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Optimal sugroups

In a recent publication, VanderWeele et al. (2019) considered the task of
finding a treatment subgroup that maximizes the mean potential outcome. They
showed that the task can sometimes be considerably simplified by deriving
optimal treatment assignment rules of a simple form: assign treatment in a greedy
fashion to all individuals with the next largest benefit (i.e., the difference in
potential outcome means given covariates) or the next highest benefit–cost ratio
(with cost being a positive function of baseline covariates) until the resource or
cost constraint, respectively, is exceeded. As they state in their supplementary
material, the optimality of the rules relies critically on the assumption that there
are no ties between individuals. Although tied treatment effects or benefit–cost
ratios may occur with many covariates, they are perhaps more realistic when few
and only discrete baseline variables are considered to define treatment rules.

Consider for example the setting of Table 11.1 and suppose that the total
cost may not exceed 130. According to the rule of VanderWeele et al. (2019),
individuals in the first stratum should be assigned treatment. Because the

Table 11.1: Characteristics of hypothetical population of size 100 with baseline
covariates forming five strata.

Stratum
1 2 3 4 5

Number of individuals 25 20 10 15 30
Conditional mean potential outcome

– under no treatment −5 4 0 −5 −5
– under treatment 15 20 20 5 −15

Cost of treatment per individual 4 4 5 10 10
Benefit–cost ratio 5 4 4 1 −1

If those and only those in stratum 1 are treated, the total cost is 25×4 = 100 and
the mean potential outcome is (25×15+20×4+10×0+15×−5+30×−5)/(25+
20 + 10 + 15 + 30) = 230/100 = 2.3. If those and only those patients in strata 2
and 3 are treated, the total cost is 20 × 4 + 10 × 5 = 130 and the mean potential
outcome is (25×−5+20×20+10×20+15×−5+30×−5)/(25+20+10+15+30) =
250/100 = 2.5. If patients in stratum 1 are treated with probability 1, patients in
strata 2 and 3 with probability 3/13, and the rest with probability 0, the expected
total cost is 25×4+(3/13)×20×4+(3/13)×10×5 = 130 and the mean potential
outcome is (25 × 15 + (3/13) × 20 × 20 + (10/13) × 20 × 4 + (3/13) × 10 × 20 +
(10/13) × 10 × 0 + 15 × −5 + 30 × −5)/(25 + 20 + 10 + 15 + 30) = 350/100 = 3.5.
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presented rules assign treatment to either all or no individuals in any given
stratum, no more individuals can be selected without violating the cost constraint.
This rule yields a mean potential outcome of 2.3. However, because of ties, a
better rule that likewise selects either all or no individuals of a stratum, does
exist: assign treatment to strata 2 and 3 (with a mean potential outcome of 2.5).
Thus, in the presence of ties, the optimal rule need not be greedy (see also the
literature on the classic knapsack problem; e.g., Korte and Vygen, 2008).

We note that a better rule may be obtained by augmenting our data with a
sequence of independent, possibly unfair, coin tosses. As shown in the eAppendix
(but see also Luedtke and van der Laan, 2016), maximizing the mean potential
outcome across rules of this kind is achieved in the cost-constrained setting
by treating those with a benefit–cost ratio strictly greater than some positive
constant and a random selection of those with a benefit–cost ratio that equals
that constant. For our example, this means treating all members of stratum 1
as well as those members of strata 2 and 3 whose independent coin toss, with
probability 3/13 of showing heads, results in heads (mean potential outcome:
3.5).

It seems unlikely that these treatment rules would be implemented via biased
coin tosses in real-world settings. If resources are made available in a single batch,
one could calculate the amount of resources that would need to be allocated to
the “always-treat” portion of the population, reserve this portion of resources
for always-treat individuals, and then allocate the remainder to the “sometimes-
treat” portion of the population on a first-come, first-serve basis until that portion
of resources runs out. Bias could however be introduced by doing this, for
example, when sometimes-treat individuals who visit the clinic more frequently
are systematically less (or more) likely to benefit from treatment. However,
there may be ways to account for this (e.g., by including frequency of visits
as a covariate).

Finally, we add that with multiple treatment levels and cost constraints,
mean potential outcomes need not be optimized by the greedy approach of
assigning to subjects the treatment level with the highest benefit–cost ratio
above or at treatment level-specific thresholds (to satisfy cost constraints), even
if the observed data are augmented with a sequence of independent coin tosses
(Supplementary Material). Regardless of the form the rule should take, however,
we encourage researchers to follow VanderWeele et al. (2019) in taking a more
formal approach to “precision medicine” with clearly specified objectives, so that
the optimal rule form may be derived and estimation strategies be evaluated.
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Supplementary Material

In what follows, we denote by I the indicator function and by Y a the
counterfactual or potential outcome that would be realised if, possibly contrary
to fact, A were set to a. Superscripts are reserved for assigned treatment levels
rather than powers. For example, Y I(S) is the counterfactual outcome Y 1 if
statement S is true and is Y 0 otherwise. We consider treatment assignment
rules that map the vector X of covariate vector L and an error term ε to the
value of 0 or 1. We generally require that ε be independent of (Y 1 − Y 0, L)
and uniformly distributed between 0 and 1, so that for fixed p ∈ [0, 1], I(ε < p)
takes the Bernoulli distribution with parameter p and, as such, behaves like an
independent (unfair) coin toss.

Lemma 11.1. Let X be the support of X := (L, ε) and suppose that (Y 1 −
Y 0) ⊥⊥ ε|L. If X0 ⊆ X1 ⊆ X such that (L, ε) ∈ X1 ⇒ E[Y 1 − Y 0|L] >
0, then E

[
Y I(X∈X1)] ≥ E

[
Y I(X∈X0)]. Also, for all X ′ ⊆ X , we have

E[Y I(X∈X ′ ∧E[Y 1−Y 0|L]>0)] ≥ E
[
Y I(X∈X ′)].

Proof. Define X0 and X1 as indicated above, so that

E
[
Y I(X∈X1)]

= E
[
Y I(X∈X0 ∨ X∈X1\X0)]

= E[Y 0] + E[(Y 1 − Y 0)I(X ∈ X0 ∨ X ∈ X1\X0)]
= E[Y 0] + E[(Y 1 − Y 0)I(X ∈ X0)] + E[(Y 1 − Y 0)I(X ∈ X1\X0)]
= E

[
Y I(X∈X0)]+ E[(Y 1 − Y 0)I(X ∈ X1\X0)].

If Pr(X ∈ X1\X0) > 0, then

E[(Y 1 − Y 0)I(X ∈ X1\X0)]
= E[Y 1 − Y 0|X ∈ X1\X0] Pr(X ∈ X1\X0)
= E

{
E[Y 1 − Y 0|L, ε]

∣∣X ∈ X1\X0
}

Pr(X ∈ X1\X0)
= E

{
E[Y 1 − Y 0|L]

∣∣X ∈ X1\X0
}

Pr(X ∈ X1\X0),

which is strictly positive, because the inner expectation is strictly positive on (any
subset of) X1. Also, if Pr(X ∈ X1\X0) = 0, then E[(Y 1 − Y 0)I(X ∈ X1\X0)] = 0.
In either case, E

[
Y I(X∈X1)] ≥ E

[
Y I(X∈X0)].

As for the last statement, fix some X ′ ⊆ X , let X ′′ =
{
X ⊆ X : E[Y 1−Y 0|L] >

0
}

and observe

E
[
Y I(X∈X ′ ∧E[Y 1−Y 0|L]>0)]
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= E
[
Y 1−I(X∈X \X ′ ∨ X∈X \X ′′)]

= E[Y 1] + E[(Y 0 − Y 1)I(X ∈ X \X ′ ∨ X ∈ X \X ′′)]
= E[Y 1] + E[(Y 0 − Y 1)I(X ∈ X \X ′ ∨ X ∈ (X \X ′′)\(X \X ′))]
= E[Y 1] + E[(Y 0 − Y 1)I(X ∈ X \X ′)] + E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)]
= E

[
Y X∈X ′]+ E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)]

with E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)] = 0 if Pr(X ∈ X ′\X ′′) = 0 and, if Pr(X ∈
X ′\X ′′) > 0,

E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)]
= E[Y 0 − Y 1|X ∈ X ′\X ′′] Pr(X ∈ X ′\X ′′)
= E

{
− E[Y 1 − Y 0|L, ε]

∣∣X ∈ X ′\X ′′}Pr(X ∈ X ′\X ′′)
= E

{
− E[Y 1 − Y 0|L]

∣∣X ∈ X ′\X ′′}Pr(X ∈ X ′\X ′′).

Because the inner expectation is strictly negative on (any subset of) X \X ′′,
we have E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)] > 0 if Pr(X ∈ X ′\X ′′) > 0. Hence,
E
[
Y I(X∈X ′ ∧E[Y 1−Y 0|L]>0)] ≥ E

[
Y X∈X ′], as desired.

Lemma 11.2. Let X be the support of X := (L, ε) and let Cost be a
deterministic, positive function of L such that E[Cost(L)] ∈ R. For some
positive real τ ≤ E[Cost(L)], define G to be the set of all deterministic functions
g : X → {0, 1} such that E[Cost(L)g(X)] = τ . Suppose that ε ⊥⊥ (Y 1 − Y 0, L),
that ε ∼ Uniform[0, 1] and that E[Y 1 − Y 0|L] is defined almost surely. Let
h(L) = E

[
Y a − Y 0|L

]
/Cost(L) and define g∗ such that

g∗((L, ε)) =


1 if h(L) > k,

1 if h(L) = k ∧ ε < p,

0 if h(L) < k

for all (L, ε) ∈ X , and let k = −∞ denote that h(L) > k is necessarily true.
Then, there exist k ∈ R ∪ {−∞} and p ∈ [0, 1] such that g∗ ∈ G.

Proof. If τ = E[Cost(L)], then letting k = −∞ and p = 0 gives the result. So
assume that τ < E[Cost(L)].

Now, let
f : k 7→ E

[
Cost(L)I(h(L) ≥ k)

]
and K = {k ∈ R : f(k) < τ}.
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Note that f is upper semi-continuous (which can be seen to hold because f is
left continuous with right limits and monotonically non-increasing). Since upper
semi-continuity of f implies {x ∈ R : f(x) < y} is open for every y ∈ R, we see
that R\K is closed.

To see that R\K is nonempty, note that, by the dominated convergence
theorem, limk→−∞ f(k) = E[Cost(L)] > τ . Hence, there exists k0 > −∞
such that f(k0) ≥ τ , which in turn implies that R\K is non-empty. Moreover,
limk→∞ f(k) = 0 < τ , and so there exists a k1 such that f(k1) < τ . Hence, R\K
is bounded above.

Since R\K is closed, non-empty, and bounded above, we see that k :=
supR\K belongs to R\K, which implies that f(k) ≥ τ . The proof is complete
if we can show that there exists a p ∈ [0, 1] such that τ = E[Cost(L)g∗((L, ε))],
where we note that g∗ depends on the choice of p. To see that this is the case,
first note that

E[Cost(L)g∗((L, ε))] = E
[
Cost(L)I(h(L) > k)

]
+ pE

[
Cost(L)I(h(L) = k)

]
= (1 − p)E

[
Cost(L)I(h(L) > k)

]
+ pf(k)

= (1 − p) lim
k′↓k

f(k′) + pf(k).

Now, for any k′ ≥ k, it holds that k′ ∈ K, implying that f(k′) < τ . Hence,
limk′↓k f(k′) ≤ τ . Combining this fact with the fact that f(k) ≥ τ , we see that
there exists a p ∈ [0, 1] such that (1−p) limk′↓k f(k′)+pf(k) = τ . This completes
the proof.

Remark. The constraint τ ≤ E[Cost(L)] in Lemma 11.2 is weaker than, and so
may me replaced with, τ ≤ E

[
Cost(L)I

(
E[Y 1 − Y 0|L] > 0

)]
.

Theorem 11.1. Consider some positive real τ . In the setting of Lemma 11.2,
except with G defined to be the set of all deterministic functions g : X → {0, 1}
such that E[Cost(L)g(X)] ≤ τ , (i) there exist k ∈ (0, ∞) and p ∈ [0, 1] such that
g∗ ∈ G and (ii)

g∗ ∈ arg max
g∈G

E
[
Y g(X)].

Proof. Since Y g(X) = Y 0 + (Y 1 − Y 0)g(X) by consistency, we have

E
[
Y g(X)] = E

[
Y 0 + (Y 1 − Y 0)g(X)

]
= E

[
Y 0]+ E

[
(Y 1 − Y 0)g(X)

]
= E

[
Y 0]+ E

{
E
[
(Y 1 − Y 0)g(X)

∣∣g(X)
]}
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= E
[
Y 0]+ E

[
Y 1 − Y 0∣∣g(X) = 1

]
E[g(X)]

= E
[
Y 0]+

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] E[Cost(L)g(X)].

Lemma 11.1 suggests choosing among all g ∈ G such that E[Cost(L)g(X)] =
min

{
τ,E

[
Cost(L)I

(
E[Y 1 − Y 0|L] > 0

)]}
. Let G′ be the set of all such g. Since

E
[
Y 0] and E[Cost(L)g(X)] are invariant under changes in g ∈ G′,

arg max
g∈G

E
[
Y g(X)] ⊇ arg max

g∈G′

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] .

Part (i) now follows from Lemma 11.2. In the remainder of this proof, we
show that (ii) holds also. It suffices to show that

g∗ ∈ arg max
g∈G′

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] .

To show that the above expression is true, consider first any non-empty X0, X1 ⊆
X such that E[Cost(L)I(X ∈ X0)] = E[Cost(L)I(X ∈ X1)] = τ ′ for some τ ′ ∈
R+. It holds that

τ ′ = E[Cost(L)I(X ∈ X0)]
= E[Cost(L)I(X ∈ X0 ∩ X1) + Cost(L)I(X ∈ X0\X1)]
= E[Cost(L)|X ∈ X0 ∩ X1] Pr(X ∈ X0 ∩ X1)

+ E[Cost(L)|X ∈ X0\X1] Pr(X ∈ X0\X1)

and, similarly,

τ ′ = E[Cost(L)|X ∈ X0 ∩ X1] Pr(X ∈ X0 ∩ X1)
+ E[Cost(L)|X ∈ X1\X0] Pr(X ∈ X1\X0),

so that E[Cost(L)|X ∈ X0\X1] Pr(X ∈ X0\X1) = E[Cost(L)|X ∈ X1\X0] Pr(X ∈
X1\X0). Therefore, there exist a ∈ R and b, c ∈ R+ ∪ {0} such that b + c ̸= 0 and
for all i ∈ {0, 1},

E
[
Y 1 − Y 0∣∣X ∈ Xi

]
E[Cost(L)|X ∈ Xi]

=

E
[
Y 1 − Y 0∣∣X ∈ Xi ∩ X1−i

]
Pr(X ∈ X1−i|X ∈ Xi)

+ E
[
Y 1 − Y 0∣∣X ∈ Xi\X1−i

]
Pr(X ̸∈ X1−i|X ∈ Xi)

E[Cost(L)|X ∈ Xi ∩ X1−i] Pr(X ∈ X1−i|X ∈ Xi)
+ E[Cost(L)|X ∈ Xi\X1−i] Pr(X ̸∈ X1−i|X ∈ Xi)
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=

E
[
Y 1 − Y 0∣∣X ∈ Xi ∩ X1−i

]
Pr(X ∈ X1−i ∩ Xi)

+ E
[
Y 1 − Y 0∣∣X ∈ Xi\X1−i

]
Pr(X ∈ Xi\X1−i)

E[Cost(L)|X ∈ Xi ∩ X1−i] Pr(X ∈ X1−i ∩ Xi)
+ E[Cost(L)|X ∈ Xi\X1−i] Pr(X ∈ Xi\X1−i)

=
a + E

[
Y 1 − Y 0|X ∈ Xi\X1−i

]
E[Cost(L)|X ∈ Xi\X1−i]−1b

c + b
.

This readily shows that

E
[
Y 1 − Y 0∣∣X ∈ X0

]
E[Cost(L)|X ∈ X0] >

E
[
Y 1 − Y 0∣∣X ∈ X1

]
E[Cost(L)|X ∈ X1]

⇐⇒
E
[
Y 1 − Y 0∣∣X ∈ X0\X1

]
E[Cost(L)|X ∈ X0\X1] >

E
[
Y 1 − Y 0∣∣X ∈ X1\X0

]
E[Cost(L)|X ∈ X1\X0]

(11.1)

for any non-empty X0, X1 ⊆ X such that E[Cost(L)I(X ∈ X0)] =
E[Cost(L)I(X ∈ X1)] = τ ′ for some τ ′ ∈ R+.

Let X0 = {X ∈ X : g∗(X) = 1}. Suppose, by way of contradiction, that there
exists X1 such that E[Cost(L)I(X ∈ X0)] = E[Cost(L)I(X ∈ X1)] and

E
[
Y 1 − Y 0∣∣X ∈ X0

]
E[Cost(L)|X ∈ X0] <

E
[
Y 1 − Y 0∣∣X ∈ X1

]
E[Cost(L)|X ∈ X1] ,

so that, by (11.1),

E
[
Y 1 − Y 0∣∣X ∈ X0\X1

]
E[Cost(L)|X ∈ X0\X1] <

E
[
Y 1 − Y 0∣∣X ∈ X1\X0

]
E[Cost(L)|X ∈ X1\X0] . (11.2)

Sets X0\X1 and X1\X0 are disjoint and E[Cost(L)I(X ∈ X0\X1)] =
E[Cost(L)I(X ∈ X1\X0)]. In addition, for all non-empty subsets X ′

0 ⊆ X0\X1
and X ′

1 ⊆ X1\X0, we have, by construction of X0 and disjointedness, that

inf
{E[Y 1 − Y 0|L

]
Cost(L) : X ∈ X ′

0

}
≥ sup

{E[Y 1 − Y 0|L
]

Cost(L) : X ∈ X ′
1

}
. (11.3)

Let f(L) = E
[
Y 1 − Y 0|L

]
and g(L) = Cost(L), so that h(L) = f(L)/g(L), and

observe that

E[f(L)|X ∈ X ′
0]

E[g(L)|X ∈ X ′
0] = E

[
f(L)
g(L)

g(L)
E[g(L)|X ∈ X ′

0]

∣∣∣∣X ∈ X ′
0

]
≥ E

[
inf
{

f(L)
g(L) : X ∈ X ′

0

}
g(L)

E[g(L)|X ∈ X ′
0]

∣∣∣∣X ∈ X ′
0

]
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= inf
{

f(L)
g(L) : X ∈ X ′

0

}
E
[

g(L)
E[g(L)|X ∈ X ′

0]

∣∣∣∣X ∈ X ′
0

]
= inf

{
h(L) : X ∈ X ′

0

}
. (11.4)

Similarly, we have

E[f(L)|X ∈ X ′
1]

E[g(L)|X ∈ X ′
1] ≤ sup

{
h(L) : X ∈ X ′

1

}
. (11.5)

Taken together, (11.3), (11.4) and (11.5) imply

E
{
E
[
Y 1 − Y 0∣∣L]|X ∈ X ′

0
}

E[Cost(L)|X ∈ X ′
0] ≥

E
{
E
[
Y 1 − Y 0∣∣L]|X ∈ X ′

1
}

E[Cost(L)|X ∈ X ′
1] ,

which, by assumption that (Y 1 − Y 0, L) ⊥⊥ ε (and, in turn, (Y 1 − Y 0) ⊥⊥ ε|L by
weak union), implies

E
[
Y 1 − Y 0∣∣X ∈ X ′

0
]

E[Cost(L)|X ∈ X ′
0] ≥

E
[
Y 1 − Y 0∣∣X ∈ X ′

1
]

E[Cost(L)|X ∈ X ′
1] .

In particular, this implies

E
[
Y 1 − Y 0∣∣X ∈ X0\X1

]
E[Cost(L)|X ∈ X0\X1] ≥

E
[
Y 1 − Y 0∣∣X ∈ X1\X0

]
E[Cost(L)|X ∈ X1\X0] .

However, in view of (11.2), this poses a contradiction. Hence, for all g ∈ G′, we
have

E
[
Y 1 − Y 0∣∣g∗(X) = 1

]
E[Cost(L)|g∗(X) = 1] ≥

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] ,

so that g∗ ∈ arg max
g∈G

E
[
Y g(X)], as desired.

The counterexample to the following proposition suggests that the a greedy
approach need not optimize mean potential outcomes with multiple treatment
levels and cost or resource constraints.

Proposition. Let A be a finite set that includes 0 and denote by X the support of
X := (L, ε). For a ∈ A\{0}, let Costa be a deterministic, positive function of L
such that E[Costa(L)] ∈ R. Let I denote the indicator function and define G to be
the set of all deterministic functions g : X → A such that E

[
Costa(L)I(g(X) =

a)
]

= τa for all a ∈ A\{0} and some positive reals τa ≤ E[Costa(L)]. Suppose
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(Y 1 − Y 0) ⊥⊥ ε
∣∣L, E[Y 1 − Y 0|L] ∈ R and ε|L ∼ Uniform[0, 1]. Let ha(L) =

E
[
Y a − Y 0|L

]
/Costa(L) for all a ∈ A\{0} and define g∗ such that

g∗((L, ε)) =

 min
{

arg max
a∈A\{0}:P(a,L)

ha(L)
}

if P(a, L) for some a ∈ A\{0},

0 otherwise

for all (L, ε) ∈ X and where P(a, L) is true if and only if ha(L) > ka ∨ [ha(L) =
ka ∧ ε < p]. Then, (i) there exist ka ∈ R ∪ {−∞} and pa ∈ [0, 1] for a ∈ A\{0}
such that g∗ ∈ G and (ii)

g∗ ∈ arg max
g∈G

E
[
Y g(X)].

Counterexample. Let A = {0, 1, 2} and suppose L is binary with Pr(L = 1) =
1/2. Suppose also that Costa(L) = 1 and that τa = 1/4 for all a ∈ A\{0}.
Suppose further that

E
[
Y a|L

]
=



0 if a = 0,
5 if a = 1 ∧ L = 0,
4 if a = 1 ∧ L = 1,
4 if a = 2 ∧ L = 0,
1 if a = 2 ∧ L = 1,

so that ha(L) =


5 if a = 1 ∧ L = 0,
4 if a = 1 ∧ L = 1,
4 if a = 2 ∧ L = 0,
1 if a = 2 ∧ L = 1.

Suppose now that g∗ ∈ G. Then, k1 = 5, k2 = 1 and p1 = p2 = 1/2. Indeed,
if k1 > 5, then P(1, L) is false for all L and, so, E[g∗(X) = 1] = 0 ̸= τ1. If
k1 < 5, then P(1, L) is true for all L and E[g∗(X) = 1] = E[g∗(X) = 1|L =
0]/2 +E[g∗(X) = 1|L = 1]/2 = 1 ̸= τ1. If k1 = 5, then P(1, L) is true if and only
if L = 0 and ε < p, so E[g∗(X) = 1] = Pr(L = 0, ε < p) = Pr(L = 0) Pr(ε < p) =
p/2 and p/2 = τ1 = 1/4 if and only if p = 1/2. Similar arguments establish that
k2 = 1 and p2 = 1/2 if g∗ ∈ G.

Hence,

E
[
Y g∗(X)] = E

[
Y 0 + (Y 1 − Y 0)I(g∗(X) = 1) + (Y 2 − Y 0)I(g∗(X) = 2)

]
= E

[
Y 0]+ E

[
Y 1 − Y 0∣∣g∗(X) = 1

]
τ1 + E

[
Y 2 − Y 0∣∣g∗(X) = 2

]
τ2

= E
[
Y 1 − Y 0∣∣L = 0, ε < 1/2

]
τ1 + E

[
Y 2 − Y 0∣∣L = 1, ε < 1/2

]
τ2
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= E
[
Y 1 − Y 0∣∣L = 0

]
τ1 + E

[
Y 2 − Y 0∣∣L = 1

]
τ2

= 5/4 + 1/4 = 1.5.

Now, define g̃ : X → A such that

g̃((L, ε)) =


1 if L = 1 ∧ ε < 1/2,
2 if L = 0 ∧ ε < 1/2,
0 otherwise,

so that E[g̃(X) = 1] = τ1 and E[g̃(X) = 2] = τ2. But

E
[
Y g̃(X)] = E

[
Y 0]+ E

[
Y 1 − Y 0∣∣g̃(X) = 1

]
τ1 + E

[
Y 2 − Y 0∣∣g̃(X) = 2

]
τ2

= E
[
Y 1 − Y 0∣∣L = 1

]
τ1 + E

[
Y 2 − Y 0∣∣L = 0

]
τ2

= 4/4 + 4/4 = 2.

Hence, E
[
Y g̃(X)] > E

[
Y g∗(X)] and g̃ ∈ G and, so, g∗ ̸∈ arg max

g∈G
E
[
Y g(X)].
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