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Identification of causal effects in case-control studies

Abstract

Case-control designs are an important tool in contrasting the effects of well-
defined treatments. In this paper, we reconsider classical concepts, assumptions
and principles and explore when the results of case-control studies can be endowed
a causal interpretation. Our focus is on identification of target causal quantities,
or estimands. We cover various estimands relating to intention-to-treat or per-
protocol effects for popular sampling schemes (case-base, survivor, and risk-set
sampling), each with and without matching. Our approach may inform future
research on different estimands, other variations of the case-control design or
settings with additional complexities.
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Chapter 10

10.1 Introduction

In causal inference, it is important that the causal question of interest is
unambiguously articulated (Hernán and Robins, 2020). The causal question
should dictate, and therefore be at the start of, investigation. When the target
causal quantity, the estimand, is made explicit, one can start to question how it
relates to the available data distribution and, as such, form a basis for estimation
with finite samples from this distribution.

The counterfactual framework offers a language rich enough to articulate a
wide variety of causal claims that can be expressed as what-if statements (Hernán
and Robins, 2020). Another, albeit closely related, approach to causal inference
is target trial emulation, an explicit effort to mitigate departures from a study
(the ‘target trial’) that, if carried out, would enable one to readily answer the
causal what-if question of interest (Hernán and Robins, 2016). While it may be
too impractical or unethical to implement, making explicit what a target trial
looks like has particular value in communicating the inferential goal and offers a
reference against which to compare studies that have been or are to be conducted.

The counterfactual framework and emulation approach have become
increasingly popular in observational cohort studies. Case-control studies,
however, have not yet enjoyed this trend. A notable exception is given by
Dickerman et al. (2020), who recently outlined an application of trial emulation
with case-control designs to statin use and colorectal cancer.

In this paper, we give an overview of how observational data obtained with
case-control designs can be used to identify a number of causal estimands and, in
doing so, recast historical case-control concepts, assumptions and principles in a
modern and formal framework.

10.2 Preliminaries

10.2.1 Identification versus estimation

An estimand is said to be identifiable if the distribution of the available data is
compatible with exactly one value of the estimand, or therefore, if the estimand
can be expressed as a function of the available data distribution. Identification
forms a basis for estimation with finite samples from this distribution (Petersen
and Van der Laan, 2014). Once the estimand has been made explicit and
an identifiability expression established, estimation is a purely statistical task.
While the expression will often naturally translate into a plug-in estimator,
there is, however, generally more than one way to translate an identifiability
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Identification of causal effects in case-control studies

result into an estimator and different estimators may have important differences
in their statistical properties. Here, our focus is on identification, so that the
purely statistical issues of the next step in causal inference, estimation, can be
momentarily put aside.

10.2.2 Case-control study nested in cohort study

To facilitate understanding, it is useful to consider every case-control study as
being “nested” within a cohort study. A case-control study is effectively a cohort
study with missingness governed by the control sampling scheme. Therefore,
when the observed data distribution of a case-control study is compatible with
exactly one value of a given estimand, then so is the available or observed data
distribution of the underlying cohort study. In other words, identifiability of an
estimand with a case-control study implies identifiability of the estimand with
the cohort study within which it is nested. The converse is not evident and in fact
may not be true. In this paper, the focus is on sets of conditions or assumptions
that are sufficient for identifiability in case-control studies.

10.2.3 Set-up of underlying cohort study

Consider a time-varying exposure Ak that can take one of two levels, 0 or 1, at K
successive time points tk (k = 0, 1, ..., K − 1), where t0 denotes baseline (cohort

Figure 10.1: Illustration of possible courses of follow-up of an individual for a
study with baseline t0 and administrative study end t12.

1
2
3
4
5
6
7
8
9

● ● ● ● ● ●

● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Solid bullets indicate ‘exposed’; empty bullets indicate ‘not exposed’. The incident
event of interest is represented by a cross.
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entry or time zero). Study participants are followed over time until they sustain
the event of interest or the administrative study end tK , whichever comes first.
We denote by T the time elapsed from baseline until the event of interest and
let Yk = I(T < tk) indicate whether the event has occurred by tk. The lengths
between the time points are typically fixed at a constant (e.g., of one day, week,
or month). Figure 10.1 depicts twelve equally spaced time points over, say, twelve
months with several possible courses of follow-up of an individual. As the figure
illustrates, individuals can switch between exposure levels during follow-up, as
in any truly observational study. Apart from exposure and outcome data, we
also consider a (vector of) covariate(s) Lk, which describes time-fixed individual
characteristics or time-varying characteristics typically relating to a time window
just before exposure or non-exposure at tk, k = 0, 1, ..., K − 1.

10.2.4 Causal contrasts

Although there are many possible contrasts, particularly with time-varying
exposures, for simplicity we consider only two pairs of mutually exclusive
interventions: (1) setting baseline exposure A0 to 1 versus 0; and (2) setting
all of A0, A1, ..., AK−1 to 1 (‘always exposed’) versus all to 0 (‘never exposed’).
For a = 0, 1, we let counterfactual outcome Yk(a) indicate whether the event
has occurred by tk under the baseline-only intervention that sets A0 to a. By
convention, we write 1 = (1, 1, ..., 1) and 0 = (0, 0, ..., 0), and let Yk(1) and Yk(0)
indicate whether the event has occurred by tk under the intervention that sets
(A0, A1, ..., AK−1) all to 1 and all to 0, respectively. Further details about the
notation and set-up are given in Supplementary Appendix S10.1.

10.2.5 Case-control sampling

The fact that each time-specific exposure variable can take only one value per
time point means that at most one counterfactual outcome can be observed
per individual. This type of missingness is common to all studies. Relative
to the cohort studies within which they are nested, case-control studies have
additional missingness, which is governed by the control sampling scheme. In
this paper, we focus on three well-known sampling schemes: case-base sampling,
survivor sampling, and risk-set sampling. The next sections give an overview of
conditions under which intention-to-treat and always-versus-never-exposed per-
protocol effects can be identified with the data that are observed under these
sampling schemes.
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10.3 Case-control studies without matching

Table 10.1 summarises a number of identification results for case-control
studies without matching. More formal statements and proofs are given in
Supplementary Appendix S10.2. In all case-control studies that we consider
in this section, cases are compared with controls with regard to their exposure
status via an odds ratio, even when an effect measure other than the odds ratio
is targeted. An individual qualifies as a case if and only if they sustain the event
of interest by the administrative study end (i.e., YK = 1) and adhered to one of
the protocols of interest until the time of the incident event. In Figure 10.1, the
individual represented by row 1 is therefore regarded as a case (an exposed case
in particular) in our investigation of intention-to-treat effects but not in that of
per-protocol effects. Whether an individual (also) serves as a control depends on
the control sampling scheme.

10.3.1 Case-base sampling
The first result in Table 10.1 describes how to identify the intention-to-treat effect
as quantified by the marginal risk ratio

Pr(YK(1) = 1)
Pr(YK(0) = 1)

under case-base sampling. (For identification of a conditional risk ratio, see
Theorem 10.2 of Supplementary Appendix S10.2.) Case-base sampling, also
known as case-cohort sampling, means that no individual who is at risk at
baseline of sustaining the event of interest is precluded from selection as a control.
Selection as a control, S, is further assumed independent of baseline covariate L0
and exposure A0. Selecting controls from survivors only (e.g., rows 4, 5, 7 and 9
in Figure 10.1) violates this assumption when survival depends on L0 or A0.

To account for baseline confounding, inverse probability weights could be
derived from control data according to

W = A0
Pr(A0 = 1|L0, S = 1) + 1 − A0

1 − Pr(A0 = 1|L0, S = 1) . (10.1)

We then compute the odds of baseline exposure among cases and among controls
in the pseudopopulation that is obtained by weighting everyone by subject-
specific values of W . The ratio of these odds coincides with the target risk ratio
under the three key identifiability conditions of consistency, baseline conditional
exchangeability and positivity (Hernán and Robins, 2020).
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The identification result for case-base sampling suggests a plug-in estimator:
replace all functionals of the theoretical data distribution with sample analogues.
For example, to obtain the weight for an individual with baseline covariate level
l0, replace the theoretical propensity score Pr(A0 = 1|L0 = l0, S = 1) with an
estimate P̂r(A0 = 1|L0 = l0, S = 1) derived from a fitted model (e.g., a logistic
regression model) that imposes parametric constraints on the distribution of A0
given L0 among the controls.

10.3.2 Survivor sampling
With survivor (cumulative incidence or exclusive) sampling, a subject is eligible
for selection as a control only if they reach the administrative study end event-
free. To identify the conditional odds ratio of baseline exposure versus baseline
non-exposure given L0,

Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0) ,

selection as a control, S, is assumed independent of baseline exposure A0 given
L0 and survival until the end of study (i.e., YK = 0).

The directed acyclic graph (DAG) of Figure 10.2 is compatible with both
survivor sampling and case-base sampling. For those well versed in DAGs, it is
tempting to conclude from it that restricting the analysis to those included in
the study, i.e., conditioning on study inclusion, would result in bias (or departure
from identification), by way of collider stratification. Although conditioning on
study inclusion may indeed induce an association between baseline exposure and
unmeasured cause U of YK (within levels of L0), it is important to recognise it
need not result in bias (Westreich, 2012; Hughes et al., 2019).

In fact, as is shown in Supplementary Appendix S10.2, Theorem 10.3, the
above odds ratio is identified by the ratio of the baseline exposure odds given
L0 among the cases versus controls, provided the key identifiability conditions of
consistency, baseline conditional exchangeability, and positivity are met.

All estimands in Table 10.1 describe a marginal effect, except for the odds
ratio, which is conditional on baseline covariates L0. The corresponding marginal
odds ratio

Odds(YK(1) = 1)
Odds(YK(0) = 1)

is not identifiable from the available data distribution under the stated
assumptions (see remark to Theorem 10.3, Supplementary Appendix S10.2).
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However, approximate identifiability can be achieved by invoking the rare event
assumption (or rare disease assumption), in which case the marginal odds ratio
approximates the marginal risk ratio.

10.3.3 Risk-set sampling for intention-to-treat effect
With risk-set (or incidence density) sampling, for all time windows [tk, tk+1),
k = 0, ..., K − 1, every subject who is event-free at tk is eligible for selection as
a control for the period [tk, tk+1). This means that study participants may be
selected as a control more than once.

Consider the intention-to-treat effect quantified by the marginal (discrete-
time) hazard ratio (or rate ratio)

Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yk+1(0) = 1|Yk(0) = 0) .

(For identification of a conditional hazard ratio, see Theorem 10.5, Supplementary
Appendix S10.2.) For identification of the above marginal hazard ratio under risk-
set sampling, it is assumed that selection as a control between tk and tk+1, Sk,
is independent of the baseline covariates and exposure given eligibility at tk (i.e.,
Yk = 0). It is also assumed that the sampling probability among those eligible,
Pr(Sk = 1|Yk = 0), is constant across time windows k = 0, ..., K − 1. To this
end, it suffices that the marginal hazard Pr(Yk+1 = 1|Yk = 0) remains constant
across time windows and that every kth sampling fraction Pr(Sk = 1) is equal,
up to a proportionality constant, to the probability Pr(Yk+1 = 1, Yk = 0) of an
incident case in the kth window (see remark to Theorem 10.4, Supplementary
Appendix S10.2). For practical purposes, this suggests sampling a fixed number
of controls for every case from among the set of eligible individuals. To illustrate,
consider Figure 10.1 and note first of all that the individual represented by row
1 trivially qualifies as a case, because the individual survived until the event
occurred. Because the event was sustained between t5 and t6, the proposed
sampling suggests selecting a fixed number of controls from among those who
are eligible at t5. Thus, rows (and only rows) 4 through 9 as well as row 1 itself
in Figure 10.1 qualify for selection as a control for this case. Even though the
individual of row 1 is a case, the individual may also be selected as a control
when the individuals of row 2, 3 and 6 (but not 8) sustain the event.

Once cases and controls are selected, we can start to derive inverse probability
weights W according to equation (10.1). We then compute the odds of baseline
exposure among cases in the pseudopopulation that is obtained by weighting
everyone by W and the odds of baseline exposure among controls weighted by W
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multiplied by the number of times the individual was selected as a control. The
ratio of these odds coincides with the target hazard ratio under the three key
identifiability conditions of consistency, baseline conditional exchangeability and
positivity together with the assumption that the hazards in the numerator and
denominator of the causal hazard ratio are constant across the time windows.

10.3.4 Risk-set sampling for per-protocol effect
For the per-protocol effect quantified by the (discrete-time) hazard ratio (or rate
ratio)

Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yj+1(0) = 1|Yk(0) = 0) ,

eligibility again requires that the respective subject is event-free at tk (i.e.,
Yk = 0). Selection as a control between tk and tk+1, Sk, is further assumed
independent of covariate and exposure history up to tk given eligibility at tk (but
see Supplementary Appendix S10.2 for a slightly weaker assumption). As for the
intention-to-treat effect, it is also assumed that the probability to be selected as
a control Sk given eligibility is constant across time windows. This assumption is
guaranteed to hold if the marginal hazard Pr(Yk+1 = 1|Yk = 0) remains constant
across time windows and that every kth sampling fraction Pr(Sk = 1) is equal,
up to a proportionality constant, to the probability of an incident case in the
kth window. Figure 10.1 shows five incident events yet only three qualify as a
case (rows 2, 3 and 8) when it concerns per-protocol effects. When the first case
emerges (row 2), all rows meet the eligibility criterion for selection as a control.
When the second emerges, the individual of row 2, who fails to survive event-free
until t4, is precluded as a control. When the case of row 8 emerges, only the
individuals of rows 4, 5, 7 and 9 are eligible as controls.

Once cases and controls are selected, we can start to derive time-varying
inverse probability weights according to

Wk =
k∏

j=0

[
Aj

Pr(Aj = 1|L0, ..., Lj , A0, ..., Aj−1, Yj = 0, Sj = 1)

+ 1 − Aj

1 − Pr(Aj = 1|L0, ..., Lj , A0, ..., Aj−1, Yj = 0, Sj = 1)

]
.

It is important to note that the weights are derived from control information
but are nonetheless used to weight both cases and controls (Robins, 1999).
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The denominators of the weights describe the propensity to switch exposure
level. However, once the weights are derived, every subject is censored from
the time that they fail to adhere to one of the protocols of interest for all
downstream analysis. The uncensored exposure levels are therefore constant over
time. We then compute the baseline exposure odds among cases, weighted by
the weights Wk corresponding to the interval [tk, tk+1) of the incident event (i.e.,
Yk = 0, Yk+1 = 1), as well as the baseline exposure odds among controls, weighted
by ∑K−1

k=0 WkSk, the weighted number of times selected as control. The ratio
of these odds equals the target hazard ratio under the three key identifiability
conditions of consistency, sequential conditional exchangeability, and positivity
together with the assumption that hazards in the numerator and denominator of
the causal hazard ratio for the per-protocol effect are constant across the time
windows.

10.4 Case-control studies with matching

Table 10.2 gives an overview of identification results for case-control studies
with exact pair matching. Formal statements and proofs are given in
Supplementary Appendix S10.3, which also includes a generalisation of the
results of Table 10.2 to exact 1-to-M matching. While the focus in this section
is on exact covariate matching, for partial matching we refer the reader to
Supplementary Appendix S10.4, where we consider parametric identification by
way of conditional logistic regression.

Pair matching involves assigning a single control exposure level, which we
denote by A′, to every case. As for case-control studies without matching, in a
case-control studies with matching an individual qualifies as a case if and only if
they sustain the event of interest by the administrative study end (i.e., YK = 1)

Figure 10.2: Directed acyclic graph for a setting where inclusion (as case
or control) into the case-control study with case-base or survivor sampling is
determined by the outcome variable YK . U represents an unknown or unobserved
cause of YK . The dashed double-headed arrow represents an unmeasured or
observed common cause.

UL0

A0 YK Study inclusion
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and adhered to one of the protocols of interest until the time of the incident
event. How a matched control exposure is assigned is encoded in the sampling
scheme and the assumptions of Table 10.2. For example, for identification of
the causal marginal risk ratio under case-base sampling, A′ is sampled from
all study participants whose baseline covariate value matches that of the case,
independently of the participants’ baseline exposure value and whether they
survive until the end of study. The matching is exact in the sense that the
control exposure information is derived from an individual who has the same
value for the baseline covariate as the case.

The identification strategy is the same for all results listed in Table 10.2.
Only the case-control pairs (A0, A′) with discordant exposure values (i.e., (1, 0)
or (0, 1)) are used. Under the stated sampling schemes and assumptions, the
respective estimands are identified by the ratio of discordant pairs.

10.5 Discussion

This paper gives a formal account of how and when causal effects can be identified
in case-control studies and, as such, underpins the case-control application of
Dickerman et al. (2020). Like Dickerman et al., we believe that case-control
studies should generally be regarded as being nested within cohort studies. This
view emphasises that the threats to the validity of cohort studies should also be
considered in case-control studies. For example, in case-control applications with
risk-set sampling, researchers often consider the covariate and exposure status
only at, or just before, the time of the event (for cases) or the time of sampling
(for controls). However, where a cohort study would require information on
baseline levels or the complete treatment and covariate history of participants,
one should suspect that this holds for the nested case-control study too. To gain
clarity, we encourage researchers to move away from using person-years, -weeks,
or -days (rather than individuals) as the default units of inference (Hernán, 2015),
and to realise that inadequately addressed deviations from a target trial may lead
to bias (or departure from identifiability), regardless of whether the study that
attempts to emulate it is a case-control or a cohort study (Dickerman et al.,
2020).

What is meant by a cohort study differs between authors and contexts
(Vandenbroucke and Pearce, 2012). The term ‘cohort’ may refer to either a
‘dynamic population’, or a ‘fixed cohort’, whose “membership is defined in a
permanent fashion” and “determined by a single defining event and so becomes
permanent” (Rothman et al., 2008). While it may sometimes be of interest to
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ask what would have happened with a dynamic cohort (e.g., the residents of a
country) had it been subjected to one treatment protocol versus another, the
results in this paper relate to fixed cohorts.

Like the cohort studies within which they are (at least conceptually) nested,
case-control studies require an explicit definition of time zero, the time at which
a choice is to be made between treatment strategies or protocols of interest
(Dickerman et al., 2020). Given a fixed cohort, time zero is generally determined
by the defining event of the cohort (e.g., first diagnosis of a particular disease
or having survived one year since diagnosis). This event may occur at different
calendar times for different individuals. However, while a fixed cohort may be
‘open’ to new members relative to calendar time, it is always ‘closed’ along the
time axis on which all subject-specific time zeros take a common point.

In this paper, time was regarded as discrete. Since we considered arbitrary
intervals between time points and because, in real-world studies, time is never
measured in a truly continuous fashion, this does not represent an important
limitation for practical purposes. It is however important to note that the
intervals between interventions and outcome assessments (in a target trial) are
an intrinsic part of the estimand that lies at the start of investigation. Careful
consideration of time intervals in the design of the conceptual target trial and of
the actual cohort or case-control study is therefore warranted.

We emphasize that identification and estimation are distinct steps in causal
inference. Although our focus was on the former, identifiability expressions often
naturally translate into estimators. The task of finding the estimator with the
most appealing statistical properties is not necessarily straightforward, however,
and is beyond the scope of this paper.

We specifically studied two causal contrasts (i.e., pairs of interventions), one
corresponding to intention-to-treat effects and the other to always-versus-never
per-protocol effects of a time-varying exposure. There are of course many more
causal contrasts, treatment regimes and estimands conceivable that could be of
interest. We argue that also for these estimands, researchers should seek to
establish identifiability before they select an estimator.

The conditions under which identifiability is to be sought for practical
purposes may well include more constraints or obstacles to causal inference, such
as additional missingness (e.g., outcome censoring) and measurement error, than
we have considered here. While some of our results assume that hazards or hazard
ratios remain constant over time, in many cases these are likely time-varying
(Lefebvre et al., 2006; Guess, 2006). There are also more case-control designs
(e.g., the case-crossover design) to consider. These additional complexities and
designs are beyond the scope of this paper and represent an interesting direction
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for future research.
The case-control family of study designs is an important yet often

misunderstood tool for identifying causal relations (Knol et al., 2008; Pearce,
2016; Mansournia et al., 2018; Labrecque et al., 2021). Although there is much to
be learned, we believe that the modern arsenal for causal inference, which includes
counterfactual thinking, is well-suited to make transparent for these classical
epidemiological study designs what assumptions are sufficient or necessary to
endow the study results with a causal interpretation and, in turn, help resolve or
prevent misunderstanding.
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S10.1 Notation and set-up

We will suppose that the interest lies with the effect of a time-varying exposure
that can take one of two levels at any given time on a failure time outcome.
In particular, we consider a strictly increasing sequence (t0, t1, ..., tK) of K + 1
time points (with tK+1 = −t−1 = +∞ for notational convenience). For k =
0, 1, ..., K − 1, let Ak denote the level of time-varying exposure of interest at tk.
We denote the history of any stochastic sequence (X0, X1, ..., XK−1) up to and
including tk by Xk = (X0, X1..., Xk) for k = 0, 1, ..., K − 1 (and let X = XK−1

256



Chapter 10

and X−1 = 0 for notational convenience). For example, A = (A0, A1, ..., AK−1).
Denote by T (a) the counterfactual time elapsed until the event of interest since t0
that would have been realised had A been set to a, and let Yk(a) = I(T (a) < tk)
for k = 0, 1, ..., K, where I represents the indicator function. By convention, we
stipulate that for all k, Yk(a) is invariant to the kth through K − 1th elements of
a (i.e., current survival status is not affected by future exposures). With slight
abuse of notation, for k = 0, 1..., K, we let Yk(a0) denote the outcome that would
have been realised had (only) A0 been set to a0.

Consistency
For theorems about per-protocol effects, we assume consistency of the form: for
k = 1, ..., K and all a, Yk(a) = Yk if al = Al for all l = 0, ..., k−1 such that Yl = 0.
For theorems about intention-to-treat effects, a weaker condition is sufficient and
assumed: for k = 1, ..., K and a = 0, 1, Yk(a) = Yk if a = A0. The assumption
may be further relaxed for theorems in which the estimand does not involve Yk(a),
k < K: for a = 0, 1, YK(a) = YK if a = A0.

Conditional exchangeability
We also consider a sequence of variables L = (L0, L1, ..., LK−1) that satisfies one
of the following conditions:

∀k, ∀a : (Yk+1(a), ..., YK(a)) ⊥⊥ Ak|Yk(a) = 0, Lk, Ak−1 = ak−1,
(sequential conditional exchangeability, SCE)

where ak−1 is understood to represent the (k − 1)th through (K − 1)th elements
of a, or

∀a0 : (Y1(a0), ..., YK(a0)) ⊥⊥ A0|L0,
(baseline conditional exchangeability, BCE)

although sometimes a weaker form of BCE suffices: ∀a0 : YK(a0) ⊥⊥ A0|L0.

Positivity
For the theorems that follow, we assume positivity to preclude division by zero
and undefined conditional probabilities, so that the weights that we will encounter
are finite and strictly greater than 1. The assumption can sometimes be relaxed
if we are willing to interpolate or extrapolate under (parametric) modelling
assumptions.
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S10.2 Identification results for non-matching strategies

Intention-to-treat effect
For simplicity, it is assumed below that the covariates are discrete. The results
can however be extended to more general distributions.

Theorem 10.1 (Case-base sampling for marginal intention-to-treat effect).
Suppose BCE holds as well as

Pr(S = 1|L0, A0) = Pr(S = 1) = δ (S1)

for some δ ∈ (0, 1]. Then,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) ,

where

W = 1
Pr(A0 = a|L0, S = 1)

∣∣∣∣
a=A0

,

Proof. First, observe that Pr(A0 = a|L0, S = 1) = Pr(A0 = a|L0) for a = 0, 1,
because

Pr(A0 = a|L0, S = 1) = Pr(S = 1|L0, A0 = a) Pr(A0 = a|L0)
Pr(S = 1|L0)

= δ

δ
Pr(A0 = a|L0) (by S1)

= Pr(A0 = a|L0)

Hence,

W = 1
Pr(A0 = a|L0)

∣∣∣∣
a=A0

.

Now, consider the numerator of the left-hand side of the main equation in
Theorem 10.1 and note that, because of the above, we have

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
∑1

y=0 E
[
I(A0 = 1)WYK |YK = y

]
Pr(YK = y)∑1

y=0 E
[
I(A0 = 0)WYK |YK = y

]
Pr(YK = y)
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=
E
[
I(A0 = 1)WYK

]
E
[
I(A0 = 0)WYK

]
=

E
[
WYK |A0 = 1

]
Pr(A0 = 1)

E
[
WYK |A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WYK |A0 = a

]
= E

{
E
[
WYK |L0, A0 = a

]
|A0 = a

}
=
∑

l

Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
∑

l

Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by consistency)

=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by baseline conditional exchangeability)

=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(A0 = a|L0 = l) Pr(L0 = l)
Pr(A0 = a|L0 = l) Pr(A0 = a)

= 1
Pr(A0 = a)

∑
l

Pr(YK(a) = 1, L0 = l)

= Pr(YK(a) = 1)
Pr(A0 = a) ,

so that
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Next, consider the denominator of the left-hand side of the main equation in
Theorem 10.1 and observe that

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
E
[
I(A0 = 1)WS

]
E
[
I(A0 = 0)WS

] =
E
[
WS|A0 = 1

]
Pr(A0 = 1)

E
[
WS|A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WS|A0 = a

]
= E{E

[
WS|L0, A0 = a

]
|A0 = a}

=
∑

l

Pr(S = 1|L0, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)
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=
∑

l

δ Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l) (by S1)

= δ

Pr(A0 = a)
∑

l

Pr(L0 = l)

= δ

Pr(A0 = a) ,

so that
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = 1.

It follows that
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Theorem 10.2 (Case-base sampling for conditional intention-to-treat effect).
Suppose BCE hold as well as S1, or the weaker version Pr(S = 1|L0, A0) =
Pr(S = 1|L0) = δL0 ∈ (0, 1]. Then,

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Pr(YK(1) = 1|L0)
Pr(YK(0) = 1|L0) .

Proof. We have

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
=
∑1

y=0 E
[
I(A0 = 1)YK |L0, YK = y

]
Pr(YK = y|L0)∑1

y=0 E
[
I(A0 = 0)YK |L0, YK = y

]
Pr(YK = y|L0)

=
E
[
I(A0 = 1)YK |L0

]
E
[
I(A0 = 0)YK |L0

]
=

E
[
YK |L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
YK |L0, A0 = 0

]
Pr(A0 = 0|L0)
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=
E
[
YK(1)|L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
YK(0)|L0, A0 = 0

]
Pr(A0 = 0|L0)

(by consistency)

=
E
[
YK(1)|L0

]
Pr(A0 = 1|L0)

E
[
YK(0)|L0

]
Pr(A0 = 0|L0)

. (by baseline conditional exchangeability)

Also,

E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
E
[
I(A0 = 1)S|L0

]
E
[
I(A0 = 0)S|L0

]
=

E
[
S|L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
S|L0, A0 = 0

]
Pr(A0 = 0|L0)

= δL0 Pr(A0 = 1|L0)
δL0 Pr(A0 = 0|L0)

(under the assumption that Pr(S = 1|L0, A0) = Pr(S = 1|L0) = δL0 ∈ (0, 1])

= Pr(A0 = 1|L0)
Pr(A0 = 0|L0) .

It immediately follows that

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Pr(YK(1) = 1|L0)
Pr(YK(0) = 1|L0) .

Corollary 10.1. If in addition to the conditions of Theorem 10.2,

Pr(YK = 1|L0 = l, A0 = 1)
Pr(YK = 1|L0 = l, A0 = 0) = θ (homogeneity condition H1)

for all l and some constant θ, then

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) ,

because of the collapsibility of the risk ratio.
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Theorem 10.3 (Survivor sampling for conditional intention-to-treat effect).
Suppose BCE holds as well as

Pr(S = 1|L0, A0, YK) = Pr(S = 1|L0, YK) = δL0 × (1 − YK) (S2)

for some δL0 ∈ (0, 1]. Then,

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0) .

Proof. First, consider the numerator of the left-hand side of the equation in
Theorem 10.3 and observe

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

] = Pr(YK = 1|L0, A0 = 1)
Pr(YK = 1|L0, A0 = 0)Odds(A0 = 1|L0)

= Pr(YK(1) = 1|L0, A0 = 1)
Pr(YK(1) = 1|L0, A0 = 0)Odds(A0 = 1|L0)

(by consistency)

= Pr(YK(1) = 1|L0)
Pr(YK(1) = 1|L0)Odds(A0 = 1|L0).

(by baseline conditional exchangeability)

Next, consider the denominator and observe that

E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
E
[
I(A0 = 1)S|L0

]
E
[
I(A0 = 0)S|L0

]
=

E
[
S|L0, A0 = 1

]
E
[
S|L0, A0 = 0

]Odds(A0 = 1|L0)

= δL0 Pr(YK = 0|L0, A0 = 1)
δL0 Pr(YK = 0|L0, A0 = 0)Odds(A0 = 1|L0) (by S2)

= Pr(YK(1) = 0|L0, A0 = 1)
Pr(YK(0) = 0|L0, A0 = 0)Odds(A0 = 1|L0)

(by consistency)

= Pr(YK(1) = 0|L0)
Pr(YK(0) = 0|L0)Odds(A0 = 1|L0).

(by baseline conditional exchangeability)
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It follows that
E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0) .

Remark to Theorem 10.3. Under BCE, the stronger version of S2,

Pr(S = 1|L0, A0, YK) = Pr(S = 1|YK) = δ × (1 − YK) (S2∗)

for some δ ∈ (0, 1] and with

W = 1
Pr(A0 = a|L0)

∣∣∣∣∣
a=A0

,

we have
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Odds(YK(1) = 1)
Odds(YK(0) = 1) (10.2)

(see proof below). However, from

Pr(A0 = a|L0, S = 1) = Pr(S = 1|L0, A0 = a) Pr(A0 = a|L0)
Pr(S = 1|L0)

= δ Pr(YK = 0|L0, A0 = a) Pr(A0 = a|L0)
δ Pr(YK = 0|L0) (by S2∗)

= Pr(A0 = a|L0, YK = 0),

it follows that the weights W above are not identified by

1
Pr(A0 = a|L0, S = 1)

∣∣∣∣∣
a=A0

when YK ⊥̸⊥ A0|L0. (However, Pr(A0 = a|L0, S = 1) approximates Pr(A0 =
a|L0) under a rare event assumption.) In fact, the target marginal odds ratio
is not identifiable, under BCE and S2∗ with unknown δ, from the available data
distribution, which is formed by the distribution of (L0, A0, YK , S)|(YK = 1 ∨ S =
1). A proof is given below.
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Proof of (10.2) under stated conditions. As shown in the proof to Theorem 10.1,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Now,

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
E
[
I(A0 = 1)WS

]
E
[
I(A0 = 0)WS

] =
E
[
WS|A0 = 1

]
Pr(A0 = 1)

E
[
WS|A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WS|A0 = a

]
= E{E

[
WS|L0, A0 = a

]
|A0 = a}

=
∑

l

Pr(S = 1|L0, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
∑

l

δ Pr(YK = 0|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l) (by S2∗)

= δ

Pr(A0 = a)
∑

l

Pr(YK = 0|L0 = l, A0 = a) Pr(L0 = l)

= δ

Pr(A0 = a)
∑

l

Pr(YK(a) = 0|L0 = l, A0 = a) Pr(L0 = l)

(by consistency)

= δ

Pr(A0 = a)
∑

l

Pr(YK(a) = 0, L0 = l)

(by baseline conditional exchangeability)

= δ Pr(YK(a) = 0)
Pr(A0 = a) ,

so that
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Pr(YK(1) = 0)
Pr(YK(0) = 0)

and, in turn,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Odds(YK(1) = 1)
Odds(YK(0) = 1) .
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Proof of nonidentifiability of target marginal odds ratio under stated conditions.
Consider two distributions of (L0, A0, YK , S) satisfying S2∗, each characterised by
the following conditionals:

YK ∼ Bernoulli(α),
S|YK ∼ Bernoulli(δ × (1 − YK)),

L0|YK , S ∼ L0|YK ∼ Bernoulli(5/10 − 2/10 × YK),
A0|L0, YK , S ∼ A0|L0, YK ∼ Bernoulli(3/10 + 2/10 × L0 + 3/10 × YK).

The parameter values of the distributions are given in the table below.

Parameter Distribution 1 Distribution 2
α 1/10 2/10
δ 1/10 9/40

Now, for all l, a, y, s ∈ {0, 1},

Pr(L0 = l, A0 = a, YK = y, S = s|YK = 1 ∨ S = 1)

= Pr(L0 = l, A0 = a, YK = y, S = s, YK = 1 ∨ S = 1)
Pr(YK = 1 ∧ S = 0) + Pr(YK = 0 ∧ S = 1) + Pr(YK = 1 ∧ S = 1)

= I(y = 1 ∨ s = 1) Pr(L0 = l, A0 = a, YK = y, S = s)
Pr(YK = 1) + δ Pr(YK = 0)

= I(y = 1 ∨ s = 1)

× Pr(L0 = l, A0 = a|YK = y) Pr(S = s|YK = y) Pr(YK = y)
α + δ(1 − α)

=


Pr(L0 = l, A0 = a|YK = 0)

(
1 − α

α + δ(1 − α)

)
if y = 0 ∧ s = 1,

Pr(L0 = l, A0 = a|YK = 1) α

α + δ(1 − α) if y = 1 ∧ s = 0,

0 otherwise,
where

α

α + δ(1 − α) = 10/19

under Distribution 1 and under Distribution 2. Hence, Distribution 1 and 2 imply
the same available data distribution.

However, as we now show, the distributions imply different target marginal
odds ratios. Since

Pr(YK(a) = 1) =
1∑

l=0
Pr(YK(a) = 1|L0 = l) Pr(L0 = l)
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=
1∑

l=0
Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l) (by BCE)

=
1∑

l=0
Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l) (by consistency)

=
1∑

l=0

Pr(L0 = l, A0 = a|YK = 1) Pr(YK = 1)
Pr(L0 = l, A0 = a)

×
1∑

y=0
Pr(L0 = l|YK = y) Pr(YK = y)

=
1∑

l=0

(
1 + Pr(L0 = l, A0 = a|YK = 0) Pr(YK = 0)

Pr(L0 = l, A0 = a|YK = 1) Pr(YK = 1)

)−1

×
1∑

y=0
Pr(L0 = l|YK = y) Pr(YK = y)

for a = 0, 1, we have

Pr(YK(1) = 1) = 5 + 2α

10 + (25/7)/odds(α) + 5 − 2α

10 + (125/12)/odds(α) and

Pr(YK(0) = 1) = 5 + 2α

10 + (25/2)/odds(α) + 5 − 2α

10 + (125/3)/odds(α) ,

so that

Odds(YK(1) = 1)
Odds(YK(0) = 1) =


587, 791
167, 166 ≈ 3.5 under Distribution 1,

512, 539
148, 789 ≈ 3.4 under Distribution 2.

Hence, we found an available data distribution that is compatible with more
than one value of the target marginal odds ratio. This concludes the proof.

Theorem 10.4 (Risk-set sampling for marginal intention-to-treat effect).
Suppose BCE holds as well as

Pr(Sk = 1|L0, A0, Yk) = Pr(Sk = 1|Yk) = δ × (1 − Yk), (S3)

for some δ ∈ (0, 1]. If

Pr(Yk+1(a) = 1|Yk(a) = 0) = θa (H2)
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for a = 0, 1 and some constants θ0, θ1, then

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] = Pr(Yk+1(1) = 1|Yk+1(1) = 0)
Pr(Yk+1(0) = 1|Yk+1(0) = 0) ,

where

W = 1
Pr(A0 = a|L0, S0 = 1)

∣∣∣∣
a=A0

,

Proof. First, observe that Pr(A0 = a|L0, S0 = 1) = Pr(A0 = a|L0) for a = 0, 1,
because

Pr(A0 = a|L0, S0 = 1) = Pr(S0 = 1|L0, A0 = a) Pr(A0 = a|L0)
Pr(S0 = 1|L0)

= δ

δ
Pr(A0 = a|L0) (by S3)

= Pr(A0 = a|L0)

Hence,

W = 1
Pr(A0 = a|L0)

∣∣∣∣
a=A0

.

For the numerator of the main result of Theorem 10.4, we thus have

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
E
[
I(A0 = 1)WYK

]
E
[
I(A0 = 0)WYK

]
=

E
[
WYK |A0 = 1

]
Pr(A0 = 1)

E
[
WYK |A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WYK |A0 = a

]
= E

{
E
[
WYK |L0, A0 = a

]
|A0 = a

}
=
∑

l

Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
∑

l

Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by consistency)
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=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by baseline conditional exchangeability)

=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(A0 = a|L0 = l) Pr(L0 = l)
Pr(A0 = a|L0 = l) Pr(A0 = a)

= 1
Pr(A0 = a)

∑
l

Pr(YK(a) = 1, L0 = l)

= Pr(YK(a) = 1)
Pr(A0 = a) ,

so that

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1)

=
∑K−1

k=0 Pr(Yk+1(1) = 1, Yk(1) = 0)∑K−1
k=0 Pr(Yk+1(0) = 1, Yk(0) = 0)

=
∑K−1

k=0 Pr(Yk+1(1) = 1|Yk(1) = 0) Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk+1(0) = 1|Yk(0) = 0) Pr(Yk(0) = 0)

=
∑K−1

k=0 θ1 Pr(Yk(1) = 0)∑K−1
k=0 θ0 Pr(Yk(0) = 0)

(by H2)

= θ1
θ0

∑K−1
k=0 Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk(0) = 0)

For the denominator, we have

E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] =
E
[
W
∑K−1

k=0 Sk|A0 = 1
]
Pr(A0 = 1)

E
[
W
∑K−1

k=0 Sk|A0 = 0
]
Pr(A0 = 0)

,

where

E
[
W
∑K−1

k=0 Sk|A0 = a
]

= ∑K−1
k=0 E

{
E
[
WSk|L0, A0 = a

]
|A0 = a

}
=

K−1∑
k=0

∑
l

Pr(Sk = 1|L0, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
K−1∑
k=0

∑
l

δ Pr(Yk = 0|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l) (by S3)
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=
K−1∑
k=0

∑
l

δ Pr(Yk = 0|L0 = l, A0 = a) Pr(L0 = l)
Pr(A0 = a)

=
K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0|L0 = l, A0 = a) Pr(L0 = l)
Pr(A0 = a) (by consistency)

=
K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0|L0 = l) Pr(L0 = l)
Pr(A0 = a)

(by baseline conditional exchangeability)

= 1
Pr(A0 = a)

K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0, L0 = l)

= 1
Pr(A0 = a)

K−1∑
k=0

δ Pr(Yk(a) = 0),

so that
E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] =
∑K−1

k=0 δ Pr(Yk(1) = 0)∑K−1
k=0 δ Pr(Yk(0) = 0)

=
∑K−1

k=0 Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk(0) = 0)

.

It follows that
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] = Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yk+1(0) = 1|Yk(0) = 0) .

Remark to Theorem 10.4. Condition S3 holds if, for some constant δ∗
k,

Pr(Sk = 1) = δ∗
k Pr(Yk+1 = 1, Yk = 0),

Sk ⊥⊥ (L0, A0, Y k)|Yk = 0,
Pr(Sk = 1|Yk = 1) = 0.

 (S3∗)

The first requirement of S3∗ essentially means that the frequency of incident cases
in the kth window is proportional to the frequency of controls selected in this
window. Under S3∗, S3 is met with δ = δ∗

k Pr(Yk+1 = 1|Yk = 0), because

Pr(Sk = 1|L0, A0, Y k) = Pr(Sk = 1|Yk)
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= Pr(Sk = 1|Yk = 0) × (1 − Yk)
= Pr(Sk = 1|Yk = 0) × (1 − Yk)

= Pr(Sk = 1)
Pr(Yk = 0) × (1 − Yk)

= δ∗
k Pr(Yk+1 = 1, Yk = 0)

Pr(Yk = 0) × (1 − Yk)

= δ∗
k Pr(Yk+1 = 1|Yk = 0) × (1 − Yk).

Therefore, stipulating that δ∗
k is k-invariant is to state that Pr(Yk+1 = 1|Yk = 0)

is constant for k = 0, ..., K − 1.

Theorem 10.5 (Risk-set sampling for conditional intention-to-treat effect).
Suppose BCE holds as well as S3, or the weaker version Pr(Sk = 1|L0, A0, Yk) =
Pr(Sk = 1|L0, Yk) = δL0 × (1 − Yk), δL0 ∈ (0, 1]. If

Pr(Yk+1(a) = 1|L0 = l, Yk(a) = 0) = θa (H3)

for a = 0, 1, all l and some constants θ0, θ1, then

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)∑K−1

k=0 Sk|L0
]

E
[
I(A0 = 0)∑K−1

k=0 Sk|L0
] = Pr(Yk+1(1) = 1|L0, Yk(1) = 0)

Pr(Yk+1(0) = 1|L0, Yk(0) = 0) .

The proof to Theorem 10.5 is similar to that of Theorem 10.4 and therefore
omitted.

Per-protocol effect
In this subsection, an individual qualifies as a case if and only if YK = 1 and
the subject adheres to the protocol that was assigned at baseline. For any study
participant, let Sk denote selection as a control for the period [tk, tk+1) and
suppose Sk satisfies

Sk = 1 ⇒ Yk = 0 with probability 1, and
Pr(Sk = 1|Lk, Ak, Yk = 0) = Pr(Sk = 1|Ak−1, Yk = 0) and

Pr(Sk = 1|Ak−1, A0 = ... = Ak−1, Yk = 0) = δ,

 (S4)

for some δ ∈ (0, 1].
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Remark to Theorem 10.6. Condition S4 holds if, for some constant δ∗
k,

Pr(Sk = 1) = δ∗
k Pr(Yk+1 = 1, Yk = 0, ∀j < k : Aj = A0) and

Sk ⊥⊥ (Lk, Ak, Y k)|(Yk = 0, ∀j < k : Aj = A0) and
Sk = 1 ⇒ (Yk = 0, ∀j < k : Aj = A0) with probability 1.

 (S4∗)

The first requirement of S4∗ essentially means that the frequency of protocol-
adherent incident cases in the kth window is proportional to the frequency of
controls selected in this window. Under S4∗, S4 is met with δ = δ∗

k Pr(Yk+1 =
1|Yk = 0, ∀j < k : Aj = A0), because

Pr(Sk = 1|Lk, Ak, Y k)
= Pr(Sk = 1|Yk = 0, ∀j < k : Aj = A0)

× (1 − Yk) × I(∀j < k : Aj = A0)

= Pr(Sk = 1)
Pr(Yk = 0, ∀j < k : Aj = A0) × (1 − Yk) × I(∀j < k : Aj = A0)

= δ∗
k Pr(Yk+1 = 1, Yk = 0, ∀j < k : Aj = A0)

Pr(Yk = 0, ∀j < k : Aj = A0) )

× (1 − Yk) × I(∀j < k : Aj = A0)
= δ∗

k Pr(Yk+1 = 1|Yk = 0, ∀j < k : Aj = A0))
× (1 − Yk) × I(∀j < k : Aj = A0).

Similarly, condition S4 holds if, for some constant δ∗∗
k ,

Pr(Sk = 1) = δ∗∗
k Pr(Yk+1 = 1, Yk = 0) and

Sk ⊥⊥ (Lk, Ak, Y k)|(Yk = 0) and
Sk = 1 ⇒ Yk = 0 with probability 1,

 (S4∗∗)

in which case, δ = δ∗∗
k Pr(Yk+1 = 1|Yk = 0), because

Pr(Sk = 1|Lk, Ak, Y k)
= Pr(Sk = 1|Yk = 0) × (1 − Yk)

= Pr(Sk = 1)
Pr(Yk = 0) × (1 − Yk)

= δ∗∗
k Pr(Yk+1 = 1, Yk = 0)

Pr(Yk = 0) × (1 − Yk)

= δ∗∗
k Pr(Yk+1 = 1|Yk = 0) × (1 − Yk).
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Theorem 10.6 (Risk-set sampling for marginal per-protocol effect). Suppose
SCE and S4 hold. If

Pr(Yk+1(a) = 1|Yk(a) = 0) = θa (H4)

for a = 0, 1 and some constants θ0, θ1, then

E
[∑K−1

k=0 I(Ak = 1)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = 0)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[
I(A0 = 1)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

E
[
I(A0 = 0)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

= Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yk+1(0) = 1|Yk(0) = 0) ,

where

Wk =
k∏

j=0

1
Pr(Aj = aj |Lj , Aj−1, Yj = 0, Sj = 1)

∣∣∣∣
aj=Aj

.

Proof. First, observe that Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0, Sk = 1) =
Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0) for a′, a = 0, 1, because

Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0, Sk = 1)

=

Pr(Sk = 1|Lk, (∀j < k : Aj = a), Ak = a′, Yk = 0)
× Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0)

Pr(Sk = 1|Lk, (∀j < k : Aj = a), Yk = 0)

= δ

δ
Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0). (by S4)

Hence, if ∀j < k : Aj = A0, then

Wk =
k∏

j=0

1
Pr(Aj = aj |Lj , Aj−1, Yj = 0)

∣∣∣∣
aj=Aj

.

For the numerator of the main result of Theorem 10.6, we thus have

E
[∑K−1

k=0 I(Ak = 1)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = 0)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a′)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]
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=
∑K−1

k=0 E
[
WkYk+1(1 − Yk)I(∀j ≤ k : Aj = a)

]∑K−1
k=0 E

[
WkYk+1(1 − Yk)I(∀j ≤ k : Aj = a′)

]

=

K−1∑
k=0

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a, Lk = lk)∏k
j=0 Pr(Aj = a|Yj = 0, Lk = lk, ∀i < j : Ai = a)

K−1∑
k=0

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a′, Lk = lk)∏k
j=0 Pr(Aj = a′|Yj = 0, Lk = lk, ∀i < j : Ai = a′)

,

where

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a, Lk = lk)∏k
j=0 Pr(Aj = a|Yj = 0, Lk = lk, ∀i < j : Ai = a)

=
∑
lk

Pr(Yk+1 = 1|Yk = 0, Lk = lk, ∀j ≤ k : Aj = a)

× Pr(Lk = lk|Yk = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1 = 1|Yj = 0, Lj = lj , ∀i ≤ j : Ai = a)

× Pr(Lj = lj |Yj = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
=
∑
lk

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk = lk, ∀j ≤ k : Aj = a)

× Pr(Lk = lk|Yk(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i ≤ j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
(by consistency)

=
∑
lk

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk = lk, ∀j < k : Aj = a)

× Pr(Lk = lk|Yk(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
(by sequential conditional exchangeability)
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=
∑
lk−1

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
=
∑
lk−1

Pr(Yk+1(a) = 1, Yk(a) = 0|Yk−1(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

× Pr(Lk−1 = lk−1|Yk−1(a) = 0, Lk−2 = lk−2, ∀j < k − 1 : Aj = a)

×
k−2∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
...

(by repeating previous three steps, under sequential conditional exchangeability)
= Pr(Yk+1(a) = 1, Yk(a) = 0)

and, similarly,

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a′, Lk = lk)∏k
j=0 Pr(Aj = a′|Yj = 0, Lk = lk, ∀i < j : Ai = a′)

= Pr(Yk+1(a′) = 1, Yk(a′) = 0).

Hence,

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a′)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]

=
∑K−1

k=0 Pr(Yk+1(a) = 1, Yk(a) = 0)∑K−1
k=0 Pr(Yk+1(a′) = 1, Yk(a′) = 0)

=
∑K−1

k=0 Pr(Yk+1(a) = 1|Yk(a) = 0)∏k
j=1 Pr(Yj(a) = 0|Yj−1(a) = 0)∑K−1

k=0 Pr(Yk+1(a′) = 1|Yk(a′) = 0)∏k
j=1 Pr(Yj(a′) = 0|Yj−1(a′) = 0)

=
∑K−1

k=0 θa(1 − θa)k∑K−1
k=0 θa′(1 − θa′)k

(H4)

= 1 − (1 − θa)K

1 − (1 − θa′)K
(since (1 − r)∑u

k=l ark = a(rl − ru+1) for any real a, r)
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For the denominator, we have

E
[
I(A0 = a)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

E
[
I(A0 = a′)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

=
E
[∑K−1

k=0 I(Ak = a)WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

E
[∑K−1

k=0 I(Ak = a′)WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

=
∑K−1

k=0 E
[
I(Ak = a)WkSk|∀j : Yj = 0 ⇒ Aj = A0

]∑K−1
k=0 E

[
I(Ak = a′)WkSk|∀j : Yj = 0 ⇒ Aj = A0

]

=

∑K−1
k=0 E

[
I(Ak = a)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
× Pr(Yk = 0|∀j : Yj = 0 ⇒ Aj = A0)∑K−1
k=0 E

[
I(Ak = a′)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
× Pr(Yk = 0|∀j : Yj = 0 ⇒ Aj = A0)

(by S4)

=

∑K−1
k=0 E

[
I(Ak = a)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
× Pr(Yk = 0, ∀j ≤ k : Aj = A0)∑K−1
k=0 E

[
I(Ak = a′)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
Pr(Yk = 0, ∀j ≤ k : Aj = A0)

=
∑K−1

k=0 E
[
WkSk|Yk = 0, ∀j ≤ k : Aj = a

]
Pr(Yk = 0, ∀j ≤ k : Aj = a)∑K−1

k=0 E
[
WkSk|Yk = 0, ∀j ≤ k : Aj = a′]Pr(Yk = 0, ∀j ≤ k : Aj = a′)

=

K−1∑
k=0

∑
lk

E
[
Sk|Yk = 0, Lk = lk, ∀j ≤ k : Aj = a

]
× Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a)∏k

j=0 Pr(Aj = a|Yj = 0, Lj = lj , ∀i < j : Ai = a)
K−1∑
k=0

∑
lk

E
[
Sk|Yk = 0, Lk = lk, ∀j ≤ k : Aj = a′]
× Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a′)∏k

j=0 Pr(Aj = a′|Yj = 0, Lj = lj , ∀i < j : Ai = a′)

=

K−1∑
k=0

∑
lk

δ
Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a)∏k

j=0 Pr(Aj = a|Yj = 0, Lj = lj , ∀i < j : Ai = a)
K−1∑
k=0

∑
lk

δ
Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a′)∏k

j=0 Pr(Aj = a′|Yj = 0, Lj = lj , ∀i < j : Ai = a′)

(by S4)

=

∑K−1
k=0

∑
lk

δ
∏k

j=0
Pr(Yj = 0, Lj = lj |Yj−1 = 0, Lj−1 = lj−1,

∀i < j : Ai = a)∑K−1
k=0

∑
lk

δ
∏k

j=0
Pr(Yj = 0, Lj = lj |Yj−1 = 0, Lj−1 = lj−1,

∀i < j : Ai = a′)
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=

K−1∑
k=0

∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj = 0, Lj−1 = lj−1, ∀i < j : Ai = a) ×
Pr(Yj = 0|Yj−1 = 0, Lj−1 = lj−1, ∀i < j : Ai = a)

K∑
k=0

−1
∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj = 0, Lj−1 = lj−1, ∀i < j : Ai = a′) ×
Pr(Yj = 0|Yj−1 = 0, Lj−1 = lj−1, ∀i < j : Ai = a′)

=

K−1∑
k=0

∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a) ×
Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)

K−1∑
k=0

∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj(a′) = 0, Lj−1 = lj−1, ∀i < j : Ai = a′) ×
Pr(Yj(a′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1, ∀i < j : Ai = a′)

(by consistency)

=

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a) ×
Pr(Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a)

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1, ∀i < j : Ai = a′) ×
Pr(Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a′)

=

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1, ∀i < j − 1 : Ai = a) ×
Pr(Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a)

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1, ∀i < j − 1 : Ai = a′) ×
Pr(Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a′)

(by sequential conditional exchangeability)

=

∑K−1
k=0

∑
lk−1

δ
∏k

j=0
Pr(Yj(a) = 0, Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a)∑K−1
k=0

∑
lk−1

δ
∏k

j=0
Pr(Yj(a′) = 0, Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a′)

=

K−1∑
k=0

∑
lk−2

δ

Pr(Yk(a) = 0|Yk−1(a) = 0, Lk−2 = lk−2, ∀i < k − 1 : Ai = a) ×∏k−1
j=0 Pr(Yj(a) = 0, Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a)
K−1∑
k=0

∑
lk−2

δ

Pr(Yk(a′) = 0|Yk−1(a′) = 0, Lk−2 = lk−2, ∀i < k − 1 : Ai = a′) ×∏k−1
j=0 Pr(Yj(a′) = 0, Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a′)
... (by sequential conditional exchangeability)
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=
∑K−1

k=0 δ Pr(Yk(a) = 0)∑K−1
k=0 δ Pr(Yk(a′) = 0)

=
∑K−1

k=0 Pr(Yk(a) = 0)∑K−1
k=0 Pr(Yk(a′) = 0)

=
1 +∑K−1

k=1
∏k

j=1 Pr(Yj(a) = 0|Yj−1(a) = 0)
1 +∑K−1

k=1
∏k

j=1 Pr(Yj(a′) = 0|Yj−1(a′) = 0)

= 1 +∑K−1
k=1 (1 − θa)k

1 +∑K
k=1(1 − θa′)k

(by H4)

= 1 + [1 − θa − (1 − θa)K−1]/θa

1 + [1 − θa′ − (1 − θa′)K−1]/θa′

(since (1 − r)∑u
k=l ark = a(rl − ru+1) for any real a, r)

= θa′(1 − (1 − θa)K−1)
θa(1 − (1 − θa′)K−1) .

Hence,

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)|YK = 1
]

E
[∑K−1

k=0 I(Ak = 1 − a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)|YK = 1
]

E
[∑K−1

k=0 I(Ak = a)WkSk

]
E
[∑K−1

k=0 I(Ak = 1 − a)WkSk

]
= 1 − (1 − θa)K−1

1 − (1 − θa′)K−1 × θa(1 − (1 − θa′)K−1)
θa′(1 − (1 − θa)K−1)

= θa/θa′ ,

which completes the proof.

S10.3 Identification results for exact 1:M matching strategies

Intention-to-treat effect
In this subsection, cases are defined by YK = 1 and have baseline exposure A0.
All cases are assigned a (possibly variable) number M ≥ 0 of control exposures
A′

i, i = 1, ..., M , subject to

Pr(M > 0|YK = 1) > 0 and
M ⊥⊥ A0|(L0, YK = 1) and

∀l, a, a′ : Pr(A′
i = a′|L0 = l, A0 = a, YK = 1, M, M > 0)

= Pr(A0 = a′|L0 = l),

 (M1)
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or
Pr(M > 0|YK = 1) > 0 and
M ⊥⊥ A0|(L0, YK = 1) and

∀l, a, a′ : Pr(A′
i = a′|L0 = l, A0 = a, YK = 1, M, M > 0)

= Pr(A0 = a′|L0 = l, YK = 0),

 (M2)

or
Pr(M > 0|YK = 1) > 0 and

M ⊥⊥ A0|(L0, YK = 1, J) and
∀l, a, a′ : Pr(A′

i = a′|L0 = l, A0 = a, Y K , J = j, M, M > 0)
= Pr(A0 = a′|L0 = l, Yj = 0),
where J = max{k = 0, 1, ..., K : Yk = 0}.


(M3)

That is, cases are matched with subjects that have the same baseline covariate
level and who are alive at baseline (M1), at the end of study (M2), or whenever
the case is alive (M3).

For simplicity, it is assumed below that the variables are discrete. The results
can however be extended to more general distributions.

Theorem 10.7 (Case-base sampling for marginal intention-to-treat effect). If
M1 and BCE hold and

Pr(YK = 1|L0 = l, A0 = 1)
Pr(YK = 1|L0 = l, A0 = 0) = θ (H1)

for all l and some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Pr(YK(1) = 1)

Pr(YK(0) = 1) .

Proof. We have

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
]

=
E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]

× Odds(A0 = 1|YK = 1, M > 0),

where
E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]
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=

E
[∑m

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M = m
]

× Pr(M = m|A0 = 1, YK = 1, M > 0)∑
m>0

E
[∑m

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M = m
]

× Pr(M = m|A0 = 0, YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 0|L0 = l, A0 = 1, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 1|L0 = l, A0 = 0, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

Pr(A0 = 0|L0 = l)
× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑

m>0

m∑
i=1

∑
l

Pr(A0 = 1|L0 = l)
× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

(by M1)

=

∑
m>0

m∑
i=1

∑
l

Pr(A0 = 0|L0 = l)
× Pr(M = m, L0 = l, A0 = 1|YK = 1)∑

m>0

m∑
i=1

∑
l

Pr(A0 = 1|L0 = l)
× Pr(M = m, L0 = l, A0 = 0|YK = 1)

× 1
Odds(A0 = 1|YK = 1, M > 0)

=
∑

m>0
∑m

i=1
∑

l q(l, m) Pr(YK = 1|L0 = l, A0 = 1)∑
m>0

∑m
i=1

∑
l q(l, m) Pr(YK = 1|L0 = l, A0 = 0)

× 1
Odds(A0 = 1|YK = 1, M > 0)

(under M1 and definition of q(l, m) (see below))

=
∑

m>0
∑m

i=1
∑

l q(l, m)θ Pr(YK = 1|L0 = l, A0 = 0)∑
m>0

∑m
i=1

∑
l q(l, m) Pr(YK = 1|L0 = l, A0 = 0)

× 1
Odds(A0 = 1|YK = 1, M > 0) (by H1)

= θ

Odds(A0 = 1|YK = 1, M > 0)
where q(l, m) = Pr(M = m|L0 = l, YK = 1) Pr(A0 = 0|L0 = l) Pr(A0 = 1|L0 =
l) Pr(L0 = l).

It follows that
E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Pr(YK = 1|L0, A0 = 1)

Pr(YK = 1|L0, A0 = 0)

279



Identification of causal effects in case-control studies

= Pr(YK(1) = 1|L0, A0 = 1)
Pr(YK(0) = 1|L0, A0 = 0)

(by consistency)

= Pr(YK(1) = 1|L0)
Pr(YK(0) = 1|L0)

(by baseline conditional exchangeability)

= Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Theorem 10.8 (Survivor sampling for conditional intention-to-treat effect).
Suppose M2 and BCE hold. If

Odds(YK = 1|L0, A0 = 1)
Odds(YK = 1|L0, A0 = 0) = θ (H5)

for some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Odds(YK(1) = 1|L0)

Odds(YK(0) = 1|L0) .

Proof. We have

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
]

=
E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]

× Odds(A0 = 1|YK = 1, M > 0),

where

E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]

=

∑
m>0

E
[∑m

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M = m
]

× Pr(M = m|A0 = 1, YK = 1)∑
m>0

E
[∑m

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M = m
]

× Pr(M = m|A0 = 0, YK = 1)
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=

∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 0|L0 = l, A0 = 1, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 1|L0 = l, A0 = 0, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

Pr(A0 = 0|L0 = l, YK = 0)
× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑

m>0

m∑
i=1

∑
l

Pr(A0 = 1|L0 = l, YK = 0)
× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

(by M2)

=

∑
m>0

m∑
i=1

∑
l

Pr(YK = 0|L0 = 0, A0 = 0) Pr(A0 = 0|L0 = l)
× Pr(M = m, L0 = l, A0 = 1|YK = 1)

Pr(YK = 0|L0 = l)

∑
m>0

m∑
i=1

∑
l

Pr(YK = 0|L0 = 0, A0 = 1) Pr(A0 = 1|L0 = l)
× Pr(M = m, L0 = l, A0 = 0|YK = 1)

Pr(YK = 0|L0 = l)

× 1
Odds(A0 = 1|YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

q(l, m) Pr(YK = 1|L0 = l, A0 = 1)
× Pr(YK = 0|L0 = 0, A0 = 0)∑

m>0

m∑
i=1

∑
l

q(l, m) Pr(YK = 1|L0 = l, A0 = 0)
× Pr(YK = 0|L0 = 0, A0 = 1)

× 1
Odds(A0 = 1|YK = 1, M > 0)

(under M2 and definition of q(l, m) (see below))

=

∑
m>0

m∑
i=1

∑
l

q(l, m)θ Pr(YK = 1|L0 = l, A0 = 0)
× Pr(YK = 0|L0 = 0, A0 = 1)∑

m>0

m∑
i=1

∑
l

q(l, m) Pr(YK = 1|L0 = l, A0 = 0)
× Pr(YK = 0|L0 = 0, A0 = 1)

× 1
Odds(A0 = 1|YK = 1, M > 0) (by H5)

= θ

Odds(A0 = 1|YK = 1, M > 0)

where q(l, m) = Pr(M = m|L0 = l, YK = 1) Pr(A0 = 0|L0 = l) Pr(A0 = 1|L0 =
l) Pr(L0 = l)/ Pr(YK = 0|L0 = l).
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From the definition of θ, it follows that

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Odds(YK(1) = 1|L0, A0 = 1)

Odds(YK(0) = 1|L0, A0 = 0)
(by consistency)

= Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0)

(by baseline conditional exchangeability)

= Odds(YK(1) = 1)
Odds(YK(0) = 1) .

Theorem 10.9 (Risk-set sampling for conditional intention-to-treat effect).
Suppose M3 and BCE hold. If

Pr(Yj+1 = 1|L0, A0 = 1, Yj = 0)
Pr(Yj+1 = 1|L0, A0 = 0, Yj = 0) = θ (H6)

for j = 0, 1, ..., K and some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Pr(Yj+1(1) = 1|L0, Yj(1) = 0)

Pr(Yj+1(0) = 1|L0, Yj(0) = 0) .

Proof. If J = max{k = 0, 1, ..., K : Yk = 0}, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
]

=

∑
m>0

E
[∑m

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M = m
]

× Pr(M = m|YK = 1, M > 0)∑
m>0

E
[∑m

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M = m
]

× Pr(M = m|YK = 1, M > 0)

=

∑
m>0

E
[∑m

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M = m
]

× Pr(M = m, YK = 1)∑
m>0

E
[∑m

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M = m
]

× Pr(M = m, YK = 1)
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=

∑
m>0

K−1∑
j=0

∑
l

E
[∑m

i=1 I(A′
i = 0, A0 = 1)

∣∣L0 = l, J = j, M = m
]

Pr(L0 = l, J = j, M = m)

∑
m>0

K−1∑
j=0

∑
l

E
[∑m

i=1 I(A′
i = 1, A0 = 0)

∣∣L0 = l, J = j, M = m
]

× Pr(L0 = l, J = j, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 0, A0 = 1)
∣∣L0 = l, J = j, M = m

]
× Pr(L0 = l, J = j, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 1, A0 = 0)
∣∣L0 = l, J = j, M = m

]
× Pr(L0 = l, J = j, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 0, A0 = 1)
∣∣L0 = l, Yj = 0, Yj+1 = 1, M = m

]
× Pr(L0 = l, Yj = 0, Yj+1 = 1, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 1, A0 = 0)
∣∣L0 = l, Yj = 0, Yj+1 = 1, M = m

]
× Pr(L0 = l, Yj = 0, Yj+1 = 1, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A′
i = 0|L0 = l, A0 = 1, Yj = 0, Yj+1 = 1, M = m)
× Pr(L0 = l, A0 = 1, Yj = 0, Yj+1 = 1, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A′
i = 1|L0 = l, A0 = 0, Yj = 0, Yj+1 = 1, M = m)
× Pr(L0 = l, A0 = 0, Yj = 0, Yj+1 = 1, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A0 = 0|L0 = l, Yj = 0)
× Pr(L0 = l, A0 = 1, Yj = 0, Yj+1 = 1, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A0 = 1|L0 = l, Yj = 0)
× Pr(L0 = l, A0 = 0, Yj = 0, Yj+1 = 1, M = m)

(by M3)

=
∑

m>0
∑m

i=1
∑K−1

j=0
∑

l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 1, Yj = 0)∑
m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)

(under M3 and definition of qj(l, m) (see below))

= θ

∑
m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)∑

m>0
∑m

i=1
∑K−1

j=0
∑

l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)
(by H6)

= θ.

where qj(l, m) = Pr(M = m|L0 = l, Yj = 0) Pr(A0 = 1|L0 = l, Yj = 0) Pr(A0 =
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0|L0 = l, Yj = 0) Pr(L0 = l, Yj = 0).
Thus,

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1
]

= Pr(Yj+1 = 1|L0, A0 = 1, Yj = 0)
Pr(Yj+1 = 1|L0, A0 = 0, Yj = 0)

= Pr(Yj+1(1) = 1|L0, A0 = 1, Yj(1) = 0)
Pr(Yj+1(0) = 1|L0, A0 = 0, Yj(0) = 0) (by consistency)

= Pr(Yj+1(1) = 1|L0, Yj(1) = 0)
Pr(Yj+1(0) = 1|L0, Yj(0) = 0) .

(by baseline conditional exchangeability)

Per-protocol effect
In this subsection, an individual qualifies as a case if and only if YK = 1 and the
subject adheres to the protocol that was assigned at baseline (i.e., Ak = A0 for
all k = 0, 1, ..., K if Yk = 0). All cases are assigned a (possibly variable) number
M ≥ 0 control exposures A′

i, i = 1, ..., M , subject to

Pr(M > 0|YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0)) > 0 and
M ⊥⊥ A0|(J, YK = 1, LJ = lJ , ∀i ≤ J : Ai = A0) and

∀l, a : Pr(A′
i = a′|LJ = lJ , ∀j ≤ J : Aj = A0, A0 = a,

YJ = 0, J, M, M > 0)
= Pr(AJ = a′|LJ = lJ , ∀j ≤ J : Aj = A0, YJ = 0),
where J = max{k = 0, 1, ..., K : Yk = 0}.


(M4)

Theorem 10.10 (Risk-set sampling for conditional per-protocol effect). Suppose
M4 holds. If

Pr(Yj+1 = 1|Lj = lj , Yj = 0, ∀i ≤ j : Ai = 1)
Pr(Yj+1 = 1|Lj = lj , Yj = 0, ∀i ≤ j : Ai = 0)

= θ (H7)

for all j, lj and some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]
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= Pr(Yj+1(1) = 1|Lj = lj , Yj(1) = 0, ∀i ≤ j : Ai = 1)
Pr(Yj+1(0) = 1|Lj = lj , Yj(0) = 0, ∀i ≤ j : Ai = 0)

.

Proof. Let J = max{k = 0, 1, ..., K : Yk = 0}. Then, for a = 0, 1,

E
[

M∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣YK = 1, ∀j ≤ J : Aj = A0, M > 0
]

=
K−1∑
j=0

∑
lj

E
[

M∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣
Lj = lj , J = j, YK = 1, ∀j ≤ J : Aj = A0, M > 0

]
× Pr(Lj = lj , J = j|YK = 1, ∀i ≤ J : Ai = A0, M > 0)

=
K−1∑
j=0

∑
lj

E
[

M∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣
Lj = lj , Yj = 0, Yj+1 = 1, ∀j ≤ J : Aj = A0, M > 0

]
× Pr(Lj = lj , Yj = 0, Yj+1 = 1|YK = 1, ∀i ≤ J : Ai = A0, M > 0)

=
∑
m>0

K−1∑
j=0

∑
lj

E
[

m∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣
Lj = lj , Yj = 0, Yj+1 = 1, ∀j ≤ J : Aj = A0, M = m

]
× Pr(M = m, Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0, M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

E
[
I(A′

u = 1 − a, A0 = a)
∣∣∣∣∣

Lj = lj , Yj = 0, Yj+1 = 1, ∀j ≤ J : Aj = A0, M = m

]
× Pr(M = m, Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0, M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A′
u = 1 − a|Lj = lj , Yj = 0, Yj+1 = 1,

∀j ≤ J : Aj = a, M = m)
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× Pr(M = m, A0 = a, Lj = lj , Yj = 0, Yj+1 = 1|
∀j ≤ J : Aj = A0, M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A0 = 1 − a|Yj = 0, Lj = lj ,

∀i ≤ j : Ai = A0)
× Pr(M = m, A0 = a, Lj = lj , Yj = 0, Yj+1 = 1|
∀j ≤ J : Aj = A0, M > 0) (by M4)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A0 = 1 − a|Yj = 0, Lj = lj , ∀i ≤ j : Ai = A0)

× Pr(M = m, Lj = lj , A0 = a, Yj+1 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
× Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = a, Yj = 0, ∀i ≤ j : Ai = A0)

× qj(lj , m) Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1,
(under M4)

where

qj(lj , m) = Pr(M = m|Lj = lj , Yj = 0, Yj+1 = 1, ∀i ≤ j : Ai = A0)
× Pr(A0 = 1 − a|Yj = 0, Lj = lj , ∀i ≤ j : Ai = A0)
× Pr(A0 = a|Yj = 0, Lj = lj , ∀i ≤ j : Ai = A0)
× Pr(Lj = lj , Yj = 0, ∀i ≤ j : Ai = A0).

It follows that

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]

=

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
×qj(lj , m) Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 0, Yj = 0, ∀i ≤ j : Ai = A0)
×qj(lj , m) Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1
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=

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
× qj(lj , m)

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
× qj(lj , m)

= θ

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = ljYj = 0, ∀i ≤ j : Ai = 0)
× qj(lj , m)

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , Yj = 0, ∀i ≤ j : Ai = 0)
× qj(lj , m)

(by H7)
= θ.

The desired results follows by consistency.

S10.4 Parametric identification by conditional logistic
regression for exact or partial 1:M matching

We now allow for the possibility that cases (YK = 1) are matched to M ≥ 0
controls on only part of L0. That part of L0 on which exact matching is done
will be denoted L∗

0; the other part is denoted L′
0, so that L0 = (L∗

0, L′
0). The

identification result below rests on the assumption that cases are assigned M ≥
0 pairs (A′

i, L′
i) of baseline exposure and baseline covariate data, i = 1, ..., M ,

subject to

Pr(M > 0|YK = 1) > 0 and
M ⊥⊥ (A0, L0)|(L∗

0, YK = 1) and
∀l, l′, a : Pr(A′

i = a, L′
i = l′|L∗

0 = l, L′
0, A0, YK = 1, M, M > 0)

= Pr(A0 = a, L′
0 = l′|L∗

0 = l, YK = 0) and
(L′

0, A0), (L′
1, A′

1), ..., (L′
M , A′

M ) are mutually independent
given (L∗

0, YK = 1, M > 0).


(M2∗)

It is assumed below that the variables are discrete with finite support for
simplicity. The results can however be extended to more general distributions.

Theorem 10.11 (Conditional logistic regression for conditional intention-to-treat
effect). Suppose BCE and M2∗ hold. For some known real-valued functions fj,
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j = 1, ..., p, assume the following model:

logit Pr(YK(a) = 1|L0) = α +
p∑

j=1
fj(a, L∗

0, L′
0)βj (Outcome Model)

For i = 0, ..., M , let Xi,j = fj(A′
i, L∗

0, L′
i) − fj(A0, L∗

0, L′
0), with A′

0 = A0, and
assume for any γ1, ..., γp ∈ R, not all zero, that

Pr
(

M∨
i=1

[ p∑
j=1

γjXi,j ̸= 0
]∣∣∣∣∣YK = 1, M > 0

)
> 0, (Linear Independence)

where
∨

denotes the logical OR operator (i.e., given any indexed collection (Pi)i∈I

of propositions,
∨

i∈I Pi is the proposition that Pi is true for at least one i ∈ I).
Then,

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

is uniquely maximized at β̃ = β.

Proof. We first demonstrate that

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

has at most one maximum by showing that it is strictly concave as a function of
β̃. Let X = (X1, ..., XM ) and Xi = (Xi,1, ..., Xi,p), i = 1, ..., M . To show that
function f ,

f(β) = E
[

log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,jβj

])−1∣∣∣∣∣YK = 1, M > 0
]

=
∑
m>0

∑
x

log
(

1 +
m∑

i=1
exp

[ p∑
j=1

xi,jβj

])−1

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0),

is convex (and −f concave) it suffices to show that its Hessian is positive
semidefinite, i.e., that ∑p

t=1
∑p

u=1 βkβlHk,l(β) ≥ 0 for all β ∈ Rp, where

Hk,l(β) = ∂

∂βl

∂

∂βk
f(β).
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Positive definiteness of the Hessian, i.e., ∑p
k=1

∑p
l=1 βkβlHk,l(β) > 0 for all β ∈ Rp

such that βk ̸= 0 for some k ∈ {1, ..., p}, implies strict convexity of f (and −f
strictly concave).

Letting g(Xi, β) = exp
{∑p

j=1 Xi,jβj
}

for i = 1, ..., M , we have

Hk,l(β) = ∂

∂βl

∂

∂βk
f(β)

= ∂

∂βl

∑
m>0

∑
x

∑m
i=1 xi,kg(xi, β)

1 +∑m
i=1 g(xi, β)

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)

= ∂

∂βl

∑
m>0

∑
x

∑m
i=1 xi,kg(xi, β)

1 +∑m
i=1 g(xi, β)

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)

=
∑
m>0

∑
x

(
1 +

m∑
i=1

g(xi, β)
)−2

×
[(

1 +
m∑

i=1
g(xi, β)

)(
m∑

i=1
Xi,kXi,lg(xi, β)

)

−
(

m∑
i=1

Xi,kg(xi, β)
)(

m∑
i=1

Xi,lg(xi, β)
)]

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0),

so that, with vi =
√

g(xi, β) and wi = ∑p
j=1 xi,jβj

√
g(xi, β),

p∑
k=1

p∑
l=1

βkβlHk,l(β)

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
[ p∑

k=1

p∑
l=1

βkβl

(
1 +

m∑
i=1

g(xi, β)
)(

m∑
i=1

xi,kxi,lg(xi, β)
)

−
p∑

k=1

p∑
l=1

βkβl

(
m∑

i=1
xi,kg(xi, β)

)(
m∑

i=1
xi,lg(xi, β)

)]

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2
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×
[(

1 +
m∑

i=1
g(xi, β)

)(
m∑

i=1
g(xi, β)

( p∑
k=1

βkxi,k

)( p∑
l=1

βlxi,l

))

−
(

m∑
i=1

p∑
k=1

βkxi,kg(xi, β)
)(

m∑
i=1

p∑
l=1

βlxi,lg(xi, β)
)]

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
[(

1 +
m∑

i=1
g(xi, β)

)(
m∑

i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2)

−
(

m∑
i=1

p∑
k=1

βkxi,kg(xi, β)
)2]

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
[

m∑
i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2

+
(

m∑
i=1

v2
i,j

)(
m∑

i=1
w2

i,j

)

−
(

m∑
i=1

vi,jvi,j

)2]

≥
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
m∑

i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2

. (by the Cauchy-Schwarz inequality)

Now,∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
m∑

i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
m∑

i=1
g(xi, β)

( p∑
k=1

βkxi,k

)2
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= E
[(

1 +
M∑

i=1
g(Xi, β)

)−2 M∑
i=1

g(Xi, β)
( p∑

k=1
βkXi,k

)2∣∣∣∣∣YK = 1, M > 0
]

≥ 0

with strict inequality under Linear Independence. Thus,

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

has at most one maximum.
It remains to be shown that

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

is maximized at β̃ = β, i.e., ∂/∂β̃kf(β̃) = 0 for all k = 1, ..., p at β̃ = β.
Now,

∂

∂β̃k

f(β̃) = E
[∑M

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣YK = 1, M > 0
]

=
∑
l∗

∑
m>0

E
[∑m

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣L∗
0 = l∗, YK = 1, M = m

]
× Pr(L∗

0 = l∗, M = m|, YK = 1, M > 0),

where

E
[∑m

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣L∗
0 = l∗, YK = 1, M = m

]

=
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]
× exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
× Pr(A0 = a0, A′

1 = a1, ..., Am = am, L′
0 = l0, ..., L′

m = lm|
L∗

0 = l∗, YK = 1, M = m)

=
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]
× exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
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× h(a0, ..., aM , l0, ..., lM )

× Pr
(
A0 = a0, A′

1 = a1, ..., AM = aM , L′
0 = l0, ..., L′

m = lm
∣∣∣∨

σ

[
(A0 = aσ(0), L′

0 =σ(0), A′
1 = aσ(1), L′

1 =σ(1), ..., Am = aσ(m), L′
m =σ(m))

]
,

L∗
0 = l∗, YK = 1, M = m

)
,

where permutation σ denotes a bijection from {0, 1, ..., M} to itself and

h(a0, ..., aM , l0, ..., lM )

= Pr
(∨

σ

[
(A0 = aσ(0), L′

0 =σ(0), A′
1 = aσ(1), L′

1 =σ(1), ..., Am = aσ(m),

L′
m =σ(m))

]∣∣∣L∗
0 = l∗, YK = 1, M = m

)
.

Next, let B0 = (L′
0, A0) and Bi = (L′

i, A′
i), i = 1, 2, ..., M . Let bi = (li, ai) for

i = 0, ..., M . We have

Pr
(

B0 = b0, , ..., BM = bM

∣∣∣∣∣
∨
σ

[
(B0, ..., BM ) = (bσ(0), ..., bσ(M))

]
, L∗

0, YK = 1, M, M > 0
)

= Pr(B0 = b0, ..., BM = bM |L∗
0, YK = 1, M > 0)

Pr
(∨

σ

[
B0 = bσ(0), ..., BM = aσ(M)

]∣∣∣L∗
0, YK = 1, M, M > 0

)
∝ Pr(B0 = b0, ..., BM = bM |L∗

0, YK = 1, M > 0)∑
σ Pr

(
B0 = bσ(0), ..., BM = aσ(M)

∣∣∣L∗
0, YK = 1, M, M > 0

)
=

∏M
i=0 Pr(Bi = bi|L∗

0, YK = 1, M, M > 0)∑
σ

∏M
i=0 Pr(Bi = bσ(i)|L∗

0, YK = 1, M, M > 0)
(by mutual independence of M2∗)

= Pr(B0 = b0|L∗
0, YK = 1)∏M

i=1 Pr(B0 = bi|L∗
0, YK = 0)∑

σ Pr(B0 = bσ(0)|L∗
0, YK = 1)∏M

i=1 Pr(B0 = bσ(i)|L∗
0, YK = 0)

(by M2∗)

= Pr(YK = 1|B0 = b0, L∗
0)∏M

i=1[1 − Pr(YK = 1|B0 = bi, L∗
0)]∑

σ Pr(YK = 1|B0 = bσ(0), L∗
0)∏M

i=1[1 − Pr(YK = 1|B0 = bσ(i), L∗
0)]
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=

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

×
∏M

i=1[1 − Pr(YK = 1|L0 = (L∗
0, li), A0 = ai)]∑

σ

Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

×
∏M

i=1[1 − Pr(YK = 1|L0 = (L∗
0, lσ(i)), A0 = aσ(i))]

=

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

1 − Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

×
M∏

i=0
[1 − Pr(YK = 1|L0 = (L∗

0, li), A0 = ai)]

∑
σ

Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

1 − Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

×
M∏

i=0
[1 − Pr(YK = 1|L0 = (L∗

0, lσ(i)), A0 = aσ(i))]

=

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

1 − Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)∑

σ

Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

1 − Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

∝

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

1 − Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

M∑
i=0

Pr(YK = 1|L0 = (L∗
0, li), A0 = ai)

1 − Pr(YK = 1|L0 = (L∗
0, li), A0 = ai)

=

expit
{
α +∑p

j=1 fj(a0, L∗
0, l0)βj

}
1 − expit

{
α +∑p

j=1 fj(a0, L∗
0, l0)βj

}
M∑

i=0

expit
{
α +∑p

j=1 fj(ai, L∗
0, li)βj

}
1 − expit

{
α +∑p

j=1 fj(ai, L∗
0, li)βj

}
=

exp
[∑p

j=1 fj(a0, L∗
0, l0)βj

]∑M
i=0 exp

[∑p
j=1 fj(ai, L∗

0, li)βj
]

=
(

M∑
i=0

exp
[ p∑

j=1

[
fj(ai, L∗

0, li) − fj(a0, L∗
0, l0)

]
βj

])−1

=
(

1 +
M∑

i=1
exp

[ p∑
j=1

[
fj(ai, L∗

0, li) − fj(a0, L∗
0, l0)

]
βj

])−1

.
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Thus,

E
[∑m

i=1 Xi,jg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣L∗
0 = l∗, YK = 1, M = m

]

∝
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]
× exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
× 1

1 +∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]βk

}
× h(a0, ..., aM , l0, ..., lM )

∝
∑

l0,...,lm

∑
a0,...,am

h(a0, ..., aM , l0, ..., lM )

×
m∑

i=1
[fk(ai, l∗, li) − fk(a0, l∗, l0)]

×
exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
× 1

1 +∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]βk

}
∝

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
m∑

u=1

m∑
i=1

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1[fk(ai, l∗, li) − fk(au, l∗, lu)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(au, l∗, lu)]β̃k

}
× 1

1 +∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li) − fk(au, l∗, lu)]βk

}
=

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
m∑

u=1

m∑
i=1

[fk(ai, l∗, li) − fk(au, l∗, lu)]
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}
×

exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
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=
∑

{(l0,a0),...,(lm,aM )}
h(a0, ..., aM , l0, ..., lM )

×
[ ∑

u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
+

∑
u,i∈{1,...,m}:i<u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}]
=

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
[ ∑

u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
−

∑
u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(au, l∗, lu)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(ai, l∗, li)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}]
=

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
∑

u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
[

exp
{∑p

k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
−

exp
{∑p

k=1 fk(au, l∗, lu)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(ai, l∗, li)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}],

which is clearly zero when β̃ = β. If follows that

∂

∂β̃k

f(β̃) = E
[∑M

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣YK = 1, M > 0
]

= 0
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for all k = 1, ..., p if and only if β̃ = β.
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