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Cautionary note: propensity score matching does
not account for bias due to censoring

Bas B. L. Penning de Vries
Rolf H. H. Groenwold
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Propensity score matching and censoring

Abstract

This article gives a review of the limitations of propensity score matching as a
tool for confounding control in the presence of censoring. Using an illustrative
simulation study, we emphasize the importance of explicit adjustment for selective
loss to follow-up and explain how this may be achieved.
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Chapter 6

In epidemiological research, valid causal inference is often hampered by
confounding and selective loss to follow-up. Confounding is increasingly often
addressed by means of propensity score (PS) matching. The analysis of a PS
matched dataset closely resembles that of a randomised controlled trial (RCT);
one expects that, on average, the distribution of covariates will be similar between
treatment groups after propensity score matching or randomisation so that in
the absence of other forms of bias systematic differences in outcomes between
treatment groups can be attributed to treatment. Importantly, as is the case
with RCTs (Groenwold et al., 2014). PS matching (or randomisation in the case
of an RCT) typically does not account for selective loss to follow-up, and the
confounder balance that was achieved through PS matching (or randomisation)
may falsely reassure researchers and readers that the treatment groups under
study were (and remained) comparable. The problem of selective loss to follow-
up can, however, be potentially remedied by the same methods that have been
proposed to address the problem in RCTs, namely inverse probability weighting,
multiple imputation, or regression adjustment (Groenwold et al., 2014).

Two examples

In a study on the dose-response relationship between sulfonylurea derivatives
(SU) and major adverse cardiovascular events in elderly patients with type
2 diabetes, patients were censored if they switched their treatment regimen
(Abdelmoneim et al., 2016). Matching on a high-dimensional PS created
treatment groups (high and low dose SU) that were very similar in terms baseline
characteristics, including those reflecting disease severity, comedication use, and
comorbidity state. Possibly, however, those who switched treatments at any
point during follow-up represent a selective subset, for example because switching
occurred more often among those who used more concomitant medication. Over
time, this may have distorted the balance in comedication that was initially
achieved through PS matching.

Another example is a study comparing outcomes between incremental and
thrice-weekly initiation of haemodialysis (Park et al., 2016). Following PS
matching, the groups were similar in terms of a number of baseline characteristics
including age, sex, and primary renal disease. However, approximately half of the
participants were lost to follow-up at 12 months. Again, this may have induced a
selection bias if the loss to follow-up affected the treatment groups differentially.
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Propensity score matching and censoring

An illustration of the problem

Through a small simulation study, we will illustrate the effect of ignoring
selectively missing outcomes, whilst focusing on PS matching to control for
confounding. Throughout, it is assumed that there is exchangeability for
treatment and censoring, consistency, no model misspecification, and positivity,
so that the observed covariates are sufficient to adjust for both confounding and
selection bias due to loss to follow-up (Robins et al., 2000; Hernán et al., 2000;
Cole and Hernán, 2008).

For this illustration, we consider a hypothetical setting representing an
observational study of a binary treatment variable T , a binary outcome variable
Y , and a trichotomous confounder X. The probability of a subject dropping out
before their outcome could be assessed depends on both T and X. Data were
generated for 10,000 subjects using the mechanism detailed in the Supplementary
Material. The interest lies in the marginal odds ratio (OR) of 2 for the average
treatment effect on the treated (ATT). However, in this observational setting,
causal inference is hampered by confounding. This motivates the use of PS
matching, which typically provides an estimate of the ATT (Williamson et al.,
2012). Here, PSs were estimated by a logistic regression of T on X. We then
matched treated to untreated subjects on the estimated PSs with replacement.
As an alternative to PS matching to estimate the ATT, we also used inverse
probability weighting, with weights of 1 and PS/(1−PS) for treated and untreated
subjects, respectively. Treatment effects were estimated by applying a logistic
regression to the matched or weighted pseudopopulations. We refer to these
approaches as PS1 and IPW1, respectively. This procedure was repeated 1000
times. Bias was estimated on the log-odds ratio scale as the average deviation
from the true log-odds ratio log 2.

The results in Table 6.1 show that both PS1 and IPW1 yielded substantial
bias. The reason for this bias is apparent from Figure 6.1, which depicts the
balance in the population before and after matching and/or weighting. Although
PS1 and IPW1 are suited to balance confounders (Figure 6.1(a) and (b)), as
subjects are lost to follow-up, the balance achieved through matching or weighting
is not guaranteed to uphold in the dataset used for the analysis (Figure 6.1(c)). In
fact, since the probability of dropping out depends on both T and X, conditioning
on not being lost at follow-up (i.e. performing an analysis on those subjects for
whom an outcome is observed) induces an association between X and T (Pearl,
2009; Hernán et al., 2004), thereby biasing the relation between T and Y through
what is formally known as collider stratification bias.

To account for selective loss to follow-up, we applied Inverse-Probability-of-
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Chapter 6

Figure 6.1: Balance on the confounder X across treatment groups in a
hypothetical setting
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(d)

The untreated group is represented in grey; the treated group in white.
Frequencies are relative to treatment (treated/untreated) group size; hence,
equally sized bars indicate confounder balance. In the following, PS and PC
denote the propensity score and the probability of censoring (being lost to follow-
up) given T and X, respectively.
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Panel (a) shows the balance in the original unweighted population. Reweighting
observations using weights of 1 and PS/(1 − PS) for treated and untreated
subjects, respectively, results in the balance shown in (b). The same result is
obtained by matching treated subjects to untreated with similar PS. Removing
observations with censored outcomes from this inverse probability weighted or PS
matched dataset results in imbalance (c). The balance shown in (d) is obtained by
weighting the original observations with 1/(1 − PC) and PS/[(1 − PC)(1 − PS)]
for treated and untreated subjects, respectively, and conditioning on noncensored
observations. The same result is obtained by reweighting the PS matched dataset
by 1/(1 − PC) for each subject.

Censoring-Weighting (IPCW) (Robins et al., 2000; Cole and Hernán, 2008). In
this simple setting with only one point of follow-up, the IPCW weights reduce to
the inverse probability of not being lost to follow-up (censored). Probabilities of
censoring (PC) were estimated by logistic regression of C, a censoring indicator,
on T and X applied to the original datasets. We then applied two additional
estimators, PS2 and IPW2. In PS2, the matched sets obtained through PS1
were additionally weighted by 1/(1−PC) for each subject. In IPW2, the weights
1/(1−PC) and PS/[(1−PS)(1−PC)] for the treated and untreated, respectively,
were applied to the original datasets, and only subjects with observed outcomes
were included in the analysis. Again, treatment effects were estimated by
applying a logistic regression to the matched and/or weighted pseudopopulations.

The results in Table 6.1 show that both PS2 and IPW2 yielded estimates that
on average were very close to the true effect. The reason is that PS2 and IPW2

Table 6.1: Performance of inverse probability weighting (IPW) and PS matching
estimators

Estimator Bias (95%CI) OR
PS1 −0.134 (−0.139, −0.129) 1.749
IPW1 −0.135 (−0.139, −0.130) 1.748
PS2 0.002 (−0.003, 0.008) 2.004
IPW2 0.002 (−0.003, 0.007) 2.003

For definitions of PS1, IPW1, PS2, and IPW2, see text. Bias was estimated
by the average deviation of the estimated log-odds ratios β̂ from the true effect
β = log 2 across 1000 simulated samples. 95%CI = ¯̂

β−β±1.96
√

(σ̂2/1000), where
σ̂2 denotes the empirical variance of β̂. OR = exp ¯̂

β (True OR = 2).
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restore the imbalance that resulted from conditioning on not being lost to follow-
up by reweighting observations such that X and T are no longer associated, and
X takes the distribution of the treated subjects (Figure 6.1(d)).

Covariate imbalance in the absence of censoring

It should be borne in mind that with two or more points of follow-up, covariate
imbalance can develop even in the absence of censoring—specifically, that is,
leaving the risk set for reasons other than sustaining the outcome of interest.
Conditioning on past survival may induce an association between treatment and
marginally independent covariates if past survival is a common effect of both
(Hernán et al., 2004; Hernán, 2010; Aalen et al., 2015; Sjölander et al., 2016). If
these covariates are also predictive of survival at a subsequent point of follow-
up, this conditioning may therefore open a backdoor path, thereby inducing a
selection bias. Thus, neither RCTs or PS matching or weighting analyses are
guaranteed to be free of selection bias, because such selection occurs after baseline
imbalances have been removed through randomisation, matching or weighting.

Conclusion

PS methods have gained increasing interest as means to adjust for confounding
(Stürmer et al., 2006). However, as illustrated, PS matching does not account for
bias due to censoring. In fact, the balance of confounders across treatment groups
that was achieved by PS matching may be ruined by selective censoring. This
problem can potentially be remedied by inverse probability of censoring weighting
(as shown here), multiple imputation, or regression adjustment. It is important
to be aware, however, that in contrast to PS matching and inverse probability
weighting, the estimand of conventional multivariable regression analysis is not
typically a marginal effect such as the ATT. Also, our simulations were done
under the assumption that the censoring mechanism was independent of the
outcome. Importantly, neither of the above methods is suited to solve the problem
of censored data when the missingness depends on unobserved variables that are
predictive of the outcome or on the outcome itself. It is only when the missingness
can be explained by observed data, such as in our illustration, that such biases
may be adequately addressed by one of the above methods. If loss to follow-up
is a completely random process, the confounder balance that was achieved by
PS matching is expected to be preserved and conventional analysis on those for
whom an outcome was observed will still be appropriate.
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Supplementary Material

In our hypothetical setting, the mechanism for generating data is defined
by sequentially sampling for each subject (independently) from the following
distributions. Covariate X takes values 0, 1, and 2 only, each with probability
1/3. T |X = x has the Bernoulli distribution with probability Pr(T = 1|x) =
expit{−1 + x}, were Pr(T = 1|x) is shorthand notation for Pr(T = 1|X = x).
C|x, t has the Bernoulli distribution with Pr(C = 1|x, t) = expit{−1.5 + 0.5x +
2t}. Finally, Y |x, t, c has the Bernoulli distribution with probability Pr(Y =
1|x, t, c) = expit{−1 + x + 0.789t}. Potential outcomes Yť,č under the combined
treatment and censoring state (ť, č) are distributed such that Pr(Yť,č = 1|x, t, c) =
Pr(Y = 1|x, t, c) = expit{−1 + x + 0.789ť}. By the law of total probability,
Pr(Yť,č = 1|t) = ∑t

c=0
∑2

x=0 Pr(Yť,č = 1|x, t, c) Pr(C = c|x, t) Pr(X = x|t), where,
by Bayes’ theorem, Pr(X = x|t) = Pr(T = t|x) Pr(X = x)/∑2

x=0[Pr(T =
t|x) Pr(X = x)]. The interest lies in the marginal odds ratio θ for the treatment
effect on the treated, if contrary to fact all subjects had remained uncensored;
θ = Odds(Pr(Y1,0 = 1|T = 1))/Odds(Pr(Y0,0 = 1|T = 1)), where Odds(p) =
p/(1 − p). It follows that θ ≈ 2.
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