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Negative controls

Abstract

Unmeasured confounding is a well-known obstacle in causal inference. In
recent years, negative controls have received increasing attention as a important
tool to address concerns about the problem. The literature on the topic has
expanded rapidly and several authors have advocated the more routine use of
negative controls in epidemiological practice. In this paper, we review concepts
and methodologies based on negative controls for detection and correction of
unmeasured confounding bias. We argue that negative controls may lack both
specificity and sensitivity to detect unmeasured confounding and that proving
the null hypothesis of a null negative control association is impossible. We
focus our discussion on the control outcome calibration approach, the difference-
in-difference approach, and the double-negative control approach as methods
for confounding correction. For each of these methods, we highlight their
assumptions and illustrate the potential impact of violations thereof. Given the
potentially large impact of assumption violations, it may sometimes be desirable
to replace strong conditions for exact identification with weaker, easily verifiable
conditions, even when these imply at most partial identification of unmeasured
confounding. Future research in this area may broaden the applicability of
negative controls and in turn make them better suited for routine use in
epidemiological practice. At present, however, the applicability of negative
controls should be carefully judged on a case-by-case basis.
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Chapter 9

9.1 Introduction

In epidemiological research on causal effects, there are often concerns that
one or more assumptions—such as exchangeability, no measurement error, or
assumptions about missing data—are violated. In efforts to lessen these concerns,
it has long been suggested that auxiliary variables be used that have a known
(e.g., null) causal relation with the exposure or outcome of interest (Rosenbaum,
1989; Lipsitch et al., 2010; Flanders et al., 2011). Observing an association that
contradicts the belief in a causal null might alert the analyst to violations of the
assumptions underlying the methods used in the study. Auxiliary variables known
to be causally unrelated to the variables of primary interest are called negative
controls and have potential in bias detection as well as partial or complete bias
correction in epidemiological research (Shi et al., 2020b).

In recent years, negative controls have received increasing attention in the
epidemiological and statistical literature. The literature on how to leverage
negative controls in studies on causal effects has rapidly expanded and several
authors have argued that negative controls should be more commonly employed
(Lipsitch et al., 2010; Arnold et al., 2016; Shi et al., 2020b). This paper aims to
complement these efforts to increase the more routine implementation of negative
controls with a discussion about a selection of caveats. Focusing on the use of
negative controls to address possible violations of the exchangeability assumption,
i.e., the assumption of no unmeasured confounding, we begin with a brief review
of relevant definitions and discuss assumptions for bias detection. We then review
methods for bias correction and study their sensitivity to assumption violations.

9.2 Negative controls

A negative control outcome (NCO) is a variable that is not causally affected by
the exposure of interest A (Tchetgen Tchetgen, 2013; Shi et al., 2020b). Likewise,
a negative control exposure (NCE) is a variable that does not causally affect the
outcome of interest Y , except possibly through the exposure of interest (Shi
et al., 2020b). The causal DAGs of Figure 9.1 (discussed later in this section)
give examples of settings where a variable Z classifies as an NCO, an NCE or
both. Given the absence of a direct causal effect of exposure A on an NCO Z
or of NCE Z on outcome Y , any observed association between A and an Z, or
between an Z and outcome Y given A, must be spurious. Leveraging negative
controls involves translating information about such spurious associations into
information about the spuriousness of associations between the primary exposure
and outcome variables of interest.
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9.2.1 Negative controls for unmeasured confounding detection

Let Y (a) denote the outcome that would be realised had exposure A been
set to a. Together with causal consistency (i.e., Y (a) = Y if A = a)
and positivity, epidemiologists often seek to invoke the exchangeability (or
unmeasured confounding) condition Y (a) ⊥⊥ A (possibly within levels of a
collection of observed variables) to establish identifiability of the effect of exposure
A on outcome Y (Hernán and Robins, 2020). In observational studies, however, it
is seldom evident that the exchangeability condition, E, for the exposure-outcome
relation of interest is achieved. A key idea of negative controls is to find a ‘control’
statement, C, that translates into information about E and which is more easily
verified or refuted.

Control statement C may refer to the absence of bias of a measure of the
association between A and Y and the NCO or NCE variable, respectively.
Knowing that any control association is noncausal renders the control statement
empirically verifiable. If C implies E, then a null finding for the control statement
would imply conditional exchangeability for the exposure-outcome relation of
interest. Conversely, if E implies C, evidence of bias of the control association
corroborates the existence of unmeasured confounding.

9.2.2 Caveats in the use of negative controls to detect unmeasured
confounding

There are a number of caveats concerning the use of negative controls for
confounding detection. These caveats mainly concern the link between the control
statement and exchangeability for the exposure-outcome relation of interest.
Unfortunately, the extent to which one confers information about the other need
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Figure 9.1: Causal directed acyclic graphs of settings where Z is a negative
control outcome (left), a negative control exposure (middle) or both (right).
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Chapter 9

not be evident (Groenwold, 2013). A biased negative-control association need
not imply unmeasured confounding for the exposure-outcome relation of interest
and neither is the converse true generally.

First, while most applications of negative controls assume that confounding
is the only source of bias, in reality it may be one of potentially many sources
of bias. A spurious negative control association could have resulted, at least in
part, from collider stratification, measurement error or violations of assumptions
about missing data (Arnold et al., 2016). Even if unmeasured confounding for the
negative control association implies unmeasured confounding for the exposure-
outcome relation of interest, a biased negative control association need not be a
reflection of unmeasured confounding. Conversely, a (near) null finding could be
the result of opposing biases, masking the presence of unmeasured confounding.
In other words, negative controls are a tool that may lack both specificity and
sensitivity with respect to the type(s) of bias they are to detect.

Lipsitch et al. (2010) suggested a principle for establishing a link that is based
on the extent to which common causes of A and Y overlap with the common
causes of the exposure or outcome and the negative control variable. Clearly, for
an NCO, with complete overlap (e.g., V = U in Figure 9.1), the set of common
causes of A and Y is empty if and only if the set of common causes of A and the
NCO is empty. However, null values for certain measures of the effect of A on
an NCO or of an NCE on Y need not imply that the set of unobserved common
causes is empty, or, therefore, that there is conditional exchangeability for the
primary exposure-outcome relation. Indeed, near null values may be the result of
partially opposing confounding effects (or, more generally, opposing biases) and
the relative effects may be different for the NCO versus the primary outcome Y .

With finite samples rather than complete knowledge of the theoretical or
population distribution, sampling variability becomes relevant too, making it
more important to acknowledge the distinction between absence of evidence and
evidence of absence (Albert and Anderson, 1984). With finite samples, proving
the null hypothesis of a null negative control association is impossible. Even if
‘highly’ powered studies cannot detect bias for the negative control relation, it
may be injudicious to assume that the available data are sufficient to adequately
control for confounding of the primary relation of interest, because a small degree
of bias for the former relation may be associated with a substantial degree of bias
for the latter. Sample size and power considerations are often ignored or left at
secondary importance. While some papers have considered the power of negative
control tests (Rosenbaum, 1989; Birch, 1964), it is typically ignored how the
negative control association relates to the extent of bias for the exposure-outcome
relation of interest, yet high power to detect ‘small departures’ from exposure-
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NCO or NCE-outcome independence need not imply high power to detect small
bias due to unmeasured confounding of the primary relation of interest. What
are considered ‘small departures’ should therefore depend on the relation between
the negative control association and the bias for the exposure-outcome relation
of interest. Conversely, even if there is evidence of the contrary to the negative
control null hypothesis, the bias due to uncontrolled confounding for the primary
exposure-outcome relation may not be meaningful. In any case, it is important
to consider the relative size of the biases in the negative control and primary
exposure-outcome relations.

9.3 Negative control methods for uncontrolled confounding
adjustment

The more recent literature on negative controls has considered how and under
what conditions negative controls can be leveraged to partially or fully identify
target causal quantities rather than merely the presence of bias. Lipsitch et al.
(2010) gives conditions for valid inference about the direction of bias and thus for
partial identification of the target causal quantity. These conditions are reviewed
in Supplementary Appendix S9.1. In what follows, we review three methods
for full identification: the control outcome calibration approach (COCA), the
(generalised) difference-in-difference approach, and the double-negative control
approach. Proofs of identification are given in Supplementary Appendix S9.2
for completeness. For each of the methods, we illustrate the potential impact of
assumption violations on the identifiability of the targeted quantity. Throughout,
departures from identification are termed bias.

9.3.1 Control outcome calibration approach

Identification

It may be tempting to regard the confounded association between the exposure
of interest and an NCO as a direct measure of bias for the exposure-outcome
effect of interest. However, it cannot generally be assumed that the direction
or magnitude of bias are the same for the two relations. As an alternative
to the restrictive and probably unrealistic “bias equivalence” assumption, i.e.,
the assumption of equality between between the confounded negative control
association and the bias due to unmeasured confounding of the exposure-outcome
effect of interest, Tchetgen Tchetgen (2013) proposed the COCA. The assumption
of “bias equivalence” would especially likely be violated if the NCO and primary
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outcome are measured on different scales and the bias is bounded differently
depending on the scale, such as would be the case if the NCO were binary and
the primary outcome continuous. The COCA leverages an NCO to adjust for
unmeasured confounding without requiring that the NCO and primary outcome
are measured on similar scales.

The next result, due to Tchetgen Tchetgen (2013), describes a regression-
based approach to implementing the COCA, which—characteristically of the
COCA—relies on the assumption that a (set of) counterfactual primary
outcome(s) of interest is sufficient to render the NCO conditionally independent
of the exposure of interest. Some intuition behind this approach may be obtained
upon noting that the counterfactual outcomes may well capture information
about baseline covariates and therefore serve as a proxy for unobserved pre-
exposure variables that are predictive of the NCO. The reasoning rests on the
assumption that the same covariates that explain the lack of exchangeability
for the outcome of interest also explain the confounding of the exposure-
NCO relation. However, even then it is not evident nor guaranteed that the
counterfactual outcome proxy is sufficient to render the NCO and exposure
conditionally independent.

Theorem 9.1 (A regression-based approach to implementing the COCA under
rank preservation). Suppose that the following conditions hold for all levels a of
A:
• Consistency: Y (a) = Y if a = A.
• Rank preservation: for some constant θ, Y (0) = Y (a) − θa.
• Exposure-NCO independence given counterfactual outcome: Z ⊥⊥ A|Y (0).
• NCO model: for known one-to-one model link g,
g(E[Z|A, Y ]) = β0 + β1A + β2Y , where β0, β1, β2 are identified by a regression of
Z on A and Y , and β2 ̸= 0.

Then, E[Y (a) − Y (a − 1)] = θ is identified by −β1/β2.

Because counterfactual outcome Y (0) may not fully account for the
unmeasured confounding between the exposure and NCO, it is important that
the impact of assumption violations be gauged. To this end, Tchetgen Tchetgen
(2013) described a sensitivity analysis, given below in Theorem 9.2, for the special
case of Theorem 9.1 where g is the identity link and A is a linear combination of
Y (0) and an error term ∆. When the sensitivity parameter (ρ) is set to 0, it is
implicitly assumed that the NCO and exposure of interest are independent given
counterfactual outcome Y (0) (because χ is independent of (A, Y ) and therefore
of Y (0)) and, so, the result of Theorem 9.1 is recovered.
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Theorem 9.2 (Sensitivity analysis for violations of Z ⊥⊥ A|Y (0)). Suppose the
following conditions hold for all levels a of A:
• Consistency: Y (a) = Y if a = A.
• Rank preservation: for some constant θ, Y (0) = Y (a) − θa.
• Conditional exposure-NCO independence: Z ⊥⊥ A|(Y (0), ∆).
• Exposure model: A = α0 + α1Y (0) + ∆.
• NCO model: Z = β0 + β1Y (0) + ρ∆ + χ, χ ⊥⊥ (A, Y ).

Then, E[Z|A, Y ] = β∗
0 + β∗

1A + β∗
2Y for some β∗

0 , β∗
1 , β∗

2 , and if parameters
β∗

1 , β∗
2 are identified (by a regression of Z on A and Y ) and β∗

2 ̸= 0, then θ =
(β∗

1 − ρ)/β∗
2 .

Through the rank preservation assumption, Theorem 9.1 relies also on the
strong assumption that the set of all counterfactual outcomes of an individual
are deterministically linked. A prerequisite of this assumption is that the within-
person ranks of counterfactuals are the same for all individuals. In the next
section, we consider violations of this assumption. However, as Theorem 9.3
states, in the special case where the outcome and exposure of interest are binary,
there should be no concern about violations of this assumption as it can be
dropped entirely (Tchetgen Tchetgen, 2013).

Theorem 9.3 (COCA for binary primary outcome and exposure). Suppose
that the following conditions hold:
• Consistency: Y (a) = Y if a = A
• Positivity: 0 < Pr(A = a, Y = y) for y = 0, 1.
• Exposure-NCO independence given counterfactual outcome: Z ⊥⊥ A|Y (a).
• Non-zero denominator: E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] ̸= 0.

Then,

E[Y (a)] = E[Y |A = a] Pr(A = a)

+ E[Z|A = 1 − a] − E[Z|A = a, Y = 0]
E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] Pr(A = 1 − a).

If the assumptions of Theorem 9.3 are met for a = 1, the average treatment
effect among the treated (ATT) E[Y −Y (0)|A = 1] is identified. For identification
of the average treatment effect (ATE) E[Y (1)−Y (0)], the result requires that the
assumptions are met for a = 0, 1. We will consider violations of these assumptions
in the next section.
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Sensitivity to assumption violations

In this subsection, we consider the sensitivity of the COCA to assumption
violations. In particular we illustrate the potential impact of deviating from
rank preservation and of violating the assumption that counterfactual outcome
Y (0) renders the exposure and NCO conditionally independent. While classical
measurement error in the outcome does not hamper inference in terms of bias
in the classical linear regression setting, we also illustrate that this for of
measurement error does result in bias of the COCA.

First, to illustrate the potential impact of deviating from rank preservation,
consider the setting where A is binary and where the following models hold:

θ|A ∼ Normal(E[θ], σ2
θ),

Y (0)|A, θ ∼ Normal(α0 + α1A, σ2
Y ),

Y = Y (A) = Y (0) + θA,
Z|(A, θ, Y (0)) ∼ Normal(γ0 + γ1Y (0), σ2

Z).

 (9.1)

A standard implementation of the COCA as per Theorem 9.1 yields θ̂ = −β̂1/β̂2,
where β̂1 and β̂2 are the coefficients for A and Y of an ordinary least squares
regression of Z on A and Y .

Given a value of the ATE (i.e, E[θ]), the parameter values are fully determined
under models (9.1) by the joint distribution of the observed variables A, Y, Z
(Supplementary Appendix S9.3). In particular, given a fixed distribution of
(A, Y, Z), the variance of the individual effects Y (1) − Y (0) (i.e., Var(θ) = σ2

θ)
and the ATE are linearly related via

Var(θ) = Var(A)Var(Y ) − Cov(A, Y )2

(Var(A) + E[A]2)Cov(A, Z) (β̂1 − β̂2E[θ])

(Supplementary Appendix S9.3). For values of the ATE between −4 and 2, we
chose parameter values such that the distribution of (A, Y, Z) has marginal means
E[A] = 0.25, E[Y ] = 0 and E[Z] = 0, and covariance matrix3/16 1/2 1/2

1/2 3 2
1/2 2 4

 . (9.2)

Figure 9.2 shows the bias of the COCA for the ATE. As shown, the magnitude of
bias is zero under rank preservation but increases linearly with increasing variance
of individual exposure-outcome effects.
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In illustrating the sensitivity of the COCA against violations of rank
preservation, it was assumed that the other assumptions were maintained. We
now turn to the assumption of Exposure-NCO independence given counterfactual
outcome Y (0) and likewise assume that all other assumptions, including rank
preservation, are met. In particular, we consider the setting where Y (0) is the
sum of two independent variables U1, U2. By assuming the following models, we
also stipulate that some (albeit not necessarily the same) linear combination
α′

0 + α′
1U1 + α′

2U2 is sufficient to render the exposure of interest and NCO
conditionally independent:

U1 ⊥⊥ U2,
A|(U1, U2) ∼ Normal(α0 + α1U1 + α2U2, σ2

A),
Y = Y (A) = U1 + U2 + θA, θ constant,

Z|(U1, U2, A, Y ) ∼ Normal(α′
0 + α′

1U1 + α′
2U2, σ2

Z)

 (9.3)

Variables U1 and U2 can be viewed as common causes of the NCO and the
exposure and outcome of interest. Again, the COCA identifies the quantity
θ̂ = −β̂1/β̂2 based on an ordinary least squares regression of NCO Z on A and
Y , but this quantity is not generally equal to θ. Figure 9.3 shows the asymptotic
bias (departure from identification of the ATE) of the COCA plotted against α2
over the interval (−5, 5) for the special case where U1 and U2 take the standard

−4 −3 −2 −1 0 1 2

ATE

−6.0

−4.0

−2.0

0.0

B
ia

s 
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O
C

A
−
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E

)

0.0

2.0

4.0

6.0

V
ar

(Y
(1

)−
Y

(0
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Figure 9.2: Illustration of the effect of violating the rank preservation
assumption on the difference between the quantity identified by the COCA and
the ATE (bias). The dashed line depicts the relation between the variance of
individual exposure outcome effects Y (1) − Y (0) and the mean E[Y (1) − Y (0)]
(the ATE) under a fixed observed data distribution; the solid line describes the
relation between the ATE and the bias of the implementation of the COCA.
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normal distribution and where α0, α′
0, α′

2 = 0, α1, σ2
A, σ2

Z = 1 and α′
1 = 2. The

bias is zero only when counterfactual outcome Y (0) is proportional to the linear
combination of common causes U1 and U2 that renders the NCO and exposure
of interest conditionally independent.

With α2, α′
2 = 0, models (9.3) imply the same joint distribution of observed

variables A, Y, Z as models (9.4):

U1 ⊥⊥ U2,
A|(U1, U2) ∼ Normal(α0 + α1U1, σ2

A),
Y (A) = U1 + θA, θ constant,

Y = Y (A) + U2,
Z|(U1, U2, A, Y ) ∼ Normal(α′

0 + α′
1U1, σ2

Z)


(9.4)

An important difference between (9.3) and (9.4) is that the consistency
assumption is violated (provided that Var(U2) > 0). The observed outcome
Y is now the sum of the outcome of interest Y (A) and an independent mean-zero
error term. Figure 9.3 therefore also illustrates that the validity of the COCA
also critically rests on the absence of classical measurement error in the outcome.
At α2 = 0, Figure 9.3 gives the bias of the COCA under (9.4) with the values
for the parameters given above. Although ATE θ may not be identified in the
presence of classical measurement error, in Supplementary Appendix S9.3, partial
identification bounds are derived for θ.
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Figure 9.3: Illustration of the potential impact of violating the the assumption
that the NCO and exposure of interest are independent given counterfactual
outcome Y (0).
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9.3.2 Difference-in-difference approach

Identification
The difference-in-difference approach (DiD) proposed by Sofer et al. (2016) is
an alternative approach to the COCA and does not assume rank preservation,
nor does it require that the counterfactual outcome Y (0) renders the NCO and
exposure of interest conditionally independent. Instead, the approach relies on
bias equivalence for the primary exposure-outcome relation and the exposure-
NCO relation. The simplest version of the DiD approach identifies the ATT under
additive equi-confounding, as stated in Theorem 9.4, via the difference between
the crude difference in primary outcome means and the bias of the exposure-NCO
relation.

Theorem 9.4 (Difference-in-difference approach for the ATT under additive
equi-confounding). Suppose that the following conditions hold for all levels
a = 0, 1:
• Consistency: Y (a) = Y if a = A.
• Additive equi-confounding:
E[Y (0)|A = 1] − E[Y (0)|A = 0] = E[N |A = 1] − E[N |A = 0].

Then, E[Y (1) − Y (0)|A = 1] = (E[Y |A = 1] − E[Y |A = 0]) − (E[N |A =
1] − E[N |A = 0]).

Additive equi-confounding is relatively easy to interpret. However, the
assumption may be particularly likely to be violated when primary outcome
Y and NCO Z are measured on different scales. A generalized DiD approach
still identifies the ATT under a different constraint on the dependence between
Y (0) and A in relation to the dependence between N and A. In particular,
Theorem 9.5, based on Sofer et al. (2016), relies on quantile-quantile equi-
confounding, an example of which is depicted in Figure 9.4.

Theorem 9.5 (Generalized difference-in-difference approach for the ATT under
quantile-qualine equi-confounding). Suppose that the following conditions hold
for all levels a = 0, 1:
• Consistency: Y (a) = Y if a = A.
• Quantile-quantile equi-confounding: F0(F −1

1 (p)) = G0(G−1
1 (p)) for all

p ∈ [0, 1], where Fa(y) = Pr(Y (0) ≤ y|A = a), F −1
a (p) = min{y : p ≤ Fa(y)},

Ga(z) = Pr(Z ≤ z|A = a), G−1
a (p) = min{z : p ≤ Ga(z)}.

• F1 is strictly increasing.
Then, E[Y (1) − Y (0)|A = 1] = E[Y |A = 1] − E[F −1

0 (G0(G−1
1 (V )))], where

V ∼ Uniform[0, 1].
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Sensitivity to assumption violations
We now give a simple setting where neither additive nor quantile-quantile equi-
confounding is guaranteed to hold. The setting is characterised by two common
causes U1, U2 of the primary exposure and outcome and of the NCO. As before,
we let the relative effects of these common causes to differ between exposure,
primary outcome and NCO, and we suppose that the following models hold:

A ∼ Bernoulli(pA),
U1|A ∼ Normal(α0 + α1A, σ2

1),
U2|(U1, A) ∼ Normal(α′

0 + α′
1A, σ2

2),
Y (0)|(U1, U2, A) ∼ Normal(U1 + U2, σ2

Y ),
Y = Y (A) = Y (0) + θA, θ constant,

Z|(U1, U2, A, Y (0)) ∼ Normal(β0 + β1U1 + β2U2, σ2
Z).


(9.5)

Parameters α1, α′
1, β1, β2 control the dependence (confounding), through U1 and

U2, between A and Y (0) and between A and NCO Z; in the special case where
these parameters take the value 0, there is no confounding. The models of (9.5)
imply

Y (0)|A ∼ Normal((α0 + α′
0) + (α1 + α′

1)A, σ2
1 + σ2

2 + σ2
Y ),

2 4 6 8
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Figure 9.4: Example of quantile-quantile equi-confounding. Dashed curves
represents a = 1, solid curves a = 0. There is quantile-quantile equi-confounding
because for every two points (y0, p0) and (y0, p1) on the solid and dashed curves,
respectively, of the left panel, there exists z0 such that (z0, p0) and (z0, p1) lie on
the solid and dashed curves, respectively, of the right panel; quantiles y0 and z0
need not be the same.
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Y |A ∼ Normal((α0 + α′
0) + (α1 + α′

1 + θ)A, σ2
1 + σ2

2 + σ2
Y ),

Z|A ∼ Normal((β0 + β1α0 + β2α′
0) + (β1α1 + β2α′

1)A), β2
1σ2

1 + β2
2σ2

2 + σ2
Z).

Implementing the DiD for the ATT θ would therefore identify, under (9.5),
the quantity

(E[Y |A = 1] − E[Y |A = 0]) − (E[N |A = 1] − E[N |A = 0])
= (1 − β1)α1 + (1 − β2)α′

1 + θ,

with a bias of (1−β1)α1 +(1−β2)α′
1. The generalised DiD would instead identify

E[Y |A = 1] − E[F −1
0 (G0(G−1

1 (V )))]

= (α0 + α′
0) + (α1 + α′

1 + θ) −
∫ +∞

−∞
F −1

0 (G0(G−1
1 (p))) dp,

where G−1
1 is the quantile function of the associated with the distribution of

Z|A = 1, G0 is the cumulative distribution function for Z|A = 1 and F −1
0 the

quantile function of Y |A = 0.
Figure 9.5 shows, for various parameter specifications, the bias of the

(generalised) DiD for the ATT θ. Specifically, β1 was varied over (−2, 2) and
α′

1 over {0, 1}, while β2 was set to 2 − β1, and pA = 0.5, α0, α′
0, β0, θ = 0

and α1 = 1, σ2
1, σ2

2, , σ2
Y , σ2

Z = 1. The figure illustrates that under additive and
quantile-quantile equi-confounding the DiD and generalised DiD, respectively,
identify the ATT. It also shows that both approaches are sensitive—albeit
differently—to violations of their respective assumptions. Interestingly, even in
the absence of additive equi-confounding the generalised DiD could be subject
to considerable bias (Figure 9.5, right panel, where the bias for the DiD is
(1 − β1)α1 + (1 − β2)α′

2 = 2 − (β1 + β2) = 0). Beside the interpretability of
its assumptions, an appealing property of the standard DiD approach is that the
effects of common causes need not be the same for the NCO and primary outcome
of interest; if the net additive confounding is (close to) the same for the NCO
and primary outcome, then the ATT may be (nearly) identified.

9.3.3 Double-negative control approach

Identification
Recent developments on the use of negative controls to adjust for unmeasured
confounding leverage multiple negative control variables or proxies of unmeasured
common causes (Miao et al., 2018a,b; Shi et al., 2020a,b; Tchetgen et al., 2020).
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For example, the next result, due to Miao et al. (2018b), gives a set of conditions
sufficient to identify the expected marginal counterfactual outcome E[Y (a)] by
leveraging a pair of proxy variables B, Z of an unobserved variable U that
renders the counterfactual outcomes independent of the exposure of interest (i.e.,
conditional exchangeability given U).

Theorem 9.6 (The confounding bridge approach). Suppose that for all levels a
of A, the following conditions hold:
• Consistency: Y (a) = Y if a = A.
• Positivity: 0 < Pr(A = a|B) < 1 with probability 1.
• Latent ignorability: Y (a) ⊥⊥ (A, B)|U and Z ⊥⊥ (A, B)|U .
• Confounding bridge assumption: E[Y |A = a, U ] = E[h(Z)|A = a, U ] with
probability 1 for some h.
• Completeness: for all g, if E[g(Z)|A = a, B] = 0 with probability 1, then
Pr(g(Z) = 0|A = a) = 1.

Let H(a) be the collection of all h that satisfy E[Y − h(Z)|A = a, B] = 0 with
probability 1. Then, H(a) is non-empty, and for all h ∈ H(a), E[Y (a)] = E[h(Z)].

Figure 9.6 shows a directed acyclic graph that is consistent with the
assumptions of Theorem 9.6. The proxy variables can be seen to be negative
control variables in the sense of Shi et al. (2020b), thus making the confounding
bridge approach a (double-)negative control approach. Like the primary
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Figure 9.5: Illustrating of the potential impact of violating additive or quantile-
quantile equi-confounding on the bias of the (generalised) difference-in-difference
approach. Solid lines represent the difference-in-difference approach; dashed lines
the generalised difference-in-difference.
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exposure-outcome association, the exposure-NCO association is confounded by
U . The function h is referred to as a confounding bridge because the confounding
bridge assumption indicates that it links the Y -U association with the NCO-U
association. The NCE is not part of this link but is meant to help identify it.

The confounding bridge and completeness assumptions can be difficult to
grasp. For categorical variables, however, the assumptions are subsumed under
the conditions of the next result, due to Miao et al. (2018a) and Shi et al. (2020a).

Theorem 9.7 (The proximal g-formula for categorical variables). Let U, B, Z be
discrete random variables with finite support such that U has no more categories
than B or Z. Suppose that for all levels a of A, the following conditions hold:
• Consistency: Y (a) = Y if a = A.
• Positivity: 0 < Pr(A = a, B = b) for all categories b of B.
• Latent ignorability: Y (a) ⊥⊥ (A, B)|U and Z ⊥⊥ (A, B)|U .
• Full rank: Pr(Z|U) and Pr(U |A = a, B) have rank equal to the number of
levels of U .

Then, E[Y (a)] = h(Z) Pr(Z), where h(Z) = E[Y |A = a, B] Pr(Z|A =
a, B)−1.

Here, following Miao et al. (2018a), for any categorical variables X, Y, Z,
Pr(X|Y, Z) denotes the matrix of probabilities Pr(X = x|Y, Z) with a one-
to-one correspondence between rows and categories x of X and a one-to-one
correspondence between columns and categories z of Z. Interestingly, the
proximal g-formula can also be written as a weighted version of the standard

U

B

A

Z

Y

Figure 9.6: Causal directed acyclic graph with negative control pair satisfying
the latent ignorability condition of Theorem 9.6.
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g-formula:

E[Y |A = a, B]diag(W (a)) Pr(B)

with weights W (a) = (diag Pr(B))−1 Pr(Z|A = a, B)−1 Pr(Z) and diag(W (a))
and diag(B) denoting the diagonal matrices with main diagonals W (a) and B,
respectively. In the case that proxy variables B and Z are binary, the expression
simplifies to

E{E[WY |A = a, B]}

with weights

W = (1 − B)
Pr(B = 0)

Pr(Z = 1|A, B = 1) − Pr(Z = 1)
Pr(Z = 1|A, B = 1) − Pr(Z = 1|A, B = 0)

+ −B

Pr(B = 1)
Pr(Z = 1|A, B = 0) − Pr(Z = 1)

Pr(Z = 1|A, B = 1) − Pr(Z = 1|A, B = 0) .

Sensitivity to assumption violations
Theorem 9.7 can accommodate any number of categories of U by taking proxy
variables with sufficiently many categories, e.g., by combining sufficiently many
proxies. However, upon increasing the number of proxy variables, the latent
ignorability assumption becomes more difficult to satisfy in the sense that Y (a)
must be independent of increasingly many proxies given A and U . In this
subsection, we consider the sensitivity of the proximal g-formula for violations of
latent ignorability as well as of the assumption that U has no more categories
than the proxy variables.

In particular, we consider the case where the variables A, Y of interest and
the proxy variables B, Z are binary, where U is a pair (U1, U2) of independent
binary variables, and where the following models hold:

U1 ∼ Bernoulli(1/2),
U2|U1 ∼ Bernoulli(ρ),

B|U1, U2 ∼ Bernoulli(expit{α0 + U1 + U2}),
A|U1, U2, B ∼ Bernoulli(expit{β0 + U1 + β1U2 + B}),

Z|U1, U2, B, A ∼ Bernoulli(expit{γ0 + U1 − 1/2U2 + γ1A}),
Y |U1, U2, B, A, Z ∼ Bernoulli(expit{θ0 + U1 + U2 + Z + θ1B}),

where expit(x) = 1/(1 + exp[−x]) for all x. Intercepts α0, β0, γ0, θ0 were chosen
to ensure that Pr(B = 1) = Pr(A = 1) = 1/2 and Pr(Z = 1) = Pr(Y = 1) = 1/5.
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We let ρ = 0, β1 = 1, γ1 = 0, θ1 = 0 by default. In scenario A, instead of
taking β1 = 1, ρ = 0, we vary β1 over (−4, 4) under ρ = 1/2 to violate the full
rank assumption, which implies that U has no more categories than B or Z. In
scenario B, instead of taking γ1 = 0, we violate the latent ignorability assumption
by varying γ1 over (−4, 4) (i.e., Z is not a negative control outcome). In scenario
C, we violate the same assumption, now by varying θ1 over (−4, 4) (i.e., B is not
a negative control exposure) instead of taking θ1 = 0.

Figure 9.7 gives the bias of the proximal g-formula for the ATE E[Y (1)−Y (0)]
for all scenarios. Also shown are the differences between the crude risk differences
E[Y |A = 1] − E[Y |A = 0] and the ATE. The bias is zero under the default
parameters, which are consistent with the assumptions of Theorem 9.7. The
figure also illustrates that violations of these unverifiable assumptions can have
a large impact on the validity of the double-negative control approach.

In an other study, Vlassis et al. (2020) found bias of the crude risk difference
to be consistently smaller than that of the proximal g-formula. Our results
demonstrate that in some settings, the proximal g-formula results in considerably
more bias than what would result from ignoring unmeasured confounding.
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Figure 9.7: Bias of crude approach (dashed) and proximal g-formula (solid)
under violations of the cardinality assumption (Scenario A), negative control
outcome condition (Scenario B), or negative control exposure condition (Scenario
C).
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9.4 Conclusion

Negative controls have gained increasing interest in addressing concerns about
the validity of a study. The literature on the topic has tended to consider
increasingly ambitious tasks, from confounding detection to full identification
of causal effects, typically at the cost of stronger and more complex assumptions.
Efforts have been made to introduce negative controls to a broader audience and
ensure they are adopted in epidemiological practice (Shi et al., 2020b). However,
little attention has yet been given to the methods’ assumptions and potential
impact of assumptions violations. While the assumptions may be tenable enough
in some specific cases to justify an application, in others substantial violations
are possible. We have illustrated that assumption violations, some of which
are likely even in very simple settings, may have a considerable impact on the
validity of the negative control approach, thereby limiting its utility. Despite
the possible abundance of negative controls, their routine use in epidemiological
practice may fail to strengthen evidence about exposure-outcome effects unless
it can be safely assumed that assumption violations are absent or else if the
robustness against these violations is well understood. Given the potential
impact of assumption violations, it may sometimes be desirable to replace strong
conditions for identification with weaker conditions that are easier to verify,
even when these weaker conditions imply at most partial identification. Future
research in this area may broaden the applicability of negative controls and in
turn make them more suited for routine use in epidemiological practice. When
they are used, we advise that researches consider the results of their applications
carefully and explicitly in light of the methods’ limitations and assumptions.
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Supplementary Material

S9.1 Identifiability of the direction of bias using an NCO/NCE

Theorem (Identification of the direction of bias using an NCO/NCE). Suppose
the following conditions hold:
• Latent ignorability for some scalar U : Z ⊥⊥ (A, Y )|U and Y ⊥⊥ A|U .
• Primary exposure model: A = α0 + α1U + ϵ, ϵ ⊥⊥ U , E[ϵ] = 0.
• Primary outcome model: Y = γ0 + γ1U + θA + ε, ε ⊥⊥ (A, U), E[ε] = 0.
• NCO/NCE model: Z = β∗

0 + β∗
1U + δ, δ ⊥⊥ (A, Y, U),E[δ] = 0.

Then, θ̂ − θ has the same sign as

Cov(Y, Z)
Cov(A, Z) − θ̂.

Proof. For the ordinary least squares coefficient θ̂ = Cov(Y, A)/Var(A) in the
regression of Y on A, we have

θ̂ − θ = γ1
Cov(U, A)

Var(A) (by the primary outcome model)

= γ1α1
Var(U)
Var(A) . (by the primary exposure model)

Note that Var(E[A|U ]) = α2
1Var(U) and, by the law of total variance, Var(A) =

Var(E[A|U ]) + E[Var(A|U)]. Thus, Var(A) − E[Var(A|U)] = α2
1Var(U)

θ̂ − θ = γ1
α1

Var(A) − E[Var(A|U)]
Var(A) .

The fraction (Var(A)−E[Var(A|U)])/Var(A) can be interpreted as the proportion
of variance of A that is explained by U . By the law of total variance, the fraction
is bounded by 0 and 1.

Next, note that

Cov(Y, Z)
Cov(A, Z) = γ1Cov(Z, U) + θCov(A, Z)

Cov(A, Z) (by the primary outcome model)

= γ1
Cov(Z, U)
Cov(A, Z) + θ

= γ1
Cov(Z, U)

α1Cov(U, Z) + θ (by the primary exposure model)
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= γ1
α1

+ θ.

Hence,

θ̂ − θ =
(

Cov(Y, Z)
Cov(A, Z) − θ

)
Var(A) − E[Var(A|U)]

Var(A) ,

θ =
θ̂ − λ

Cov(Y, Z)
Cov(A, Z)
1 − λ

,

θ̂ − θ =
(

Cov(Y, Z)
Cov(A, Z) − θ̂

)
λ

1 − λ
,

where λ = (Var(A) − E[Var(A|U)])/Var(A). Clearly, since λ ∈ [0, 1], the sign of
the bias θ̂ − θ is identified by Cov(Y, Z)/Cov(A, Z) − θ̂.

No identifiability of the direction of bias when Z is not an NCE.
Consider the following models

U ∼ Normal(E[U ], Var(U)),
A = α0 + α1U + ϵ, ϵ|U ∼ Normal(0, Var(ϵ)),
Z = β∗

0 + β∗
1U + δ, δ|(U, A) ∼ Normal(0, Var(δ)),

Y = γ0 + γ1U + γ2Z + θA + ε, ε|(Z, A, U) ∼ Normal(0, Var(ε)),

which are compatible with those of the above theorem if γ2 = 0. If γ2 ̸= 0, then the
Latent ignorability condition is violated because Z ⊥̸⊥ (A, Y )|U . If it were possible
to infer from the distribution of the observables the direction of bias θ̂ − θ, then
there exists some function g of the joint distribution F of (A, Y, Z) such that
g(F )[θ̂ − θ] > 0. To prove that this is false, it suffices to show that for some F ,
the bias θ̂ − θ may be positive and negative, depending on unobservables, so that
for all g, we have g(F )[θ̂ − θ] ̸> 0.

Consider the models of the previous section with parameters set to the
following values to yield multivariate normal distributions G, H:
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G H G H

Var(U) 1 1 α1 1 1
E[U ] 0 0 β∗

1 1 1
Var(ϵ) 1 1 γ1 −5 1
α0 0 0 θ 1 −1
Var(δ) 1 1 γ2 3 1
β∗

0 0 0
Var(ε) 1 9
γ0 0 0

Given zero means of A, Y, Z, the corresponding covariance matrices

Cov(G) =


1 1 1 −1
1 2 1 0
1 1 2 2

−1 0 2 12

 , Cov(H) =


1 1 1 1
1 2 1 0
1 1 2 2
1 0 2 12


imply the same distribution for (A, Y, Z), despite the fact that the true effects θ
have opposite signs. This shows that in general the direction of bias cannot be
identified.

S9.2 Proofs to theorems in section 9.3

Proof to Theorem 9.1. For all a,

g−1(β0 + β2y) = E[Z|A = 0, Y = y] (by NCO model)
= E[Z|A = 0, Y (0) = y] (by consistency)
= E[Z|A = a, Y (0) = y]

(by exposure-NCO independence given counterfactual outcome)
= E[Z|A = a, Y (0) + θA − θA = y]
= E[Z|A = a, Y (a) = y + θa] (by rank preservation)
= E[Z|A = a, Y = y + θa] (by consistency)
= g−1(β0 + β1a + β2(y + θa))
= g−1(β0 + (β1 + β2θ)a + β2y),

so that, for a = 1,

β0 + β2y = β0 + (β1 + β2θ) + β2y,
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θ = −β1/β2.

Proof to Theorem 9.2.

Z = β0 + β1Y (0) + ρ(A − E[A|Y (0)]) + χ (by linear NCO model)
= β0 + β1Y (0) + ρ(A − α0 − α1Y (0)) + χ

(by linear exposure model)
= β0 + β1(Y (A) − θA) + ρ(A − α0 − α1Y (A) + α1θA) + χ

(by rank preservation)
= (β0 − ρα0) + (ρ + [ρα1 − β1]θ)A + (β1 − ρα1)Y + χ,

(by consistency)
and E[Z|A, Y ] = (β0 − ρα0 + E[χ]) + (ρ + [ρα1 − β1]θ)A + (β1 − ρα1)Y,

(by linear NCO model)

so that

β∗
1 = ρ + (ρα1 − β1)θ and β∗

2 = β1 − ρα1,

and, in turn, θ = (β∗
1 − ρ)/β∗

2 .

Proof to Theorem 9.3. We have

E[Z|A = 1 − a]
= E{E[Z|A = 1 − a, Y (a)]|A = 1 − a}
= E{E[Z|A = a, Y (a)]|A = 1 − a}

(by exposure-NCO independence given counterfactual outcome)
= E[Z|A = a, Y = 0] Pr(Y (a) = 0|A = 1 − a) +

+ E[Z|A = a, Y = 1] Pr(Y (a) = 1|A = 1 − a) (by consistency)
= E[Z|A = a, Y = 0] + {E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0]}

× Pr(Y (a) = 1|A = 1 − a),

so that

Pr(Y (a) = 1|A = 1 − a) = E[Z|A = 1 − a] − E[Z|A = a, Y = 0]
E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] .

It follows that

E[Y (a)] = E[Y (a)|A = a] Pr(A = a) + E[Y (a)|A = 1 − a] Pr(A = 1 − a)
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= E[Y |A = a] Pr(A = a) + E[Y (a)|A = 1 − a] Pr(A = 1 − a)
(by consistency)

= E[Y |A = a] Pr(A = a)

+ E[Z|A = 1 − a] − E[Z|A = a, Y = 0]
E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] Pr(A = 1 − a).

Proof to Theorem 9.4.

E[Y (1) − Y (0)|A = 1]
= E[Y (1)|A = 1] − E[Y (0)|A = 1]
= E[Y |A = 1] − E[Y (0)|A = 1] (by consistency)
= E[Y |A = 1] − (E[Y (0)|A = 1] − E[Y (0)|A = 0]) − E[Y (0)|A = 0]
= E[Y |A = 1] − (E[N |A = 1] − E[N |A = 0]) − E[Y (0)|A = 0]

(by additive equi-confounding)
= (E[Y |A = 1] − E[Y |A = 0]) − (E[N |A = 1] − E[N |A = 0])

(by consistency)

Proof to Theorem 9.5. By quantile-quantile equi-confounding, we have, for all
p ∈ [0, 1],

F0(F −1
1 (p)) = G0(G−1

1 (p)),
F −1

0 (F0(F −1
1 (p))) = F −1

0 (G0(G−1
1 (p))),

F −1
1 (p) = F −1

0 (G0(G−1
1 (p))). (under strictly monotonic F1)

Note that the right-hand side of the above equality is a functional of observables
because F0(y) = Pr(Y (0) ≤ y|A = 0) = Pr(Y ≤ y|A = 0) by consistency. Now,
letting V ∼ Uniform[0, 1], we have that F −1

1 (V ) ∼ Y (0)|A = 1 by the Probability
Integral Transform theorem, and so

E[Y (0)|A = 1] = E[F −1
0 (G0(G−1

1 (V )))].

Proof to Theorem 9.6. Let h be the function satisfying E[Y |A = a, U ] =
E[h(Z)|A = a, U ] with probability 1 (and note that this function exists by the

224



Chapter 9

confounding bridge assumption). Let U = {u : E[Y |A = a, U = u] = E[h(Z)|A =
a, U = u]}, so that Pr(U ∈ U) = 1 and

E[Y (a)] = E[Y (a)|U ∈ U ]
= E{E[Y (a)|U ]|U ∈ U}
= E{E[Y (a)|A = a, U ]|U ∈ U}

(since Y (a) ⊥⊥ A|U by latent ignorability)
= E{E[Y |A = a, U ]|U ∈ U} (by consistency)
= E{E[h(Z)|A = a, U ]|U ∈ U}
= E{E[h(Z)|U ]|U ∈ U} (since Z ⊥⊥ A|U by latent ignorability)
= E[h(Z)|U ∈ U ]
= E[h(Z)].

Next, note that by the confounding bridge assumption, for all U ∈ U ,

E[Y |A = a, U ] = E[h(Z)|A = a, U ]
E[Y |A = a, B, U ] = E[h(Z)|A = a, B, U ], (by latent ignorability)

so that

E{E[Y |A = a, B, U ]|A = a, B} = E{E[h(Z)|A = a, B, U ]|A = a, B}
E[Y |A = a, B] = E[h(Z)|A = a, B],

E[Y − h(Z)|A = a, B] = 0.

Let H(a) be the collection of all h′ satisfying E[Y − h′(Z)|A = a, B] = 0 with
probability 1. Now, for any h′ ∈ H(a), we must have

E[h(Z) − h′(Z)|A = a, B] = 0.

But from completeness, with g(Z) = h(Z) − h′(Z), it follows that h(Z) = h′(Z)
with probability 1. This concludes the proof.

Proof to Theorem 9.7. Since Z ⊥⊥ (A, B)|U , we have Pr(Z|A = a, B) =
Pr(Z|U) Pr(U |A = a, B). Since matrices Pr(Z|U) and Pr(U |A = a, B) are
of full rank, Pr(Z|A = a, B) is of full rank and has left or right inverse
Pr(Z|A = a, B)−1. Let h(Z) = E[Y |A = a, B] Pr(Z|A = a, B)−1 and observe
that

h(Z) = E[Y (a)|A = a, B] Pr(Z|A = a, B)−1 (by consistency)
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= E[Y (a)|U ] Pr(U |A = a, B) Pr(Z|A = a, B)−1

(since Y (a) ⊥⊥ (A, B)|U)
= E[Y (a)|U ] Pr(U |A = a, B)[Pr(Z|U) Pr(U |A = a, B)]−1

(since Z ⊥⊥ (A, B)|U)
= E[Y (a)|U ] Pr(U |A = a, B) Pr(U |A = a, B)−1 Pr(Z|U)−1

= E[Y (a)|U ] Pr(Z|U)−1.

It follows that E[Y (a)|U ] = h(Z) Pr(Z|U) and in turn E[Y (a)] =
E[Y (a)|U ] Pr(U) = h(Z) Pr(Z), as desired.

S9.3 Derivation of expressions in section 9.3.1

S9.3.1 Implications of models (9.1)

Expression of the COCA

An implementation of the COCA by ordinary least squares under the linear NCO
model E[Z|A, Y ] = β0 + β1A + β2Y , identifies the following quantity

θ̂ = − β̂1

β̂2

= −Cov(A, Z)Var(Y ) − Cov(Y, Z)Cov(A, Y )
Cov(Y, Z)Var(A) − Cov(A, Z)Cov(A, Y ) ,

where

Var(Y ) = Var(A)α2
1 + σ2

Y + σ2
θVar(A) + σ2

θE[A]2 + E[θ]2Var(A)
+ 2Var(A)α1E[θ],

Var(Z) = Var(A)α2
1γ2

1 + γ2
1σ2

Y + σ2
Z ,

Cov(A, Y ) = Var(A)α1 + Var(A)E[θ],
Cov(A, Z) = Var(A)α1γ1,

Cov(Y, Z) = γ1(Var(A)α2
1 + σ2

Y + Var(A)α1E[θ]).
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Deterministic relation between E[θ] and Var[θ] given observed data
distribution
From the expressions of the variances and covariates above, for arbitrary
E[θ], Var(A), it follows that

α1 = Cov(A, Y ) − Var(A)E[θ]
Var(A) ,

α0 = E[Y ] − (α1 + E[θ])E[A],

γ1 = Cov(A, Z)
Var(A)α1

,

γ0 = E[Z] − (α0γ1 + α1γ1E[A]),

σ2
Y = Cov(Y, Z) − γ1(Var(A)α2

1 + Var(A)α1E[θ])
γ1

,

σ2
θ = Var(Y ) − [Var(A)α2

1 + σ2
Y + Var(A)E[θ]2 + 2Var(A)α1E[θ]]

Var(A) + E[A]2 ,

σ2
Z = Var(Z) − (Var(A)α2

1γ2
1 + γ2

1σ2
Y ),

provided that Var(A), α1, γ1 ̸= 0, and σ2
Y , σ2

θ , σ2
Z ≥ 0. Note that the right-hand

sides of every equality are expressed only in terms of functionals of the available
data distribution and the left-hand sides of the equalities above it. It follows that
we have a deterministic relationship between Var(θ) and E[θ] given the observed
data distribution of (A, Y, Z). In fact, the relationship is linear:

σ2
θ = Var(Y )Cov(A, Z) − Cov(A, Y )Cov(Y, Z)

(Var(A) + E[A]2)Cov(A, Z)

− Cov(A, Y )Cov(A, Z) − Var(A)Cov(Y, Z)
(Var(A) + E[A]2)Cov(A, Z) E[θ].

= Var(A)Var(Y ) − Cov(A, Y )2

(Var(A) + E[A]2)Cov(A, Z) (β̂1 − β̂2E[θ]).

The distribution of Z|A, Y

First note that

E[θ|Y, A = 0] = E[θ|Y (0), A = 0] (by consistency)
= E[θ|A = 0] (since Y (0) ⊥⊥ θ|A)
= E[θ]. (since θ ⊥⊥ A)
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Negative controls

Next, for arbitrary a, consider E[θ|Y, A = a] and note that (θ, Y )|A = a takes
a bivariate normal distribution with means

E[θ|A = a] = E[θ],
E[Y |A = a] = E[Y (A)|A = a] (by consistency)

= E[Y (0) + θA|A = a]
= α0 + α1a + E[θ],

variances

Var(θ|A = a) = σ2
θ , (since θ ⊥⊥ A)

Var(Y |A = a) = Var(Y (A)|A = a) (by consistency)
= Var(Y (0) + θA|A = a)
= Var(Y (0)|A = a) + Var(θ) (since Y (0) ⊥⊥ θ|A and θ ⊥⊥ A)
= σ2

Y + σ2
θ ,

and correlation

Cor(Y, θ|A = a)

=
√

Cov2(Y, θ|A = a)
Var(Y |A = a)Var(θ|A = a)

=
√

E[(Y − E[Y |A = a])(θ − E[θ|A = a])|A = a]2
Var(Y |A = a)Var(θ|A = a)

=
√

E[(Y (A) − E[Y (A)|A = a])(θ − E[θ|A = a])|A = a]2
Var(Y |A = a)Var(θ|A = a) (by consistency)

=
√

E[(Y (0) + θA − E[Y (0) + θA|A = a])(θ − E[θ|A = a])|A = a]2
Var(Y |A = a)Var(θ|A = a)

=

√√√√√√ E[((Y (0) − E[Y (0)|A = a])
+ (θA − E[θ|A = a]))(θ − E[θ|A = a])|A = a]2

Var(Y |A = a)Var(θ|A = a)

=
√

[Cov(Y (0), θ|A = a) + Cov(θA, θ|A = a)]2
Var(Y |A = a)Var(θ|A = a)

=
√

a2Var(θ|A = a)2

Var(Y |A = a)Var(θ|A = a) (since Y (0) ⊥⊥ θ|A)
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= a

√
σ2

θ

σ2
Y + σ2

θ

.

Therefore,

E[θ|Y, A = a] = E[θ] +
√

σ2
θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[−(α0 + E[θ])a − α1a2 + aY ]

(DeGroot and Schervisch, 2012, Theorem 5.10.4, p. 340).
Hence,

E[θ|Y, A] = E[θ] +
√

σ2
θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[−(α0 + E[θ])A − α1A2 + AY ]

and

Z = γ0 + γ1Y (0) + ε, ε|(A, θ, Y (0)) ∼ Normal(0, σ2
Z)

= γ0 + γ1(Y (A) − θA) + ε

= γ0 + γ1(Y − θA) + ε (by consistency)
= γ0 − γ1θA + γ1Y + ε,

so that Z|A, Y has a normal distribution with mean

E[Z|A, Y ] = γ0 − γ1E[θ|Y, A]A + γ1Y

= γ0 − γ1A

[
E[θ] +

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[−(α0 + E[θ])A − α1A2 + AY ]
]

+ γ1Y

= γ0 − γ1E[θ]A +
√

σ2
θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[(α0 + E[θ])γ1A2

+ α1γ1A3 − γ1A2Y ] + γ1Y

= β∗
0 + β∗

1A + β∗
2A2 + β∗

3A3 + β∗
4Y + β∗

5A2Y,

where

β∗
0 = γ0,

β∗
1 = −γ1E[θ],

β∗
2 =

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

(α0 + E[θ])γ1,
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Negative controls

β∗
3 =

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

α1γ1,

β∗
4 = γ1,

β∗
5 = −

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

γ1,

so E[θ] = −β∗
1/β∗

4 if β∗
4 ̸= 0. Therefore, with a continuous primary outcome

and non-binary exposure, the rank preservation assumption can sometimes be
dropped whilst maintaining identifiability. If A is binary, we have E[Z|A, Y ] =
β∗

0 + (β∗
1 + β∗

2 + β∗
3)A + β∗

4Y + β∗
5AY, where

(β∗
1 + β∗

2 + β∗
3) = γ1

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

(α0 + α1) + γ1

(√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

− 1
)
E[θ]

= −β∗
5(α0 + α1) − (β∗

4 + β∗
5)E[θ].

This suggests a test for violations of rank preservation since the interaction term
coefficient β∗

5 is zero if and only if Var(θ) = 0 or β∗
4 = 0. Provided that β∗

4 ̸= 0,
a valid test of the null hypothesis β∗

5 = 0 is thus a valid test of rank preservation
under the above models.

S9.3.2 Implications of models (9.3)
Under models 9.3, we have the following variances and covariances:

Var(A) = α2
1Var(U1) + α2

2Var(U2) + σ2
A,

Var(Y ) = (1 + θα1)2Var(U1) + (1 + θα2)2Var(U2) + θ2σ2
A,

Var(Z) = (α′
1)2Var(U1) + (α′

2)2Var(U1) + σ2
Z ,

Cov(A, Y ) = (1 + θα1)α1Var(U1) + (1 + θα2)α2Var(U2) + θσ2
A,

Cov(A, Z) = α1α′
1Var(U1) + α2α′

2Var(U2),
Cov(Y, Z) = (1 + θα1)α′

1Var(U1) + (1 + θα2)α′
2Var(U2)

and means

E[A] = α0 + α1E[U1] + α2E[U2],
E[Y ] = θα0 + (1 + θα1)E[U1] + (1 + θα2)E[U2],
E[Z] = α0 + α1E[U1] + α2E[U2].
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S9.3.3 Partial identification in the presence of classical measurement
error in the outcome

Theorem. Suppose the following conditions hold:
• Rank preservation: Y (A) = Y (0) + θA, θ constant.
• Exposure-NCO independence given counterfactual outcome: Z ⊥⊥ A|Y (0).
• NCO model: Z = β∗

0 + β∗
1Y (0) + ε, ε ⊥⊥ (A, Y (0)),E[ε] = 0.

• Classical measurement error: Y = Y (A) + U , U ⊥⊥ (A, Y (0), Z), E[U ] = 0.
Then,

θ ∈
[
θ̂, θ̂

(
1 − R2 1

1 − Cor2(A, Y )

)
+ R2 Var(Y )

Cov(A, Y )

(
1 − 1

1 − Cor2(A, Y )

)]
,

where R2 = 1 −E[Var(Y |A)]/Var(Y ) is the proportion of variance of Y explained
by A, and θ̂ = −β̂1/β̂2 and β̂1 and β̂1 are the ordinary least squares coefficients
for A and Y in a linear regression of Z on A and Y .

Proof. We have that

Z = β∗
0 + β∗

1Y (0) + ε (by NCO model)
= β∗

0 + β∗
1(Y (A) − θA) + ε (by rank preservation)

= β∗
0 + β∗

1(Y − U − θA) + ε (under classical measurement error)
= β∗

0 + β∗
1Y − β∗

1U − β∗
1θA + ε,

where ε ⊥⊥ (Y, A, U) (since U ⊥⊥ ε|(A, Y (0)) and ε ⊥⊥ (A, Y (0)), so that ε ⊥⊥
(Y (0), A, U)).

Now, let

β̂1 = Cov(A, Z)Var(Y ) − Cov(Y, Z)Cov(A, Y )
Var(A)Var(Y ) − Cov2(A, Y )

,

β̂2 = Cov(Y, Z)Var(A) − Cov(A, Z)Cov(A, Y )
Var(A)Var(Y ) − Cov2(A, Y )

,

the ordinary least squares coefficients in a linear regression of Z on A and Y . We
have

Cov(A, Z) = β∗
1(Cov(A, Y ) − θVar(A)),

Cov(Y, Z) = β∗
1(Var(Y ) − Var(U) − θCov(A, Y )),
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Negative controls

so that

β̂1 = β∗
1

(
Cov(A, Y )Var(U)

Var(A)Var(Y ) − Cov2(A, Y )
− θ

)
,

β̂2 = β∗
1

(
1 − Var(A)Var(U)

Var(A)Var(Y ) − Cov2(A, Y )

)

and in turn

θ̂ = − β̂1

β̂2

= −Cov(A, Y )Var(U) − θ(Var(A)Var(Y ) − Cov2(A, Y ))
Var(A)Var(U) − (Var(A)Var(Y ) − Cov2(A, Y ))

,

θ = θ̂

(
1 − Var(A)Var(U)

Var(A)Var(Y ) − Cov2(A, Y )

)
+ Cov(A, Y )Var(U)

Var(A)Var(Y ) − Cov2(A, Y )

= θ̂

(
1 − Var(U)

Var(Y )
1

1 − Cor2(A, Y )

)

+ Var(U)
Var(Y )

Var(Y )
Cov(A, Y )

(
1 − 1

1 − Cor2(A, Y )

)
.

By the law of total (conditional) variance,

Var(Y ) = E[Var(Y |A)] + Var(E[Y |A])
= E[Var(Y |A, Y (0))|A] + E[Var(E[Y |A, Y (0)])|A] + Var(E[Y |A])
= Var(U) + E[Var(E[Y |A, Y (0)])|A] + Var(E[Y |A]).

Now, define R2 = (Var(Y ) −E[Var(Y |A)])/Var(Y ), the proportion of variance of
Y explained by A and observe that

R2 ≥ Var(U)
Var(Y ) ≥ 0.

Next, define

θ̃(λ) = θ̂

(
1 − λ

1
1 − Cor2(A, Y )

)
+ λ

Var(Y )
Cov(A, Y )

(
1 − 1

1 − Cor2(A, Y )

)
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and note that, because the first derivative of θ̃ is invariant to changes in λ, θ̃ is
monotonic. Hence

θ ∈ [θ̃(0), θ̃(R2)].
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