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CONFOUNDING AND EXPOSURE-OUTCOME MISCLASSIFICATION

Abstract

Joint misclassification of exposure and outcome variables can lead to considerable
bias in epidemiological studies of causal exposure-outcome effects. In this paper,
we present a new maximum likelihood based estimator for marginal causal
effects that simultaneously adjusts for confounding and several forms of joint
misclassification of the exposure and outcome variables. The proposed method
relies on validation data for the construction of weights that account for both
sources of bias. The weighting estimator, which is an extension of the outcome
misclassification weighting estimator proposed by Gravel and Platt (Statistics
in Medicine, 2018), is applied to reinfarction data. Simulation studies were
carried out to study its finite sample properties and compare it with methods
that do not account for confounding or misclassification. The new estimator
showed favourable large sample properties in the simulations. Further research is
needed to study the sensitivity of the proposed method and that of alternatives to
violations of their assumptions. The implementation of the estimator is facilitated
by a new R function (ipwm) in an existing R package (mecor).
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8.1 Introduction

In epidemiological research on causal associations between a particular exposure
and a certain outcome, erroneous information on either or both of these variables
poses a serious methodological obstacle in making valid inferences. In particular,
joint misclassification of exposure and outcome can lead to considerable bias of
standard causal effect estimators, with direction and magnitude depending on
various factors, including the misclassification mechanism and the direction and
magnitude of the true effect (Kristensen, 1992; Brenner et al., 1993; Vogel et al.,
2005; Jurek et al., 2008; VanderWeele and Hernan, 2012; Brooks et al., 2018).

Exposure and outcome misclassification is typically categorised according to
two separate properties: whether or not the misclassification is differential and
whether or not it is dependent relative to some covariate vector L containing
patient characteristics (Kristensen, 1992; VanderWeele and Hernan, 2012). Joint
misclassification of exposure and outcome is said to be nondifferential if (1)
the sensitivity and specificity of exposure classification are constant across all
categories of the (true) outcome given L and (2) the sensitivity and specificity
of outcome classification are constant across all categories of the (true) exposure
given L; otherwise it is differential. Misclassification is said to be independent
if the joint probability of any exposure and outcome classification given any
true exposure and outcome categories and L can be factored into the product of
the corresponding probabilities for exposure and outcome separately; otherwise,
it is dependent. In Dawid’s notation (1979), that is, if true exposure level A
and true outcome Y are (potentially mis)classified as B and Z, respectively,
misclassification is nondifferential if and only if B 1 Y|A, L and Z 1L A]Y, L and
independent if and only if Z 1L B|Y, A, L.

Epidemiological research hampered by joint misclassification of some type is
likely voluminous (Brooks et al., 2018). Examples of studies affected by exposure
and outcome misclassification can be found, for example, in the literature on
the causal effects of drug use, which is largely based on routinely collected data,
where exposures are typically operationalised on the basis of prescription records
and where outcomes are often self-reported (Marcum et al., 2013; Culver et al.,
2012; Leong et al., 2013; Ni et al., 2017). In applied epidemiological research,
misclassification or some of its potential consequences are often ignored (Jurek
et al., 2006; Brakenhoff et al., 2018). The assertion often made in the discussion
of study results that observed measures of association are biased toward the
null under nondifferentiality, for example, is not generally true unless additional
conditions are presupposed (Brenner et al., 1993; Brooks et al., 2018).

Methods to adjust for misclassification rely on additional information that
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can be used to estimate or correct for bias. One potential source of information
is validation data obtained through supposedly infallible measurement. Recently,
Gravel and Platt (2018) proposed an inverse probability weighting (IPW) method
to simultaneously address confounding and outcome misclassification by means of
internal validation data. Other methods likewise suppose that either the exposure
or the outcome is subject to misclassification (Babanezhad et al., 2010; Braun
et al., 2017; Gravel and Platt, 2018; Shu and Yi, 2019). In what follows, we
propose an extension of Gravel and Platt’s method to allow for confounding
adjustment and joint exposure and outcome misclassification. This flexible
estimator allows for the misclassifications to be dependent, differential or both. In
Section 8.2, inverse probability weights for confounding and joint misclassification
are introduced through a hypothetical study based on the illustrative example
of Gravel and Platt. Section 8.3 details methods for estimation of the various
components of the proposed weights based on validation data. In Section 8.4, we
describe a series of Monte Carlo simulations that were used to study properties
of the proposed method in finite samples. We conclude with a summary and
discussion of our findings in context of the existing literature.

8.2 Data distribution for illustration and development of
weighting method

We first consider the data and setting described by Gravel and Platt and suppose
that Table 8.1 represents a simple random (i.i.d.) sample from (or that its cell
counts are proportional to the respective densities in) the population of interest.
This illustration is based on a cohort study on the association between post-
myocardial infarction statin use (A) and the 1-year risk of reinfarction (V). In
what follows, we will refer to this example as the ‘reinfarction example’.
Throughout we take the counterfactual framework for causal inference, formal
accounts of which are given for example by Neyman, Rubin, Holland, and Pearl
(Neyman et al., 1935; Rubin, 1974; Holland, 1986, 1988; Pearl, 2009). The
interest, we suppose, lies in estimating g(E[Y (0)],E[Y(1)]) for some function
g, where Y (0) and Y (1) denote the counterfactual outcomes for hypothetical
interventions setting A to 0 and 1, respectively. Common choices of g define
9(po,p1) = p1 — po (risk difference), g(po,p1) = p1/po (risk ratio) or g(po,p1) =
[p1/(1—=p1)]/[po/(1—po)] (odds ratio). For our numerical example and simulation
studies, we concentrate on the causal marginal odds ratio (OR) in particular, with

E[Y (1)]/( - E[Y (1)])
E[Y(0)]/(1 = E[Y (0)])’

OR = g(E[Y (0)], E[Y (1)]) = (8.1)
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but the results naturally extend to other effect measures.

8.2.1 No misclassification

Under conditional exchangeability given L (i.e., (Y(0),Y (1)) 1L A|L), consistency
(Y(a) = Y if A = a) and positivity (Pr(A = a|L =1) > 0 for a = 0,1 and
all [ in the support of L), the mean counterfactuals E[Y(0)] and E[Y(1)] can
be expressed in terms of ‘observables’ (meaning, here, variables that would be
observed in the absence of measurement error) as follows:

E[Y(0)] = E[WY|A = 0] and E[Y(1)] = E[WY|A = 1],

where W denotes the inverse probability of the allocated exposure level A given
L multiplied by the prevalence of the allocated exposure level A (i.e., W =
Pr(A)/Pr(A|L); Supplementary Appendix S8.1). We therefore have

g(EY(0), EY (1)]) = g(E[WY|A = O, EWY[A = 1]). (8.2)

Replacing components of the right-hand side of (8.2) with sample analogues,
we obtain the following estimator for the setting where L is binary:

OR := g(E[WY|A = 0], E[WY|A = 1])
WY|A=1]/(1-E[WY|A=1)])
[WY|A=0]/1-EWY|A=0)]

—

(Wioni10 + Wiinii1)/(nii0 + ni11 + no1o + no11 — Wioniio — Wiinii)
(

WOO”IOO + WOI”IOI)/(”IOO + 1101 + Nooo + Noo1 — WOO”IOO - W01n101)7
(8.3)

where n,, denotes the number of subjects with Y =y, A = a, L = [ and where
Wy is the product of the proportion of subjects in the sample with A = a and

Table 8.1: Cross-classification of the reinfarction data for 33,007 individuals as
given by Gravel and Platt (2018).

L=0 L=1

A=0 A=1 A=0 A=

Y =0 11602 13116 1302 5363
Y =1 890 589 49 96

159



CONFOUNDING AND EXPOSURE-OUTCOME MISCLASSIFICATION

the inverse of the proportion of subjects with A = a among those with L = I.
For the data in T/F@ble 8.1, we obtain OR = 0.573. The corresponding crude odds
ratio (i.e., with W = 1) is 0.509.

8.2.2  Joint misclassification

Suppose that rather than observing Y and A we observe Z and B, the
misclassified versions of Y and A, respectively. The relation between Z and
B on the one hand and Y, A and L on the other can be expressed as follows:

Pr(Z=2,B=bY =y, A=a,L=1)

= (Wbyal)z(l - 7Tbyal)l_z()‘yal)b(l - )‘yal)l_b

for 2,0 € {0,1} and all possible realisations y,a,l of Y, A, L, and where mpyq =
Pr(Z=1B=bY =y, A=a,L=1)and \yyy =Pr(B=1Y =y, A=a,L =1).
To simulate (dependent differential) misclassification in the reinfarction
dataset, we use the true positive and false positive rates given in Table 8.2.
The expected cell counts for these rates are given in Table 8.3.
We redefine the weights in (8.2) as a function of B and L (as per
Supplementary Appendix S8.1) such that

_ p(B)esL
2y 20 TByaL(Ayar) B(1 = Ayar) =P (ear)¥ (1 — €az)'¥(0)2(1 — o)1~
(8.4)

w

where p(B) is the prevalence of level B of the potentially misclassified version
of the exposure variable and where ¢,y = Pr(Y = 1|A = a,L = [) and §; =

Table 8.2: True and false positive rates for reinfarction example. For b,y,a,l €
{0,1}, \yuy =Pr(B=1Y =y, A=a,L =1) and mpyuy =Pr(Z=1B=»>Y =
y, A=a,L=1).

T0000 — 0.050 70001 — 0.020 )\000 = 0.010
1000 = 0.060 1001 = 0.108 A100 = 0.181
o100 = 0.930 mp101 = 0.806 Ao1o = 0.880
1100 = 0.938 1101 = 0.692 A110 = 0.910
T0010 = 0.030 o011 — 0.109 )\001 = 0.100
71010 = 0.060 71011 = 0.050 )\101 = 0.265
o110 = 0.906 o111 = 0.765 Ao11 = 0.930
71110 = 0.950 mT1111 = 0.861 )\111 =0.823
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Pr(A = 1|L =) for all possible realisations a and [ of A and L, respectively. In
Supplementary Appendix S8.1, it is shown that

E[Y (0)] = E[WZ|B =0] and E[Y(1)] =E[WZ|B = 1], (8.5)

which suggests the plug-in estimator

— o~

OR := g(E[WZ|B = 0],E[WZ|B = 1))
_E[Wz|B=1]/1 -EWZ|B=1))
E

— _C : (8.6)
[WZ|B=0]/(1—E[WZ|B =0)])

where E denotes the sample mean operator and W the sample analogue (i.e.,
consistent estimator) of W in (8.4). For other effect measures (i.e., other choices
of g), the same plug-in strategy can be implemented.

In the absence of exposure misclassification, (8.4) reduces to

-1

A1 —A _
W= <(6L) (111)(14)6]:)1 [WAOAL1 gAELAL + WAIAL]) : (8.7)

The first term within the round brackets corrects for confounding and represents
the propensity of the received exposure level A divided by prevalence of
exposure level A. The term within square brackets is a factor that corrects
for misclassification in the outcome variable. This correction factor is similar to

Table 8.3: Expected cell counts (rounded to integers) for reinfarction example
after misclassification was introduced. Because of rounding, the sum of all cell
entries is 33,006 rather than 33,007, the size of the reinfarction dataset.

L=0 L=1

A=0 A=1 A=0 A=

Y =0, A=0, L=0 10912 109 574 7
Y=1 A=0,L=0 51 10 678 151
Y =0, A=1,L=0 1527 10850 47 693
Y=1,A=1,L=0 5 27 48 509
Y =0, A=0, L=1 1148 116 23 14
V=1, A=0,L=1 7 4 29 9
Y =0 A=1, L=1 334 4738 41 249
V=1, A=1L=1 4 11 13 68
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that proposed by Gravel and Platt (2018). The only difference is that where in
(8.7) it does not depend on the fallible measurement Z of Y, Gravel and Platt
define different weights for subjects with Z = 0. Note, however, that the choice
of weights for subjects with Z = 0 does not affect the population quantity in (8.5)
or the estimator defined by (8.6), because the weights only appear in products
with Z, which equal zero if Z = 0.

As for the reinfarction example, the odds ratio estimate for the exposure-
outcome effect based on inverse probability weighting that assumes absence
of exposure or outcome misclassification is 1.120, while the corresponding
misclassification naive crude odds ratio is 1.031. Estimation of the population
weights W from observables using validation data is discussed in the next
section. As shown below, weighting using the proposed weights that account
for confounding and outcome and exposure misclassification results in an odds
ratio of OR = OR ~ 0.573. Inference based on (8.7) rather than (8.4), i.e., using
Gravel and Platt’s method and ignoring misclassification in the exposure but
correcting for outcome misclassification, yields an odds ratio estimate of 0.934.

8.2.3  Parameterisation based on positive and negative predictive values

In the foregoing discussion, the proposed weights were expressed in terms of
sensitivity and specificity parameters. The sensitivity and specificity of Z with
respect to Y, given (B, A, L), are mp14ar, and 1 — wpoar, respectively. Similarly,
Ay1r and 1— Ay reflect the sensitivity and specificity, respectively, with respect
to A, conditional on Y and L.

As discussed below, it may be more convenient to choose a parameterisation
that is based on (positive and negative) predictive values. Define 6 = Pr(B =
IIL=1),e;,=Pr(Z=1B=bL=1),X);,=Pr(A=1|Z =2,B=»b,L =1)
and 7}, =Pr(Y =1|A=a,Z = 2,B =b,L =1). The weights in (8.4) can be
rewritten as

>y 2a Thyar( ZaL)B(l - ZaL)liB(‘SZL)y(l —erp ) V()M (1 = 6p) e
>y XaAga )P = Ap ) B (es )y (1 — g5 )t mv(67) (1 — op) e
p(B)
ep(07)P(1 —0p)t =8

W =

(8.8)

In the absence of exposure misclassification, these weights simplify to

p(A) EAL
()41 —or)t=Aeh,
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8.3 Estimation of weights based on validation data

Estimation of the proposed weights can be done using a number of approaches
and we will here consider a maximum likelihood approach that assumes the
availability of internal validation data, i.e., that some study participants have
their observed exposure or outcome measured by an ‘infallible’ or ‘gold standard’
(100% accurate) classifier, and that all participants have the misclassified
exposure and outcome variables measured.

8.3.1 Validation subset inclusion mechanism

Let Ry be the indicator variable that takes the value of 1 if the outcome is
observed (i.e., measured by an infallible classifier) and 0 otherwise. Similarly,
define R4 to be the indicator variable that takes the value of 1 if the exposure
variable is observed and 0 otherwise. Ry and R4 reflect which subjects have
validation data available on Y and A, respectively. The subset of subjects with
validation data on Y need not fully overlap with the subset with validation data
on A.

The validation subsets can be approached from the missing data framework
of Rubin (1976) Provided that Z, B, L are free of missing values, Rubin’s missing
at random (MAR) condition is met if the vector (Ry,R4) is conditionally
independent of (Y, A) given (Z, B, L).

8.3.2  Full likelihood approach based on parameterisation in terms of
sensitivities and specificities

Simultaneous estimation of the whole vector of d, €, A and m parameters can be
done via maximum likelihood estimation as follows. Assuming i.i.d. observations
(Zi, B;,Yi, A;, L;) and ignorable missingness in the sense of Rubin (1976)
(MAR and distinctness), for valid likelihood-based inference it is appropriate
to maximise the following log-likelihood over the parameter space of 6, the vector
of 9§, e, A and 7 parameters:

Wo)= > log f(0:Z;,B;,Yi, Ay, Ly)
i:RYiZRAizl

i:Ry;=1AR ;=0 A;

+ > log)  f(6;Zi, Bi,Yi, A, Li)
iZRYiZO/\RAizl Y:L
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+ Z IOgZZf(Qathl)}/ZvAZ?LZ)?

i:Ry ;=R ;=0 Y; A;
where

f(ea Ziv Bi7 }/h A’L7 LZ)
= (mpyvian)? (1= mpyvian) ™ Ovia) (1 - /\YA L)
X (eaun) (1= ea,2,)' 7 (0r) M (1 = 6p,)'~
Evaluating this log-likelihood involves marginalising over unobserved quantities
in the last three terms of ¢(f). The log-likelihood equations may become

considerably more tractable if we choose a parameterisation of the likelihood
that is based on predictive values rather than sensitivities and specificities.

8.3.8 Full likelihood approach based on parameterisation in terms of
predictive values

Inference may alternatively be based on a log-likelihood that is parameterised in
terms of the vector 6* of the 6*, ¢*, A* and 7* parameters, i.e.,

O )= > logh(8%; Zi, B;,Y;, A, L)
Ry ;=Ra;=1

+ > log > h(0*; Z;, B;,Y;, A, L;)
i:Ry;=1AR4;=0 A;

+ Z 10gZh(9*7Zl,BZ,E,Al,L1)
i:Ry ;=0 \R4;=1 Y;

+ Z logzzh(e*;ZZaBZ7YL7AZ7LZ)7

1:Ry;=R4;=0 Y; A
where
h(9*7 Zi7 Bia )/;:7 Aia Ll)
Y; 1-Y; A, 1-A;
= (mazB,L.) (U —=7azpr,)  Azpr) (1=Azpr,)

X (h,0,) 7 (1= ep,0,) "7 (07,) % (1 = 81,)' P,

If validation data is available on Y if and only if it is available on A, the complete
data log-likelihood ignoring the missing data mechanism can be conveniently
expressed as follows:

0(07) = G(07) + £5(67) + £3(07) + £2(67), (8.9)
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with 0* denoting the vector of §*, €*, A* and 7* parameters and where

(07) = Z Yilog(m, z,,1,) + (1 = Yi)log(1 — 7. 7. 5,1..)»
’iZRYiZRA,L:l

05(0%) = Z A; 10%(/\*ZiB¢Li) + (1 — A;) log(1 — )‘*ZiBiLi)7
’iZRYi:RAizl

G0%) =) Zilog(ep,r,) + (1 — Zi) log(1 — e, 1,),
03(0%) =Y Bilog(é1,) + (1 — By) log(1 — o).

Now, assuming distinct parameter spaces for the vectors of 7*, \*, £* and ¢*
parameters, the parameter values that maximise £*(6*) can be found by separately
maximising ¢} (0*) and £5(6*) in the validation subset with respect to the 7* and A*
parameters, respectively, and ¢5(6*) and £;(6*) in the entire dataset with respect
to e* and §*. Following Gravel and Platt (2018) and Tang et al. (2013), the sum of
the first and last two terms are therefore suitably labelled the internal validation
and main study log-likelihood, respectively. With this parameterisation, finding
the maximum likelihood estimates is readily achieved by taking advantage of
standard statistical software.

8.3.4 FEquivalence of likelihood approaches based on different
parameterisations

Without restrictions imposed on

61 == (o001, 1001 T0101> T11005 TO01L> T101Ls TO11L> T11115 A00L> A10L, A01ls A11i5
eols €11, 6;) and

* o, * * * * * * * * * * * *
0 = (77000177710017770101777110177Toow7r101za7r0111a7r1111a)\ooza 100 011 1115
* * *
€01 €105 07 )5

other than that 6,,6; € (0, 1)!5, it can be shown that the maximum
likelihood estimator based on the internal validation design is invariant to
its parameterisation (sensitivities/specificities versus positive and negative
predictive values). This is because there exists a function mapping every
6, € (0,1)* to a unique 6f € (0,1)' and vice versa. Maximising ¢(f) with
respect to € is then equivalent to maximising ¢(o(6*)) (= £*(6*)) with respect to
0* for some bijection o such that § = o(6*); that is,

arggnax L0) =0 (arggrglax E(J(G*))) .
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If more restrictions are imposed on 6 or 0%, e.g., if we assume non-saturated
logistic models for the components of 6 and 6*, this equivalence no longer holds
and the resulting weight estimates may differ depending on the parameterisation.

8.8.5 Application

For the re-infarction data example, we assume validation data are available
according to a MAR mechanism characterised by

Pr(Ry =1|Ra=s,Z2=2,B=0bY =y, A=a,L =1) =s,
Pr(Ra=1Z=2B=bY =y, A=a,L =1) = 0.25 + 0.10b.

This mechanism assigns validation data to an individual on either both ¥ and
A (30% of all individuals) or neither depending on their realisation of B, the
misclassified version of the exposure variable A (Supplementary Table S8.1).
Supplementary Tables S8.2 and S8.3 give the likelihood contributions for the
parameterisation based on predictive values and the closed form maximum
likelihood expressions, respectively. Maximum likelihood estimates can also
be found by fitting to the data the saturated logistic regression models of B
and Z on L and (B, L), respectively, and to the validation subset the fully
saturated logistic regression models of A and Y on (Z,B,L) and (A, Z, B, L),
respectively. Estimated weights are then obtained by plugging in the maximum
likelihood estimates into (8.8). As in the complete data setting where we
assumed the weights to be known, evaluating (8.6) then yields an odds ratio
of OR = OR ~ 0.573.

8.4 Simulations

We performed a series of Monte Carlo simulation experiments to illustrate the
implementation of the proposed method, to study its finite sample properties and
to compare the method to estimators that ignore the presence of confounding or
joint exposure and outcome misclassification. All simulations were conducted
using R-3.5.0 ((R Core Team, 2018)) on x86_64-pc-linux-gnu platforms of the
high performance computer cluster of Leiden University Medical Center.

8.4.1 Methods

For all 54 simulation experiments, we generated ng, = 1000 samples of size
n according to the data generating mechanisms depicted in the directed acyclic
graphs of Figure 8.1. This multi-step data generating process included generating
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values on measurement error-free variables, introducing misclassification and
allocating individuals validation data. We applied various estimators to each
of the simulation samples to yield, for each scenario, an empirical distribution of
each point estimator and corresponding precision estimators. These distributions
were then summarised into various performance metrics. These metrics include
the empirical bias of the estimator on the log-scale (i.e., the mean estimated log-
OR minus the target log-OR across the ng, samples), the empirical standard
error (SE) of the estimator on the log-scale (i.e., the square root of the mean
squared deviation of the estimated log-OR from the mean log-OR), the empirical
mean squared error (MSE) (i.e., the sum of the squared SE and the squared bias),
the square root of the mean estimated variance (SSE, sample standard error)
and the empirical coverage probability (CP) (i.e., the fraction of simulation runs
per scenario where the 95% confidence interval (95%CI) contained the target
quantity).

1 Distribution of measurement error-free variables

Following Gravel and Platt (2018), we consider a setting based on that of
“Scenario A” in the work of Setoguchi et al. (2008) with slight modifications to
the propensity score and outcome models. We consider a fully observed covariate
vector L = (Lo, ..., L1g) whose distribution coincides with that of h(V'), where
V = (W1, ..., Vip) has the multivariate normal distribution with zero means, unit
variances and correlations equal to zero except for the correlations between Wy
and V5, Vo and Vg, V3 and Vg, and Vy and Vg, which were set to 0.2, 0.9, 0.2, and
0.9, respectively. Function h was defined such that

h(V)= (I (V4 >0),Va,1(V3>0),Vy, [(Vs >0),I(Vg>0),Vz, I(Vg >0),
Thus, sampling from the distribution of L is equivalent to sampling from
the multivariate normal distribution with the given parameter values and
dichotomising the 1st, 3rd, 5th, 6th, 8th and 9th elements.

Next, let U; and Uy be binary variables distributed according to the following
logistic models:

logit Pr(U; = 1|L) = no, (8.10)
logit PI‘(UQ = 1|L, Ul) = HQ- (811)

The distribution of the binary exposure variable A was defined according to the
model

logit PI‘(A = HL, Ui, UQ) = oo+ 2;0:1 CVij + a11U7. (8.12)
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Letting Us be a scalar random variable that 1is independent of
(A, Ly,...,L19,U1,Us) and uniformly distributed over the interval [0,1], we
defined the counterfactual outcome Y (a), under the intervention setting A to
a, as

Y(a) = I(Us < expit{ B +va + X2 BiL; + BriUs} ). (8.13)

With Y := Y (A), the above implies consistency, conditional exchangeability given
L and structural positivity.

2 Misclassification mechanism

For scenarios with joint misclassification, we defined B = U; and Z = Us, so that
the predictive values take a standard logistic form:

logit Pr(Y = 1|4, B, L, Z) = By +vA+ X1 B,L; + fu 2 (8.14)
logit Pr(A = 1|B, L, Z) = ag + >;2 a;Lj + o1 B. (8.15)
For scenarios without exposure misclassification, we set a;; = 0 and defined

B = A and Z = Us, so that

logit Pr(Y = 1|4, B, L, Z) = o + vA+ X2, B;L; + fu Z, (8.16)
logit Pr(B =1|L, Z) = o + Y21 o L. (8.17)

For simplicity, we removed any marginal dependence of Z on the covariates L
and U; as well as any marginal dependence of U; on L (cf. equations (8.10) and
(8.11)). Although models (8.10) through (8.15) take a standard logistic form, they
do not imply that the corresponding sensitivities and specificities can be written
in the same form. We chose the predictive values rather than the sensitivities
and specificities to take a standard logistic form so as to ensure correct model
specification in the estimation of the weights in the simulation experiments, in
which a likelihood approach based on predictive values was adopted (cf. (8.9)).

3  Missing data mechanism

For these simulations, we stipulated L, B and Z to be observed for all subjects.
We consider scenarios where the dataset can be partitioned into a subset with
validation data on all misclassified variables (denoted R = 1) and a dataset with
validation data on neither (R = 0). That is, we simulated data such that subjects
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have validation data on both A and Y or neither on A nor on Y. Values for the
response indicator R were generated according to the following (MAR) model:

logit Pr(R=1|Z,B,Y, A, L) = logit Pr(R =1|Z,B, L)
=&+ &2+ 6B+ 62ZB.

4 Scenarios

We initially fixed most parameters of models (8.12) and (8.13) at the respective
values of “Scenario A” of Setoguchi et al. (2008): a3 = 0.8, ag = —0.25, a3 = 0.6,
4 = —0.4, a5 = —0.8, g = —0.5, ar = 0.7, ag — 0, g = 0, a10 = 0, ﬁo = —3.85,
b1 =0.3, o = —0.36, B3 = —0.73, 54 = —0.2, 35 =0, B =0, 87 =0, s = 0.71,
B9 = —0.19 and B9 = 0.26. Parameters 19 and o were fixed at zero and &,
& and &3 at 2, 1 and —1, respectively. The remaining parameters and 5y were
allowed to vary across scenarios as per Table 8.4.

Scenarios differ by sample size n, the presence of outcome misclassification,
potentially misclassified outcome prevalence (via ), the associations between
the exposure and outcome on the one hand and the respective misclassified
versions on the other (via «j; and f11), outcome model intercept [y, the
conditional log-OR =, or the size of the validation subset (via &;). Based on
an iterative Monte Carlo integration approach (Austin and Stafford, 2008), we
specified v so as to keep the target marginal log odds ratio at —0.4.

X X

/]

Ui

L

A Y L A Y
U, Uy U,

B Z— R B 7

v v

Figure 8.1: Data structure for scenarios with misclassification on the outcome
only (left) or on both the exposure and outcome (right). Bullet arrowheads
represent deterministic relationships.

R
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5  FEstimators

We considered five estimators of the OR for the marginal exposure-outcome
effect: a crude estimator (labeled Crude) that ignores both confounding and
misclassication of any variable, a misclassification naive estimator (labeled PS)
that addresses confounding through IPW, complete cases analysis (CCA) in which
IPW is applied only to the subset of subjects with validation data, the Gravel
and Platt estimator (GP) that ignores exposure misclassification, and the method
proposed in this article (labeled IPWM). Both GP and IPWM are implemented
using the R function mecor: :ipwm (Nab, 2019; Nab et al., 2018), which in the
simulation settings considered uses iteratively reweighted least squares via the
stats::glm function for maximum likelihood estimation. GP coincides with
the approach of Gravel and Platt where it concerns point estimation, but they

Table 8.4: Simulation parameter values used in the Monte Carlo studies.
Scenarios indicated with ‘a’ have n = 10000, those with ‘b’ have n = 5000 and
those with ‘¢’ have n = 1000.

Exposure

Scenarios misclassification 140 o1 Bo B11 y &o

la,1b,1c Absent —2 0 —3.85 2 —0.431 —1.5
2a,2b,2¢c Absent -3 0 —3.85 2 —0.417 —-1.5
3a,3b,3c Absent -2 0 —3.85 4 —-0.624 —-1.5
4a,4b,4c Absent -2 0 —3.85 2 —0.431 —-2.5
5a,bb,5¢c Present -2 2 —3.85 2 —-0.431 -1.5
6a,6b,6¢ Present -3 2 —3.85 2 —-0.417 —-1.5
Ta,7b,7c Present -2 4 —3.85 2 —0.431 —-1.5
8a,8b,8¢c Present -2 2 —3.85 4 —-0.624 -1.5
9a,9b,9¢ Present -2 2 —3.85 2 —0.431 -2.5
10a,10b,10c ~ Absent -2 0 —2 2 —0.470 —1.5
11a,11b,11c  Absent -3 0 -2 2 —0.445 —-1.5
12a,12b,12¢ Absent -2 0 -2 4 —0.641 —-1.5
13a,13b,13¢  Absent -2 0 -2 2 —0.470 —-2.5
14a,14b,14c  Present -2 2 -2 2 —0.470 —-1.5
15a,15b,15¢  Present -3 2 -2 2 —0.445 —-1.5
16a,16b,16c  Present -2 4 -2 2 —0.470 -1.5
17a,17b,17c  Present -2 2 -2 4 —-0.641 —-1.5
18a,18b,18c  Present -2 2 -2 2 —0.470 —-2.5
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differ in the construction of confidence intervals. Unlike Gravel and Platt (2018),
we used a non-parametric rather than a semi-parametric bootstrap procedure
for estimating standard errors and constructing confidence intervals. Semi-
parametrically generating response indicators would preferably require modelling
of (or making additional assumptions about) the missing data mechanism. In
particular, to obtain a bootstrap dataset, we defined the record of a unit as their
observed data and response indicators, imposed a uniform distribution across all
records in the original dataset, and drew independently as many records from
this distribution as the total number of records in the original dataset. For all
methods and each original dataset, we drew 1000 bootstrap datasets for variance
estimation and the construction of percentile confidence intervals.

All estimators are based on a function of the estimated outcome probability P;
in the exposed group and the estimated outcome probability Fy in the unexposed
group. However, since P; and Py may take a value of 0 or 1, the crude odds ratio
[P1/(1—P1)]/[Po/(1—Ppy)] need not exist. In contrast to what is often (implicitly)
done in simulation studies—i.e., studying the properties of the estimators after
conditioning on datasets where [P /(1 — P1)|/[Po/(1 — Py)] is defined—we first
define P;" = (P1s+1)/(s+2) and P§ = (Pys+1)/(s+2) for a large positive number
s (here set to 10%) and then regard [P /(1 — P})]/[P;/(1 — P§)] as the estimator
of the OR for the exposure-outcome association. This ensures the estimator is
always defined and effectively shrinks the outcome probabilities towards 0.5 and
the OR towards 1 (Supplementary Appendix S8.2).

For PS and CCA, we used a logistic regression of B and A, respectively,
on covariates Ly through L1y as main effects to estimate the propensity scores.
Taking the crude OR for the association between B and Z (PS) or A and Y
(CCA) over the data weighted by the reciprocal of the propensity of the received
exposure level provided an estimate of the target OR. R code for the methods
GP and IPWM is given in Supplementary Appendix S8.3.

8.4.2 Results

The treatment assignment mechanism detailed above resulted in average exposure
rates ranging from 17% to 51%, whereas average outcome rates ranged from 3%
to 22%. Across all simulation studies, the average outcome rate ranged from 6%
to 18%. Across all simulation studies with exposure misclassification, exposure
and joint misclassification rates ranged from 16% to 33% and from 2% to 6%,
respectively. Approximately 16% to 32% of subjects were allocated validation
data.
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The results on the performance of the various methods in simulations studies
1-9 are provided in Table 8.5 (see Supplementary Table S8.4 for the results on
all scenarios).

As expected, Crude, PS and CCA clearly showed bias with respect to the
target log OR of —0.4. The bias associated with restricting the analysis to
records with validation data is likely brought on to a large extent by collider
stratification, with R acting as the collider here (cf. Figure 8.1). Both Crude
and PS indicated a null effect, as one would anticipate in view of the marginal
and L-conditional independence of B and Z implied by the simulation set-up.
The empirical coverage probabilities were, although low for both estimators,
similar to substantially larger for PS as compared with Crude. Paralleling this
is that Crude, whose (implicit) propensity score model is inherently at least as
parsimonious, yielded similar to smaller empirical and sample standard errors as
compared with PS. With the average fraction of subjects with validation data
being as low as 16% (in scenarios with low &y) to 32%, it is not unsurprising that
Crude was subject to the largest degree of variability.

The results for the IPWM approach are generally favourable for large samples
and in line with its theoretical (large sample) properties. For scenarios with
smaller samples (scenarios lc, 2¢ and 4c, 6¢ and 9c in particular), however, we
observed considerable bias (see Supplementary Table S8.4). Comparing CCA
with IPWM, we note a strong linear association between the methods in terms of
the absolute within-method differences in estimated bias between scenarios of size
10000 (scenarios labeled ‘a’) and the respective scenarios of size 1000 (scenarios
labeled ‘c’) (Pearson correlation 0.997). Note that the results for GP and IPWM
are identical for scenarios labeled 1-4 and 10-13 since the methods are equivalent
in terms of point estimation in the absence of exposure misclassification. In all
other scenarios, i.e., scenarios for which GP was not developed, GP performed
substantially worse than IPWM. The non-zero, albeit relatively small, systematic
deviations of the IPWM point estimates from the target —0.4, notably the
estimated bias of —0.097 (scenario 2b), may be attributable in part to the outcome
being rare (with prevalence ranging from 3% to 8% across scenarios labeled 1-9).
This is indicated by the superior performance of IPWM in scenarios where the
outcome is more prevalent (cf. scenarios labeled 1-9b versus 10-18b, which have
prevalence up to 22%). A similar observation was made by Gravel and Platt
(2018).

The standard errors for GP and IPWM were noticeably higher than those of
Crude and PS, which is unsurprising in view of the discrepancies in the number of
estimated parameters. As expected, increasing the sample size, the true outcome
rate (via ) or both led to a decrease in the variability of IPWM (cf. Table 8.4
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and Supplementary Table S8.4). However, despite the large discrepancies between
SSE and SE for some scenarios, the empirical coverage probabilities of IPWM
were close to the nominal level of 0.95, except for scenarios lc, 2c and 4c, where
we observed considerable bias.

8.5 Discussion

The analysis of epidemiologic data is often complicated by the presence of
confounding and misclassifications in exposure and outcome variables. In this
paper we propose a new estimator for estimating a marginal odds-ratio in the
presence of confouding and joint misclassification of the exposure and outcome
variables. In simulation studies, this weighting estimator showed promising finite
sample performance, reducing bias and mean squared error as compared with
simpler methods.

The proposed IPWM estimator is an extension of the inverse probability
weighting estimator recently proposed by Gravel and Platt (GP) which only
addresses the misclassification in the outcome (Gravel and Platt, 2018). IPWM
and GP are (mathematically) equivalent when the exposure is (assumed to be)
measured without misclassification error.

Like the Gravel and Platt approach, IPWM relies on estimates of sensitivity
and specificity or positive and negative predictive values for the misclassified
variables. In this paper, we used an internal validation approach where a
portion of subjects would receive error-free (‘gold standard’) measurements on
either or both the outcome and exposure. However, we anticipate that in some
settings the likelihood may not be fully identifiable from the data at hand. In
these settings, it may be possible to incorporate external rather than internal
information on the misclassification rates, possibly through a Bayesian approach
using prior assumptions about misclassification probabilities. When validation
data is external, however, it may be necessary to assume misclassification to be
independent of covariates L, because external studies seldom consider the same
covariates as the main study (Lyles et al., 2011). External validation approaches
also require the assumption that the misclassification parameters targeted in the
validation sample are transportable to the main study.

In the absence of internal and external validation data, it is possible to conduct
a sensitivity analysis within the weighting framework. Formula (8.8) for the
weights can readily be used in a sensitivity analysis in which the terms describing
the distribution of true exposure and outcome variables in relation to the observed
data (positive and negative predictive values) serve as sensitivity parameters of
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Table 8.5: Results for simulation studies 1-9b on the performance of different
causal estimators in various scenarios of confounding and misclassification in
exposure and outcome. Abbreviations: PS, propensity score method ignoring
misclassification; CCA, complete case analysis; GP, Gravel and Platt estimator
ignoring exposure misclassification, consistent with the methodology of Gravel
and Platt (2018) for point (but not for variance) estimation; IPWM, inverse
probability weighting method for confounding and joint exposure and outcome
misclassification; BSE, estimated standard error for the bias due to Monte Carlo
error; SE, empirical standard error; SSE, sample standard error; CP, empirical
coverage probability. In all scenarios, the true marginal log OR (estimand) was
—0.4.

Crude
Scenario Bias BSE MSE SE SSE CP
1b 0.394 0.004 0.169 0.119 0.118 0.122
2b 0.382 0.006 0.179 0.183 0.184 0.492
3b 0.394 0.004 0.169 0.117 0.118 0.116
4b 0.401 0.004 0.174 0.117 0.118 0.102
5b 0.401 0.003 0.169 0.090 0.088 0.007
6b 0.407 0.004 0.183 0.132 0.134 0.133
b 0.396 0.003 0.164 0.086 0.088 0.009
8b 0.395 0.003 0.164 0.086 0.088 0.005
9b 0.398 0.003 0.166 0.089 0.088 0.005
PS
Scenario Bias BSE MSE SE SSE CP
1b 0.392 0.005 0.182 0.168 0.169 0.382
2b 0.379 0.008 0.213 0.264 0.258 0.738
3b 0.389 0.006 0.182 0.175 0.169 0.402
4b 0.389 0.006 0.182 0.176 0.168 0.392
5b 0.402 0.003 0.170 0.090 0.088 0.010
6b 0.407 0.004 0.183 0.131 0.135 0.136
b 0.396 0.003 0.164 0.086 0.088 0.009
8b 0.395 0.003 0.164 0.086 0.088 0.004
9b 0.398 0.003 0.166 0.089 0.088 0.005
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the sensitivity analysis. The models for the predictive values can take complex
forms, however, thus complicating the analysis and presentation of results.

If internal validation is available, the subjects with validation data need
not form a completely random subset. The proposed method, IPWM, was
developed under the assumption that validation data allocation occurs in an
‘ignorable’ fashion (Rubin, 1976). In practice, it may be that the researchers have
limited control over the validation data allocation mechanism. For instance, it
is conceivable that individuals with specific indications (e.g., with a realisation
of L, B or Z) are practically ineligible to be assigned a double measurement of
the exposure (A and B) and outcome (Y and Z). Further, the estimator also
allows for validation subjects to receive either the double exposure or double

Table 8.5 continued.

CCA
Scenario Bias BSE MSE SE SSE Ccp
1b -0.078 0.015 0.226 0.469 0.491 0.899
2b —0.117 0.019 0.375 0.601 0.900 0.887
3b —0.020 0.010 0.091 0.301 0.300 0.919
4b —0.093 0.020 0.407 0.631 1.158 0.899
5b —0.145 0.009 0.103 0.286 0.286 0.903
6b —0.109 0.011 0.131 0.345 0.362 0.930
b -0.213 0.007 0.101 0.237 0.250 0.865
8b —0.209 0.006 0.079 0.187 0.186 0.775
9b —0.175 0.012 0.184 0.392 0.411 0.902
GP
Scenario Bias BSE MSE SE SSE CP
1b —0.036 0.011 0.130 0.359 0.428 0.958
2b —0.097 0.016 0.265 0.505 0.861 0.938
3b —0.019 0.007 0.055 0.233 0.240 0.939
4b —0.045 0.016 0.253 0.501 1.087 0.944
5b 0.269 0.008 0.132 0.244 0.244 0.799
6b 0.280 0.010 0.177 0.314 0.339 0.862
b 0.134 0.008 0.076 0.241 0.252 0.926
8b 0.259 0.004 0.087 0.140 0.144 0.570
9b 0.263 0.010 0.174 0.325 0.339 0.883
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Table 8.5 continued.

IPWM
Scenario Bias BSE MSE SE SSE CP
1b —0.036 0.011 0.130 0.359 0.428 0.958
2b —0.097 0.016 0.265 0.505 0.861 0.938
3b —0.019 0.007 0.055 0.233 0.240 0.939
4b —0.045 0.016 0.253 0.501 1.087 0.944
5b —0.017 0.009 0.082 0.286 0.284 0.942
6b —0.014 0.011 0.129 0.359 0.386 0.958
b 0.004 0.008 0.059 0.243 0.261 0.969
8b —0.004 0.006 0.032 0.180 0.181 0.958
9b —0.025 0.012 0.141 0.374 0.415 0.956

outcome measurement. We simulated data such that subjects have validation
data on both the exposure and outcome variables or on neither. Although this
may greatly simplify analysis and enhance efficiency, in practice it is not necessary
to assume that this condition holds. An interesting scenario is where subjects
have validation data on at most one variable, i.e., on the exposure variable or
the outcome variable but not both. In this case, valid estimation would require
additional modelling assumptions; for example, the error-free outcome variable
cannot then be regressed on the error-free exposure variable.

To accommodate settings where validation data allocation is not completely at
random, we deviated from the semi-parametric bootstrap procedure for variance
estimation proposed by Gravel and Platt. Instead, the non-parametric procedure
we used requires less assumptions regarding the validation subset sampling
procedure. The non-parametric procedure showed good performance in our
simulations.

Whilst we have discussed under what conditions the proposed method
consistently estimates or at least identifies the target quantity, the assumptions
may be untenable in particular settings. Particularly, an infallible measurement
tool for the exposure and outcome that can be performed on a subset of the data
need not always exist. The robustness to deviations of infallibility is an interesting
and important direction for further research. This is especially relevant where
there exists considerable uncertainty about the tenability of the assumptions
that is difficult to incorporate in the analysis. An obvious and flexible alternative
to IPWM is to multiply impute missing values including absent measurement
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error-free variables before implementing IPW (MI+IPW). Although MI+IPW
and IPWM may be comparable in terms of their assumptions, it is yet unclear
how they behave under assumption violations such as misspecification of the
outcome model.

An advantageous property of MI+IPW is that it can easily accommodate
missing covariate values. Other alternatives that can accommodate missing
covariates were recently developed by Shu and Yi (2018). Their proposed
weighting estimators simultaneously addresses confounding, misclassification of
the outcome (but not of the exposure) and measurement error on the covariates
under a classical additive measurement error model. The methods can be
implemented using validation data or repeated measurements and use a simple
misclassification model (in which the outcome surrogate is independent of
exposure or covariates given the target outcome) that is suitable for performing
sensitivity analyses.

Another interesting area for further research is where the researchers do
have control over who is referred for further testing by the assumed infallible
measurement tool(s). An obvious choice is to adopt a completely at random
strategy (simple random sampling). However, other referral (sampling) strategies
exist and it is not clear what strategy leads to the most favourable estimator
properties for the given setting.

In summary, we have developed an extension to an existing method, to allow
for valid estimation of a marginal causal OR in the presence of confounding
and a commonly ignored and misunderstood source of bias—joint exposure and
outcome misclassification. The R function mecor: : ipwm has been made available
to facilitate implementation (Nab, 2019; Nab et al., 2018).
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Supplementary Material

S8.1

Suppose A, B,Y and Z are random variables that take values in {0, 1}.

Theorem 8.1. For any a,l, let

= *(a,1) an a !
Plal) = g niaza ™ Y @)= Az an =iy
If Y(A) = Y (consistency), (Y(0),Y(1)) 1 AL = 1 (conditional

exchangeability), Pr(A = a) > 0 and Pr(A = a|L = 1) > 0 (positivity) for
all a and every l in the support of L, then
E[Y(a)] = E[p(A, L)I(Y =1)[A = a].

Proof. We begin by considering E[¢*(A, L)|A = a]. By the law of the unconscious
statistician and Bayes’ theorem, we have

E[p*(A,L)|A = a] =

|
)—U
E\E\
|
||
_D>
TRl
=&

mm:@;r( 2
B 1
- Pr(A=na)
Hence, for all a,y, we have
> @(a,)Pr(Y =y, L=1|A=aq) (8.18)
l
_ZPr(Y:y,L =1|A=a)Pr(A=a)
N ; Pr(A=a|L=1)
B Z Pr(Y =ylA=a,L=10)Pr(A=qa|L =1)Pr(L =1)
B Pr(A=a|lL=1)

l
=Y Pr(Y=ylA=a,L=1)Pr(L=1)
l
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= ZPr =ylA=a,L =1)Pr(L=1) (8.19)
= ZPr =y|L=1)Pr(L =1) (8.20)
= Pr<Y( ) =),

where (8.19) and (8.20) hold under consistency and conditional exchangeability
given L, respectively. Positivity ensures the weights are defined/exist. Hence,
Elp(A,L)I(Y = 1)|[A =a] = >, 0(a,)Pr(Y = 1,L = l|A = a) = E[Y(a)], as
desired. O

Corollary 8.1. For any y,a,l, let

R C)) 1
So(a’l)_E[gp*(A,LﬂA:a]’ v (a,l) = Pr(A=alL=1)’ and
sy~ PO =LL=llA=a)

Pr(Z=1,L=IB=a)
IfY(A) =Y, (Y(0),Y(1)) IL A|L and positivity holds, then
a)l = ng(a,l) Pr(Y =1,L=1A=a)
—ngal (a,))Pr(Z =1,L =1|B = a)
 Blp(B, L)6(B, L)I(Z — DI — d]
S8.2

Theorem 8.2. Fiz some s > 0 and let P* = (Ps+1)/(s+2) for all P € [0, 1].
If (Py, Py) € (0,1) x (0,1), then

Pr/1-Pf)  P/(1-D)
1< P1*/<1 _ P}) Pof(1— P(l)) if P > Py,
_P/a-prr)  R/(1-P)
THR/0=F)  Rfi-py U
Py/(1—Py) Pl/(l P)
! P*/< PS) PO/<1 PO) if PL < Py
Proof. Suppose (Py, P1) € (0,1) x (0,1). If and only if
Pr/l-pr)  P/(1-P)
Py/(L—Fg) =~ R/(1-R) (8.21)
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then
Pis+1 8+1—P0$< P 1-F
s+1—Ps PFPys+1 1-P B ’
Pis+1 1—P1< FPys+1 1—PF
s+1—Ps P s+1—PFPys Py
Now, since

a{ Ps+1 1—P}_(—2P2+2P—1)S—1<0

dP\s+1—Ps P P2(1— (P —1)5)2

over the interval (0,1) for P, it follows that inequality (8.21) holds if P, > F.
Also, if P > Py, then, since 9/(OP){(Ps+1)/(s+1—Ps)} > 0if P € (0,1), we

have . .
Pr/(1-Pp)

By /(1= Fg)
Similar arguments establish the assertion for the case where P, < Py. It is easily
verified that if P = Fy, then

1<

Pf/1—-P)  Pis+1 s+1—PFPs

P;/1—P;) s+1-—Ps Ps+1
- P1 1—P0_P1/(1—P1)
1-P Py PR/(1-PR)

as desired. O

S8.3

GP and IPWM were applied to every dataset data in R using the function
mecor: :ipwm and the following code:

# GP:

formulasGP <- list(
Y~Z+B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
B"Z+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
Z"L1+L2+L3+L4+L5+L6+L7+L8+L9+L10

)

mecor: : ipwm(
formulas=formulasGP, data=data, outcome_true=‘‘Y’’,
outcome mis=‘‘Z’’, exposure_true=‘‘B’’, exposure mis=NULL, sp=1e6
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# IPWM:

formulasIPWM <- list(
Y~A+Z+B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
A~Z+B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
Z"B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
B"L1+L2+L3+L4+L5+L6+L7+L8+L9+L10

)

mecor: : ipwm(
formulas=formulasIPWM, data=data, outcome_true=°‘‘Y’’,

outcome mis=°‘Z’’, exposure_true=‘‘A’’, exposuremis=‘‘B’’,
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Table S8.1: Expected cell counts (rounded to integers) for illustrative study
setting after misclassification and formation of validation subsets

L=0 L=1
Ry Ry Y A L A=0 A=1 A=0 A=1
0 0 0 m1; =9371 me =7147 m3=1011 my= 884
0 0 1 ms = 1120 me =3166 m7y= 80 mg= 221
0 1 mg = 0 mio = 0 mi1 = 0 mio = 0
1 0 mi3 = 0 migq = 0 mis = 0 mie = 0
1 1 0 0 0 mi7 = 2728 mig = 38 mig = 144 moo = 2
1 1 1 0 0 mo1 = 13 mog = 3 mo3 = 169 mog = 53
1 1 0 1 0 mos — 382 moe — 3797 mo7 = 12 mog — 242
1 1 1 1 0 mog — 1 maog = 9 ma1 = 12 mag = 178
1 1 0 0 1 ma3 — 287 m3ayq — 41 mas — 6 mae — 5)
1 1 1 0 1 mar = 2 mag — 1 mag — 7 myo = 3
1 1 0 1 1 my1 = 84 myo =1658 my3= 10 my = 87
1 1 1 1 1 mys = 1 My = 4 my7 = 3 myg = 24
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Table S8.4: Results for simulation studies la-18a,1b-18b,1c-18c on the
performance of different causal estimators in various scenarios of confounding
and misclassification in exposure and outcome. Abbreviations: PS, propensity
score method ignoring misclassification; CCA, complete case analysis; GP,
Gravel and Platt estimator ignoring exposure misclassification; IPWM, inverse
probability weighting method for confounding and joint exposure and outcome
misclassification; BSE, estimated standard error for the bias due to Monte Carlo
error; SE, empirical standard error; SSE, sample standard error; CP, empirical
coverage probability. In all scenarios, the true marginal log OR (estimand) was

—0.4.
Crude PS
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
la 0.401 0.003 0.167 0.081 0.083 0.004 0.399 0.004 0.173 0.117 0.120 0.080
2a, 0.392 0.004 0.170 0.127 0.127 0.189 0.391 0.006 0.184 0.177 0.181 0.436
3a 0.400 0.003 0.167 0.083 0.083 0.005 0.391 0.004 0.167 0.119 0.119 0.104
4a, 0.394 0.003 0.162 0.081 0.083 0.007 0.392 0.004 0.169 0.122 0.120 0.106
5a, 0.398 0.002 0.162 0.061 0.062 0.000 0.398 0.002 0.162 0.061 0.062 0.000
6a 0.404 0.003 0.172 0.094 0.094 0.010 0.404 0.003 0.172 0.094 0.095 0.011
Ta 0.399 0.002 0.163 0.062 0.062 0.000 0.399 0.002 0.163 0.062 0.062 0.000
8a 0.401 0.002 0.165 0.064 0.062 0.000 0.401 0.002 0.165 0.064 0.062 0.000
9a 0.400 0.002 0.164 0.064 0.062 0.000 0.400 0.002 0.164 0.064 0.062 0.000
10a 0.396 0.003 0.164 0.085 0.083 0.004 0.395 0.004 0.171 0.123 0.119 0.101
11a 0.396 0.004 0.173 0.128 0.127 0.176 0.388 0.006 0.185 0.187 0.182 0.455
12a 0.398 0.003 0.165 0.081 0.083 0.007 0.398 0.004 0.173 0.120 0.120 0.096
13a 0.399 0.003 0.166 0.083 0.083 0.004 0.395 0.004 0.171 0.120 0.119 0.102
14a 0.404 0.002 0.167 0.061 0.062 0.000 0.404 0.002 0.167 0.061 0.062 0.000
15a 0.398 0.003 0.167 0.092 0.094 0.011 0.398 0.003 0.167 0.092 0.095 0.012
16a 0.404 0.002 0.167 0.063 0.062 0.000 0.404 0.002 0.167 0.063 0.062 0.000
17a 0.399 0.002 0.163 0.061 0.062 0.000 0.399 0.002 0.163 0.061 0.062 0.000
18a 0.401 0.002 0.164 0.059 0.062 0.000 0.401 0.002 0.164 0.059 0.062 0.000
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Table S8.4 continued.

Crude PS
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
1b 0.394 0.004 0.169 0.119 0.118 0.122 0.392 0.005 0.182 0.168 0.169 0.382
2b 0.382 0.006 0.179 0.183 0.184 0.492 0.379 0.008 0.213 0.264 0.258 0.738
3b 0.394 0.004 0.169 0.117 0.118 0.116  0.389 0.006 0.182 0.175 0.169 0.402
4b 0.401 0.004 0.174 0.117 0.118 0.102 0.389 0.006 0.182 0.176 0.168 0.392
5b 0.401 0.003 0.169 0.090 0.088 0.007 0.402 0.003 0.170 0.090 0.08% 0.010
6b 0.407 0.004 0.183 0.132 0.134 0.133  0.407 0.004 0.183 0.131 0.135 0.136
b 0.396 0.003 0.164 0.086 0.088 0.009 0.396 0.003 0.164 0.086 0.08%3 0.009
8b 0.395 0.003 0.164 0.086 0.088 0.005 0.395 0.003 0.164 0.086 0.0883 0.004
9b 0.398 0.003 0.166 0.089 0.088 0.005 0.398 0.003 0.166 0.089 0.088 0.005
10b 0.397 0.004 0.171 0.117 0.118 0.100 0.396 0.005 0.185 0.167 0.170 0.387
11b 0.391 0.006 0.185 0.179 0.183 0.466 0.362 0.008 0.199 0.261 0.253 0.732
12b 0.401 0.004 0.174 0.118 0.118 0.109  0.391 0.005 0.182 0.173 0.169 0.394
13b 0.404 0.004 0.176 0.111 0.117 0.080 0.396 0.005 0.185 0.169 0.167 0.367
14b 0.400 0.003 0.168 0.087 0.088 0.008 0.400 0.003 0.168 0.087 0.088 0.006
15b 0.397 0.004 0.176 0.135 0.134 0.161  0.397 0.004 0.176 0.135 0.135 0.161
16b 0.401 0.003 0.168 0.087 0.088 0.006 0.400 0.003 0.168 0.087 0.08%3 0.006
17b 0.403 0.003 0.170 0.087 0.088 0.003 0.403 0.003 0.170 0.087 0.083 0.004
18b 0.400 0.003 0.168 0.087 0.088 0.004 0.400 0.003 0.168 0.088 0.08%3 0.003
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Table S8.4 continued.

Crude PS
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
lc 0.394 0.009 0.232 0.277 0.275 0.698 0.366 0.013 0.292 0.398 0.391 0.871
2¢c 0.334 0.018 0.423 0.558 0.844 0.873  0.256 0.022 0.563 0.706 0.924 0.916
3c 0.383 0.009 0.222 0.274 0.276 0.739  0.371 0.013 0.297 0.399 0.393 0.875
4c 0.375 0.009 0.218 0.278 0.277 0.732 0.332 0.013 0.276 0.407 0.392 0.880
5¢c 0.405 0.006 0.204 0.200 0.199 0.470 0.405 0.006 0.205 0.201 0.199 0.474
6¢ 0.410 0.010 0.261 0.304 0.317 0.724 0.410 0.010 0.263 0.308 0.318 0.729
Tc 0.406 0.006 0.203 0.196 0.199 0.469 0.406 0.006 0.204 0.198 0.200 0.469
8¢ 0.404 0.006 0.204 0.202 0.199 0.474 0.405 0.006 0.205 0.201 0.200 0.470
9¢c 0.406 0.006 0.202 0.192 0.198 0.468 0.404 0.006 0.201 0.193 0.199 0.470
10c 0.384 0.009 0.222 0.272 0.276 0.717 0.359 0.013 0.288 0.399 0.388 0.873
11c 0.358 0.014 0.324 0.443 0.825 0.864 0.296 0.020 0.471 0.619 0.902 0.923
12¢ 0.377 0.008 0.212 0.265 0.277 0.749  0.343 0.013 0.284 0.407 0.393 0.878
13c 0.377 0.008 0.210 0.259 0.276 0.741  0.341 0.013 0.274 0.397 0.390 0.888
14c 0.411 0.006 0.206 0.192 0.199 0.446 0.411 0.006 0.206 0.192 0.200 0.458
15¢ 0.393 0.009 0.241 0.294 0.315 0.764 0.393 0.009 0.242 0.296 0.316 0.770
16¢ 0.399 0.006 0.198 0.196 0.198 0.484 0.399 0.006 0.198 0.196 0.200 0.482
17¢c 0.395 0.006 0.193 0.191 0.199 0.471 0.394 0.006 0.191 0.190 0.199 0.474
18¢ 0.402 0.006 0.201 0.197 0.199 0.478  0.403 0.006 0.202 0.199 0.200 0.482
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Table S8.4 continued.

CCA GP
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
la —0.011 0.010 0.091 0.302 0.315 0.932 —0.016 0.008 0.059 0.242 0.257 0.960
2a —0.038 0.013 0.165 0.404 0.398 0.909 —0.024 0.010 0.108 0.328 0.353 0.956
3a 0.004 0.007 0.044 0.210 0.208 0.939 —0.013 0.005 0.028 0.167 0.165 0.943
4a —0.050 0.014 0.189 0.432 0.441 0.905 —-0.022 0.011 0.116 0.341 0.371 0.944
5a —0.128 0.006 0.054 0.194 0.199 0.890 0.271 0.005 0.100 0.163 0.168 0.633
6a —0.097 0.007 0.066 0.237 0.245 0.926  0.269 0.007 0.121 0.221 0.225 0.772
Ta —0.232 0.005 0.082 0.168 0.173 0.736  0.118 0.005 0.043 0.171 0.173 0.904
8a —0.197 0.004 0.056 0.130 0.130 0.646  0.263 0.003 0.079 0.098 0.101 0.261
9a —0.173 0.008 0.101 0.266 0.270 0.883  0.257 0.007 0.116 0.224 0.229 0.795
10a 0.017 0.005 0.029 0.169 0.170 0.953  0.003 0.005 0.022 0.147 0.152 0.946
11a 0.007 0.006 0.040 0.200 0.193 0.947 —0.014 0.006 0.039 0.196 0.203 0.952
12a 0.058 0.005 0.028 0.157 0.154 0.928 —0.003 0.004 0.019 0.138 0.136 0.943
13a 0.018 0.007 0.056 0.236 0.237 0.946 —0.003 0.006 0.037 0.192 0.194 0.940
14a —0.092 0.003 0.018 0.099 0.105 0.864 0.265 0.003 0.079 0.091 0.095 0.191
15a —0.051 0.004 0.016 0.115 0.119 0.933 0.264 0.004 0.084 0.121 0.124 0.421
16a —0.166 0.003 0.036 0.094 0.092 0.559  0.138 0.003 0.028 0.096 0.096 0.710
17a —0.116 0.003 0.023 0.095 0.094 0.762 0.264 0.003 0.076 0.080 0.082 0.110
18a —0.115 0.005 0.035 0.149 0.144 0.859 0.266 0.004 0.083 0.131 0.128 0.455
1b —0.078 0.015 0.226 0.469 0.491 0.899 —0.036 0.011 0.130 0.359 0.428 0.958
2b —0.117 0.019 0.375 0.601 0.900 0.887 —0.097 0.016 0.265 0.505 0.861 0.938
3b —0.020 0.010 0.091 0.301 0.300 0.919 —0.019 0.007 0.055 0.233 0.240 0.939
4b —0.093 0.020 0.407 0.631 1.158 0.899 —0.045 0.016 0.253 0.501 1.087 0.944
5b —0.145 0.009 0.103 0.286 0.286 0.903  0.269 0.008 0.132 0.244 0.244 0.799
6b —0.109 0.011 0.131 0.345 0.362 0.930 0.280 0.010 0.177 0.314 0.339 0.862
b —0.213 0.007 0.101 0.237 0.250 0.865 0.134 0.008 0.076 0.241 0.252 0.926
8b —0.209 0.006 0.079 0.187 0.186 0.775 0.259 0.004 0.087 0.140 0.144 0.570
9b —0.175 0.012 0.184 0.392 0.411 0.902 0.263 0.010 0.174 0.325 0.339 0.883
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Table S8.4 continued.

CCA GP
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
10b 0.011 0.007 0.056 0.237 0.244 0.957 —0.002 0.007 0.050 0.223 0.221 0.939
11b 0.001 0.009 0.083 0.283 0.276 0.918 —0.019 0.010 0.093 0.304 0.304 0.938
12b 0.058 0.007 0.050 0.216 0.223 0.953 —0.007 0.006 0.038 0.194 0.197 0.949
13b —0.015 0.011 0.122 0.350 0.345 0.934 —0.023 0.009 0.077 0.277 0.287 0.950
14b —0.092 0.005 0.030 0.146 0.148 0.889  0.263 0.004 0.08% 0.136 0.136 0.505
15b —0.060 0.005 0.033 0.170 0.170 0.929 0.263 0.006 0.101 0.177 0.183 0.712
16b —0.171 0.004 0.047 0.132 0.131 0.741  0.139 0.004 0.038 0.136 0.138 0.820
17b —0.121 0.004 0.032 0.134 0.135 0.842 0.263 0.004 0.082 0.115 0.118 0.388
18b —0.113 0.007 0.055 0.206 0.207 0.904 0.264 0.006 0.102 0.178 0.185 0.702
1c —1.163 0.098 10.972 3.101 3.092 0.792 —0.994 0.095 10.003 3.003 3.085 0.878
2¢ —2.086 0.131 21.614 4.155 3.415 0.733 —1.979 0.130 20.875 4.118 3.689 0.835
3c —0.184 0.029 0.880 0.920 1.477 0.887 —0.102 0.024 0.574 0.751 1.412 0.939
4c —2.730 0.148 29.275 4.671 3.710 0.722 —2.295 0.142 25.436 4.491 3.974 0.916
5¢ —0.254 0.029 0.904 0.916 1.764 0.891 0.288 0.018 0.409 0.571 1.106 0.951
6¢ —0.548 0.067 4.832 2.129 2.684 0.893  0.402 0.046 2.276 1.454 2.782 0.969
Tc —0.223 0.020 0.467 0.646 1.303 0.912 0.109 0.020 0.424 0.642 1.322 0.952
8¢ —0.236 0.014 0.258 0.450 0.508 0.891  0.279 0.011 0.197 0.345 0.369 0.883
9¢c —0.662 0.079 6.624 2.487 3.186 0.896 0.314 0.053 2.915 1.678 2.454 0.972
10c —0.105 0.019 0.376 0.604 0.740 0.897 —0.098 0.017 0.294 0.534 0.790 0.943
11c —0.113 0.025 0.649 0.798 1.174 0.906 —0.183 0.031 1.006 0.986 1.758 0.931
12¢ 0.010 0.018 0.313 0.560 0.598 0.938 —0.053 0.021 0.455 0.673 0.703 0.937
13c —0.170 0.036 1.330 1.140 1.967 0.919 —0.129 0.030 0.920 0.950 1.983 0.948
14c —0.107 0.011 0.133 0.349 0.360 0.922 0.286 0.010 0.187 0.324 0.351 0.882
15¢ —0.088 0.013 0.187 0.424 0.417 0.913 0.276 0.015 0.314 0.488 0.664 0.951
16¢ —0.159 0.009 0.115 0.299 0.311 0.924 0.143 0.010 0.124 0.323 0.357 0.952
17c —0.133 0.010 0.114 0.311 0.323 0.918 0.259 0.009 0.144 0.277 0.304 0.872
18¢ —0.148 0.016 0.264 0.492 0.593 0.938 0.280 0.014 0.278 0.447 0.510 0.926
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Table S8.4 continued.

IPWM
Scenario Bias BSE MSE SE SSE CP
la —0.016 0.008 0.059 0.242 0.257 0.960
2a, —0.024 0.010 0.108 0.328 0.353 0.956
3a —0.013 0.005 0.028 0.167 0.165 0.943
4a, —0.022 0.011 0.116 0.341 0.371 0.944
5a, —0.004 0.006 0.035 0.186 0.194 0.954
6a —0.010 0.008 0.060 0.244 0.252 0.952
Ta —0.013 0.005 0.030 0.172 0.179 0.951
8a 0.003 0.004 0.015 0.122 0.125 0.952
9a, —0.019 0.008 0.065 0.255 0.265 0.948
10a 0.003 0.005 0.022 0.147 0.152 0.946
11a —0.014 0.006 0.039 0.196 0.203 0.952
12a, —0.003 0.004 0.019 0.138 0.136 0.943
13a —0.003 0.006 0.037 0.192 0.194 0.940
14a, —0.005 0.003 0.011 0.104 0.106 0.962
15a —0.001 0.004 0.017 0.129 0.134 0.963
16a 0.010 0.003 0.010 0.099 0.099 0.947
17a 0.001 0.003 0.009 0.096 0.095 0.943
18a 0.001 0.005 0.022 0.148 0.144 0.949
1b —0.036 0.011 0.130 0.359 0.428 0.958
2b —0.097 0.016 0.265 0.505 0.861 0.938
3b —0.019 0.007 0.055 0.233 0.240 0.939
4b —0.045 0.016 0.253 0.501 1.087 0.944
5b —0.017 0.009 0.082 0.286 0.284 0.942
6b —0.014 0.011 0.129 0.359 0.386 0.958
b 0.004 0.008 0.059 0.243 0.261 0.969
8b —0.004 0.006 0.032 0.180 0.181 0.958
9b —0.025 0.012 0.141 0.374 0.415 0.956
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CONFOUNDING AND EXPOSURE-OUTCOME MISCLASSIFICATION

Table S8.4 continued.

IPWM
Scenario Bias BSE MSE SE SSE CP
10b —0.002 0.007 0.050 0.223 0.221 0.939
11b —0.019 0.010 0.093 0.304 0.304 0.938
12b —0.007 0.006 0.038 0.194 0.197 0.949
13b —0.023 0.009 0.077 0.277 0.287 0.950
14b —0.003 0.005 0.022 0.147 0.152 0.960
15b —0.006 0.006 0.035 0.187 0.198 0.963
16b 0.010 0.004 0.020 0.142 0.143 0.956
17b —0.003 0.004 0.017 0.131 0.136 0.956
18b 0.010 0.006 0.042 0.205 0.207 0.955
lc —0.994 0.095 10.003 3.003 3.085 0.878
2¢ —1.979 0.130 20.875 4.118 3.689 0.835
3c —0.102 0.024 0.574 0.751 1.412 0.939
4c —2.295 0.142 25.436 4.491 3.974 0.916
5c —0.101 0.029 0.849 0.916 1.771 0.950
6c —0.373 0.069 4.896 2.181 3.041 0.978
Tc —0.027 0.022 0.470 0.685 1.298 0.961
8c —0.019 0.014 0.200 0.447 0.527 0.953
9c —0.372 0.068 4.769 2.152 2.579 0.989
10c —0.098 0.017 0.294 0.534 0.790 0.943
11c —0.183 0.031 1.006 0.986 1.758 0.931
12¢ —0.053 0.021 0.455 0.673 0.703 0.937
13c —0.129 0.030 0.920 0.950 1.983 0.948
14c —0.003 0.011 0.130 0.360 0.396 0.967
15¢ —0.018 0.016 0.263 0.512 0.705 0.984
16¢ 0.014 0.011 0.114 0.338 0.371 0.966
17¢c —0.005 0.010 0.101 0.318 0.349 0.952
18¢ —0.002 0.016 0.249 0.499 0.613 0.962
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