hang et al. 2021). In Eqn. (1), the parameter s is related to
the width of the distribution, while a encodes the extent of the
‘wings’. We note that both a and s can be parameterized as
photo-z-dependent to build an analytical model of redshift error
(Peacock & Bilicki 2018).

We use Eqn. (1) to fit the photo-z error distribution in the
KiDS-Bright sample and find the best-fit parameters to be a =
2.613 and s = 0.0149. Qualitatively, this is indeed a very good
fit to the ∆z histogram, as illustrated in Fig. 4, clearly outper-
forming the best-fit Gaussian with σ = 0.0180 (also assuming
average zero bias). The inset, with a log-scale to highlight the
wings, shows that the Gaussian fails to account for the outliers.
We do not quantify the goodness of fit of the two models as we

Fig. 4. Histogram of photometric redshift errors in the KiDS-Bright
sample (magenta bars) fitted with a generalized Lorentzian (Eqn. 1,
black line) with parameters a = 2.613 and s = 0.0149, compared to
best-fit Gaussian (orange) with σ = 0.0180. The top-right inset eluci-
dates the differences in the wings as seen in log-scaling.

do not have meaningful information on the errors on the ∆z his-
togram.

4. Stellar masses & rest-frame absolute magnitudes

We estimate a number of rest-frame properties for each KiDS-
Bright galaxy in the same manner as was done for the full-
depth KV data within the DR3 footprint (KV450, Wright et al.
2019). We do this by fitting model spectral energy distribu-
tions (SEDs) to the 9-band GAaP fluxes of each galaxy using
the LePhare (Arnouts et al. 1999; Ilbert et al. 2006) template
fitting code. In these fits, we employ our ANNz2 photo-z es-
timates as input redshifts for each source, treating them as if
they were exact. In practice, this has little influence over the fi-
delity of the stellar mass estimates: see Taylor et al. (2011). We
use a standard concordance cosmology (Ωm = 0.3, ΩΛ = 0.7,
H0 = 70 km s−1 Mpc−1), a Chabrier (2003) initial mass function,
the Calzetti et al. (1994) dust-extinction law, Bruzual & Char-
lot (2003) stellar population synthesis models, and exponentially
declining star formation histories. The input photometry to LeP-
hare is extinction corrected using the Schlegel et al. (1998) maps
with the Schlafly & Finkbeiner (2011) coefficients, as described
in Kuijken et al. (2019). For the optical VST bands we utilize the
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Fig. 5. Comparison of the derived stellar masses between the photo-
metric KiDS-Bright sample (this work) and the spectroscopic GAMA
dataset for galaxies common to both catalogs. The light gray to black
scaling illustrates the bulk of the sample, while the outliers where the
number density is smaller, are shown with individual large gray dots.
The thick red line is the running median, and thin red lines illustrate the
scatter (SMAD).

filter profiles measured at the center of the field of view, avail-
able from the ESO webpages6. For the NIR VISTA data we use
the averaged filter profile of all 16 filter segments per band (Edge
et al. 2013).

The LePhare code returns a number of quantities for each
source, detailed in Appendix C. The best-fit MASS_BEST is the
one that should be used as the estimate of galaxy’s stellar mass;
this quantity is available for almost all KiDS-Bright objects,
except for a few hundred which have unreliable photo-zs (e.g.
zphot < 0). When using these stellar mass estimates, it is however
important to take into account the ‘flux scale correction’ related
to the fact that the GAaP magnitudes used by LePhare under-
estimate fluxes of large galaxies. The correction that we use is
based on the difference between the AUTO and GAaP r-band
magnitudes (see Eqn. C.1) and it is added to the logarithm of the
stellar mass estimate given by MASS_BEST (Eqn. C.2).

The code also outputs MASS_MED, which is the median of
the galaxy template stellar mass probability distribution func-
tion. This quantity can take a value of −99, which indicates
that a galaxy was best-fit by a non-galaxy template (although
the MASS_BEST value still reports the mass from the best-fitting
galaxy template). In some cases this could highlight stellar con-
tamination for sources that are best-fit by a stellar template and
additionally have a small flux radius, and could be even used for
star-galaxy separation (see the related discussion in Wright et al.
2019). This is, however, not a concern for our sample: out of
over 270 000 objects with MASS_MED = −99, only a few lie on
the stellar locus. This further confirms the very high purity level
of the KiDS-Bright catalog, as already concluded in Sect. 2.3.

The median stellar mass of the KiDS-Bright sample is
log(M?/M�) ∼ 10.5, with a range between the 1st and 99th
percentile of roughly 8.5 < log(M?/M�) < 11.4. In order to

6 https://www.eso.org/sci/facilities/paranal/
instruments/omegacam/inst.html

assess the quality of these stellar mass estimates, we compared
them with the GAMA stellar mass catalog (Taylor et al. 2011;
Wright et al. 2016), introduced in Sect. 2.2. First of all, it is
worth noting that the overall distributions of the stellar masses
(normalized histograms of dN/d(log M?)) are very similar, and
in particular their maximum (mode) is at ∼ 10.75 in both cases.
Cross-matching the two samples gives about 145 000 galaxies
with stellar masses from both KiDS-Bright and GAMA. We
compare these directly in Fig. 5, where we also plot the run-
ning median relation together with the corresponding SMAD
(respectively thick and thin red lines). We see that the relation
is within ∼ 1σ from the identity line (dashed) over a wide
range in stellar mass, and departs from it significantly only at
the tails of the distribution. On average, the KiDS-Bright stellar
mass estimates are smaller than those of GAMA by ∆ log M? ≡

log MKiDS
∗ −log MGAMA

∗ = −0.09±0.18 dex (median and SMAD).
Such overall bias between the former and the latter is expected:
while our flux-scale correction is meant to compensate for the
flux missed by the GAaP measurements with respect to AUTO
magnitudes, an analogous correction in GAMA serves to ac-
count for flux that falls beyond the finite SDSS-based AUTO aper-
ture used for the SEDs.

Nonetheless, the overall consistency is remarkable, given
that the stellar masses were determined using different data
and methodology: GAMA employed spectroscopic redshifts to-
gether with LAMBDAR photometry from SDSS+VIKING u to
Y bands, while we used photo-zs and GAaP KiDS+VIKING u
to Ks measurements. While the GAMA stellar masses cannot be
treated as the ‘ground truth’ due to inevitable systematics in the
modeling, it is worthwhile exploring trends in the stellar mass
differences between the two data sets. We observe no significant
trend of ∆ log M? with magnitude or with color. Not surprisingly,
the use of photo-zs does affect the performance for galaxies es-
pecially at very low redshifts (zspec . 0.07).

In general, we observe a linear trend in ∆ log M? with δz/(1+
z). If we account for this trend, the SMAD in ∆ log M? is ∼ 0.17
dex, that is ∼ 9% lower than for the entire matched sample; this
difference can be regarded as the effective increase in the scat-
ter between GAMA and KiDS-Bright stellar mass derivations
due to the photo-zs only. Overall, we find that the results are
robust, with roughly constant scatter, if we select galaxies with
zphot > 0.1, for which the SMAD in ∆ log M? reduces to ∼ 0.17
dex. Therefore we restrict the GGL analysis presented in the next
section to this redshift range; the removed galaxies would not be
of much importance for the lensing analysis in any case.

We use the absolute r-band magnitude and the rest-frame u−
g color derived with LePhare (employing the ANNz2 photo-zs
as input redshifts) to select red and blue galaxies based on an
empirical cut through the green valley in the color-magnitude
diagram. We identify the ridge of the blue cloud to define the
slope and locate the minimum at the absolute magnitude of Mr =
−19. This results in a line that delimits the red and blue sample:

u − g = 0.825 − 0.025 Mr . (2)

Based on this cut we define our red sample as those galaxies
whose u − g color is at least 0.05 mag above the cut line and the
blue sample as those whose color is at least 0.05 mag below the
line. The color-magnitude distribution and the cut through the
green valley are shown in Fig. 6. The photo-z statistics for the
red and blue galaxies defined this way have been presented in
Sect. 3; below in Sect. 5 we use this split as well as the stellar
masses in GGL measurements.

Article number, page 9 of 19

https://www.eso.org/sci/facilities/paranal/instruments/omegacam/inst.html
https://www.eso.org/sci/facilities/paranal/instruments/omegacam/inst.html


A&A proofs: manuscript no. KiDS-DR4-bright

2220181614
Mr (mag)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

u
g

(m
ag

)

0

500

1000

1500
N

ga
l

Fig. 6. Distribution of the u − g rest-frame color versus absolute r-
band magnitude for the KiDS-Bright galaxy sample, based on LePhare
derivations with ANNz2 photo-zs as input redshifts. We use the location
of the green valley to derive an empirical split into red and blue galax-
ies, respectively above the upper dashed and below the lower dashed
lines.

5. Galaxy-galaxy lensing measurements

As shown in the previous section, the excellent photometric red-
shift estimates for the galaxies in the KiDS-Bright sample allow
for robust estimates of their physical characteristics, in partic-
ular the stellar mass. In this section we combine this informa-
tion with accurate shape measurements for more distant KiDS
sources from Giblin et al. (2020) to measure the GGL signal. We
first compare the lensing signal for a similar selection of lenses
from GAMA and KiDS around the mode of the stellar mass dis-
tribution. We then split the sample of bright lens galaxies into
blue and red subsamples (see Sect. 4 and Fig. 6), which are sub-
sequently subdivided by stellar mass. To quantify the weak grav-
itational lensing signal we use source galaxies from KiDS DR4
with a BPZ photo-z in the range 0.1 < zB < 1.2.

The lensing signal of an individual lens is too small to be
detected, and hence we compute a weighted average of the tan-
gential ellipticity εt as a function of projected distance rp using
a large number of lens-source pairs. In the weak lensing regime
this provides an unbiased estimate of the tangential shear, γt,
which in turn can be related to the excess surface density (ESD)
∆Σ(rp), defined as the difference between the mean projected sur-
face mass density inside a projected radius rp and the mean sur-
face density at rp.

We compute a weighted average to account for the varia-
tion in the precision of the shear estimate, captured by the lensfit
weight ws (see Fenech Conti et al. 2017; Kannawadi et al. 2019,
for details), and the fact that the amplitude of the lensing sig-
nal depends on the source redshift. The weight assigned to each
lens-source pair is

w̃ls = ws

(
Σ̃−1

cr,ls

)2
, (3)

the product of the lensfit weight ws and the square of Σ̃−1
cr,ls – the

effective inverse critical surface mass density, which is a geo-
metric term that downweights lens-source pairs that are close in
redshift (e.g. Bartelmann & Schneider 2001).

We compute the effective inverse critical surface mass den-
sity for each lens using the photo-z of the lens zl and the full
normalized redshift probability density of the sources, n(zs). The
latter is calculated employing the self-organizing map calibra-
tion method presented originally in Wright et al. (2020) and then
applied to KiDS DR4 in Hildebrandt et al. (2020). The resulting
effective inverse critical surface density can be written as:

Σ̃−1
cr,ls =

4πG
c2

∫ ∞

0
(1 + zl)2D(zl)

(∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs

)
p(zl) dzl ,

(4)

where D(zl), D(zs), D(zl, zs) are the angular diameter distances
to the lens, source, and between the lens and the source, respec-
tively.

For the lens redshifts zl we use the ANNz2 photo-zs of the
KiDS-Bright foreground galaxy sample. We implement the con-
tribution of zl by integrating over the individual redshift proba-
bility distributions p(zl) of each lens. This method is shown to
be accurate in Brouwer et al. (2021). The lensing kernel is wide
and therefore the results are not sensitive to the small wings in
the lens redshift probability distributions (see Sect. 3.2). We can
thus safely assume that p(zl) can be described by a normal dis-
tribution centered at the lens’s photo-z, with a standard deviation
σz/(1 + zl) = 0.018 (see Sect. 3).

For the source redshifts zs we follow the method used in
Dvornik et al. (2018), by integrating over the part of the red-
shift probability distribution n(zs) where zs > zl. Thus, the ESD
can be directly computed in bins of projected distance rp to the
lenses as:

∆Σgm(rp) =

∑ls w̃lsεt,sΣ
′
cr,ls∑

ls w̃ls

 1
1 + m

. (5)

where Σ′cr,ls ≡ 1/Σ̃−1
cr,ls, the sum is over all source-lens pairs in the

distance bin, and

m =

∑
i w′imi∑

i w′i
, (6)

is an average correction to the ESD profile that has to be applied
to account for the multiplicative bias m in the lensfit shear es-
timates. The sum goes over thin redshift slices for which m is
obtained using the method presented in Kannawadi et al. (2019),
weighted by w′ = ws D(zl, zs)/D(zs) for a given lens-source sam-
ple. The value of m is around −0.014, independent of the scale
at which it is computed.

We note that the measurements presented here are not cor-
rected for the contamination of the source sample by galax-
ies that are physically associated with the lenses (the so-called
‘boost correction’). The impact on ∆Σ is minimal, however, be-
cause of the weighting with the inverse square of the critical
surface density in Eqn. (4) (see for instance the bottom panel
of fig. A4 in Dvornik et al. 2017). We also do not subtract the
signal around random points, which suppresses large-scale sys-
tematics and sample variance (Singh et al. 2017; Dvornik et al.
2018). This improves the robustness of the measurements on
scales above 2h−1 Mpc (Dvornik et al. 2018), which are not par-
ticularly relevant in constraining the halo model and halo occu-
pation distribution parameters, and mostly affect the bias present
in the 2-halo term, which we do not consider here (see Sect. 5.2).
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5.1. Comparison with lenses from GAMA

As a first demonstration of the statistical power of the KiDS-
Bright sample for GGL measurements, and to verify the quality
of our photometrically selected lens sample, we directly compare
the stacked excess surface density profile, ∆Σ, with that of lenses
extracted from GAMA. For the comparison we use the stellar
masses from the two respective surveys and define a bin of 0.5
dex around the mode of the log M? distribution, which in both
cases is ∼ 10.75. This selection of 10.5 ≤ log(M?/M�) ≤ 11.0
gives about 68 000 galaxies in GAMA and 352 000 in KiDS-
Bright; in both cases this is ∼ 35% of the full sample. The re-
sulting excess surface density ∆Σ, multiplied by the projected
distance from the lens rp to enhance the large-scale signal, is
presented in Fig. 7 as a function of rp.

The two measurements agree remarkably well, demonstrat-
ing that our photo-zs are sufficient for GGL studies. The small
differences in the central values in Fig. 7 most likely arise from
the inclusion of the whole KiDS-South area to the lensing study.
The reduction in uncertainties also agrees with our expectation:
for all scales, δ∆ΣGAMA/δ∆ΣKiDS ≈ 2.4, which reflects the fact
that the KiDS-Bright sample contains ∼ 5.6× more galaxies. We
also tested how much statistical power we lose by using photo-
zs. For this we extracted the lensing signal in the same way as for
GAMA, namely using the point estimate of the redshift, without
its uncertainty (by dropping the integration over p(zl) in Eqn. 4).
We found that the statistical power is worsened by only ∼ 5%
when propagating the redshift uncertainty through to the final
lensing signal stack.

The precision will improve slightly when the data for the full
survey area (1350 deg2) are included. This will make it possible
to revisit the earlier study by Brouwer et al. (2018) of the lens-
ing signal of ‘troughs’ and ‘ridges’ in the density field of KiDS
galaxies, based on the much smaller catalog derived by B18. The
sample we present in this paper has already been used in other
analyses. Brouwer et al. (2021) selected isolated galaxies to mea-
sure the radial gravitational acceleration around them based on
weak lensing measurements, thus extending the so-called radial
acceleration relation into the low acceleration regime beyond the
outskirts of the observable galaxies. The sample was also used by
Johnston et al. (2020) as a test-bed for a new method to mitigate
observational systematics in angular clustering measurements, in
which self-organizing maps are taught the multivariate relation-
ships between observed galaxy number density and systematic
tracer variables. This is then used to create corrective random
catalogs with spatially variable number densities, mimicking the
systematic density modes in the data.

The improvement in statistical power will also allow for bet-
ter constraints on the halo model and the associated halo occu-
pation properties. The small-scale measurements accessible with
such a sample will provide better constraints on the galaxy bias
in the non-linear regime and allow us to test our assumption
about the validity of the halo model. Finally, we anticipate that
this kind of wide-angle lens sample can improve cosmological
constraints from multi-probe analyses employing GGL.

5.2. Stellar-to-halo-mass relation

As a further demonstration of the quality of our data, we use
the KiDS-Bright sample to explore the stellar-to-halo-mass re-
lation (SHMR) for the blue and red galaxies separately. Earlier
GGL studies have shown that these differ (e.g. Hoekstra et al.
2005; Velander et al. 2014; Mandelbaum et al. 2016), which is
also seen in hydrodynamic simulations (e.g. Correa & Schaye
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Fig. 7. Stacked excess surface density profiles, ∆Σ (multiplied by the
distance from the lens rp in Mpc), around lenses with log(M?/M�) ∈
[10.5, 11.0]. The red points show results for 68 000 lenses selected from
GAMA, whereas the blue points show the signal around 352 000 lenses
from the KiDS-Bright sample. The KiDS measurements are shifted
slightly to the right for clarity.

2020). Nonetheless there is no consensus yet in the literature,
because other approaches have arrived at different conclusions
(see Wechsler & Tinker 2018, for a detailed overview and dis-
cussion). Some of the differences may arise from the stellar mass
estimates and the specific selection of the subsamples. For this
reason we do not compare our findings to the literature, but defer
such a detailed comparison to future work. Our aim is merely to
demonstrate the potential of our data for studies of the SHMR.

We split the KiDS-Bright sample by color using the cut de-
fined in Sect. 4 (see Fig. 6). We select lenses with zphot > 0.1
and use our stellar mass estimates to subdivide the blue and
red galaxies into five stellar mass intervals, with the bin edges:
log

(
M?/[h−2M�]

)
= {9.5, 10.0, 10.4, 10.8, 11.2, 11.6}. In this

section we give results in terms of an explicitly h-dependent
mass unit, as used in our modeling, rather than adopting the spe-
cific value h = 0.7, as elsewhere. The properties of the subsam-
ples are reported in Table 2. For each stellar mass bin of the
two color selections we measure the lensing signal as described
above, and the results are shown in Fig. 8. For all subsamples we
detect a significant signal, demonstrating the value of our bright
galaxy selection.

To infer the corresponding halo masses we need to fit a
model to the lensing signal. Numerical simulations show that the
dark matter distribution in halos is well described by an NFW
profile (Navarro et al. 1997), but the signals shown in Fig. 8, es-
pecially those of the red galaxies with low stellar masses, show
a more complex dependence with radius. At large radii the lens-
ing signal is enhanced by the clustering of galaxies, whereas on
small scales satellite galaxies contribute, causing a wide ‘bump’
around 1 Mpc.

The influence of neighboring galaxies can be reduced by se-
lecting ‘isolated’ lenses, so that a simple model can still describe
the measurements. This approach was used by Hoekstra et al.
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Fig. 8. Stacked excess surface density profiles, ∆Σ, of the red and blue lenses (points in corresponding colors) in our KiDS-Bright sample, in the
four stellar mass bins labeled at the top. The lines indicate the best-fitting halo model, with contributions from both centrals and satellites (red
and blue lines with shaded bands enclosing the 68% credible intervals). We note that the model is fit to all stellar mass bins simultaneously, but
separately for the red and blue populations.

Table 2. Overview of the number of lens galaxies, median stellar masses
of the galaxies and median redshifts in each selected mass bin.

Bin log M? range Nred log M(red)
?,med z(red)

med

1 [9.5,10.0) 52 813 9.83 0.16
2 [10.0,10.4) 119 038 10.23 0.23
3 [10.4,10.8) 147 342 10.58 0.29
4 [10.8,11.2) 52 320 10.92 0.36
5 [11.2,11.6) 4 342 11.28 0.43

Bin log M? range Nblue log M(blue)
?,med z(blue)

med

1 [9.5,10.0) 97 786 9.75 0.22
2 [10.0,10.4) 85 594 10.20 0.29
3 [10.4,10.8) 60 541 10.55 0.36
4 [10.8,11.2) 8 839 10.88 0.40
5 [11.2,11.6) 428 11.31 0.41

Notes. Stellar masses are given in units of log
(
M?/[h−2 M�]

)
. The me-

dian stellar masses are used as an estimate of the stellar contribution to
the total lensing signal described as a point-like source.

(2005) and Brouwer et al. (2021), but at the expense of sig-
nificantly reducing the lens sample size. Here, inspired by the
halo model (Seljak 2000; Cooray & Sheth 2002), we estimate

the mean halo mass of central galaxies as a function of stellar
mass by modeling the contributions of both central and satellite
galaxies jointly. The SHMR of central galaxies is parameterized
using the following equation:

M?(Mh) = M0
(Mh/M1)γ1

[1 + (Mh/M1)]γ1−γ2
. (7)

This relation has an intrinsic scatter, and we assume that the
distribution of log(M?) at fixed halo mass is a Gaussian with
a dispersion σc. It is important to include this intrinsic scatter, as
it enables the model to account for Eddington bias (Leauthaud
et al. 2012; Cacciato et al. 2013).

The model itself is based on the halo model implementation
presented in van Uitert et al. (2016), but in our case we adopt
a separate normalization of the concentration of the dark matter
density profile for central and satellite galaxies, a free normal-
ization of the two-halo term, and a fixed subhalo mass for satel-
lite galaxies. The free parameters that describe the lensing signal
around a galaxy with a given mass are thus: the normalization of
the concentration-mass relation for central galaxies, fc; the nor-
malization of the SHMR, M0; its characteristic mass scale, M1;
the low and high mass end slopes, γ1 and γ2; the normalization
of the concentration-mass relation for satellite galaxies, fs. We
simply fit for the normalization of the 2-halo term, b, but do not
aim to interpret its value.
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The number density of halos of a given stellar mass is not
uniform, and this needs to be accounted for in the model. More-
over, in doing so, we need to distinguish between central and
satellite galaxies, because the satellite fraction itself depends
on mass. To do so, we use the conditional stellar mass func-
tion (CSMF), which we describe in more detail in Appendix B.
This introduces additional parameters: the high mass slope of the
Schechter function, αs; and the free parameters for the normal-
ization of the Schechter function used for satellite galaxies, b1
and b2. Finally, we note that we assume that none of the parame-
ters depend on redshift and that the parameters of the Schechter
function are constrained by the lensing signal alone.

The model, as detailed in Appendix B, implicitly assumes
that we employ a complete volume-limited sample of lenses.
This is not the case here, because the cut in apparent r-band
magnitude leads to incompleteness that is larger for low stel-
lar masses, with the selection of red galaxies affected the most.
A proper analysis, which is beyond the scope of our exploratory
study, would have to explicitly include the apparent magnitude
cut of the sample in the model. This is also required if one would
like to jointly model the GGL signal, the stellar mass function,
and the clustering signal.

The observed lensing signal is, however, most sensitive to
the average halo mass of the sample of lenses, so that the re-
sulting mean SHMR for central galaxies is expected to be close
to the true one. We stress, however, that the parameters that de-
scribe the CSMF will be biased. To test this expectation, we ex-
amine how the magnitude cut changes the stellar mass and halo
mass distributions. We used the MICEv2 simulations7 (Carretero
et al. 2015; Crocce et al. 2015; Fosalba et al. 2015b,a) to se-
lect central galaxies with 0.1 < z < 0.5, which we split into
blue and red samples. We used the stellar mass bins definitions
listed in Table 2, and computed the corresponding mean stellar
and halo masses. We also repeated the measurements, after we
applied a cut in apparent magnitude, mr < 20, to mimic the se-
lection of the KiDS-Bright sample. As expected, the resulting
stellar mass functions are biased low for low stellar masses, with
the red galaxies affected the most. In contrast, the changes in
the mean SHMR are small: the mean log(M?) is less than 0.05
dex lower; the intrinsic scatter is not affected significantly ei-
ther. Given the uncertainties in the stellar masses themselves, we
therefore conclude that the magnitude cut has a negligible im-
pact on the inferred SHMR. Nonetheless, we defer a quantitative
interpretation of the results to future work.

We fit our model (see Appendix B for a summary) to the
lensing signal of each of the color-selected sub-samples (that is,
a single model for all the stellar mass bins). The priors that we
used are listed in Table 3. Most priors are flat in the given ranges;
the instances with a Gaussian prior are indicated as N(x̄, σ(x)),
with mean x̄ and a standard deviation σ(x). In the fit we used
the bootstrap covariance matrix measured directly on the data
(for details see Viola et al. 2015; Dvornik et al. 2018), with the
correction from Hartlap et al. (2007) applied to account for noise
in the covariance matrix.

The best-fit parameters obtained with the MCMC method
(Foreman-Mackey et al. 2013) for the halo model are reported
in Table 3, and we show the corresponding models in Fig. 8 as
lines, with shaded areas indicating the uncertainty. The reduced
χ2

red of the halo model fit is 1.92 and 1.91 for the red and blue
samples, respectively, with 48 degrees of freedom. Although the
χ2

red values are high, we note that our model is only an effec-
tive description of the signal; our small statistical uncertainties

7 http://maia.ice.cat/mice/

Table 3. Parameter space ranges and marginalized posterior estimates of
the free parameters used in our model, for both the red and blue sample.

Parameter Priors Red Blue

fc [0, 1] 0.993+0.002
−0.021 –

log(M0/[h−2M�]) [7, 13] 10.39+0.14
−0.15 10.11+0.980

−0.087

log(M1/[h−2M�]) [9, 14] 11.74+0.18
−0.20 11.78+0.59

−0.38

γ1 N(3, 3) 5.0+2.2
−1.6 2.1+1.0

−1.0

γ2 [0, 10] 0.47+0.17
−0.14 0.65+0.56

−0.50

σc [0.05, 2.5] 0.064+0.046
−0.014 0.28+0.36

−0.18

b [0.2, 5] 0.90+0.15
−0.11 0.73+0.26

−0.25

fs [0, 1] 0.56+0.29
−0.15 –

αs N(−1.1, 0.9) −1.286+0.121
−0.079 −0.75+0.23

−0.14

b1 N(0.0, 1.5) −0.65+0.12
−0.14 −0.42+0.41

−0.22

b2 N(1.5, 1.5) 0.97+0.18
−0.13 0.63+0.81

−0.61

Notes. M0 is the normalization of the stellar-to-halo mass relation
(SHMR), M1 is the characteristic mass scale of the same SHMR, fc
is the normalization of the concentration-mass relation, σc is the scatter
between the stellar and halo mass, γ1 and γ2 are the low and high-mass
slopes of the SHMR, fs is the normalization of the concentration–mass
relation for satellite galaxies, αs, b0, and b1 govern the behavior of the
satellite galaxies. As the parameters fc and fs of the blue sample are
not constrained and recover the prior ranges, we do not provide their
values. As discussed in the text, the parameters that describe the CSMF
are biased, as a result of the cut in apparent magnitude that defines the
KiDS-Bright sample.

may already point to the need to improve the modeling itself
(e.g. Mead & Verde 2020; Sugiyama et al. 2020). The best-fit
SHMR models and their uncertainties for the red and blue sam-
ples are shown in Fig. 9. The data cannot constrain the concen-
tration normalization of blue central and satellite galaxies, and
recovers their prior ranges.

Our lensing results suggest that red galaxies with observed
stellar masses M? < 5 × 1010h−2M� occupy dark matter halos
that are about a factor of two more massive than those of blue
galaxies with similar stellar masses. At the high mass end, how-
ever, the differences are larger and red galaxies at a given stellar
mass are found in much more massive halos. Qualitatively, these
results are in good agreement with the bimodality found by Man-
delbaum et al. (2016).

The accuracy of the stellar mass estimates from SED mod-
eling suffer from systematic uncertainties, arising from assump-
tions about the star formation history, the initial mass function,
or the photometry itself. Although our split by rest-frame color
might exacerbate such systematics, the difference we observe is
too large to be solely attributed to them. Nonetheless, a more
detailed investigation is needed before we can quantify the vari-
ous sources of bias more reliably. Moreover, as discussed above,
our model does not fully capture the impact of the magnitude
limit of the KiDS-Bright sample. Similarly, a quantitative com-
parison with previous results (e.g. Velander et al. 2014; Mandel-
baum et al. 2016) requires a careful replication of their sample
selections and stellar mass determination.
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Fig. 9. The predicted halo mass as a function of stellar mass for red and
blue galaxies from this study, using the halo model parameters listed in
Table 3.

6. Conclusions and future prospects

We selected a sample of bright galaxies using the 9-band pho-
tometry from KiDS DR4 (Kuijken et al. 2019) that closely re-
sembles the highly complete spectroscopic dataset from GAMA
(Driver et al. 2011). For an optimal completeness-purity trade-
off, we applied a KiDS magnitude limit of rauto < 20 and em-
ployed three star/galaxy separation criteria based on KiDS pho-
tometry. This resulted in a highly pure sample of galaxies, that
matches the properties of GAMA very well, with only ∼ 1%
of the KiDS-Bright galaxies not represented with respect to
GAMA. The dataset probes the large-scale structure at a mean
redshift of 〈z〉 ' 0.23 and reaches up to z . 0.5, although with
decreasing completeness at these high redshifts due to its flux-
limited character.

The very good match between the two samples allowed us
to take full advantage of supervised machine learning regres-
sion and derive statistically accurate and precise photometric
redshifts for the entire KiDS-Bright catalog. To do so we used
artificial neural networks implemented in the ANNz2 package
(Sadeh et al. 2016). The resulting photo-zs have a small scatter
of σz ∼ 0.018(1 + z) and a mean bias |〈δz〉| < 10−3. The photo-z
performance does not depend on the r-band magnitude nor on
the photo-z for 0.05 < zphot < 0.5. The photo-z error distribution
is close to Gaussian, but a generalized Lorentzian captures the
slightly broader wings better.

We exploited the nine-band coverage and the high-quality
photo-zs to derive robust absolute magnitudes, rest-frame colors,
and stellar masses using the LePhare SED-fitting tool (Arnouts
et al. 1999). We employed these derivations to split the sample
into red and blue galaxies based on the rest-frame u−g color and
absolute r-band magnitude. The red galaxies have better photo-
zs than the full sample, with σz ∼ 0.015(1 + z) at the mean red-
shift 〈z〉 ∼ 0.27. Nonetheless, the photo-zs for the blue galaxies
are also excellent with |〈δz〉| ∼ 10−3 and σz ∼ 0.019(1 + z)). This
exquisite performance is achieved thanks to the very complete
coverage of the GAMA training set, free of any color preselec-
tions.

Comparison of the stellar masses with independent estimates
from GAMA (Taylor et al. 2011; Wright et al. 2016) shows ex-
cellent agreement, with ∆ log M? ≡ log MKiDS

∗ − log MGAMA
∗ =

−0.09 ± 0.18 dex (median and SMAD). Our use of photomet-
ric redshifts accounts for 9% of this scatter, demonstrating the
sample’s potential for scientific exploitation. As a scientific ver-
ification of the KiDS-Bright dataset, we measured the galaxy-
galaxy lensing signal for galaxies with stellar masses in the range
10.5 ≤ log M?/M� ≤ 11 and compared these directly to a sim-
ilar selection using GAMA only. The lensing signals agree over
two decades in angular separation, while the uncertainties are a
factor of ∼ 2.4 smaller for the sample of KiDS-Bright lenses.

Motivated by this agreement we measured the lensing signal
around the blue and red galaxies in 5 stellar mass bins, ranging
from log

(
M?/h−2M�

)
= 9.5 to 11.6, and detect significant sig-

nals in all cases. The measurements were fitted with a model
that includes both central and satellite galaxies (e.g. Dvornik
et al. 2018). Their relative contributions as a function of stellar
mass are described using a conditional stellar mass function. The
resulting parameters, however, are biased, because the KiDS-
Bright magnitude limit leads to incompleteness at low stellar
masses, with the red sample affected the most. Fortunately, com-
parison to a simulated catalog of galaxies from MICEv2 suggests
that the SHMR is not affected significantly.

We used this model to constrain the SHMR for blue and red
galaxies separately. We find that blue and red galaxies with ob-
served stellar masses M? < 5 × 1010h−2M� occupy dark mat-
ter halos that are about a factor two more massive than those
of blue galaxies with similar stellar masses. For stellar masses
M? & 1011h−2M� the model predicts however that the dark
matter halos of red galaxies are much more massive than those
of blue galaxies with the same stellar mass. This result is in
good qualitative agreement with similar findings by Mandel-
baum et al. (2016). A more detailed comparison, however, is
beyond the scope of this paper, because it would require also
a careful comparison of the stellar masses, whilst accounting for
differences in the sample selection.

Our results demonstrate the value of combining highly com-
plete spectroscopy with high-quality imaging data. In the com-
ing decade further advances will be made on both fronts. Large
spectroscopic surveys will probe both larger volumes and fainter
galaxies than current wide-angle redshift catalogs, from which
existing imaging surveys will benefit already. In the case of
KiDS, further improvements will be possible thanks to new over-
lapping complete redshift samples deeper than GAMA, such as
the ongoing Deep Extragalactic VIsible Legacy Survey (DEV-
ILS, Davies et al. 2018) that aims at a very complete selection
with flux limit Y < 21.2 in fields that partly overlap with KiDS
imaging. On a longer timescale, the 4-metre Multi-Object Spec-
troscopic Telescope (4MOST, de Jong et al. 2019) should deliver
denser redshift coverage than GAMA over the full KiDS area,
in particular from its Wide-Area VISTA Extragalactic (WAVES,
Driver et al. 2019) and Cosmology Redshift Surveys (Richard
et al. 2019).

Such larger and deeper spectroscopic data will be ideally
suited to exploit Stage-IV imaging surveys, such as the Rubin
Observatory’s Legacy Survey of Space and Time (LSST Sci-
ence Collaboration et al. 2009) and Euclid (Laureijs et al. 2011).
Those will cover areas more than 10× larger at greater depth than
the Stage-III surveys such as KiDS. The resulting increase of
the statistical power will however require much better handling
of systematics, starting from those in the selection of lenses for
GGL and 3×2pt analyses. Our study demonstrates that one possi-
ble approach towards this goal is to extract a well-characterized,
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flux-limited galaxy catalog, provided that a matched spectro-
scopic subsample is available to calibrate this selection and to
estimate robust photometric redshifts. Such samples can be en-
hanced with deeper, yet less complete, photometric selections of
luminous red galaxies (e.g. Rozo et al. 2016; Vakili et al. 2020)
and adaptive magnitude cuts as a function of photo-z (Porredon
et al. 2020) to probe a larger range of lens redshifts and lumi-
nosities.
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Fig. A.1. Photometric redshift quality (bias and scatter) as function of KiDS-internal and external observational properties.

Appendix A: Dependence of photometric redshift quality on survey systematics

Here we present how the photo-zs of the KiDS-Bright sample described in Sect. 3 vary as a function of survey-related effects. In
Figure A.1 we show the photo-z bias and scatter (SMAD) evaluated for a range of the following parameters:

– PSF FWHM (full width at half maximum) in the r-band, in units of arcseconds, calculated using the PSF_Strehl_ratio
column in the catalog;

– PSF ellipticity in the r-band, obtained from the PSFe1 and PSFe2 columns;
– Star density (projected), determined from the pixelated number density map of bright stars in the second Gaia data release

(Gaia Collaboration et al. 2018);
– Background residual counts in the centroid positions of the objects in the THELI-processed r-band detection images, provided

as BACKGROUND in the catalog;
– Detection threshold above background in units of counts, provided as THRESHOLD;
– E(B-V), Galactic dust extinction in the r-band, derived from the Schlegel et al. (1998) maps with the Schlafly & Finkbeiner

(2011) corrections, provided as EXTINCTION_r in the catalog;
– MagLim, limiting magnitudes in the 9 KV bands, evaluated at object position.

For more details on these quantities, please see Vakili et al. (2020).

Appendix B: Halo model

We model the halo occupation statistics using the Conditional Stellar Mass Function (CSMF, as presented also by Yang et al. 2008;
Cacciato et al. 2013; van Uitert et al. 2016), and employ them to calculate the H functions used in the halo model (Cacciato et al.
2013; van Uitert et al. 2016; Dvornik et al. 2018). The CSMF, Φ(M?|Mh), specifies the average number of galaxies of stellar mass
M? that reside in a halo of mass Mh. In this formalism, the halo occupation statistics of central galaxies are defined via the function:

Φ(M?|Mh) = Φc(M?|Mh) + Φs(M?|Mh) . (B.1)
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In particular, the CSMF of central galaxies is modeled as a log-normal,

Φc(M?|Mh) =
1

√
2π ln(10)σcM?

exp
[
−

log(M?/M∗c )2

2σ2
c

]
, (B.2)

and the satellite term as a modified Schechter function,

Φs(M?|Mh) =
φ∗s
M∗s

(
M?

M∗s

)αs

exp

− (
M?

M∗s

)2 , (B.3)

where σc is the scatter between stellar mass and halo mass and αs governs the power law behavior of satellite galaxies. Note that
M∗c , σc, φ∗s , αs and M∗s are, in principle, all functions of halo mass Mh. We assume that σc and αs are independent of the halo mass
Mh. Halo masses are drawn from the halo mass function for which we assume the Tinker et al. (2010) fitting function. Inspired by
Yang et al. (2008), we parameterize M∗c , M∗s and φ∗s as:

M∗c (Mh) = M0
(Mh/M1)γ1

[1 + (Mh/M1)]γ1−γ2
. (B.4)

M∗s (Mh) = 0.56 M∗c (Mh) , (B.5)

and

log[φ∗s (Mh)] = b0 + b1(log m13) , (B.6)

where m13 = Mh/(1013M�). The factor of 0.56 is also inspired by Yang et al. (2008) and further tests by van Uitert et al. (2016)
showed that using this assumption does not significantly affect the results.

From the CSMF it is straightforward to compute the halo occupation numbers. The average number of galaxies with stellar
masses in the range M?,1 ≤ M? ≤ M?,2 is thus given by:

〈Nx|Mh〉 =

∫ M?,2

M?,1

Φx(M?|Mh) dM? , (B.7)

where x stands for either central or satellite. For the two components we can then write

Hx(k,Mh) =
〈Nx|Mh〉

nx
ũx(k|Mh) , (B.8)

where ũx(k|Mh) are the normalized Fourier transforms of the radial distribution of the central or satellite galaxies. For centrals we
assume that ũx(k|Mh) = 1 and for satellites ũx(k|Mh) = ũh(k|Mh) (the satellite distribution follows the dark matter). The average
number density nx follows from:

nx =

∫ ∞

0
〈Nx|Mh〉 n(Mh) dMh , (B.9)

where n(Mh) is the halo mass function. For the dark matter we have:

Hm(k,Mh) =
Mh

ρm
ũh(k|Mh) , (B.10)

where ρm is the mean density of the Universe and ũh(k|Mh) the normalized Fourier transform of the NFW profile (Navarro et al.
1997). Using these ingredients one can construct 1-halo and 2-halo power spectra (see also Equations 5 – 7 in van Uitert et al. 2016):

P1h
xy(k) =

∫ ∞

0
Hx(k,Mh)Hy(k,Mh) n(Mh) dMh , (B.11)

and

P2h
xy(k) = Plin(k)

∫ ∞

0
dMh,1Hx(k,Mh,1) bh(Mh,1) n(Mh,1)

∫ ∞

0
dMh,2Hy(k,Mh,2) bh(Mh,2) n(Mh,2) , (B.12)

where bh(Mh) is the halo bias from Tinker et al. (2010) and Plin(k) is the linear matter power spectrum. The full GGL power
spectrum is thus written as Pgm(k) = P1h

cm(k) + P1h
sm(k) + P2h

cm(k) + P2h
sm(k), from which the ∆Σgm can be calculated using Fourier and

Abel transforms (see also Equations 1 – 4 of van Uitert et al. 2016):

ξgm(r) =
1

2π2

∫ ∞

0
Pgm(k)

sin kr
kr

k2 dk , (B.13)
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Σgm(rp) = 2ρm

∫ ∞

rp

ξgm(r)
r dr√
r2 − r2

p

, (B.14)

where rp is the projected separation. We also define Σxy(< rp) as its average inside rp:

Σgm(< rp) =
2
r2

p

∫ rp

0
Σgm(R′)R′ dR′ , (B.15)

which we use to define the excess surface density (ESD)

∆Σgm(rp) = Σgm(< rp) − Σgm(rp) . (B.16)

For completeness, we include the contribution of the stellar mass of galaxies to the lensing signal as a point mass, so that ∆Σ
pm
gm(rp) =

M?,med/πr2
p.

Appendix C: Details of released data

Here we provide a description of the columns for the KiDS-1000 bright galaxy sample data release. It is separated into the photo-
metric redshift catalog and the LePHARE derivations. The catalogs can be cross-matched by ID between each other and with the
KiDS Data Release 4 main dataset available from http://kids.strw.leidenuniv.nl/DR4/index.php.

Columns contained in the photometric redshift catalog:

– ID: Source identifier from the KiDS DR4 catalog.
– RAJ2000: right ascension (J2000).
– DECJ2000: declination (J2000).
– MAG_AUTO_calib: zero-point calibrated and extinction-corrected Kron-like elliptical aperture magnitude in the r band;
MAG_AUTO_calib = MAG_AUTO + DMAG − EXTINCTION_R.

– MAGERR_AUTO: RMS error for MAG_AUTO.
– zphot_ANNz2: photometric redshift derived with ANNz2.
– MASK: 9-band mask information.
– masked: binary flag, set to 0 for unmasked and to 1 for masked objects. Use masked == 0 for the default selection.

Columns contained in the stellar mass catalog:

– ID: Source identifier from the KiDS DR4 catalog.
– RAJ2000: right ascension (J2000).
– DECJ2000: declination (J2000).
– K_COR_x: The K-correction for the x-band.
– MAG_ABS_x: The absolute magnitude in the x-band.
– MABS_FILTx: The filter that is used for reference when computing the MABS.
– CONTEXT: A Bit-flag which shows which filters contained photometry used in the fitting process. I.e., if 9-band in-

formation the bit flag is: 111111111=1+2+4+8+16+32+64+128+256=511; if missing Z-band, then the bit flag is:
111101111=1+2+4+8+0+32+64+128+256=495.

– REDSHIFT: The redshift values used for the stellar mass computation, in this case photo-zs derived with ANNz2.
– MASS_MED: The median of the galaxy template stellar mass PDF measured by LePHARE. Note: the galaxies with MASS_MED

== -99 were best-fit by a non-galaxy template, but the MASS_BEST value still shows the best fitting galaxy template mass for
them, nonetheless.

– MASS_INF: The lower-limit on the stellar mass from the galaxy mass PDF (68% confidence level).
– MASS_SUP: The upper-limit on the stellar mass from the galaxy mass PDF (68% confidence level).
– MASS_BEST: The best-fit stellar mass estimated by LePHARE. Use this column as the stellar mass, but make sure to apply the

fluxscale correction (see below).
– SFR_INF: The lower-limit on the star formation rate from the galaxy SFR PDF (68% confidence level).
– SFR_SUP: The lower-limit on the star formation rate from the galaxy SFR PDF (68% confidence level).
– SFR_BEST: Best-fit Star Formation Rate (SFR) estimated by LePHARE.

Note 1. All the ‘MASS’ quantities stand for log10(M?/M�).
Note 2. Fluxscale correction: Because the GAaP photometry only measures the galaxy magnitude within a specific aperture size,
the stellar mass should be corrected using a “fluxscale” parameter, which is the ratio of AUTO and GAaP fluxes:

log10(fluxscale) = (MAG_GAAP_r − MAG_AUTO)/2.5. (C.1)

The ‘total’ stellar mass in then

M_TOT = M_BEST + log10(fluxscale). (C.2)

Similarly, also absolute magnitudes need corrections if ‘total’ measurements are required:

MAG_ABS_X, total = MAG_ABS_X − 2.5 log10(fluxscale). (C.3)

All the LePhare quantities are computed assuming h = 0.7, and the estimated stellar masses are assumed to have a dependence
on h dominated by the h−2 scaling of luminosities. Therefore, if other Hubble constant value is used, the logarithmic stellar mass in
Eq. (C.2) needs to be corrected by −2 log10(h/0.7), while the absolute magnitudes in Eq. (C.3) need to have 5 log10(h/0.7) added.
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