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Summary and general discussion

Epidemiology is a broad field of study with methods and concepts connecting all
subfields (Lau et al., 2020). This thesis describes a study of epidemiological
methods for answering questions about cause and effect in the presence of
methodological obstacles, such as confounding, missing data or measurement
error. In this chapter, a summary of our main findings is presented, along with
a general discussion of this thesis in the light of the existing literature, with
suggestions for future research.

12.1 Summary of findings

Methods for answering causal questions can be studied with the aim of learning
about its workings, its performance under certain conditions. At a more
meta-level, we can study how methods are being disseminated or implemented.
Likewise, we can study, on the one hand, how and when a methodological obstacle
may be overcome, and, on the other, how it is handled in applied research. In
chapter 2, we questioned some of the current practice of how research at this
meta-level is conducted, particularly where it concerns the initial phases of a
systematic literature review. The standard approach of ignoring the text body in
searching or screening articles might fail to retrieve all or a representative sample
of the relevant literature, potentially leading to a false impression about the topic
of enquiry. We found that for a number of methodological topics, a large portion
of articles with a topic mention somewhere in the text did not contain a reference
to the topic in text fields other than the body. The results do not conclusively
show that ignoring text bodies does indeed lead to a false impression, but it
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should raise suspicion. Researchers might wish to consider including these text
fields in their search and screening strategy.

In primary research, epidemiologists are often faced with multiple
methodological obstacles simultaneously. There are concerns, however, that
combinations of methods designed for different methodological obstacles have
worse performance than might be expected from how they perform in isolation.
In chapters 3 and 4, we critically reflected on a previous simulation study by
Mitra and Reiter (2016), in which they compare two approaches to implementing
propensity score matching after multiply imputing missing data. We found
that the standard multiple imputation approach of carrying out analysis within
multiply imputed datasets before pooling the results is generally to be preferred
over their proposed approach of first pooling propensity scores across multiply
imputed datasets before carrying out matching (or any other propensity score
method) based on these pooled scores. Our results are in stark contrast to the
results of Mitra and Reiter (2016) and we argued that this is largely due to their
use of a misspecified imputation model that ignores the outcome variable.

Propensity score estimation is typically done by fitting a logistic regression.
However, standard regression modelling software by default discards all
incomplete records and does not offer propensity score estimates for subjects with
missing data. Machine learning techniques such as classification and regression
trees (CART) are appealing in part because some implementations allow for
incomplete records to be incorporated in the tree fitting and provide propensity
score estimates for all subjects. An important question to be answered is whether
and when CART handles the missing data in a desirable way. In chapter
5, we argued that the automatic handling of missing data by CART is by no
means a one-fits-all solution to the problem of missing covariate data for causal
inferences based on propensity score methods. In a number of simulation studies,
we actually found CART to be outperformed by standard, alternative methods to
account for missing data. Different CART implementations handle missing data
differently. In judging whether a given implementation is appropriate for the
task at hand, some understanding of the ‘black-box nature’ of machine learning
algorithms is therefore desirable.

In chapter 6, we considered missing outcome rather than missing covariate
data. The chapter gives no new results but emphasises and illustrates that
when baseline exchangeability is achieved through propensity score matching,
bias might nonetheless result from restricting downstream analysis to the subset
of individuals who have not dropped out of the study by the administrative study
end. This equally applies to controlled trials with baseline randomisation, where
exchangeability, achieved at baseline by design, is not guaranteed to uphold in
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the set of complete records that may be used for the analysis. Regression and
inverse probability of censoring weighting were discussed as possible solutions.

Researchers can sometimes have a considerable influence over the extent of
missingness. In studies on the effects of time-varying exposures, information
of post-baseline covariates may help mitigate time-dependent confounding, but
obtaining a record of the values that these variables take at each of potentially
many time points can be costly and time-consuming. Reducing the frequency of
measurements may enhance study feasibility, but it may also compromise study
validity. In chapter 7, we illustrated by way of simulation the impact of choices
regarding the frequency of measuring time-varying covariates. To handle missing
values, we implemented the last-observation-carried-forward procedure (LOCF)
under the implicit (and wrong) assumption that the participant characteristics
remained constant in periods of no measurement. As expected, in our simulations,
fixed-interval measurement resulted in bias consistent with residual confounding.
We additionally showed that bias might arise in settings where decisions to
measure are driven by observed values of the time-varying exposure, such as
in the studies of Ali et al. (2016) and Souverein et al. (2016).

When variables take values that are different from what these values appear
or are assumed to be, such as may be the case when we implement LOCF, we
say that the variables are subject to measurement error. When the variables are
categorical, we speak of misclassification, a special type of measurement error. In
chapter 8, we focused on joint exposure-outcome misclassification and developed
a method for this issue in the presence of confounding. Simulation studies showed
favourable large sample performance. However, further research is needed to
study the sensitivity of the proposed method and that of alternatives to violations
of their assumptions.

Concerns about violations of assumptions are common in observational
research on causal effects. In efforts to lessen these concerns, it has been suggested
that so-called negative control variables are used (Lipsitch et al., 2010). Negative
controls are variables that are known (or at least believed) to be causally unrelated
to one or more of the variables of interest. The key idea is that observing
an association that contradicts the belief in a causal null relation might alert
the analyst to violations of assumptions. Negative controls have potential in
bias detection as well as partial or complete bias correction in epidemiological
research. In chapter 9, we sought to complement efforts to increase the more
routine use of negative controls with a discussion about a selection of caveats.
We argued that negative controls may lack both specificity and sensitivity to
detect unmeasured confounding. We also reviewed existing methods to adjust
for unmeasured confounding based on negative controls and examined the impact
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of assumption violations. Given the potentially large impact, it may sometimes
be desirable to replace strong conditions for exact identification with weaker,
easily verifiable conditions, even when these imply at most partial identification.
Future research in this area may broaden the applicability of negative controls
and in turn make them better suited for routine use in epidemiological practice.
At present, however, the applicability of negative controls should be carefully
judged on a case-by-case basis.

Case-control designs are an important tool in causal inference. In chapter 10,
we argued that to facilitate understanding, it is useful to consider every case-
control study as being nested within a cohort study. The case-control study then
effectively becomes a cohort study with missingness governed by the control-
sampling scheme. In the chapter, we gave an overview of how observational data
obtained with case-control designs can be used to identify a number of causal
estimands and, in doing so, recast historical case-control concepts, assumptions
and principles in a modern and formal framework.

Finally, in chapter 11, we turned to precision medicine and considered the
task of finding the optimal subgroup for treatment under certain cost or resource
constraints. In practice, it is not uncommon for treatment assignment decisions
to be based of prognostic scores. However, this approach does not guarantee
optimal results (VanderWeele et al., 2019). As an alternative, one may attempt
to evaluate all possible subgroups one by one, and choose the rule with the ‘best’
results. However, this is not feasible when there are many, potentially infinitely
many subgroups to consider. VanderWeele et al. (2019) showed that the task
can sometimes be considerably simplified by deriving treatment assignment rules
that (1) guarantee optimality under some conditions and (2) take a simple form:
assign treatment in a greedy fashion to all individuals with the next largest benefit
(i.e., the largest difference in potential outcome means given covariates) or the
next highest benefit–cost ratio (with cost being a positive function of baseline
covariates) until the resource or cost constraint, respectively, is exceeded. The
optimality of the rules however relies critically on the assumption that there are
no tied conditional treatment effects or benefit-cost ratios between individuals.
We extended their work by deriving rules that likewise have a simple form
and which guarantee optimality under the same conditions, except that there
need be no constraint on the presence of ties. An important insight that this
chapter is meant provide is that in order to obtain some sense of optimally
from allocating treatment, a contrast between counterfactual outcomes under
different treatment options should be considered. Prognostic scores alone are
not (generally) sufficient. The methodological obstacles that we encounter in
causal inference, including confounding, missing data and measurement error,
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are therefore relevant in precision medicine too.

12.2 General discussion

The methodological aspects of causal inference form a broad topic and we
addressed a variety of subtopics in this thesis. Apart from confounding, missing
data, and measurement error, the reader may nonetheless recognise a number of
recurrent features.

For example, Monte Carlo simulation was used in a number of chapters
(e.g., chapters 3-8). This is a useful tool for obtaining empirical results (i.e.,
approximations) about the performance of statistical methods in certain scenarios
as opposed to more general, analytic results (Morris et al., 2019). They are
particularly appealing when the latter are difficult to obtain, or when the interest
lies with illustrating a problem or method. However, they also have limitations.
They provide at most approximations of statistical properties. Also, only a
limited, finite number of scenarios can be considered and there is often the concern
that the results generalise poorly to other scenarios.

Much of this thesis is built on the potential or counterfactual outcomes
framework. In this work, like much of the literature, the terms ‘potential
outcomes’ and ‘counterfactual outcomes’ are used interchangeably. Where they
are considered distinct, generally the potential and counterfactual versions of
a variable under the same hypothetical situation are still regarded as having
the same values. However, variables are labeled as potential or counterfactual
depending on whether they are seen as primitive or constructed from a collection
of functions and background variables, respectively (Pearl, 2010). In some parts
of this thesis (e.g. chapter 5), we explicitly took a constructivist approach,
while in others (e.g., chapter 10), we did not. The adjective ‘potential’ further
connotes a prospective view; either one of multiple versions of the outcome might
become real-world before the choice among the corresponding mutually exclusive
actions is made. By contrast, ‘counterfactual’ connotes a retrospective view; the
choice among mutually exclusive actions is made and all but one version of the
outcome is contrary-to-fact.

The notion of ‘counterfactual thinking’ is not used merely in epidemiology
and has found its way in many branches of science, including physics (Robins
et al., 2015). Its uptake and popularity in epidemiology, however, have given
rise to much dispute among academics (Vandenbroucke et al., 2016; Krieger and
Davey Smith, 2016; Broadbent et al., 2016; VanderWeele, 2016; VanderWeele
et al., 2016; Schwartz et al., 2016; Daniel et al., 2016; Robins and Weissman, 2016;
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Blakely et al., 2016). A central point of critique is that counterfactual thinking
would delimit the meaning of causality by equating “causal claims with precise
predictions about contrary-to-fact scenarios” (Vandenbroucke et al., 2016). A
contrasting view is that the counterfactual framework considers a subset—not
necessarily the entire set—of causal claims, namely those that can be phrased as
statements about the consequences of hypothetical—possibly contrary-to-fact—
actions (VanderWeele et al., 2016). Sometimes, the framework might admit non-
actions (e.g., states) as potential causes but only when it is understood what
actions are implied. The focus on this subset of causal claims is meant to guide
decisions in the real world based on predictions of their consequences.

It should be noted that even after restricting to this subset of causal questions,
some ambiguity about what the actions (interventions) and corresponding
counterfactuals mean often remains. This issue relates to another point of debate:
the well-definedness of interventions and counterfactuals. It is important to note
that well-definedness of interventions is not the same as the interventions being
elaborate. Telling a patient to follow a poorly detailed drug prescription or
exercise programme, and advising social distancing against the spread of COVID-
19 during a given press conference may well represent reasonably well-defined
(point) interventions. They are not made less well-defined by the patient being
unsure of how to interpret the drug prescription or exercise programme, or by
the residents of a country not acting on the social distancing advise in a uniform
way. Well-definedness of interventions relates to the lack of ambiguity of what
the interventions mean, not about how they should be acted on. The requirement
that interventions and counterfactuals are sufficiently well-defined, as noted in the
introduction of this thesis, is that there is no ambiguity about the interventions or
that the counterfactuals are invariant to the choice among the possible variations.
Striving for well-definedness only serves to eliminate vagueness about the meaning
of a causal effect.

Other critique relates to the assumptions that can be readily made explicit
with counterfactual parlance (Schwartz et al., 2016), and the tools that are
typically associated with or embedded in the counterfactual framework, such
as directed acyclic graphs (DAGs) or single-world intervention graphs (sWIGs)
(Richardson and Robins, 2013) with which some assumptions can be graphically
encoded. However, that the assumption of, say, ‘no interference’ for a joint
intervention on multiple individuals (i.e., ‘one individual’s treatment does not
affect another’s outcome’) is often made (albeit often implicitly) or can be
articulated with relative ease, does not mean that the counterfactual framework
permits only causal inference under this assumption (Robins and Weissman,
2016). The development of a language rich enough to articulate a wider variety
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of causal questions and assumptions is an advance with positive effects on clarity
of thought and ease of communication. The assumptions that are made explicit
and least ambiguously articulated are inevitably often the ones that receive the
most scrutiny and criticism. As Pearl et al. (2014) notes, “he who seeks licensing
assumptions risks suspicions of attempting to endorse those assumptions. ...
The more explicit the assumption, the more criticism it invites”. Methodological
decisions (e.g., about which variables to ‘adjust’ for, or about the use of complete
case analysis versus multiple imputation for missing data) often rely on structural
assumptions about the data. There are often concerns that the DAGs encoding
data structures are too simplistic. Robins (1999) argues that although the real
world may well be more complex than is sometimes implied by a simple graph, “if
we do not learn how to reason correctly in simple causal Gedankenexperiments ...,
we have no chance of success in realistic situations.” Uncertainty about whether
certain (identifiability) assumptions are met does not justify that potential
assumption violations are ignored or rigour abandoned.

Like ‘counterfactuals’, ‘missing data’ and ‘measurement error’ are terms whose
meaning is not always clear. For example, it is easy to conflate a given variable
being inaccessible to the researcher (often encoded with ‘NA’) with the variable
being accessible yet taking the value ‘missing’ or ‘NA’. For example, in an attempt
to address confounding, one might wish to capture all information upon which
a general practitioner (GP) bases his treatment decisions. The GP might fail to
take a patient’s blood pressure, but this does not mean that the corresponding
variable is truly missing. The GP cannot base decisions on what he did not
observe and, so, the researcher might still have access to all variables that have
informed the GP’s decision making. Similar comments apply to the notion of
measurement error. Measurement error is a relative notion: in one context,
systolic blood pressure plus some random term might be considered measurement
error; in others, it is exactly what the researcher set out to measure.

Future perspectives

Epidemiology continues to face both opportunities and challenges. The potential
access to big data provides opportunities (e.g., for artificial intelligence and
machine learning), but with increased use of data that are not collected for non-
research purposes it is likely that methodological obstacles such as confounding,
missing data and measurement error are becoming more prevalent or more severe.
It is sometimes claimed that data collected for research purposes do not reflect
daily practice. It is important to recognise, however, that, conversely, evidence
that originates from daily practice does not necessarily provide valid evidence for
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daily practice. In the presence of difficult challenges, it is tempting to change
one’s inferential goals so that they become easier to achieve. However, this may
leave the question that is of actual interest unanswered. If the interest is with a
causal estimand, researchers should be explicit about this (Hernán, 2018).

Along with committing to a causal estimand, use of a causal roadmap may
help avoid conflation of different parts of causal inference (Petersen and Van der
Laan, 2014; Ahern, 2018). We believe that a distinction between identification
and estimation is particularly useful as it means that the purely statistical issues
of the latter can be put aside when concentrating on the former. At each step of
the roadmap, there are areas for future methodological research.

For example, regarding missing data, emphasis is often placed on the
classification of missingness as either being ‘completely at random’ (MCAR),
‘at random’ (MAR), or ‘not at random’ (NMAR), or on the recoverability of
the entire joint distribution of a collection of variables. However, specific causal
estimands might be identifiable even if the entire joint distribution cannot be
recovered. For example, in case-control studies, the topic of chapter 11, certain
causal effects may actually be identifiable from the observed data distribution
while absolute risks are typically not.

When estimands are not identifiable, it may be possible to obtain partial
identification bounds, which may preclude the estimand from taking, say, the
null value of no causal effect. Partial identification is an interesting area for
future research in part because it may inform sensitivity analyses.

Finally, rather than concentrating on methodological obstacles in isolation,
we believe there may be value in considering multiple problems together (Van
Smeden et al., 2021). After all, in applied research, epidemiologists often face
multiple problems simultaneously and how they are best handled together is
rarely obvious.
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