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Dynamic covariate measurement

Abstract

Purpose. In studies of effects of time-varying drug exposures, adequate
adjustment for time-varying covariates is often necessary to properly control for
confounding. However, the granularity of the available covariate data may not be
sufficiently fine, for example when covariates are measured for participants only
when their exposure levels change. Methods. To illustrate the impact of choices
regarding the frequency of measuring time-varying covariates, we simulated data
for a large target trial and for large observational studies, varying in covariate
measurement design. Covariates were measured never, on a fixed-interval basis,
or each time the exposure level switched. For the analysis, it was assumed
that covariates remain constant in periods of no measurement. Cumulative
survival probabilities for continuous exposure and non-exposure were estimated
using inverse probability weighting to adjust for time-varying confounding, with
special emphasis on the difference between five-year event risks. Results.
With monthly covariate measurements, estimates based on observational data
coincided with trial-based estimates, with five-year risk differences being zero.
Without measurement of baseline or post-baseline covariates, this risk difference
was estimated to be 49% based on the available observational data. With
measurements on a fixed-interval basis only, five-year risk differences deviated
from the null, to 29% for six-monthly measurements, and with magnitude
increasing up to 35% as the interval length increased. Risk difference estimates
diverged from the null to as low as −18% when covariates were measured
depending on exposure level switching. Conclusion. Our simulations highlight
the need for careful consideration of time-varying covariates in designing studies
on time-varying exposures. We caution against implementing designs with long
intervals between measurements. The maximum length required will depend on
the rates at which treatments and covariates change, with higher rates requiring
shorter measurement intervals.
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Chapter 7

7.1 Introduction

In many pharmacoepidemiologic studies, the use of the drugs that are investigated
may change over time. In case of such time-varying exposures, the exposure
effect can be defined in different ways. For example, one could contrast initiating
drug treatment at a particular point in time (irrespective of whether the use is
continued) with not initiating, or continuous drug use with continuous non-use.
While analyses of point interventions (e.g., a single-dose vaccination) require
adjustment for confounding at baseline only, for analyses of a time-varying
exposure, information on time-varying covariates might be required to mitigate
bias due to time-varying confounding. However, the granularity of the available
information about the time-varying covariates may not be sufficiently fine to
adequately control for confounding.

One special case of where this issue may arise is where researchers choose
to measure covariates for study subjects only when their exposure levels have
changed since the last measurement. If exposure levels do not change, covariate
levels are (implicitly) assumed to remain constant, which is an implementation
of a method generally known as last-observation-carried-forward (LOCF). The
accurateness of the observed covariate data may then depend on the observed
exposure history. In studies of antidepressant use and the risk of hip fracture, for
example, comorbidities and use of co-medication were assessed only at baseline
and whenever patients switched exposure level or after every six months in the
absence of switching (Ali et al., 2016; Souverein et al., 2016).

In this paper, we investigate the impact of various covariate measurement
designs on the estimation of time-varying exposure effects in observational studies
with time-varying confounding. We illustrate, by way of simulation, the potential
for bias of inverse-probability-weighting (IPW) estimators under static designs of
fixed-interval covariate measurement and under dynamic designs with covariates
being measured depending on the observed exposure history. IPW estimators
are considered as these are increasingly used for estimating causal effects of time-
varying exposures, can accommodate exposure-covariate feedback (Hernán and
Robins, 2020), and readily allow for ‘adjusted’ survival curves to be created (Cole
and Hernán, 2004).

7.2 Methods

We first simulated data for a hypothetical study, the ‘target trial’, which if
implemented on theoretical population of interest would readily allow us to
identify the exposure effect of interest (Hernán and Robins, 2016). In practice, it
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is not always possible to implement a target trial, but we use it here as a means to
clarify the exposure effect of interest and we simulate from it to give a reference
against which to compare results from analyses that are based on simulated
data for observational studies. We considered multiple observational studies,
each with the same data-generating mechanism but with different covariate
measurement designs to evaluate their impact. Having simulated data, we then
estimated the survival curves for the period of five years, using a weighting
approach (described below) that was designed to keep treatment arms comparable
throughout follow-up in terms of measured covariates. For each of the trial and
observational studies, we first generated data on a single sample of n = 150 000
individuals, which is sufficiently large to allow us to ignore sampling variability
and regard differences between the survival curves as measures of the impact
of the measurement designs on the large sample bias of the IPW estimators.
The results corresponding to this single simulation run are described in detail
below. In the online supplementary material, we summarise the results of 5000
independent simulation runs for sample sizes 150 000, 10 000, 1000, and 100. R
code for the simulations is also provided as online supplementary material.

Set-up

The target trial has the following key design elements: (1) study participants
(subjects who satisfy the eligibility criteria) are randomised at a well-defined
baseline time point t0 to either being issued a drug prescription (A0 = 1)—say, a
prescription for a daily dose of some antidepressant drug for the next one-month
period—or to not being issued the prescription (A0 = 0) at t0; (2) participants
are then followed over time until the occurrence of an event (e.g., the first hip
fracture or death if the subject dies without having sustained a hip fracture
during follow-up) or the administrative study end, whichever comes first; (3)
provided event-free survival is long enough, study participants in the (A0 = 1)-
group are issued a further prescription after every month since t0 and those in
the (A0 = 0)-group do not receive a prescription during follow-up. For a given
subject, we define Ak to be the indicator variable that takes the value of 1 if
the subject is on a one-month prescription on month k; Ak = 0 otherwise. We
further define Y to be the amount of follow-up time between baseline and the
subject’s (first) event and let Yk be that part of Y that relates to month k. We
stipulate that study participants are event-free at the start of the study and that
subjects do not get lost to follow-up before the administrative study end, which
we stipulated to be five years (or K = 60 months) post-baseline.

The observational studies differ from the target trial in the following ways
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only: (1) the decision to allocate a subject to A0 = 1 versus A0 = 0 is not
made by randomisation; (2) the decisions to renew prescriptions for subjects in
the (A0 = 1)-group or to never issue a prescription throughout the follow-up
period for those in the (A0 = 0)-group are not determined by their baseline
allocations A0. Rather, for month k = 0, 1, ..., the decision to set exposure Ak

to 0 or 1 is based only on past exposure history (Aj : j < k) and certain binary
covariates Lk. In this observational setting, subjects can switch at the start of
each month between exposure levels ‘being on prescription’ (or ‘exposed’) versus
‘not being on prescription’ (or ‘not exposed’). In variations on this setting,
covariate data were measured according to one of the following measurement
designs: (1) covariates were not measured at all, thus precluding any adjustment
for confounding and effectively forcing us to implement a ‘crude’ estimator; (2)
covariates were measured on a monthly basis, which is sufficient for identification
of our target quantity; (3) covariates were measured on a six-monthly basis
starting at baseline; (4) covariates were measured when the respective subject’s
exposure level switched; (5) covariates were measured with an exposure level
switch and at a six-monthly basis in the absence of exposure level switching. We
also considered variations on designs (3) and (5) where, instead of six months, the
fixed measurement interval have a length of 2, 3, 9, 12, ..., or 60 months. Where
design (3) means that measurement times are known before the start of follow-
up, designs (4) and (5) are dynamic in the sense that whether or not a subject’s
covariate level is measured depends on the subject’s time-varying variables.

L0 L1

A0 A1

Y0 Y1

U L0 L1

A0 A1

Y0 Y1

U

Figure 7.1: Directed acyclic graphs representing the data-generating mechanism
for the first two months of the target trial (left) and observational study (right).
Here, U represents a unmeasured common cause of the measured covariates L0, L1
and outcome variables Y0, Y1. The absence of directed paths from exposure
variables to outcome variables reflects the absence of a causal exposure-outcome
effect.
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Data-generating mechanism
To simulate longitudinal data for a setting with time-varying confounding we used
a variation on the approaches described by Havercroft and Didelez (2012) and
Young and Tchetgen Tchetgen (2014). The data-generating mechanisms for the
target trial and observational studies are described in the Appendix and produce
data that are consistent with the directed acyclic graphs (DAGs) of Figure 7.1.
In the trial setting (left panel of Figure 7.1), the absence of arrows going into
the exposure variables reflects the absence of (time-varying) confounding. In the
target trial, post-baseline exposures are fully determined by the baseline level of
exposure, which takes the value of 1 for half of subjects (i.e., exposure status does
not change over time). In the observational study, however, approximately 40%
of subjects will have switched exposure level by the end of follow-up in each of
the arms that are defined by baseline exposure level.

Defining and estimating the exposure effect
We define the exposure effect of interest as a contrast between continuous
exposure (Aj = 1 for j = 0, 1, ...) versus continuous non-exposure (Aj = 0 for
j = 0, 1, ...). In particular, we suppose that the interest lies with a contrast
between the five-year event-free survival probabilities that we would observe had
everyone received continuous exposure versus continuous non-exposure; i.e., a
contrast that is identified in the target trial as

Pr(Y ≥ 60|A0 = 1) versus Pr(Y ≥ 60|A0 = 0).

As indicated by the absence of a directed path of arrows from the exposure
variables to the outcome variables in the DAG for the target trial, the difference
between these two survival probabilities is zero.

To account for time-varying confounding in the observational studies, we
implemented IPW by applying a crude (Kaplan-Meier) estimator to an artificial
data set where, given any time during follow-up, a subject received a weight
of zero if the subject had experienced an exposure level switch by that time
and otherwise a weight equal to the reciprocal of the product of the estimated
probabilities of their observed exposure levels until that time given the respective
measured exposure and covariate histories. That is, for a = 0, 1, a subject’s
weight for month k was

Wk =
k∏

j=0

1
Pr(Aj = a|Y ≥ j, A0 = ... = Aj−1 = a, L0, ..., Lj)
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if the subject received exposure level a in months 0 through k (i.e., A0 =
... = Ak = a). Subjects were censored (i.e., received a weight of zero) from
the time at which they switched to another exposure level. Apart from the
covariate measurement design, the validity of the approach also rests on the
correct specification of the model for the conditional treatment probabilities. To
ensure correct specification for the reference measurement design (1), we assumed
that the exposure Ak given survival and past exposure and covariate levels was
Bernoulli distributed with mean equal to

Pr(Ak = 1|Y ≥ k, A0, ..., Ak−1, L0, ..., Lk)

= exp[α0 + α1I(k = 0) + α2Ak−1 + α3Lk]
1 + exp[α0 + α1I(k = 0) + α2Ak−1 + α3Lk]

for some α0, α1, α2, α3, which were estimated by a pooled logistic regression under
this model. Throughout, variables that were unobserved by measurement design
were handled with LOCF.

7.3 Results

Figure 7.2 shows the estimated survival curves for the ‘always treat’ and ‘never
treat’ protocols. Consistent with the absence of a directed path from the exposure
variables to the outcome variables in the DAGs of Figure 7.1, the trial-based
estimates of the survival curves overlap (Figure 7.2, panel A). Where we observed
a five-year event risk of 31% in both arms of the target trial, in the observational
setting, we observed a risk of 64% and 15% in those who do and those who
do not receive a treatment prescription at baseline, respectively, giving a risk
difference of 49% (panel B). With monthly covariate measurement, IPW resulted
in survival curves that virtually coincide with those of the trial (panel C), for
which we found a risk difference of zero. Six-monthly measurements (panel D),
however, brought the curves closer to those of the no measurement setting (panel
B), i.e., in the ‘direction of confounding’. The five-year risks with six-monthly
measurements were estimated to be to 50% and 21%, respectively, giving a risk-
difference of 29%. In Figure 7.3, panel A, it is shown that the estimated risk
differences at two and five years increase with the interval measurement length,
until they reach a plateau of approximately 20% and 35%, respectively. When the
interval length was set equal to the maximum follow-up duration (60 months),
only baseline covariates were measured, which resulted in an estimated five-year
risk difference that was approximately 15 percent points closer to the target
than that of no covariate measurement at all (Figure 7.2, panel B). When we
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Figure 7.2: Estimated event-free survival curves for ‘always treat’ and ‘never
treat’ protocols based on target trial (panel A) and observational study (B through
F) with varying covariate measurement designs: no covariate measurement
(B), continuous to monthly covariate measurement (C), six-monthly covariate
measurement (D), covariate measurement only with covariate level switching (E),
and with exposure switching and six-monthly in periods without switching (F).
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implemented measurement design (4), the estimated 5-year risk difference flipped
to the other side of the null, −14% (panel E), with five-year risks estimated to
be 27% and 41% for the ‘always treat’ and ‘never treat’ protocols, respectively.
For design (5), we observed a 5-year risk difference of −5%, somewhere between
the results of design (3) and (4) (panel F). With increasingly large measurement
intervals within periods of no switching, the estimated two-year risk difference
steadily decreased to approximately −15% (Figure 7.3, panel B). The estimated
five-year risk was also −15% with 60 months between measurements in periods
of no switching, equal to the observed risk of design (4), as expected. However, it
was lowest, approximately −18%, with an interval length of around 30 months.

The bias estimates of the survival curves and 5-year risk differences that were
derived by averaging across 5000 independent samples of sizes 150 000, 10 000
and 1000 are nearly identical to the corresponding estimates described above and
given in Figures 7.2 and 7.3 (cf. online supplementary material). For sample size
100, however, we observed substantial (small sample) bias for all measurement
designs, even in the reference observational setting with full/monthly covariate
measurement.
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Figure 7.3: Estimated two- and five-year event risk differences comparing ‘always
treat’ versus ‘never treat’ protocols. Estimates derive from observational studies
with varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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7.4 Discussion

We used simulation to study and illustrate the potential for bias due to
measurement design choices in the estimation of the effects of time-varying
exposures. The potential for bias in settings with static or fixed-interval covariate
measurement designs has recently been illustrated already (Young et al., 2019).
We additionally showed that bias might arise in settings where decisions to
measure are driven by observed values of the time-varying exposure.

As expected, in our simulations, fixed-interval measurement resulted in
bias in the direction of confounding, bias that is attributable to residual
confounding. Interestingly, we found bias in the opposite direction when we
implemented measurement designs where covariates were measured preferentially
with exposure level switches. Together with LOCF, these measurement designs
introduced a form of differential misclassification, which may result in bias even
in the absence of confounding (Webster-Clark et al., 2020). Researchers familiar
with DAGs might be alerted by the presence of colliders in the DAG that encodes
part of the misclassification mechanism. For example, on the DAG of the right
panel of Figure 7.1, the differential misclassification of L1 can be represented by
adding a measured version of L1 with incoming arrows from L0, L1, A0 and A1.
The measured variable can then be seen to be a collider on the path from A1
to Y1 via L1 and U . By conditioning on the collider (and not the unmeasured
variable L1 or U), the path is opened, potentially leading to collider-stratification
bias (Hernán and Robins, 2020).

In addition to adequate measurement of the time-varying covariates, the
validity of IPW rests on the correct specification of the model for the distribution
of the treatment variables given survival and past covariate and exposure
levels. It is possible that the biases that we observed are partly due to model
misspecification.

We considered a specific and relatively simple setting with a single, binary
covariate, no censoring before the administrative study end and an interest in
static rather than dynamic treatment strategies. These features are not required
for valid inference with IPW (Hernán and Robins, 2020). However, the magnitude
and direction of bias in other settings may differ from those observed in the
current study. We stress that the bias that was observed in our simulation does
not depend critically on the choice of IPW as a means to control for time-varying
confounding. The choices regarding the frequency of covariate measurements will
likely also affect the properties other methods, including the commonly applied
Cox’ regression analysis with time-varying covariates. The extent to which such
choices impact a particular study are obviously context-specific. For example,
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it will likely depend on the rate at which subjects cross over between treatment
arms as well as on the extent to which covariates are subject to change over time.

In conclusion, our simulations highlight the need for adequate measurement
of time-varying covariates in observational studies on the effects of time-varying
exposures. Researchers should consider differential covariate misclassification
as a possible source of bias when designing covariate measurement strategies
(Webster-Clark et al., 2020). Whether or not covariates are measured with every
exposure level switch, we caution against implementing measurement designs with
long intervals between measurements, particularly when the impact of the design
choices are poorly understood. The maximum interval length that is sufficient to
yield negligible bias will depend on the rates at which treatments and covariates
can change (Young et al., 2019), with higher rates requiring shorter measurement
intervals.
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Supplementary Material

Table S7.1: Summary of estimated 5-year (always-versus-never-exposed) risk
differences over 5000 simulation runs for sample sizes 150 000, 10 000, 1000, and
100. (Continued on next page.)

Study/measurement design† Mean estimate
(95% CI)‡

Empirical
variance

Mean
squared error

Sample size: 150 000
A: Target trial -0.000 (-0.000, 0.000) 0.000 0.000
B: Observational study 1 0.485 (0.485, 0.485) 0.000 0.235
C: Observational study 2 -0.000 (-0.000, 0.000) 0.000 0.000
D: Observational study 3 0.286 (0.286, 0.286) 0.000 0.082
E: Observational study 4 -0.134 (-0.134, -0.134) 0.000 0.018
F: Observational study 5 -0.044 (-0.044, -0.043) 0.000 0.002

Sample size: 10 000
A: Target trial 0.000 (-0.000, 0.000) 0.000 0.000
B: Observational study 1 0.485 (0.485, 0.486) 0.000 0.236
C: Observational study 2 0.000 (-0.000, 0.001) 0.001 0.001
D: Observational study 3 0.286 (0.286, 0.287) 0.000 0.082
E: Observational study 4 -0.135 (-0.136, -0.134) 0.002 0.021
F: Observational study 5 -0.043 (-0.044, -0.042) 0.001 0.003

†The target trial and observational studies are described in the main text.
Observational studies 1 through 5 differ in covariate measurement design: in
observational study 1 (B), covariates were never measured; in study 2 (C),
covariates were measured on a monthly basis; in study 3 (D), covariates were
measured on a six-monthly basis starting at baseline; in study 4 (E), covariates
were measured when the respective subject’s exposure level switched; ...
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Figure S7.1: Mean estimated event-free survival probabilities across 5000
samples of size 150 000 based on target trial (panel A) and observational
study (B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).
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Table S7.1 continued.

Study/measurement design† Mean estimate
(95% CI)‡

Empirical
variance

Mean
squared error

Sample size: 1000
A: Target trial 0.000 (-0.001, 0.001) 0.001 0.001
B: Observational study 1 0.486 (0.485, 0.487) 0.002 0.238
C: Observational study 2 0.014 (0.012, 0.016) 0.007 0.007
D: Observational study 3 0.291 (0.289, 0.292) 0.003 0.087
E: Observational study 4 -0.132 (-0.136, -0.128) 0.026 0.044
F: Observational study 5 -0.028 (-0.031, -0.025) 0.009 0.009

Sample size: 100
A: Target trial -0.000 (-0.003, 0.003) 0.009 0.009
B: Observational study 1 0.484 (0.481, 0.488) 0.016 0.251
C: Observational study 2 0.117 (0.110, 0.123) 0.060 0.073
D: Observational study 3 0.320 (0.315, 0.324) 0.026 0.129
E: Observational study 4 -0.004 (-0.014, 0.007) 0.154 0.154
F: Observational study 5 0.091 (0.084, 0.099) 0.072 0.080

... in study 5 (F), covariates were measured with an exposure level switch and at a
six-monthly basis in the absence of exposure level switching. ‡95% CI refers to the
pointwise 95% confidence interval µ̂ ± 1.96

√
σ̂2/5000, where µ̂ denotes the mean

estimated risk difference and σ̂2 its empirical variance, i.e., the sample variance
of the sample of 5000 estimates
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Figure S7.2: Mean estimated two- and five-year event risk differences across
5000 samples of size 150 000. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Figure S7.3: Mean estimated event-free survival probabilities across 5000
samples of size 10 000 based on target trial (panel A) and observational study
(B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).
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Figure S7.4: Mean estimated two- and five-year event risk differences across
5000 samples of size 10 000. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Figure S7.5: Mean estimated event-free survival probabilities across 5000
samples of size 1000 based on target trial (panel A) and observational study
(B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).
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Figure S7.6: Mean estimated two- and five-year event risk differences across
5000 samples of size 1000. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Figure S7.7: Mean estimated event-free survival probabilities across 5000
samples of size 100 based on target trial (panel A) and observational study
(B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).
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Figure S7.8: Mean estimated two- and five-year event risk differences across
5000 samples of size 100. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Supplementary R code

# R code to supplement ’Bias of time - varying exposure effects due to
# time - varying covariate measurement strategies ’
# Compiled by Bas B.L. Penning de Vries (last updated : 7 Dec 2020)

# ===================================================================
# Preliminaries
# ===================================================================

# settings
K <- 60L # maximum number of months of follow -up
n <- 1.5 e5L # sample size

# useful functions :
expit <- function (x) 1/(1+ exp(-x))
locf <- function (x){

# Last Observation Carried Forward
isNA <- is.na(x)
if(isNA [1L]) stop(’the first element is NA.’)
y <- rep(x[!isNA], tabulate ( cumsum (!isNA)))
return (y)

}
qFirst <- function (x,last= FALSE ){

# Tests whether elements in x are the first occurrence of the
# corresponding values
if(last) x <- rev(x)
n <- length (x)
w <- seq_len(n)
o <- order (x)
x <- x[o]
y <- c(TRUE ,x[-1L]!=x[-n])
z <- y[ match (w,o)]
if(last) z <- rev(z)
return (z)

}

# ===================================================================
# Data generating mechanism
# ===================================================================

drawSample <- function (n, trial = FALSE ){
sq <- seq (0,K -1e -6)
A <- L <- matrix (nrow=n,ncol= length (sq))
colnames (A) <- paste0 ("A",sq)
colnames (L) <- paste0 ("L",sq)
U <- runif (n)
lagL <- lagA <- rep (0L,n)
S <- rep (0,n)
for(j in seq_ along (sq)){

Surv <- S >=(j -1L)
Lk <- ifelse (Surv , runif (n)<expit ( -.5+.25*(j==1L)+6*(U -.5)+

.5*(lagA -.5) +1*(lagL -.5)),NA)
g <- if( trial ) {if(j==1L) rep (.5 ,n) else lagA} else
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expit (4*(j==1L)+10*(lagA -.5) +4*(Lk -.5))
Ak <- ifelse (Surv , runif (n)<g,NA)
L[,j] <- Lk
A[,j] <- Ak
eta <- 7*(U -.5)
s <- suppressWarnings (rexp(n,rate=exp ( -6+ eta)))
s[is.na(s)] <- 0
S <- S+Surv*pmin(s ,1L)
Surv <- ifelse (Surv ,s >1L, FALSE )
lagL <- Lk; lagA <- Ak

}
status <- S<K
S[! status ] <- K
return (data. frame (L*1L,A*1L,S=S, status = status ))

}
coarsen <- function (data , design ="I",after =6L){

# assumes ’data ’ to be in long format
out <- switch (design ,

I={ # exposure switch
lagA <- ifelse ( qFirst (data$unit) ,0L,c(0L,data$A[-nrow(data)]))
M <- (data$ start !=0L)&data$A== lagA&data$start >=0L
data$L[M] <- NA
return (data)

},
II ={
# set to missing if not multiple of ’after ’ months from baseline

M <- data$ start %% after !=0L&data$start >=0L
data$L[M] <- NA
return (data)

},
III ={
# set to missing if no switch of exposure AND not multiple of
# ’after ’ months from since last exposure switch

lagA <- ifelse ( qFirst (data$unit) ,0L,c(0L,data$A[-nrow(data)]))
M <- (data$ start !=0L)&data$A== lagA&data$start >=0L
cs <- cumsum (M)
wh <- cumsum (!M)
qf <- qFirst (wh)
monthsSinceLastSwitch <- cs -cs[qf ][ match (wh , unique (wh))]
M[! monthsSinceLastSwitch %% after ] <- FALSE
data$L[M] <- NA
return (data)

}
)

}

# ===================================================================
# Data pre - processing functions
# ===================================================================

longFormat <- function (data){
n <- nrow(data)
w_L <- grep("ˆL -[:0 -9:]+$",colnames (data))
wL <- grep("ˆL[:0 -9:]+$",colnames (data))
wA <- grep("ˆA[:0 -9:]+$",colnames (data))
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unit <- matrix (seq_len(n),nrow=n,ncol= length (wA),
byrow = FALSE )[!is.na(data[,wA ])]

column <- matrix (seq_ along (wA),nrow=n,ncol= length (wA),
byrow =TRUE)[!is.na(data[,wA ])]

w <- cbind (unit , column )[ order (unit) ,]
out <- data. frame (unit=w[,1L], start =w[,2L]-1L)
out$stop <- out$ start +1L
out$stop[ qFirst (out$unit ,TRUE)] <- data$S
out$L <- data[,wL ][w]
out$A <- data[,wA ][w]
out$ event <- FALSE
out$ event [ qFirst (out$unit ,TRUE)] <- data$ status
rownames (out) <- NULL
return (out)

}
lagVariables <- function (data ,m=1L){

lagL <- matrix (nrow=nrow(data),ncol=m)
colnames (lagL) <- paste0 ("lag",seq_len(m),"L")
lagA <- matrix (nrow=nrow(data),ncol=m)
colnames (lagA) <- paste0 ("lag",seq_len(m),"A")
wh <- which ( colnames (data)%in%c( colnames (lagL),colnames (lagA)))
if(any(wh)) data <- data[,-wh ,drop= FALSE ]
record <- data$start -min(data$ start )+1L
for(i in seq_len(m)){

lagL[,i] <- ifelse (record >i,c(rep (0L,i),
data$L[-( nrow(data) -0:(i -1))]) ,0L)

lagA[,i] <- ifelse (record >i,c(rep (0L,i),
data$A[-( nrow(data) -0:(i -1))]) ,0L)

}
data <- cbind (data ,lagL ,lagA)
return (data)

}
LOCF <- function (data){

data$L <- locf(data$L)
return (data)

}
qAdhering <- function (data){

switched <-
ifelse ( qFirst (data$unit),TRUE ,c(TRUE ,diff(data$A)!=0L))*1L

cs <- cumsum ( switched )
mt <- with(data , match (unit , unique (unit)))
return (cs == cs[ qFirst (data$unit)][ mt ])

}

# ===================================================================
# Estimators
# ===================================================================

getPS <- function (data){
fit <- glm(A˜I(! start )+ lag1A +L,data=data[data$start >=0L,,

drop= FALSE ], family = binomial )
return ( unname ( predict (fit , newdata =data ,type=" response ")))

}
estimateIPW <- function (data ,ps){

data$ps <- ps
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data <- data[data$start >=0L ,]
data <- data[ qAdhering (data) ,]
lp <- log( ifelse (data$A >0L,data$ps ,1- data$ps))
cs <- cumsum (lp)
ql <- qFirst (data$unit ,TRUE)
data$W <- 1/exp(cs -c(0,cs[ql][- sum(ql)])[ match (data$unit ,

unique (data$unit))])
EW0 <- with(data[data$A==0L,], tapply (W,start ,mean))
EW1 <- with(data[data$A==1L,], tapply (W,start ,mean))
mt0 <- with(data , match (start , unique ( start )))
mt1 <- with(data , match (start , unique ( start )))
data$sW <- data$W/ ifelse (data$A >0L,EW1[mt1],EW0[mt0 ])
fit <- with(data , survival :: survfit ( survival :: Surv(start ,stop ,

event )˜A, weights =sW , timefix = FALSE ))
smmry <- survival ::: summary . survfit (fit , times =0:K)
est <- split ( smmry $surv , smmry $ strata )
names (est) <- c(" surv0 "," surv1 ")
est$ surv0 <- c(est$surv0 ,rep(rev(est$ surv0 )[1L],

K+1L- length (est$ surv0 )))
est$ surv1 <- c(est$surv1 ,rep(rev(est$ surv1 )[1L],

K+1L- length (est$ surv1 )))
return (est)

}
crudePP <- function (data){

data <- data[data$start >=0L ,]
data <- data[ qAdhering (data),,drop= FALSE ]
ql <- qFirst (data$unit ,TRUE)
time <- data$stop[ql]
status <- data$ event [ql]
group <- data$A[ql]
fit <- survival :: survfit ( survival :: Surv(time , status )˜ group )
smmry <- survival ::: summary . survfit (fit , times =0:K)
est <- split ( smmry $surv , smmry $ strata )
names (est) <- c(" surv0 "," surv1 ")
est$ surv0 <- c(est$surv0 ,rep(rev(est$ surv0 )[1L],

K+1L- length (est$ surv0 )))
est$ surv1 <- c(est$surv1 ,rep(rev(est$ surv1 )[1L],

K+1L- length (est$ surv1 )))
return (est)

}

# ===================================================================
# Data generation & estimation
# ===================================================================

trial <- longFormat ( drawSample (n, trial =TRUE))
wide <- drawSample (n)
long <- lagVariables ( longFormat (wide))
longI <- lagVariables (LOCF( coarsen (long ,"I")))
longII <- lagVariables (LOCF( coarsen (long ,"II")))
longIII <- lagVariables (LOCF( coarsen (long ,"III")))

estA <- crudePP ( trial )
estB <- crudePP (long)
estC <- estimateIPW (long , getPS (long))
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estD <- estimateIPW (longII , getPS ( longII ))
estE <- estimateIPW (longI , getPS ( longI ))
estF <- estimateIPW (longIII , getPS ( longIII ))

sq <- c(1L ,2L,seq (3L ,60L ,3))
estVarD <- estVarF <- list ()
for(i in seq_ along (sq)){

cat("\r",i,"/",length (sq),sep=""); flush . console ()
longIIi <- lagVariables (LOCF( coarsen (long ,"II",after =sq[i])))
estVarD [[i]] <- estimateIPW (longIIi , getPS ( longIIi ))
longIIIi <- lagVariables (LOCF( coarsen (long ,"III",after =sq[i])))
estVarF [[i]] <- estimateIPW (longIIIi , getPS ( longIIIi ))

}
names ( estVarD ) <- names ( estVarF ) <- sq
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