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ABSTRACT
Cosmic voids are a key component of the large-scale structure that contain a plethora
of cosmological information. Typically, voids are identified from the underlying galaxy
distribution, which is a biased tracer of the total matter field. Previous works have
shown that 2D voids identified in weak lensing maps – weak lensing voids – correspond
better to true underdense regions along the line of sight. In this work, we study how
the properties of weak lensing voids depend on the choice of void finder, by adapting
several popular void finders. We present and discuss the differences between identifying
voids directly in the convergence maps, and in the distribution of weak lensing peaks.
Particular effort has been made to test how these results are affected by galaxy shape
noise, which is a dominant source of noise in weak lensing observations. By studying
the signal-to-noise ratios (SNR) for the tangential shear profile of each void finder, we
find that voids identified directly in the convergence maps have the highest SNR but
are also the ones most affected by galaxy shape noise. Troughs are least affected by
noise, but also have the lowest SNR. The tunnel algorithm, which identifies voids in
the distribution of weak lensing peaks, represents a good compromise between finding
a large tangential shear SNR and mitigating the effect of galaxy shape noise.

Key words: gravitational lensing: weak – large-scale structure of Universe – cosmol-
ogy: theory – methods: data analysis

1 INTRODUCTION

Gravitational lensing is the physical phenomena in which
light is deflected by gravitational potentials along the line
of sight, which results in the distortion and magnification of
distant galaxy images. This phenomena can be split into two
regimes, strong and weak gravitational lensing. For strong
gravitational lensing, observed galaxy images are visibly dis-
torted and multiple images of the same source galaxy can
be produced. In the case of weak gravitational lensing (WL),
where image distortions are very small, the underlying lens-
ing signal can be recovered by statistically correlating distor-
tions in many source galaxy images over extended patches
of the sky (Bacon et al. 2000; Kaiser et al. 2000; Van Waer-
beke et al. 2000; Wittman et al. 2000). In particular, WL
is sensitive to moderate variations in the mass distribution,
such as the large-scale structure (LSS) of the Universe, and
allows us to map the cosmic mass content over a large range
of scales, from kiloparsecs to hundreds of Megaparsecs (see
Bartelmann & Schneider 2001; Kilbinger 2015, for a review).

? E-mail: christopher.t.davies@durham.ac.uk (CTD)

WL represents a powerful cosmological probe because
it is an unbiased tracer of the cosmic LSS, whose properties
and evolution are governed by the underlying cosmological
model, including the matter content in the Universe and the
law of gravity. Thus, WL can be used to constrain cosmo-
logical parameters within the standard ΛCDM paradigm, as
well as models beyond ΛCDM (Albrecht et al. 2006; LSST
Dark Energy Science Collaboration 2012; Amendola et al.
2013; Weinberg et al. 2013). In order to achieve this, one
must construct statistics which efficiently capture the cos-
mological information embedded within WL maps. This can
be achieved through two-point statistics such as the power
spectrum or the two-point correlation function. One such
example is the shear-shear correlation function which has
been used to provide constraints on cosmological parame-
ters within ΛCDM (e.g. Schneider et al. 2002; Semboloni
et al. 2006; Hoekstra et al. 2006; Fu et al. 2008; Heymans
et al. 2012; Kilbinger et al. 2013; Hildebrandt et al. 2017).
The convergence power spectrum and shear-shear correla-
tion have also been used to test modified gravity theories
beyond ΛCDM (e.g. Schmidt 2008; Tsujikawa & Tatekawa
2008; Huterer 2010).

© 2020 The Authors
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2 C. T. Davies et. al

The power spectrum encapsulates all the information
required to describe a Gaussian random field, which is an
accurate representation of the matter distribution in the
Universe at early times. However, the growth of LSS is gov-
erned by gravity which induces non-Gaussian features due to
nonlinear evolution at late times, when the power spectrum
becomes an incomplete description of the underlying matter
field. Therefore, for non-Gaussian observables such as WL
maps, it is important to develop complementary statistics
beyond the power spectrum in order to maximise the cos-
mological information that can be extracted.

A popular and simple alternative WL statistic that is
complementary to the WL power spectrum is the abundance
of WL peaks (Jain & Van Waerbeke 2000; Pen et al. 2003;
Dietrich & Hartlap 2010), which are usually defined as the
local maxima in the convergence field. The strongest WL
peaks are typically produced by the most massive structures
in the universe, such as galaxy clusters (Yang et al. 2011; Liu
et al. 2015b; Liu & Haiman 2016), and so the abundance of
these WL peaks is directly sensitive to the non-Gaussian
features of the cosmic web. Furthermore, low amplitude WL
peaks have been shown to contain useful cosmological in-
formation (Dietrich & Hartlap 2010; Kratochvil et al. 2010;
Yang et al. 2011), making the study of weak lensing peaks
crucial for cosmological constraints. This complementary in-
formation contained in the abundance of WL peaks has been
exploited to improve cosmological constraints on ΛCDM pa-
rameters (Shan et al. 2012; Van Waerbeke et al. 2013; Shan
et al. 2014; Liu et al. 2015b), modified gravity (Cardone
et al. 2013; Liu et al. 2016; Higuchi & Shirasaki 2016; Shi-
rasaki et al. 2017; Peel et al. 2018), dark energy (Giocoli
et al. 2018), and the sum of neutrino masses (Li et al. 2019).
Additional WL peak statistics, such as the two point corre-
lation function, have also been shown to be sensitive to the
ΛCDM parameters (Davies et al. 2019a).

There are multiple other WL statistics beyond the
power spectrum that have been utilised to constrain cos-
mology, and we briefly mention a few here. The first is
Minkowski functionals, which can provide additional con-
strains on the dark energy equation of state parameter (Kra-
tochvil et al. 2012; Petri et al. 2013; Ling et al. 2015; Mar-
ques et al. 2019). The WL bispectrum, which is sensitive to
non-Gaussianity by definition, has been shown to be a useful
statistic for future surveys (Cooray & Hu 2001; Rizzato et al.
2019; Munshi et al. 2020), and can be used to improve pa-
rameter constraints, such as neutrino masses (Coulton et al.
2019b). And finally, WL minima, local minima in the con-
vergence field, are less sensitive to baryonic effects, and offer
certain advantages over WL peaks (Coulton et al. 2019a).
Every such novel statistic offers its own unique advantages,
which makes the study of novel statistics crucial.

The goal of this paper is to explore the properties
of another of such statistic, WL voids, first introduced in
Davies et al. (2018). Typically voids are identified in the
full 3D distribution of the LSS, as regions with low densi-
ties of matter or tracers. The void abundance, their radial
profiles and shapes contain higher order clustering infor-
mation (and hence non-Gaussian information; White 1979;
Fry 1986; Biswas et al. 2010; Bos et al. 2012; Lavaux &
Wandelt 2012). Most studies have focused on galaxy voids,
which corresponds to underdensities in the galaxy distribu-
tion (e.g. Paz et al. 2013; Sutter et al. 2014; Cautun et al.

2016; Nadathur 2016). The statistics of galaxy voids contain
complementary information to the galaxy power spectrum
and baryonic acoustic oscillations (e.g. Pisani et al. 2015;
Hamaus et al. 2016; Nadathur et al. 2019). One useful void
statistic is their WL profiles, which have been argued to
represent a powerful cosmological probe (Cai et al. 2015;
Barreira et al. 2015; Falck et al. 2018).

Compared with galaxy voids, WL voids have been
shown to corresponds to deeper line-of-sight projected un-
derdensities and thus they have a larger tangential shear sig-
nal (Davies et al. 2018). This potentially makes WL voids
better cosmological probes than galaxy voids. This has been
exemplified by Davies et al. (2019b) in the context of a class
of modified gravity models, which can be considerably better
constrained with 2D WL voids than with galaxy voids.

The total SNR of void lensing profiles depends on the
number of voids and the amplitude of the lensing profile. De-
pending on how voids are identified, either fewer or more 2D
voids can be obtained relative to 3D voids. However, most
importantly, the 2D void lensing profiles have amplitudes
roughly an order of magnitude larger than those of 3D voids
(Cautun et al. 2018; Davies et al. 2018). This is the most
important factor that contributes to higher SNR for 2D WL
voids compared to 3D voids in the cosmic web.

Davies et al. (2018) focused on a particular class of WL
voids, called VOLEs (VOids from LEnsing), where the voids
are identified as circles devoid of weak lening peaks. How-
ever, as for 3D voids, the definition and therefore the find-
ing algorithm of 2D voids are not unique. There are mul-
tiple methods of finding underdensities, and thus multiple
approaches to define voids (e.g. Colberg et al. 2008; Cau-
tun et al. 2018). This ambiguity can lead to systematic dif-
ferences in void observables among the various void finders.
However this ambiguity can also be exploited, by picking the
void-finding algorithm that best suits the intended purpose.
In our case, we want to maximise the amplitude of the WL
void lensing profiles (or similarly the SNR of the WL void
lensing profiles), whilst also limiting the impact of observa-
tional noises on the resulting void statistics. To this end, we
will present WL void statistics for a range of void-finding
algorithms, and discuss the limitations and advantages of
each void finder.

Here, we compare seven different void definitions. These
can be split into two classes. First and seemingly the most
natural approach, consists of the methods which identify
voids directly from the WL convergence field. In the follow-
ing, we denote the convergence with κ. The simplest objects
that can be considered as WL voids are the WL minima (i.e.,
local minima in the κ field) where the deepest minima have
been shown to correspond to large supervoids along the line
of sight (Chang et al. 2018). More advanced void definitions
include the watershed void finder (WVF; Platen et al. 2007),
which identifies voids as the watershed basins of the conver-
gence field, the spherical void finder (SVF; e.g., Padilla et al.
2005) applied to the convergence field (which we denote as
SVF κ), which finds the largest circles whose mean κ is be-
low a given threshold, and troughs (denoted with Troughs
κ; Gruen et al. 2015), which consists of fixed sized circles
whose mean convergence is below a given threshold.

By construction, the number and properties of voids
identified in the convergence field are sensitive to the low-
est κ values. These regions are the ones affected the most
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Weak lensing void finders 3

by galaxy shape noise (GSN). For this reason we consider a
second class of void finders, which consists of methods that
identify voids using a distribution of tracers, which we take
to be the peaks of the convergence field (as we shall discuss,
the peaks are less affected by GSN). We study three meth-
ods in this class: the ‘tunnel’ algorithm (Cautun et al. 2018)
employed in Davies et al. (2018), which identifies voids as
the largest circles devoid of tracers, the SVF but now ap-
plied to the peak distribution (hereafter referred to as ‘SVF
peak’), and troughs identified in the peak distribution (de-
noted with ‘Troughs peak’), which consists of fixed sized
circles that enclose fewer than a given number of peaks. A
detailed description of how each WL void finder is presented
in Section 4.

The content of the paper is as follows: in Section 2 we
present the relevant WL theory. The numerical simulations
and galaxy shape noise prescription used in this study are
presented in Section 3 along with the basic WL map statis-
tics which will help the interpretation of results from dif-
ferent WL void finders. The void finders studied here are
presented in Section 4, and the statistics describing the WL
voids associated to each WL void finder are presented and
discussed in Section 5. We then compare useful properties
of the WL void finders in Section 6, with the discussion and
conclusions in Section 7. We also present the correlation ma-
trices of the tangential shear profiles for different void finders
in Appendix A. In Appendix B we test how WL voids be-
have in WL maps with only GSN i.e. WL maps with no
physical signal, and discuss how WL voids are sensitive to
the physical information in WL maps.

2 THEORY

For a gravitationally lensed image, the lens equation is given
by

ααα = βββ − θθθ , (1)

where θθθ is the observed position of the lensed image, βββ is the
true position of the source on the sky, and ααα is the deflection
angle. The deformation matrix A can be defined as

Ai j =
∂βi
∂θ j
= δi j −

∂αi
∂θ j

, (2)

while, under the Born approximation and neglecting lens-
lens coupling, the deflection angle can be expressed as the
gradient of a 2D lensing potential, ψ, which is given by

ψ(θθθ, χ) = 2
c2

∫ χ

0

χ − χ′
χχ′

Φ(χ′θθθ, θθθ)dχ′ . (3)

Here, χ is the comoving distance to the source, χ′ is the
comoving distance to the lens, c is the speed of light and Φ
is the 3D lensing potential of the lens. In the absence of the
anisotropic stress, which means that the two gravitational
potentials in the Newtonian gauge are both equal to Φ, Φ
is related to the non-relativistic matter density contrast, δ,
through the Poisson equation

∇2
Φ = 4πGa2 ρ̄δ , (4)

where G is the gravitational constant, a is the scale factor, ρ̄
is the mean matter density of the universe, and δ = ρ/ρ̄ − 1.
Eq. (3) shows that the WL signal is produced by the matter

distribution along the entire line of sight from the source to
the observer.

Using ααα = ∇∇∇ψ allows Eq. (2) to be expressed in terms
of ψ

Ai j = δi j − ∂i∂jψ , (5)

where partial derivatives are taken with respect to θθθ. The
AAA matrix can be parameterised in terms of convergence, κ,
and shear, γ = γ1 + iγ2, as

AAA =
(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (6)

where the convergence and shear are related to the lensing
potential via

κ ≡ 1
2
∇2
θθθψ , (7)

γ1 ≡
1
2
(∇θθθ1∇θθθ1 − ∇θθθ2∇θθθ2)ψ, γ2 ≡ ∇θθθ1∇θθθ2ψ, (8)

where ∇θθθ ≡ (χ′)−1∇. Eq. (7) can be interpreted as a 2D
Poisson equation, and so by substituting Eq. (4) and Eq. (3)
into Eq. (7), the convergence can be expressed in terms of
the matter overdensity

κ(θθθ, χ) =
3H2

0Ωm

2c2

∫ χ

0

χ − χ′
χ

χ′
δ(χ′θθθ, χ′)

a(χ′) dχ′ . (9)

This shows that the observed WL convergence can be in-
terpreted as the projected density along the line of sight,
weighted by the lensing efficiency factor (χ − χ′)χ′/χ.

In WL observations, the source galaxies do not occupy
a single plane at a fixed distance from the observer. The
observed catalogue of source galaxies has a probability dis-
tribution n(χ), and Eq. (9) must be weighted by this source
galaxy distribution in order to obtain κ(θθθ) (see, e.g., Kil-
binger 2015, for a more detailed discussion.)

κ(θθθ) =
∫ χ

0
n(χ′)κ(θθθ, χ′)dχ′ . (10)

Finally, we can relate the radial convergence profile of
an object κ(r) to its radial tangential shear profile through

γt (r) = κ̄(< r) − κ(r) , (11)

where

κ̄(< r) = 1
πr2

∫ r

0
2πr ′κ(r ′)dr ′ (12)

is the mean enclosed convergence within radius r. Notice
that here and throughout this paper we use r rather than θ

to represent the 2D distance from the void centre.
In addition to the convergence profiles of WL voids, it

is useful to also study the tangential shear profiles, since
the tangential shear is the quantity directly measured by
observations.

3 WEAK LENSING MAPS

In this section, we briefly outline the numerical simulations
and the weak lensing maps used in this study, our prescrip-
tion for including galaxy shape noise in our analysis, and a
discussion on the relevant WL statistics that will inform the
interpretation of our results from different void finders.

MNRAS 000, 1–25 (2020)



4 C. T. Davies et. al

3.1 Numerical simulations

To study WL voids we use WL maps generated from N-
body simulations taken from Takahashi et al. (2017) (herein
T17) which provide publicly-available all-sky WL conver-
gence maps. The WL maps are generated with the ray
tracing algorithm from Hamana et al. (2015) (see also Shi-
rasaki et al. 2015). These WL convergence maps have a
HEALpix resolution of Nside = 16384, and a source redshift
of zs = 1. The N-body simulations have a particle num-
ber of 20483, and the particle mass varies with the box size
ranging from 8.2 × 108 to 2.3 × 1012M� (see Table 1 of T17
for more details). To avoid repeating structures along the
line-of-sight, T17 constructed the light cone by stacking cu-
bic simulation boxes of increasing size, with comoving sizes
L, 2L, 3L, · · · , 14L, where L = 450h−1Mpc. These boxes are
then duplicated 8 times and nested around the observer,
where nests of larger boxes contain nests of smaller boxes at
their centres. The matter distribution of these nested boxes
is projected onto the nearest spherical shell centreed on the
observer, where the shells have radii of N ×150 h−1Mpc with
N = 1, · · · , 14 (see T17 for illustration). The cosmological pa-
rameters used for these WL maps corresponds to a flat uni-
verse with Ωm = 0.279, ΩΛ = 0.721, σ8 = 0.820 and h = 0.7,
where h = H0/100 km s−1 Mpc−1.

We split the all sky WL convergence maps into 192
10 × 10 deg2 maps and then extend the map boundaries by
a further 5 deg on all sides giving us 192 20 × 20 deg2 maps
with a resolution of 40962 pixels. This approach results in
maps where the central 10×10 deg2 region of each map does
not overlap with the central 10×10 deg2 region of any of the
remaining 191 maps. The use of the 192 smaller maps allows
us to stick to the flat sky approximation. Void detection is
carried out on the full 20 × 20 deg2 and voids with centres
outside of the central 10 × 10 deg2 are discarded. Addition-
ally, voids that are within twice their radius from the map
boundary are discarded when calculating the void lensing
profiles. This approach guarantees that void identification is
not biased away from large voids due to boundary effects.
For more details on our projection method, see Appendix A
of Davies et al. (2019a).

3.2 Galaxy shape noise

The observed correlation in galaxy shapes induced by gravi-
tational lensing is entirely dominated by the random shapes
and orientations of galaxies, which are referred to as galaxy
shape noise (GSN). As shown by Van Waerbeke (2000), GSN
can be modelled by adding random values drawn from a
Gaussian distribution to each pixel of our simulated WL
maps. The standard deviation of this distribution is given
by

σ2
pix =

σ2
int

2θpixngal
, (13)

where σint is the intrinsic ellipticity dispersion of the source
galaxies, θpix is the width of each pixel, and ngal is the mea-
sured source galaxy number density. We use σint = 0.4 and
ngal = 40 arcmin−2, which match lsst specifications (LSST
Science Collaboration et al. 2009).

The inclusion of GSN results in noise-dominated WL
maps. Nevertheless, the noise effect can be suppressed by

smoothing with a (usually) Gaussian filter with smoothing
length θs. Using a small value for θs allows a given WL
statistic to probe the smallest scales and maximise the in-
formation gained, however this also leaves significant con-
tamination from GSN. Using larger θs values reduces the
GSN contamination, but suppresses the small scale infor-
mation within the WL maps. This means that a trade off
must be struck between sufficiently suppressing GSN and
retaining WL information on small scales. Additionally, the
analysis carried out here relies on WL maps generated from
dark matter only simulations, and do not include baryon
physics. To suppress the differences between dark matter
only and full hydrodynamic simulations, Weiss et al. (2019)
found that very large smoothing scales must be used. Fur-
thermore, Liu et al. (2015a) found that constraints on cos-
mological parameters from WL peaks are improved when
multiple smoothing scales are used. These imply that there
is no single best choice of smoothing scale that fits all pur-
poses when analysing WL statistics. So in order to explore
this fully, all statistics in this work will be shown for multiple
smoothing scales, θs = 1 (blue), 2.5 (orange), and 5 (green)
arcmin, both in the presence (dashed) and absence (solid)
of GSN.

By presenting all statistics for multiple smoothing
scales, with and without GSN, we will be able to identify
the void finders that are the least affected by GSN. However
at this point the impact of GSN on cosmological parameter
constraints from WL voids is not known. It is possible that
the inclusion of GSN may improve cosmological parameter
constraints from WL voids by increasing the signal-to-noise
(SNR) ratio relative to the case where GSN is not included,
as has been found with WL peaks (Yang et al. 2011). How-
ever, GSN could also bias or degrade the cosmological pa-
rameter constraints from WL voids. We leave such an inves-
tigation to further work and focus on identifying void finders
that are the least affected by GSN in this paper.

For the analysis of WL peaks it is useful to define the
amplitude of a given peak relative to the r.m.s. fluctuation
of the added GSN component of the WL field. As such ν is
defined as

ν ≡ κ

σGSN(θs)
, (14)

where σGSN(θs) is the standard deviation of the smoothed
GSN map (without contributions from the physical WL con-
vergence map i.e. noise only) and varies depending on the
smoothing scale with which the WL peak is identified, with
σGSN = 0.0126, 0.0051 and 0.0025 for θs = 1, 2.5 and 5 arcmin
respectively.

3.3 Convergence PDF and WL peak abundance

In order to aid the interpretation of the various WL void
statistics, we first present some simple statistics that de-
scribe the information given to the WL void finders. In the
cases of void finders applied directly to the convergence field
this is the WL convergence probability distribution function
(PDF) shown in the left panel of Fig. 1, and for the void
finders that use weak lensing peaks as tracers this is the
WL peak abundance shown in the right panel Fig. 1.

The left panel of Fig. 1 shows the WL convergence PDF
for the three smoothing scales (1, 2.5 and 5 arcmin), for cases

MNRAS 000, 1–25 (2020)



Weak lensing void finders 5

0.04 0.02 0.00 0.02 0.04 0.06 0.08

10 1

100

101

102

PD
F

Smoothing scale
s = 1 arcmin
s = 2.5 arcmin
s = 5 arcmin

Map type
w/o GSN
w/ GSN

0.02 0.00 0.02 0.04 0.06 0.08
10 3

10 2

10 1

100

101

dn
p/d

[d
eg

2 ]

Figure 1. Left panel: the probability distribution function (PDF) of the WL convergence field, κ. Right panel: The differential abundance
of WL peaks as a function of peak height ν. The results shown here are obtained using a ∼19, 000 deg2 area with the shaded regions

denoting the one sigma error bars (most of the time the errors are smaller than the line thickness). The dashed and solid lines correspond

to the WL convergence maps with and without GSN respectively. The colours correspond to different smoothing scales of the κ field: 1.0
(blue), 2.5 (orange) and 5.0 (green) arcmin.

with and without the inclusion of GSN (dashed and solid).
The convergence PDF is well described by a log normal dis-
tribution convolved with a Gaussian when GSN is included
(Clerkin et al. 2017). The different colours show that as the
smoothing scale increases, the width of the distribution de-
creases, suppressing the non-Gaussian structures within the
WL map, and the agreement between the cases with and
without GSN improves. The differences in the convergence
PDF between the no-GSN case and the GSN-added case
are larger for κ < 0 than for κ > 0. This indicates that
the WL void statistics, which describe underdensities (i.e.
κ < 0), are likely to be significantly more impacted by GSN
than the WL peak statistics, which are generally overdense
(i.e. κ > 0). Therefore in order to find agreement in WL
void statistics with and without the inclusion of GSN we
will likely require larger smoothing scales than what is re-
quired to get the same agreement for WL peak statistics.
Finally, for a smoothing scale of 1 arcmin (blue curves), the
inclusion of GSN introduces a significant number of nega-
tive convergence values that are much lower than the lowest
convergence values found in the WL maps without GSN.
This indicates that 1 arcmin smoothing might be too small
for WL void finders applied directly to the covergence field
in order to agree before and after GSN is added. However,
agreement between the two cases is largely improved once
the smoothing scale is increased to 2.5 or 5 arcmin.

The differential WL peak abundances identified from
WL maps with and without GSN smoothed over the three
smoothing scales (1, 2.5 and 5 arcmin) are displayed in the
right panel of Fig. 1. By adding GSN, the peak of the distri-
bution is shifted to the right, and more peaks are created.
The addition of these spurious peaks from GSN will lead
to the identification of spurious voids for void finders that
find voids in the WL peak distribution. The differences be-
tween WL peak catalogues for maps with and without GSN
is suppressed as the smoothing scale increases, but this also
decreases the overall abundance of the WL peaks. It can also
be seen that, as κ increases, the differences between the maps
with and without GSN decreases. This is because the largest

WL peaks are less affected by GSN, since the physical peak
signal dominates over the noise.

The right panel of Fig. 1 also shows that there are many
WL peaks with negative convergence values, which are lo-
cal maxima in underdense regions of the WL convergence
maps. This is as expected, since most regions have κ < 0
(see left panel in Fig. 1) and thus many local maxima will
have heights, κ < 0. As we will discuss in Section 4, the void
finders based on the peak distribution identify the voids as
the regions that are largely devoid of peaks. Including all the
WL peaks in our analysis can raise two problems. Firstly, it
reduces the contrast in peak number density between over-
dense and underdense regions, and thus makes it difficult to
robustly identify the underdense regions. Secondly, the loca-
tion and height of κ . 0 peaks is much more affected by GSN
than for the high κ peaks. This defeats the main reason for
identifying voids using the WL peaks, which is to mitigate
the effect of GSN on the WL void population. Therefore, to
deal with these two issues, we proceed by imposing a peak
height cut on the WL peak catalogues, and remove all peaks
below a given threshold. This adds a free parameter to the
analysis and thus, for the void finders that use WL peaks
as tracers, we will present results for peak catalogues with
peak heights of ν > 2 and ν > 4.

4 VOID FINDERS

In this section, we describe the implementation of each WL
void finder used in this paper. These void finders were orig-
inally developed to identify voids in a 3D galaxy or mat-
ter distribution, which means that some must be modified
slightly to identify 2D WL voids. In each case we try to
minimise the extent of the modification so that the inter-
pretation of results can remain as similar as possible to the
interpretation of 3D voids. Furthermore, where possible, we
apply each void finder to both the WL peak distribution
and the WL convergence field to see which approach pro-
vides the most information (in terms of the signal-to-noise
ratio, SNR) and which is least affected by GSN. Finally, all
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void identification is carried out on the full 20×20 deg2 maps,
while the voids whose centres reside outside of the central
10 × 10 deg2 are discarded. This ensures that the void iden-
tification process is not contaminated by edge effects, and
that we do not bias our results away from large voids, since
larger voids are more likely to intersect the map boundary.

4.1 Minima

Weak lensing minima are the simplest objects which can be
interpreted as WL voids, which correspond to the most un-
derdense lines of sight within the WL convergence maps.
Here we define WL minima as local minima in the conver-
gence field, which is a pixel whose κ value is lower than
those of its eight neighbours. We identify WL minima in the
smoothed convergence field and discard all minima with a
positive κ value, because a positive κ value indicates that
the minimum and its neighbours reside within a local over-
density. This allows us to remain consistent with the general
definition of a WL void, which is an underdense patch of the
WL convergence map.

4.2 Troughs

Troughs (Gruen et al. 2015) are underdense circles of a fixed
size. Typically troughs are identified by randomly placing
circles of that fixed size in a projected galaxy field and dis-
carding the circles that contain the most galaxies, leaving
only those that contain the least galaxies. Here we adapt
the trough algorithm and apply it to both the WL peak
field and the WL convergence field.

For troughs applied directly to the convergence field
(Troughs κ), we first place 5000 circles randomly such that
their centres fall into the central 10×10 deg2 of the WL con-
vergence map. For each of these circles, the mean enclosed
convergence is calculated. The trough catalogue consists of
the 20% of the circles with the lowest mean enclosed con-
vergence. The above procedure is carried out for circles with
radii of 10, 20 and 30 arcmin, which correspond to the typi-
cal values used in previous studies (e.g., Barreira et al. 2017;
Gruen et al. 2018).

For troughs identified in the WL peak distribution
(Troughs peak), the same steps are repeated except that,
rather than calculating the mean enclosed convergence, we
count the number of enclosed peaks, and keep the 20% of
circles which contain the fewest peaks. Again, these steps
are repeated for circles of radii of 10, 20 and 30 arcmin.

The number of randomly placed circles and the upper
fraction of circles to be discarded are both free parameters.
However, to keep the analysis in this work simple we do not
vary these parameters, and their values above have been cho-
sen to match the typical abundances of WL voids produced
by the other algorithms for a fair comparison.

4.3 Watershed void finder (WVF)

The watershed void finder (Platen et al. 2007, WVF) defines
voids as the watershed basins, which are analogous to wa-
ter basins formed from rain running down a landscape. To
identify the watershed basins, each pixel of the convergence
map is connected to its neighbour with the lowest density,

and this process is repeated for successive neighbours until
a local minima is reached. All pixels connected to the same
minima then belong to the same watershed basin. This re-
sults in ridges of local overdensities along the basin bound-
aries.

To mitigate the impact of GSN, we compare the aver-
age amplitude of each basin boundary with the amplitude of
their corresponding minima. If the absolute difference in am-
plitude between the two is less than hboundary, we merge that
basin with its neighbour, which creates a single larger basin.
In this analysis we choose hboundary = σGSN/2, which allows
watershed basins that have been artificially split by spuri-
ous structures introduced by GSN to be re-merged. Adding
the basin merge criteria means that hboundary is an additional
free parameter in the WVF algorithm. We have tested the
impact of varying hboundary and find that it has little impact
on our results. We choose hboundary = σGSN/2 as a compro-
mise between mitigating the impacts of GSN on watershed
basins and over merging, which would on average flatten out
void lensing profiles.

This algorithm generates irregular basins which span
the entire area of the WL convergence map. In order to
calculate the stacked lensing profiles of the voids, we must
define their void centres and radii using the information of
the corresponding basins. We take the void centres as the
area-weighted barycentre of all the pixels in each basin and
define an effective void radius of Rv = (A/π)1/2 (which is the
radius of a circle with the same area A as the irregular basin)
when calculating the WVF lensing profiles.

When the watershed algorithm is applied to the galaxy
distribution to find 3D voids in the LSS, the galaxies are first
used as tracers to construct an estimate of the underlying
density field using a Delaunay tessellation field estimation
(DTFE) (Schaap & van de Weygaert 2000; Cautun & van
de Weygaert 2011). This in principle means that WL peaks
could also be used to identify WL voids with the watershed
algorithm, by using the WL peaks to construct a WL peak
density field. However, we find that the usual DTFE ap-
proach is insufficient, since it results in WL voids identified
from the WL peak distribution that bear little correlation to
underdensities in the original convergence map. While it may
be possible to improve this procedure by using information
about the WL peak heights in the DTFE reconstruction,
this is beyond the scope of this work, and we thus instead
choose to only study voids identified by applying the water-
shed algorithm to the WL convergence field.

4.4 Spherical void finder (SVF)

The spherical void finder (SVF) (e.g., Padilla et al. 2005)
identifies underdense spherical regions in the galaxy distri-
bution, by growing spheres around regions that are empty
of galaxies. When applied to find WL voids, the SVF iden-
tifies circular regions in the WL convergence or peak fields
that are below a specified ‘density’ threshold. In practice,
in order to allow SVF voids to ‘grow’ as large as possible,
circles are shrunk from some arbitrarily large size around
candidate void centres until the threshold is met.

For the SVF applied directly to the WL convergence
map (SVF κ), local minima are considered as prospective
void centres. Starting from a large radius, circles are then
shrunk around these void centres until the mean enclosed
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convergence reaches a predefined threshold, κthresh. Here,
larger values of κthresh result in larger voids, and note that we
require κthresh to be negative so that the SVF finder identifies
regions that enclose underdense sections of the convergence
map. We have tested a range of values for κthresh, and as
a compromise between identifying the most underdense re-
gions and allowing voids to grow as large as possible, we set
κthresh = −0.01 in this analysis. Once all prospective voids are
shrunk until their mean convergence is κthresh, we proceed to
remove the objects that overlap significantly. That is, if the
distance between any two prospective voids is less than half
the sum of their radii, we discard the smaller of the two.
Finally, we remove all voids with radii less than twice the
smoothing scale that is applied to the convergence map (θs)
to reduce the number of spurious voids.

For the SVF applied to the WL peak distribution (SVF
peak), a Delaunay triangulation of the peak field is per-
formed, and the circumcentres associated to each triangle
are considered as potential void centres. Starting from a
large radius, circles around those centres are shrunk, un-
til the mean enclosed WL peak number density reaches a
predefined fraction of the mean WL peak number density.
We find that the resulting void catalogues are somewhat
insensitive to the exact choice of this threshold value, and
therefore pick 40% as a good compromise between allowing
SVF voids to grow as large as possible and ensuring these
voids correspond to underdense regions of the WL conver-
gence maps. Next, we randomly shift void centre positions
within the void radius, in order to verify if it is possible
for the void to ‘grow’ a bit more (i.e., to reach the density
threshold at a slightly larger radius). Finally, if the centres
of two voids are separated by less than half of the sum of
their radii, we remove the smaller of the two.

4.5 Tunnels

The tunnel algorithm (Cautun et al. 2018) identifies the
largest circles in a 2D tracer catalogue that are empty of
tracers. Initially, a Delaunay tessellation with WL peaks as
the vertices is constructed. This produces a tessellation of
Delaunay triangles, with a WL peak at the corner of each
triangle, and no WL peaks within the triangles. Each De-
launay triangle is then used to construct its corresponding
circumcircle, which is the circle that resides directly on top
of the Delaunay triangle, with the three vertices of the trian-
gle falling on the circumcircle’s circumference. This unique
tessellation, by definition, produces circles which do not en-
close any WL peaks. To avoid highly overlapping objects,
we discard any tunnels whose centres reside within a larger
tunnel. Recently, Davies et al. (2018) have studied tunnels
in the context of WL maps and Davies et al. (2019b) have
shown that they are better at constraining a modified grav-
ity model than tunnels identified in the projected galaxy
distribution.

4.6 Visualisation

Fig. 2 shows a visualisation of each of the void finders studied
in this work. The eight panels in the top section (1A – 1H)
show results for WL maps without GSN and the eight panels
in the bottom section (2A – 2H) are results for WL maps

with GSN. Each panel corresponds to a different void finder,
apart from the first panels of each section (panel 1A and 2A)
which shows only the WL convergence field for reference.
Only the central 6 × 6 deg2 of one of the maps are shown,
to avoid over crowding whilst still displaying a fair sample
of each void catalogue. The results shown here are for a
smoothing scale of θs = 2.5 arcmin and for peak catalogues
with WL peak heights of ν > 2 (where applicable). The top
row of each section (panels 1A - 1D and 2A - 2D) corresponds
to voids identified in the WL convergence maps and the
bottom rows (panels 1E - 1H and 2E - 2H) corresponds to
voids identified in the WL peak distribution. The WL peaks
are shown by the green points, while the WL minima are
shown by the cyan points.

Panels 1B and 2B of Fig. 2 shows the WVF voids iden-
tified in the WL convergence map. These voids tend to avoid
the more overdense patches of the convergence map, since
these more overdense regions reside at the watershed basin
boundaries. The WVF voids occupy most of the area of the
WL convergence map, which is due to every pixel within
the map being assigned to a watershed basin. In some cases,
the largest voids enclose smaller voids, as can be seen to-
wards the top left of Panel 1B. The overlap is an artefact
of illustrating the WVF as circles when actually these voids
have highly non-circular and non-overlapping shapes (e.g.
see Platen et al. 2007; Cautun et al. 2016). By adding GSN,
the size of the WVF voids is reduced and their abundance
is increased.

Troughs identified directly on the convergence map are
shown in Panels 1C and 2C, where it can be seen that
these troughs trace only the most underdense regions of
the convergence maps, which is by construction. The conse-
quence of this algorithm is that many troughs significantly
(or nearly entirely) overlap with other troughs, with very
few troughs existing in isolation from other troughs. This
will lead to highly correlated information in the statistics
describing these troughs, as will be seen in their correlation
matrices in Appendix A. Panel 2C shows how adding GSN
can change the spatial distribution of the troughs, although
the degree of overlap between neighbouring troughs remains
similar to the no-GSN case in panel 1C.

Panels 1D and 2D show the SVF voids identified in the
convergence field. As can be seen there, the abundance of
these voids is significantly lower compared to void catalogues
from other algorithms, and more small voids are generated.
However, these voids trace the underdensities of the con-
vergence map reasonably well, as can be seen by their dark
interiors. There are more voids in panel 2D, indicating that
GSN increases the abundance of these voids.

The WL minima are displayed in Panels 1E and 2E.
We remind the reader that we only study underdense min-
ima, i.e., ν < 0, and so only these minima are shown in
the figure. These panels illustrate that the WL minima are
slightly different from the typical WL void definition used in
this work, since they have no size or radius, which has the
advantage of simplicity. In later sections we’ll discuss the
abundance of WL minima as a function of their amplitude,
rather than as a function of their size, and the abundance of
WL minima has been shown to provide complementary cos-
mological information to the WL peak abundance (Coulton
et al. 2019a). We also discuss, for the first time, the potential
for the radial lensing profiles of WL minima to be used in a
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Figure 2. A visualisation of the weak lensing void finders discussed in this work. The convergence field is shown by the background
colour map in each panel, with the convergence values illustrated by the colour-bar at the top of the figure. Here the brightest (orange)
colours correspond to high κ values and the darkest (purple) colours show low κ regions. The results presented here are for a Gaussian

smoothing scale, θs = 2.5 arcmin. The top eight panels are for WL maps with no GSN (1A to 1H), and the bottom eight panels are for

WL maps with GSN (2A to 2H). Panels 1A and 2A show only the convergence fields as a reference point. The panels 1B to 1E and 2B
to 2E show voids identified in the convergence field and correspond to: WVF, troughs and SVF applied to the κ field, and minima. The

remaining panels (1F to 1H and 2F to 2H) show voids identified using WL peaks with height, ν > 2, and correspond to: tunnels, troughs
and SVF applied to the peak distribution. Only the central 6 × 6 deg2 of the convergence maps are shown to avoid overcrowding.
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cosmological analysis. There are more WL minima in panel
2E compared to 1E, indicating that there are more spurious
minima created by GSN than physical minima removed by
GSN.

A visualisation of the tunnel algorithm is shown in Pan-
els 1F and 2F. The WL peaks used to identify the tunnels are
shown by the green points, highlighting that the tunnels do
not enclose any WL peaks, and that the peaks only reside on
the void boundaries. Like the WVF, the tunnels occupy most
of the area of the convergence map, however the tunnel algo-
rithm identifies a wider range of void sizes, producing more
large voids than those identified in the convergence maps.
Smaller tunnels tend to cluster more than the larger ones,
with the former appearing more in the overdense parts of
the convergence map. Also similar to the WVF voids, panel
2F contains more tunnels which are on average smaller than
the tunnels in panel 1F. This is because the spurious WL
peaks created by GSN break up the larger tunnels in panel
1F into the multiple smaller tunnels seen in panel 2F.

Panels 1G and 2G show the troughs identified in the
WL peak distribution. The troughs identified in this way
still have a significant degree of overlap, however the over-
lap in this case is much weaker than for the troughs identified
in the convergence maps. There are underdense patches in
which no troughs have been placed, whilst many overlapping
troughs can be seen in other regions. This highlights the inef-
ficiency of the trough algorithm when applied to a WL peak
distribution. This may be solved by increasing the number
of troughs that are placed, however this will also increase
the number of significantly overlapping troughs. As with the
troughs applied to the convergence map, the troughs iden-
tified in the WL peak distribution trace different regions of
the WL maps when GSN is added, and the degree of over-
lap between neighbouring troughs appears similar in both
panels 1G and 2G.

Finally, Panels 1H and 2H show the SVF voids identified
in the WL peak distribution. This algorithm produces the
largest voids of all void finders and, similar to the WVF
and tunnel algorithms, populates most of the area of the
convergence map with voids. Also similar to the tunnels, the
largest voids are in underdense regions and the smaller voids
cluster in the overdense patches. It is interesting to note that
in some cases, the tunnels and SVF identify the same voids
in the WL peak distribution, as can be seen towards the top
left of panels 1F and 1H. Panel 2H shows that the SVF voids
identified in the WL peak distribution respond to GSN in the
same way as tunnels and WVF, where these voids become
smaller and more abundant in the presence of GSN.

5 VOID STATISTICS

In this section we discuss the statistics of each of the seven
void populations analysed here and study how the physical
signal is affected by GSN in each case. We also investigate
the impact of varying the smoothing scale to quantify how
this mitigates the impact of GSN. For each void type we
present the abundance, convergence profiles and tangential
shear profiles. Then, in Section 6, we will compare the dif-
ferent void populations and investigate which type of void
is least affected by GSN while giving rise to the strongest
tangential shear signature.

5.1 Minima

Fig. 3 shows the statistics of the WL minima depicted in
Panels 1E and 2E of Fig. 2 with and without GSN (dashed
and solid lines respectively) for three smoothing scales, 1,
2.5 and 5 arcmin (blue, orange and green respectively).

The top panel shows the differential WL minima abun-
dance as a function of amplitude κ. The distribution peaks at
κ ∼ −0.01, with the peak shifting closer to 0 as the smoothing
scale increases. The distributions are also positively skewed,
highlighting the non-Gaussian properties of WL minima.
When GSN is included, the abundance of minima is signif-
icantly contaminated, especially for small smoothing scales.
For θs = 1 arcmin, GSN introduces a large amount of spu-
rious negative minima, while minima with such low nega-
tive amplitudes do not exist in the no GSN case. This is
shown by the steep cutoff at κ = −0.03 for the no GSN
case, while the minima abundance is still steadily decreas-
ing below κ = −0.03 in the GSN-added case. A non negligible
amount of spurious positive minima are also added by GSN,
however this affect is less extreme than for negative minima.
The creation of spurious minima due to GSN is suppressed
as the smoothing scale increases, however even with θs = 5
arcmin, there is still a noticeable amount of spurious nega-
tive minima. For each smoothing scale it can be seen that
the WL minima are significantly more impacted by GSN
than WL peaks by comparing with the right panel of Fig. 1.

Lensing profiles are calculated from minima with am-
plitudes κ < 0, as indicated by the shaded grey region in the
top panel. The middle panel shows the mean stacked radial
convergence profiles around the WL minima out to 12 ar-
cmin. For θs = 1 arcmin, by comparing the blue solid and
dashed lines, it can be seen that the addition of GSN arti-
ficially boosts the depth of the convergence profile at r ∼ 0
by over a factor of 3. This is caused by the creation of a sig-
nificant number of spurious minima with unphysically deep
negative κ values, as shown by the minima abundance in
the top panel. For the GSN case, the minima convergence
profile briefly becomes positive between ∼ 1.5 and 3 arcmin,
which is possibly due to the creation of spurious (negaitve)
minima in local overdensities from GSN. In contrast, for the
no GSN case, the convergence profile gradually approaches
the mean background value of κ = 0. For larger smoothing
scales, similar behaviour is still present, with the κ ampli-
tude at r = 0 still artificially boosted by GSN, however this
boost decreases with increasing smoothing scale.

The bottom panel shows the tangential shear profiles
around the WL minima, γt (r), calculated from κ(r) using
Eq. (11). As the smoothing scale increases, the peak of the
tangential shear profile moves to outer radii, whereas the
inclusion of GSN shifts the peak to inner radii relative to
the no GSN case. The difference in amplitude between the
no GSN and GSN cases for the tangential shear profiles is
smaller than for the convergence profiles, but significant con-
tamination due to GSN still remains. For the no GSN maps,
the height of the peak of the tangential shear profiles is some-
what insensitive to the smoothing scale, whilst increasing θs
quickly suppresses the peak in the tangential shear profiles
for the GSN-added maps.

These statistics in Fig. 3 show that the WL minima are
significantly affected by GSN and are more susceptible to
GSN than WL peaks.
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Figure 3. The statistics describing the properties of WL minima
depicted in panel E of Fig. 2. Solid lines show the properties of WL

minima identified in WL maps with no GSN, while dashed lines
show the properties of WL minima identified in WL maps with

GSN. Different colours correspond to different smoothing scales
applied to the convergence maps before identifying the minima,

with blue, orange and green for θs = 1, 2.5 and 5 arcmin respec-
tively. One sigma standard error bars corresponding to the un-
certainties associated to our analysis (which makes use of a 19200
deg2 sky area) are given by the shaded coloured regions around

each curve, however in most cases these error bars are a similar
thickness to the curves. The top panel shows the WL minima
abundance as a function of their WL convergence amplitude κ,

and the shaded grey region indicates the minima that are used to
calculate the lensing profiles. The middle panel shows the radial

WL convergence profiles of the WL minima out to 12 arcmin, and

the bottom panel shows the corresponding WL tangential shear
profiles.

5.2 Troughs in the convergence map

Fig. 4 shows the statistics of troughs identified directly in
the convergence field. The top row shows the probability dis-
tribution function (PDF) of the mean enclosed convergence
within all randomly placed circles, and the three columns
(from left to right) are for trough radius Rv equal to 10, 20
and 30 arcmin respectively. The shaded grey regions show
the circles with a mean enclosed convergence in the bottom
20% of all circles, which are the troughs that are used to cal-
culate the trough lensing profiles. For a fixed trough radius,
the κ value above which circles are discarded depends on the
smoothing scale and whether or not the WL maps includes
GSN. For simplicity the shaded grey regions shown here are
for θs = 2.5 arcmin in WL maps without GSN.

Increasing the smoothing scale θs decreases the width
of the PDFs, and improves the agreement between the no
GSN and GSN maps. As with the minima abundances, the
largest differences between the no GSN and GSN maps are
found at the negative-κ regions of the PDF. As the trough
radius increases, the agreement between the no GSN and
GSN maps improves, and so does the agreement between
different smoothing scales. These PDFs are all positively
skewed indicating that the troughs identify more underdense
regions than overdense regions.

The middle row shows the mean stacked convergence
profiles of the troughs for different radii. The troughs have
very underdense centres, and κ gradually increases with r.
This increase gets sharper near r = Rv and then slows down
further outside the trough radius. The depth of the conver-
gence profiles is larger for the GSN maps, and the smooth-
ing scale has a relatively small impact. As the trough radius
increases, the overall depth of the convergence profiles de-
creases, however the shapes of the convergence profiles re-
main the same. The impact of GSN on the convergence pro-
file decreases with Rv , with the case Rv = 30 arcmin showing
little difference between the GSN and no GSN cases.

The bottom row shows the tangential shear profiles of
troughs, which are characterised by a maximum amplitude
that is roughly an order of magnitude smaller than that of
the WL minima. The inclusion of GSN has little impact
on the trough tangential shear profiles for r . Rv (espe-
cially for the 20 and 30 arcmin troughs). At larger distances,
GSN leads to an increase in tangential shear which persists
even up to r = 2Rv . The difference between the maximum
tangential shear amplitude for the no GSN and GSN maps
is very small relative to the same feature in the WL min-
ima. The difference between the no GSN and GSN maps is
somewhat insensitive to the smoothing scale, and depends
more strongly on the trough radius. As the trough radius
increases, the amplitude of the tangential shear profiles de-
creases slightly and so does the difference between the no
GSN and GSN maps.

The statistics describing the troughs identified directly
in the convergence maps are significantly less contaminated
by the inclusion of GSN than the WL minima. However, the
overall amplitude of the tangential shear profile of troughs
is also significantly lower, which, as we shall see in Section 6,
implies that we need a larger survey to measure trough pro-
files with the same SNR as the minima profiles.
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Figure 4. The statistics describing troughs identified directly in the convergence field. For the meaning of line colours and line types

see the legend and, for more details, the caption of Figure 3. The top row shows the PDF of the mean enclosed convergence within
all randomly placed circles. The shaded grey region indicates the circles we define as troughs, that is the ones with a mean enclosed

convergence in the bottom 20% of all circles (here we show the threshold for maps without GSN and for θs = 2.5 arcmin; the exact
threshold depends slightly on smoothing scale and if GSN is included). The middle row shows the mean convergence profiles and the

bottom row shows the mean tangential shear profiles. The three columns correspond to troughs of different sizes: 10 (left), 20 (centre)

and 30 (right) arcmin.

5.3 Troughs in the peak distribution

We next study the troughs identified in the distribution of
WL peaks. Before identifying troughs, we first remove all
peaks below a predetermined ν threshold from the peak cat-
alogue. This reduces the impact of GSN by discarding peaks
with low height. This approach adds another free parame-
ter to the void identification process compared to troughs
identified in the convergence field, the ν threshold for peak
heights. In Fig. 5, we present results for two ν thresholds,
ν > 2 and ν > 4, to test the impact of this threshold on
the resulting trough statistics. To improve clarity, in Fig. 5
all results are presented for a fixed trough size of Rv = 30
arcmin, which is chosen because it is the trough radius at
which results for the troughs agree best between the no GSN
and GSN maps.

The top row of Fig. 5 shows the PDFs of the mean
enclosed convergence for troughs identified from WL peak
catalogues with heights ν > 2 and ν > 4. Note that this is the
trough PDF, which is calculated after the randomly placed
circles with κ(< Rv) in the top 80% are discarded, unlike in
Fig. 4. Away from the peak of the PDF, the results from the
no GSN and GSN maps disagree for all smoothing scales for
both peak thresholds. However, the agreement between the

no GSN and GSN maps is good near the positive-κ end of
the PDF for all smoothing scales in the ν > 4 catalogue. For
the ν > 2 catalogue, the PDFs are positively skewed, indi-
cating that the trough algorithm is preferentially selecting
underdense regions, however for the ν > 4 catalogues the
PDFs are more symmetric. This is due to the sparsity of
tracers at this threshold, where the low number density of
WL peaks implies that the ν > 4 catalogue does not give an
accurate representation of the underlying convergence field
since, for example, many overdense regions of the conver-
gence map do not have peaks with ν > 4. Despite this, the
maximum of the PDF is still below zero indicating that we
predominantly select underdense regions.

The middle row shows the radial convergence profiles of
the troughs identified in the WL peak distribution. These
profiles have a similar shape to those of the troughs iden-
tified in the WL convergence maps. For the ν > 2 cata-
logue, agreement between the no GSN and GSN maps im-
proves as the smoothing scale increases, and the two con-
vergence profiles are within the one sigma standard error
for θs = 5 arcmin. Here, the overall depth of the conver-
gence profiles also decreases with increasing smoothing scale.
However, for the ν > 4 catalogues, increasing the smoothing
scale only slightly improves the agreement between the no
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Figure 5. The statistics for troughs identified in the distribution of WL peaks. For the meanings of line colours and line types see the
legend and, for more details, the caption of Figure 3. The top row shows the PDF of the mean enclosed convergence within the troughs,
the middle row shows the mean convergence profiles of the troughs and the bottom row shows the mean tangential shear profiles of the

troughs. All results shown here are for a fixed trough size of r = 30 arcmin. We identify troughs using only the high WL peaks and we
show results for two peak height selections: ν > 2 (left column) and ν > 4 (right column).

GSN and GSN maps, and there is no trend between smooth-
ing scale and convergence profile depth, since θs = 2.5 ar-
cmin produces the deepest convergence profile. This is due
to the sparsity of WL peaks for ν > 4, which results in the
troughs more randomly tracing the underlying convergence
field when compared to a lower ν threshold. This is evident
from the fact that the convergence profiles are not as deep in
the ν > 4 catalogue when compared to the ν > 2 catalogue.

The bottom row shows the radial tangential shear pro-
files of the troughs identified in the WL peak distribution.
For all smoothing scales and both the no GSN and the GSN

maps, the tangential shear profiles agree with each other
reasonably well below r = Rv , for both ν thresholds. This is
due to the consistent shape of the convergence profiles (with
only constant shifts with respect to each other) in all cases,
which is the main feature that the tangential shear profile is
sensitive to. The tangential shear profiles peak at r ∼ 1.2Rv ,
which is where results from the different smoothing scales
separate. The difference between the no GSN maps and the
GSN maps is largest at the peak of the tangential shear, and
slowly reduces out to larger radii. These tangential shear
profiles are also noisier than for other void finders – this
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is due to the larger scatter in the locations of the troughs
identified in the peak distribution, as can be seen in Panel
G of Fig. 2, which results in a larger scatter of convergence
profiles.

Compared to troughs found directly in the κ map,
troughs identified using peaks have tangential shear profiles
that have slightly lower amplitudes, however the agreement
between the no GSN and GSN cases is better, which is a
consequence of the fact that the WL peaks are less affected
by GSN than the convergence field in the low κ regions of
the WL map.

5.4 WVF voids

Fig. 6 shows the properties of the WVF voids. The top panel
shows the differential void abundance as a function of void
radius Rv . For the smallest smoothing scale, the largest void
that is identified is 0.2 deg, and as the smoothing scale in-
creases the sizes of the voids also increases, which also re-
duces the total number of voids. The size distributions of
the voids are significantly different between the no GSN and
GSN maps, where including GSN increases the total number
of voids and reduces their size. This is due to GSN adding
spurious features to the convergence field such as artificial
ridges and minima, which results in the production of spu-
rious voids. Since the WVF voids fill the entire area of the
convergence map, having more voids implies that the aver-
age void size decreases. Even for θs = 5 arcmin, there is still
a disagreement in the size distribution between the no GSN
and GSN maps, and this disagreement is much larger than
the one-sigma standard error bars (shown by the shaded re-
gions around the curves).

The convergence profiles of WVF voids are shown in
the middle panel. They have a smooth shape, with negative
convergence values at r = 0, gradually increasing outwards
and crossing κ = 0 at r ∼ 0.7Rv . The convergence profiles
continue to smoothly increase until r = Rv , at which point
they start to decrease and return to the mean background
value of κ = 0 far outside of the void radius. At r ∼ 1.5Rv

some of the void profiles briefly become underdense, which
is because the boundary of each void is also the boundary of
one of its neighbours voids, which has an underdense inte-
rior. This feature is exaggerated for the smaller voids since
averages are taken over smaller areas.

In the absence of GSN, the convergence profiles are very
similar for different θs values. However, after adding GSN,
the convergence profiles are heavily dependent of the chosen
smoothing scale. For θs = 1 arcmin, the addition of GSN sig-
nificantly reduces the κ value at r ∼ 0, which is very similar
to the behaviour seen in the WL minima convergence pro-
files. The similarity between the two is due to the fact that
each watershed basin is connected to a local minima, which
on average resides close to the centre of the void, and GSN
produces a large number of spurious local minima, which
can often be deeper than true minima (Fig. 3, top panel).
This same feature will be seen in SVF voids found from the
κ field below. Furthermore, the amplitude of convergence
profile in the positive regions is also boosted by GSN, which
makes the peak at r = Rv significantly higher. The above
behaviour occurs because the boundary of WVF voids con-
sists of ridges in the κ field and positive GSN values can
move and enhance the height of these ridges (the algorithm
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Figure 6. The abundance (top row), and the convergence (middle

row) and tangential shear (bottom row) profiles of WVF voids.

For the meanings of line colours and line types see the legend and,
for more details, the caption of Figure 3.

chooses the highest local ridge and thus preferentially selects
the regions with positive GSN values). This is more appar-
ent for smaller smoothing scales, where GSN has not been
sufficiently suppressed. The differences between the no GSN
and GSN convergence profiles are quickly suppressed with
increasing θs.

The bottom panel shows the tangential shear profiles
for the watershed voids, which peak at r ∼ 0.85Rv and con-
verge to γt ' 0 at large distances. Again, the γt profiles are
significantly boosted by GSN, and quickly converge back to
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Figure 7. The statistics describing the SVF applied directly to
the convergence maps: the abundance (top row), and the conver-

gence (middle row) and tangential shear (bottom row) profiles of

SVF κ voids. For the meanings of line colours and line types see
the legend and, for more details, the caption of Figure 3.

the no GSN counterparts as the smoothing scale increases.
However, visible difference still remains even with θs = 5
arcmin.

5.5 SVF in the convergence map

Fig. 7 shows the statistics for SVF voids identified directly
in the convergence field (SVF κ). The shape of the void

abundance function is different from the other void finders,
declining faster with void radius than for other void types.
Additionally, there is no turning point at the small-radius
part of the distribution. For example, the WVF finds few
very small voids, where the abundance of small voids briefly
increases as the void radius increases, before the peak of the
distribution. This is not the case for the abundance of SVF κ

voids, which does not reach a peak even at the smallest radii
plotted. This is due to the SVF identifying voids with sizes
down to the pixel resolution. As mentioned above, in this
work we remove very small voids by imposing a minimum
void size, Rv ≥ 2θs.

The abundance of voids is systematically larger for the
GSN maps than the no GSN maps, for all smoothing scales.
In the case of the WVF, GSN increases the abundance of
small voids but decreases the abundance of large voids, due
to spurious structures introduced by GSN splitting the larger
voids into smaller objects. For the SVF, the abundance of
large voids is much lower to start with, and the voids pop-
ulate the convergence maps much more sparsely, as shown
in Panel D of Fig. 2. This means that the spurious struc-
tures introduced by GSN contribute less to the degradation
of true voids and largely only produce spurious voids, which
is due to the addition of spurious minima from GSN (Fig. 3,
top panel) which are the seeds for the SVF κ voids; this can
be visibly seen by comparing panels 1D and 2D in Fig. 2.
Also, note that the abundance of SVF κ voids decreases for
all void radii when θs increases, which is because the abun-
dance of WL minima decreases with increasing θs, as shown
by the top panel of Fig. 3.

The middle panel shows the mean radial convergence
profiles of the SVF κ voids. These voids are very deep at
r ∼ 0, similar to the WL minima, and the convergence in-
creases continuously out to r = 2Rv . Like in the WFV case,
the convergence profiles in the no-GSN maps are somewhat
insensitive to the chosen smoothing scale, whereas the depth
of the profiles for the GSN maps is quickly suppressed with
increasing θs. The depth of the convergence profiles at r ∼ 0
is artificially boosted when GSN is included (e.g. by a fac-
tor of 3 for θs = 1 arcmin), which is again due to the cre-
ation of spurious minima with very low κ values. However
by r = 0.5Rv the no GSN and GSN maps agree reasonably
well, apart from the voids in the GSN added map for θs = 1
arcmin, whose convergence profile returns to κ = 0 faster
than the other voids.

The bottom panel shows the tangential shear profiles
for the SVF κ voids. For all other void finders, the inclusion
of GSN boosts the amplitude of the tangential shear profile,
and in some cases also changes slightly the radius where the
signal reaches maximum. For the SVF κ voids, the γt signal,
which is maximal at r ∼ 1.1Rv , is also boosted in the GSN
maps relative to the no GSN maps. But here we find a sec-
ondary peak of γt at r/Rv ∼ 0.15, which is particularly strong
for small smoothing scales and when GSN is included. This
is due to the flattening of the κ profile at 0.3 . r/Rv . 0.8
following a steep increase at r/Rv . 0.3. Such a large inner
gradient of the κ profile is due to these voids being centred on
local WL minima, and this is more true in the GSN maps for
which many of the SVF void centres correspond to spurious
WL minima that are typically considerably deeper than the
physical minima, as can be seen from the abundance of WL
minima shown in the top panel of Fig. 3 (and also the middle
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panel of Fig. 3). These spurious minima, on average, have
much lower κ values than their neighbours that manifests as
a strong κ gradient, which explains why the secondary peak
is more pronounced for the case of GSN maps.

The agreement between the tangential shear profiles in
the no-GSN maps and the GSN maps improves slightly as
the smoothing scale increases. However, a significant differ-
ence remains even for θs = 5 arcmin, as in the case of WVF
voids, highlighting the fact that the impact of GSN is hard
to be completely eliminated for voids identified from the WL
convergence map.

5.6 SVF in the peak distribution

Fig. 8 shows the statistics for SVF voids identified in the
WL peak distribution (SVF peak). The top panel shows the
differential void abundance. The SVF peak algorithm iden-
tifies the largest voids of all the void finders studied in this
work, with some voids as large as two degrees in radius.
Here larger smoothing scales reduces the total number of
voids but creates larger voids, and including GSN adds spu-
rious small voids and reduces the abundance of large voids.
This is due to the generation of spurious WL peaks from the
addition of GSN, where a higher number density of tracers
split large voids into multiple smaller ones. Fewer voids are
detected overall in the ν > 4 catalogue compared to the ν > 2
catalogue, however these voids are larger than their counter-
parts in the ν > 2 catalogue. This is again due to the reduced
number density of WL peaks that are used as tracers in the
void identification. Apart from this the abundances of the
voids in the two catalogues appear qualitatively similar.

The middle row shows the convergence profile for the
SVF peak voids, which are underdense close to the void
centre and overdense near the void boundary. Outside of the
void radius the convergence gradually approaches the back-
ground value of κ = 0. The depths of the void centres and
amplitudes at the void radius are boosted in the GSN maps,
however the difference between the void convergence profiles
in the no-GSN and GSN added maps is quickly suppressed as
the smoothing scale increases, and at θs = 5 arcmin the dif-
ference is small. The depth close to the void centres and the
peak at the void boundary also decrease when the smoothing
scale increases. These voids are less underdense than most
of the other void types.

The bottom row presents the tangential shear profiles
for the SVF peak voids. These profiles have a sharp peak
at r = Rv and the amplitude of these peaks is large despite
the shallow convergence profiles near the void centres. This
is due to the rapid increase in κ(r) seen in the range r/Rv ∈
[0.7, 1.0], with the γt (r) amplitude being largest when κ(r)
changes rapidly. This highlights that identifying the deepest
underdensities is not the most important criteria when the
tangential shear profile is the observable of main interest.
Similar to the other void finders, the peak of the tangential
shear profiles is boosted in the GSN maps, however, as with
the convergence profiles this difference is quickly suppressed
as θs increases, with most of the difference removed with
θs = 5 arcmin. The amplitude of the tangential shear profiles
is slightly smaller for the peak catalogue with a larger ν

threshold, indicating that it does not depend strongly on the
ν threshold used for WL peak selection. The main difference
comes from the fact that having a higher ν threshold results

in fewer voids that, as we shall see in Section 6, means a
lower SNR when measuring the shear profiles of these voids
for a given sky area.

5.7 Tunnels

Fig. 9 shows the statistics of voids identified in the WL peak
distribution using the tunnel algorithm, where the left and
right columns correspond to tunnels identified in WL peak
catalogues with heights ν > 2 and ν > 4 respectively. The
top row shows the differential void abundance of the tunnels.
The tunnel algorithm also identifies some of the largest voids
studied in this work, although the largest SVF peak voids
are larger than the largest tunnels. Consistent with other
void finders, the tunnel algorithm identifies more voids in
total in the maps that include GSN, and fewer large voids.
The abundance of the tunnels decreases, and the size of the
tunnels, increases with increasing θs. The differences in the
void abundances between the no-GSN and GSN maps de-
creases with increasing θs and the difference becomes small
at θs = 5 arcmin.

The middle row shows the tunnel convergence profiles,
which have a very similar shape to that of the SVF peak
voids. This is to be expected as in some cases both of these
algorithms identify the same voids. Beyond their similarities,
the tunnel algorithm identifies voids with slightly deeper
convergence profiles near the centre and more overdense
ridges at the boundary. This is because the tunnels by def-
inition do not enclose any WL peaks but instead only have
peaks residing at their boundaries, whereas the SVF peak al-
gorithm allows WL peaks to reside within voids, which can
lead to higher κ values inside SVF peak voids than inside
tunnels. Similar to other void types, adding GSN leads to
lower κ values at the tunnel centres and a higher overdensity
at the tunnel boundaries. This difference is again strongly
suppressed for θs = 5 arcmin. The tunnels behave similarly
to the SVF peak voids when the ν threshold of the WL peak
catalogue is increased, slightly reducing the depth of κ pro-
files at the void centre and the peak at the void boundary,
whilst the peak becomes sharper.

The bottom row shows the tangential shear profiles
which are qualitatively similar to the results of SVF peak
voids, except that the tunnels have a higher peak at r = Rv .
The difference between the no-GSN and GSN-added maps
respond to the chosen smoothing scale in the same way as
the convergence profile, with little difference remaining when
θs increases to 5 arcmin. Changes in the tangential shear
in response to increasing the ν threshold are also the same
as in the convergence profiles. Here we note that for the
ν > 4 WL peak catalogue, the convergence and tangential
shear profiles for all smoothing scales, and for maps with
and without GSN, are all very similar and follow each other
closely, overlapping in some places. The main difference be-
tween the different curves can be seen at the peak of the
profiles where most of the information in terms of SNR is
contained (Cautun et al. 2018).
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Figure 8. The statistics describing the SVF applied to the WL peak distribution: the abundance (top row), and the convergence (middle
row) and tangential shear (bottom row) profiles of SVF peak voids. For the meanings of line colours and line types see the legend and,
for more details, the caption of Figure 3. Each column corresponds to voids identified in a different WL peak catalogue, ν > 2 on the left

and ν > 4 on the right.

6 COMPARISON OF DIFFERENT VOID
DEFINITIONS

In this section we quantify the relative merit of each void
finder. There are many criteria that one could use to quan-
tify the suitability of a specific void finder for a given pur-
pose (e.g. see Cautun et al. 2018; Paillas et al. 2019). Here
we are interested in a rather general comparison of the vari-
ous methods that identify WL voids. We choose to do so by
answering two questions: i) Which void populations are least
affected by GSN? and ii) Which void types have the high-
est tangential shear signal, as quantified in terms of SNR?

These questions are motivated by the goal of using WL voids
to constrain cosmological parameters and alternative cosmo-
logical models. To a first approximation, we expect that the
constraints derived from voids will be maximal when their
signal, such as γt profiles, can be measured with low uncer-
tainties (i.e., high SNR) and when the effects of GSN are
minimised (e.g. see Cautun et al. 2018; Paillas et al. 2019).
This might not always be the case as we discuss later on,
but nonetheless is a good starting point for a general com-
parison.
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Figure 9. The statistics describing the Tunnels identified in the WL peak distribution: the abundance (top row), and the convergence

(middle row) and tangential shear (bottom row) profiles of tunnels. For the meaning sof line colours and line types see the legend and,
for more details, the caption of Figure 3. The left and right columns correspond to tunnels identified in WL peak catalogues with heights
ν > 2 and ν > 4 respectively.

6.1 Impact of GSN

GSN is the leading contribution to noise that contaminates
the observed WL signal, and for this reason it is important to
understand how the void finders respond to GSN, before the
statistics developed here can be used to constrain cosmologi-
cal parameters. As we saw in Section 5, GSN can lead to the
identification of spurious voids and to the breaking of phys-
ical voids into more objects. This could potentially degrade
the cosmological information contained in the statistics of
voids, and thus lower the cosmological constraints that can
be inferred using WL voids.

To assess the effect of GSN, we proceed by comparing
voids in maps with and without GSN. Such a test requires
us to choose a WL void statistic to measure the impact of
GSN. Up to now, we have studied the abundances and γt
profiles with and without GSN, and here we choose to fo-
cus on the tangential shear profile, which has been shown to
provide tighter cosmological constrains, such as when test-
ing modified gravity models (e.g. Davies et al. 2019b). We
measure the change in the amplitude of the γt signal when
GSN is added, as a means to quantify the impact of GSN on
the lensing profile. Typically, for the void γt profiles most
of the cosmological constraining power comes from the bins
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where the amplitude of the signal is maximal (e.g., Cai et al.
2015; Barreira et al. 2015; Cautun et al. 2018; Davies et al.
2019b) and, as such, we measure the impact of GSN at this
location.

The left panel of Fig. 10 shows the relative difference,
|γGSN
t −γno−GSN

t |/γno−GSN
t , between γt in the GSN-added and

no-GSN convergence maps, at the radius at which the ampli-
tude of γt in the no-GSN is maximal (i.e., γt has the most
negative value), for all void finders studied in this work.
Here, lower values correspond to a small relative impact on
the γt amplitude from GSN while large values indicate that
GSN is significantly boosting the γt amplitude (for all void
populations studied here, GSN always increases the ampli-
tude of the γt signal; see Appendix B for a discussion of the
reason behind that).

We find that GSN has the largest impact on the γt pro-
files of WL minima. This is due to the fact that GSN creates
more spurious minima than spurious structures in the other
void finders, which is one drawback of the simplicity of the
WL minima definition. The boost from GSN is somewhat
decreased for the minima when larger smoothing scales are
applied. However, in many cases the boost to the minima
γt profiles from GSN with θs = 5 arcmin (about 55%) is
larger than the γt boost from GSN for other void finders
with θs = 1 arcmin. The γt signal for SVF κ is also boosted
by GSN by a similar (relative) amount as the WL minima,
which is due to the minima being used as prospective void
centres at the start of the SVF κ void identification process.
For SVF κ the relative difference between the no-GSN and
GSN γt amplitudes is more quickly suppressed by increas-
ing θs than for the WL minima, reaching ∼ 20% for θs = 5
arcmin. The WVF voids also appear to respond to GSN in
a similar way to the WL minima and SVF κ, however the
amplitude of the boost due to GSN is slightly lower. Finally,
for all of the void finders applied directly to the convergence
maps, troughs κ appears to be the least impacted by GSN,
and they also see the smallest impact on the agreement be-
tween the no-GSN and GSN maps from increasing θs, as can
also be seen in Fig. 4.

The void populations that are the least impacted by
GSN are those identified in the distribution of WL peaks.
This is due to high amplitude WL peaks (Fig. 1, right panel)
being more resilient to GSN than underdense regions, i.e.,
κ < 0, which are the ones determining most of the properties
of voids identified directly in the convergence field.

We find that both the tunnels and SVF peak voids re-
spond to GSN in very similar ways and that the impact of
GSN is reduced for voids identified in peak catalogues with
larger ν thresholds. Finally, the trough peak void finder is
the most resilient to GSN of all the methods that employ
WL peaks, however in contrast to the tunnels and SVF peak,
the impact of GSN increases when the ν threshold increases,
which is because troughs peak is more sensitive to tracer
sparsity than tunnels and SVF peak.

Both of the trough algorithms are the least impacted by
GSN, however this is because we present results for troughs
with r = 30 arcmin. For a trough radius of 10 arcmin, the
impacts of GSN on the tangential shear profiles for both
trough peak and trough κ voids becomes worse than tunnels
and SVF peak.

6.2 The SNR of tangential shear profiles

Next we investigate the signal-to-noise ratio (SNR) with
which we can measure the tangential shear signal of WL
voids. Our goal is to assess which void type has the largest
SNR since potentially those voids are the most promising to
use for cosmological constraints. For examples, Cautun et al.
(2018) and Paillas et al. (2019) have studied the signature
of modified gravity models in the void population identified
using multiple void finders. For 2D voids, they have found
that all methods show roughly equal fractional differences
in the void shear profiles when comparing modified gravity
with the standard model, and thus the optimal void type to
constrain such alternative cosmological models is the one in
which the γt profile can be measured with the highest SNR.

We define the SNR with which we can measure the tan-
gential shear profile of voids as:

SNR2 ≡
∑
i, j

γt (i) α Cov−1(i, j) γt ( j) , (15)

where the sum is over all bins of r/Rv ∈ [0, 2], i and j denote
the bins to be summed over, and Cov−1 is the inverse of the
covariance matrix for the tangential shear measurements.
Here γt is the mean tangential shear measured from all voids
from all 192 maps used in this study and α is the Anderson-
Hartlap factor (Anderson 2003; Hartlap et al. 2007) which
we use to compensate for the bias introduced by inverting a
noisy covariance matrix. The α factor is given by

α =
N − Nbin − 2

N − 1
, (16)

where N = 192 is the number of realisations used to calculate
the covariance matrix, and Nbin = 50 is the number of radial
bins. We calculate the covariance matrix using the central
10 × 10 deg2 region of the 192 maps described in Section 3.
We then rescale the SNR values by

√
ALSST/A = 13.4 in order

to present a forecast for an lsst like survey that has a sky
coverage, ALSST = 18, 000 deg2.

The right panel of Fig. 10 shows the SNR (see Eq. (15))
for the tangential shear profiles from each void finder we have
studied. The coloured symbols indicate the results for the
three smoothing scales we have studied and we present the
SNR values for convergence maps with (open symbols) and
without (filled symbols) GSN. This allows us to characterise
how the SNR changes when identifying voids in noisy maps.

For all void types, we find that increasing the θs smooth-
ing length decreases the SNR ratio; the only exceptions are
the troughs peak and troughs κ voids, for which the SNR is
roughly the same for all three smoothing scales that we used.
For the voids found in the peak distribution, increasing the
peak threshold leads to lower SNR. Thus, the SNR is max-
imised for small smoothing scales and for peak catalogues
with small ν thresholds.

The right panel of Fig. 10 reveals a rather interesting
result, which is surprising at first. All void types (except
SVF κ) identified in the maps with GSN show a larger SNR
than the voids found in the map without GSN. This might
be counter-intuitive since, as we discussed, GSN fragments
large voids into two or more components and adds spurious
objects to the sample, which potentially reduces the sen-
sitivity of voids to cosmology. The answer is given by the
fact that the SNR we calculate describes how well we can
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Figure 10. Comparisons of the seven void populations studied here in terms of the impact of GSN and in terms of the SNR associated

to the tangential shear measurement for a lsst like survey. Left panel: the relative difference between γt in the GSN-added and no-GSN

convergence maps, at the radius at which the amplitude of γt in the no-GSN maps is highest (γt is lowest). Right panel: An lsst forecast
of the total SNR with which the γt (r) profile will be measured for each void type. All results in both panels are for all void finders studied

in this work (x-axis). A yellow background indicates results for void finders applied to the WL peak distribution and a blue background

indicates results for void finders applied directly to the WL convergence maps. Circles correspond to results from voids identified in WL
peak catalogues with ν > 2, triangles are for ν > 4, and squares are from voids identified directly in convergence maps. Blue, orange and

green markers indicate different smoothing scales, with θs = 1, 2.5 and 5 arcmin, respectively. In the right panel solid markers indicate

results from no GSN maps, and empty markers show results for WL maps with GSN added. Here the troughs have a radius of Rv = 30
arcmin, which is the size that gives the best agreement between the no-GSN and GSN-added maps, as shown in Fig. 4.

measure the γt signal of a void and not the amount of cos-
mological information it contains.

The SNR of WL voids in maps with GSN is higher than
for the maps without GSN due to two factors: i) adding GSN
increases the amplitude of the mean γt profile, and ii) it leads
to identifying more voids, as shown in Figs. 3-9. The change
in void shear profiles and abundance is an artificial one and
it is due to using the same noisy map to identify voids and
calculate their profiles. For example, adding a negative GSN
values to a pixel makes it more likely to be associated to the
interior of a void, and, as a result, the interior of voids is
deeper for maps with GSN since it is more likely to contain
regions with negative GSN contributions than positive ones.
The opposite holds true for the void boundaries. A pixel
with a positive GSN value is more likely to be identified as
part of a void’s edge, and thus the void boundaries in maps
with GSN contain a higher fraction of pixels with positive
GSN values, which artificially boosts the mean κ value at
the void boundary. These two effects lead to an artificially
stronger tangential shear profile for voids in GSN maps (for
a more detailed discussion and examples see Appendix B).

We find that the WL minima tangential shear profiles
have the largest SNR both in the no-GSN maps and the
GSN-added maps, which indicates that they are promising
cosmological probes. The WVF has the second highest SNR
in the GSN-added maps, but is beaten by SVF κ in the no-
GSN maps. Both of the trough algorithms give the lowest
SNR values despite being the least affected by GSN in the
left panel of Fig. 10. SVF peak gives reasonable SNR values,
but fares slightly less well in almost all cases than tunnels,

which gives SNR values comparable to the void finders ap-
plied directly to the WL convergence maps.

6.3 Which void definition is best?

Ideally, the optimal void finder would be the one least af-
fected by GSN while having the largest SNR for its tangen-
tial shear profile. Fig. 10 shows that these two requirements
are not compatible: the void finders least affected by GSN
(either troughs peak or troughs κ) have the lowest SNR for
γt , while the voids with the highest SNR (WL minima) are
strongly impacted by GSN. The same behaviour is seen when
varying the void parameters studied here. Increasing the κ

smoothing length, θs, used to identify voids, while lowering
the impact of GSN, also decreases the SNR for tangential
shear. For voids identified in the peak distribution, increas-
ing the ν threshold used for selecting the peak catalogue
mitigates the effect of GSN, but again reduces the γt SNR.
Therefore, there is no clear choice for the best void finder or
the best selection of void finding parameters, such as θs or
WL peak ν threshold.

In general, we find that the void finders that use WL
peaks as tracers are less impacted by GSN, while the void
finders applied directly to the WL convergence maps give
higher SNR values. The void finder that generally offers a
good compromise between minimal impact from GSN and
a high SNR value is the tunnel algorithm. It has a γt SNR
similar to that of the SVF and WVF κ field voids finders
while being the second least affected by GSN, after troughs.

We would also like to point out that GSN does not
necessarily decrease the amount of cosmological information
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contained by a probe, and that in some special circumstances
it can help make this information more easily accessible. For
example, this has been pointed out by Yang et al. (2011),
who have shown that the abundance of WL peaks in maps
that include GSN provides better cosmological constraints
than for maps without GSN. Yang et al. have attributed
this effect to stochastic resonance, which is a well-studied
phenomena (Gammaitoni et al. 1998) where a signal in a
physical system may be boosted when a source of noise is
added, under certain conditions. The conditions required for
stochastic resonance to take place within a system are: i) a
form of a threshold, ii) a weak coherent input, and iii) a
source of noise that adds to the coherent input. From the
above it is clear that all three of these conditions apply
to WL peaks as discussed in Yang et al., and hence they
also apply to WL voids. The first requirement for stochas-
tic resonance is a form of threshold, which in the context
of WL voids is the criteria that all void finders identify un-
derdense regions through one means or another. The second
requirement is a weak coherent input, which in this context
is the WL convergence map. The WL map can be considered
weakly coherent because GSN dominates the signal (before
smoothing), but contains coherent information due to physi-
cal correlations in the map induced by gravitational collapse.
Finally, for stochastic resonance we require a source of noise
that is added to the WL convergence map, which exactly
matches our prescription for modelling GSN.

In the case of WL voids, stochastic resonance occurs
because the void finders are designed to identify underdense
regions, or underdense regions enclosed by overdense regions
etc.. The inclusion of GSN exaggerates some underdense re-
gions and some overdense regions. However, since GSN is
random and uncorrelated (neglecting higher order effects
such as intrinsic alignment), it could also make some un-
derdense and overdense regions flatter (i.e., smoothed out).
Because all void finders fulfil a set of criteria when identify-
ing voids, they will preferentially select the regions that have
been exaggerated by GSN and neglect the regions that have
been flattened by GSN. Furthermore, distinct deep voids
in the physical maps (without GSN) are less likely to be
removed by GSN, because the physical signal will dominate
the GSN. However less distinct voids that might be missed in
the physical maps have a chance to be randomly boosted by
GSN, which will result in their detection in the GSN-added
maps. These are competing factors with the consequence
that GSN can affect true voids and generate spurious fake
voids, though true voids are rarely destroyed by GSN but in-
stead are most commonly split up into smaller voids (e.g., as
discussed with the tunnel algorithm). It is currently unclear
whether or not the boost in SNR from GSN seen in Fig. 10
will translate to improved parameter constraints relative to
the case without GSN (which is unobservable), however we
leave this to a future study. For this reason, we have focused
on identifying the void finder that is the least impacted by
GSN, whilst still producing high SNR values.

7 DISCUSSION AND CONCLUSIONS

In this paper we have presented a comparison of different
void finders used to identify WL voids within WL conver-
gence or peak fields. The void finders discussed in this work

are modified versions of popular void finders that are typi-
cally applied to the galaxy distribution. We have shown how
each void finder can be modified such that it can be applied
to WL maps and have discussed the impact of varying each
free parameter associated with the void finders (see Section
4). The WL void finders have been split broadly into two
classes: i) those that can identify voids directly in the WL
convergence maps, and ii) those that require WL peaks as
tracers in order to define the voids. We have found that both
void classes offer useful information.

We investigate the WL void abundances, convergence
profiles and tangential shear profiles for all void finders
(where applicable) in Section 5. The average void conver-
gence profile consists of an underdense region (i.e. κ < 0) for
r . Rv (with Rv the void radius), an overdensity at r ∼ Rv

(not present for troughs), followed by a slow convergence to
the background expectation of κ = 0 at large radial distances.
This translates into a negative tangential shear profile for
voids, with the amplitude of γt being maximal at r ' Rv .
We found that WL minima and SVF κ produce the deepest
(most underdense) convergence profiles at r = 0, and the γt
profiles with the largest amplitudes are produced by tunnels
(without GSN) and WL minima (with GSN).

To differentiate the various void finders, we have stud-
ied, for each void type, the impact of GSN and the SNR
with which their tangential shear profiles can be measured
in an lsst like survey. In general, voids identified directly in
the convergence field have the highest γt SNR but are also
most severely affected by GSN. The void finders based on
the peak distribution have moderate SNR and are less af-
fected by GSN. Troughs with large sizes are least impacted
by GSN but are also the ones with the lowest γt SNR. In-
creasing the smoothing length or the peak threshold used to
identify voids, while it lowers the impact of GSN, also de-
creases the SNR with which the void tangential shear pro-
file can be measured. The tunnel algorithm provides a good
compromise between mitigating the impact from GSN and
producing objects with a large γt SNR.

In a future work we will use WL voids to provide cosmo-
logical parameter constraints and investigate how WL void
statistics can be used in a manner that is complementary to
constraints from other probes such as WL peaks and the con-
vergence power spectrum. This will be especially interesting
in the context of the Ωm −σ8 degeneracy. Both galaxy voids
and WL peaks have been shown to be able to help break
this parameter degeneracy (Nadathur et al. 2019; Dietrich
& Hartlap 2010; Davies et al. 2019a), and WL voids may
offer another promising avenue to do so.

For parameter constraints, tunnels may prove useful,
since we have found it to be the best WL void finder work-
ing in the WL peak distribution, in terms of both large SNR
value and small impact from GSN, followed closely by SVF
peaks. The high SNR values from the WL minima and WVF
tangential shear profiles make these WL void definitions vi-
able candidates for parameter constraints as well. It is possi-
ble that void finders applied directly to the convergence field
may be complementary to those that use WL peaks, since
they are sensitive to different aspects of the WL convergence
maps when identifying voids.

Additionally, some of the void finders have high SNR
values for all smoothing scales studied here. This makes
combining different smoothing scales a possible and poten-
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tially useful approach when applied to cosmological parame-
ter constraints, since it has been shown that constraints from
WL peaks are improved when multiple smoothing scales are
used (Liu et al. 2015a). Finally, in this work we discuss the
merit of a given WL void in terms of their tangential shear
profiles, however other WL void statistics such as the void
abundance and void correlation functions may also provide
useful cosmological information.

When considering the impact of baryons on the WL
void statistics, sufficiently large smoothing scales must be
used in order to get agreement between hydro simulations
and dark matter only simulations, as is the case with other
WL statistics (Weiss et al. 2019). Paillas et al. (2017) have
shown that voids in the LSS are less impacted by baryons,
and Coulton et al. (2019a) have shown that WL minima are
more robust to baryons than WL peaks. Therefore, given
that Chang et al. (2018) have also shown that the deepest
WL minima correspond to large supervoids, confirming that
the underdense regions of the WL convergence maps are due
to underdensities along the line of sight, it is reasonable to
expect that the WL voids identified directly in the conver-
gence maps may be more resilient to baryonic physics. How-
ever, the void finders which use WL peaks as tracers will be
more affected since WL peaks are more sensitive to baryons
(Osato et al. 2015; Weiss et al. 2019; Coulton et al. 2019a),
and changes to the WL peak distribution could impact the
resulting void catalogues. More detailed studies, potentially
with the aid of cosmological hydrodynamic simulations, are
needed to better understand these issues.
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APPENDIX A: CORRELATION MATRICES

In this Appendix we present the tangential shear correlation
matrices for the void finders we have studied. For simplicity
we present all correlation matrices for a smoothing scale of
θs = 2.5 arcmin and for peak catalogues with ν > 2 where
applicable. Fig. A1 shows the tangential shear correlation
matrices for WL voids identified in WL maps without GSN,
and Fig. A2 is the same but for WL maps with GSN in-
cluded. The correlation matrix Ri j is related to the covari-
ance matrix, covi j (which is used to calculate SNR values in

Eq. (15)), through the equation,

Ri j =
Covi j
σiσj

, (A1)

where i and j are radial bin indices, R is the correlation
matrix, cov is the covariance matrix and σi is the standard
deviation in bin i, where the variance, σ2, is given by the
diagonal elements of the covariance matrix. The covariance
matrix is calculated as

Covi j =
1

N − 1

N∑
k=1
[γt (i) − γ̄t (i)][γt ( j) − γ̄t ( j)] , (A2)

where N = 192 is the number of WL maps, γt the tangential
shear, and an over-bar denotes the mean from N maps.

Fig. A1 shows the γt correlation matrices for maps with-
out GSN. The seven panels correspond to the seven WL void
finders studied in this work, where dark colours indicate an
anti-correlation between bins and bright colours indicate a
correlation between bins (as indicated by the colour bar). In
all cases, the region around the diagonal is close to unity,
illustrating that neighbouring bins are highly correlated. Of
all the void finding algorithms, the ones with the most cor-
related bins appear to be the two trough finders. This is due
to the large degree of overlap between neighbouring troughs
as seen in Fig. 2, and it is this correlation between far apart
bins that produces a lower SNR for the trough algorithms
relative to the other void finders in the right panel of Fig. 10.
Similarly, Fig. 2 also shows that the SVF κ voids tend to
clump together and overlap with each other, which explains
why there is also a significant correlation between different
radial bins. The same happens, though to a lesser extent, to
WL minima, because there is a large number of them and
so the large radius bins (of which the radii become a sub-
stantial fraction of the inter-minimum separation) start to
overlap between neighbouring minima.

Fig. A2 is the same as Fig. A1, except that here we
study void populations identified in WL maps that include
GSN. The correlation matrices are significantly more diag-
onal when GSN is included, which shows that GSN reduces
the correlation between all bins; this is partly responsible for
the increase in SNR when GSN is included as shown in the
right panel of Fig. 10. Since GSN does not reduce the am-
plitude of the tangential shear profiles, but does reduce the
covariance between different bins, the γt and Cov−1 terms
in Eq. (15) increase, yielding a larger SNR. Despite the re-
duction in correlation between bins from GSN, the troughs
algorithms, and to a lesser extent SVF κ, still have show
a considerable correlation between bins with r & Rv , which
again is due to many troughs overlapping in maps with GSN.
Interestingly, adding GSN seems to reduce the correlation
between different bins more efficiently for tunnels than for
SVF peak voids. Finally we have checked and verified that
the covariance matrices presented here agree with covariance
matrices calculated from a bootstrapped version of our data
set.

APPENDIX B: WL VOIDS IN GSN ONLY MAPS

Typically, 3D voids in the LSS are identified in galaxy distri-
butions, where galaxies are used as tracers for a given void
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Figure A1. The tangential shear correlation matrices for all void finders discussed in this work, calculated from maps with no GSN and

smoothed with θs = 2.5 arcmin. For WL void finders applied to the WL peak distribution, results are present for peak catalogues with

ν > 2.
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Figure A2. The same as Fig. A1 but for convergence maps that include GSN.

finder. The void lensing signal is then extracted from lens-
ing measurements that are separate from the galaxy posi-
tion measurements. This means that the observational noise
and systematics associated with the galaxy positions are

(mostly) independent of the noise and systematics in the
lensing measurements.

In the case of WL voids, the same measurement (the
WL convergence map) is used to identify voids and to mea-
sure their lensing profiles. This means that the void identi-
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Figure B1. Tunnels identified in three different convergence maps: physical convergence without GSN (solid), physical convergence with
GSN added (dashed), and GSN-only (dotted). The tunnels are identified in peak catalogues with heights ν > 2, and using a smoothing

scale θs = 2.5 arcmin. The shaded regions around the lines indicate the one sigma standard error bars.

fication process and void lensing profiles will be closely con-
nected, and impacted by noise in similar ways. The connec-
tion between WL void identification and the corresponding
lensing profiles can be further strengthened by the fact that
each void finder yields distinct lensing profile shapes that
are determined by the definition employed to identify the
voids, as shown and discussed in Section 5. Taking tunnels
as an example: because by definition each tunnel contains
no WL peaks and has at least three peaks on its bound-
ary, we should expect the convergence profile to have a peak
at the tunnel radius, being negative inside and approaching
the background value far away (i.e., the same qualitative be-
haviour as seen in the physical signal in Fig. 9), even if the
peaks are identified from a pure noise map. In other words,
the WL void lensing profiles could simply be a consequence
of the way 2D voids are identified from any WL convergence
or peak distribution, rather than a physical effect.

Given that observed WL convergence maps are signifi-
cantly contaminated by GSN, this means that voids identi-
fied in WL maps could potentially be due to noise, or they
could be indistinguishable from spurious voids that result
from noise. It is therefore important to understand how to
distinguish between voids that are produced by physical sig-
nals in the WL maps and spurious voids that are the result
of noise. This is the primary reason why in this paper we
have tried to smooth the WL maps using filters as large as
5 arcmin, in order to suppress the impact of GSN on the
measured peak and void statistics, so that the results from
the no-GSN and GSN-added maps agree with each other.
For completeness, in this appendix we give a slightly more
detailed comparison, where we show how WL void statis-
tics behave when these void finders are applied directly to
a noise map, which is a mock WL map which contains no
physical signal whatsoever.

In order to generate a GSN-only WL map, we follow the
same GSN prescription used throughout this work. We first
define a grid of pixels which matches the same angular size
and resolution of the WL maps used in the rest of this work,
and set the value of each pixel to zero. For each pixel we then

add randomly drawn values from the Gaussian distribution
described in Section 3.2, Eq. (13).

Fig. B1 shows tunnels identified in three WL maps:
without GSN (solid), with GSN (dashed) and GSN-only
(dotted). The results shown correspond to a smoothing scale,
θs = 2.5 arcmin, and are obtained using WL peaks with
heights, ν > 2. The left panel shows the abundances of the
tunnels in the three map types. The GSN-only maps pro-
duce fewer tunnels, which are typically larger than the tun-
nels in the physical maps. In particular, the GSN-only maps
produces fewer small voids and more large voids, when com-
pared to the other two map types. This results from WL
peaks clustering in the maps that contain a physical sig-
nal, and thus many of peaks are close together and produce
smaller tunnels. Whereas the GSN-only maps have fewer
peaks that by definition do not cluster, which results in
larger voids.

The right panel shows the tangential shear profiles for
tunnels identified in the three map types. As shown by the
dotted line, the tangential shear profiles for the GSN-only
maps remain flat at γt = 0 for most of the void interior,
where departure from zero only occurs near the void bound-
ary at r ∼ 0.75Rv . This is due to the fact that the void
interiors in the GSN-only maps are on average not under-
dense, which in turn is because of the random nature of the
pure GSN map and the lack of gravity to physically evacuate
matter from the void. Furthermore, the amplitude of γt at
r ' Rv is significantly lower than for the maps that contain
the physical signal. This is due to noise-only tunnels hav-
ing less overdense boundaries than their physical counter-
parts. This can be understood as follows. For the noise-only
maps, the three peaks which determine the tunnel boundary
are overdense, but, since different points in noise-only maps
are uncorrelated, the remaining pixels along the boundary
can take any values and thus they would have a mean con-
vergence of 0. In contrast, the correlations present in the
physical maps mean that the pixels found at the boundary
of physical tunnels are on average overdense since they are
close to the overdense peaks used to define the tunnel.

We also find that the γt profile for WL tunnels identified
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in a pure noise map is much more sensitive to the smoothing
scale θs used to smooth the convergence map. Although not
shown here for the sake of clarity, we have checked the cases
θs = 1 and 5 arcmin respectively. In the former case, the
peak of the tangential shear profile from the pure noise map
is as deep as that from the physical WL map, whereas in
the latter case, the peak of the tangential shear profile from
the pure noise map is further suppressed and becomes very
weak. The same is found for WL peak catalogues with other
ν thresholds.

It is evident from these tests that the statistics used
to describe WL voids in this work give distinct results for
the GSN-only maps, relative to the physical WL maps. This
shows that WL voids are sensitive to the physical informa-
tion present in WL maps, even when GSN is included.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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