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General introduction and outline of thesis

What it means for something to cause something else has long been, and still
is, a topic of debate among philosophers. In epidemiology and other sciences, a
now-dominant approach to causality—the counterfactual or potential outcomes
framework—considers causal claims that address what-if questions, claims about
the consequences of hypothetical—possibly contrary-to-fact—actions (Neyman
et al., 1935; Rubin, 1974; Holland, 1986, 1988; Pearl, 2009; Hernán and Robins,
2020). Statements of this form arise naturally in medicine, for example, where we
are often faced with the problem of having to choose between treatment options
for a patient and where—to guide decision making—we might ask what would
happen with the patient’s well-being if we choose one treatment option versus
another.

1.1 Causal inference

Within the counterfactual outcomes framework, a causal effect is defined in terms
of a contrast between at least two hypothetical actions. That at most one of
mutually exclusive actions will actually become factual means that causal effects
are not directly apparent. To proceed in our endeavour to quantify a causal effect,
we start by looking for a way to equate our target quantity, the estimand, with
a known function of the distribution of factual, real-world variables (Petersen
and Van der Laan, 2014; Ahern, 2018). If we succeed in finding such a way, the
estimand is said to be identifiable (from this distribution of factuals) and the
expression that describes how it relates to the distribution is an identifiability
expression. If the distribution of factuals is compatible with at least two values
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of the estimand, the estimand is said to be non-identifiable and no identifiability
expression exists.

The identifiability expression forms the basis for estimation. Where
identification connects the estimand with the theoretical (sometimes called
‘population’) distribution of factual variables, estimation concerns how these
theoretical distributions in turn relate to empirical distributions or finite random
samples. An estimator is a function of a random sample that is intended to
offer a close approximation of the estimand. Because the estimator is a function
of a random sample, its output (sometimes also labeled the estimator) is itself
a random variable. Given a fixed realisation of the sample, the output of an
estimator is fixed and known as an estimate.

1.2 Obstacles in causal inference

There are a number of obstacles in providing ‘good’ estimates of causal effects.
Some of these are purely statistical and relate only to estimation but others
complicate identification as well as estimation. Three of these—confounding,
missing data, and measurement error—are the main themes of this thesis and are
described briefly below by way of an example.

Suppose that the interest lies with a contrast between someone’s risk of
sustaining a health-related event had this person been subjected, possibly
contrary to fact, to exposure A = 1 (e.g., initiating a certain drug treatment,
immediately after diagnosis with some condition) and the risk of the possibly
contrary-to-fact situation where A was set to 0 (e.g., not initiating the drug
treatment immediately after diagnosis). To clarify which hypothetical or
counterfactual situation we are referring to, we write Y (0) for the indicator of the
event of interest that would be realised had the person been exposed to A = 0
and we likewise denote by Y (1) the event indicator that would be realised had the
person been exposed to A = 1. In the literature, and also in this thesis, rather
than enclosing it within parentheses, a reference to a counterfactual situation is
sometimes written in superscript (e.g., Y 0) or subscript (e.g., Y0) to indicate the
corresponding counterfactual version of a variable. In this example, the event
indicators each take one of two levels, 1 in case the event of interest takes place
and 0 otherwise. The interest can now be succinctly written as

Pr(Y (1) = 1) versus Pr(Y (0) = 1). (1.1)
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1.2.1 Confounding
The simplest attempt at identifying the components of the contrast (1.1) is to
replace the counterfactual event risk Pr(Y (a) = 1) with Pr(Y = 1|A = a) for
a = 0, 1, yielding

Pr(Y = 1|A = 1) versus Pr(Y = 1|A = 0). (1.2)

The event indicator Y is the factual (observed), real-world outcome variable.
But under what conditions are (1.1) and (1.2) actually equivalent, or when is
Pr(Y (a) = 1) identified by Pr(Y = 1|A = a)? Three key identifiability conditions
are consistency, exchangeability, and positivity.

Consistency connects the counterfactual variables of interest with the factual,
real-world variables (Cole and Frangakis, 2009; VanderWeele, 2009; Pearl,
2010). It means that the counterfactual version of an outcome variable (e.g.,
characterising the well-being of a patient) under a given hypothetical action
coincides with its factual version if this hypothetical action agrees with (our
impression of) the real world. For example, if a patient is known to have received
treatment with a particular drug, consistency implies that the patient’s well-
being is the same as the patient’s well-being that would have been realised had
the patient been assigned this treatment. This seemingly trivial condition has
two noteworthy subtleties. First, a prerequisite is that the hypothetical actions of
interest are sufficiently well-defined. There may be many variations on “assigning
drug treatment” (e.g., in the dosing or timing of the treatment) and their impact
on the patient’s well-being need not be the same. The actions are sufficiently
well-defined if there is no ambiguity about the variation or all possible variations
equally affect the outcome variables of interest (i.e., there is treatment variation
irrelevance). Second, it may be that a patient’s treatment is misclassified,
resulting in a wrong impression about the real world. In turn, the patient’s well-
being need not coincide with its counterfactual counterpart that would be realised
had the received the registered treatment. We will reconsider misclassification
below. For now, let us assume that there is no such misclassification and that
Y (a) = Y if A = a, for a = 0, 1, so that

Pr(Y (a) = 1) = Pr(Y (a) = 1|A = a) Pr(A = a)
+ Pr(Y (a) = 1|A = 1 − a) Pr(A = 1 − a)

(by the law of total probability)
= Pr(Y = 1|A = a) Pr(A = a)

+ Pr(Y (a) = 1|A = 1 − a) Pr(A = 1 − a). (by consistency)
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The application of the law of total probability above and (1.2) require that
the conditional probabilities given A = 1 or A = 0 are defined, i.e., that A = 1
and A = 0 have positive probability (positivity).

Note that the right-hand side of the above equality has only one term that
contains a counterfactual outcome. Under exchangeability, this term can be
replaced and the above expression can be turned into an identifiability expression.
Exchangeability, or ‘no confounding’, here means that Y (a) ⊥⊥ A—shorthand for
Y (a) is independent of A—for a = 0, 1, so that

Pr(Y (a) = 1|A = 1 − a) = Pr(Y (a) = 1|A = a) (by exchangeability)
= Pr(Y = 1|A = a). (by consistency)

Hence, under consistency, exchangeability and positivity,

Pr(Y (a) = 1) = Pr(Y = 1|A = a) Pr(A = a)
+ Pr(Y = 1|A = a) Pr(A = 1 − a)

= Pr(Y = 1|A = a)[Pr(A = a) + Pr(A = 1 − a)]
= Pr(Y = 1|A = a)

and, so, (1.1) and (1.2) are equivalent. When the exchangeability condition is
violated, however, Pr(Y (a) = 1|A = a) ̸= Pr(Y (a) = 1|A = 1 − a) for a = 0 or
a = 1, and therefore Pr(Y = 1|A = 0) and Pr(Y = 1|A = 1) might not equal
Pr(Y (0) = 1) and Pr(Y (1) = 1), respectively.

Departure from identification of an estimand, brought about for example by
a violation of the exchangeability condition, may have a knock-on effect on the
properties of an estimator. Given a sample of n exposure-outcome pairs (Ai, Yi),
natural estimators of the components of the contrast (1.2) are

n∑
i=1

Ai∑n
j=1 Aj

Yi and
n∑

i=1

1 − Ai∑n
j=1(1 − Aj)Yi. (1.3)

Suppose that the number of exposures is fixed at m (i.e., ∑n
i=1 Ai = m). If for

a = 0, 1, Yi|Ai = a has the same distribution as Y |A = a, then

E
[

n∑
i=1

Ai∑n
j=1 Aj

Yi

]
= 1

m

n∑
i=1

E[AiYi]

= 1
m

n∑
i=1

E[Yi|Ai = 1] Pr(Ai = 1)

(by the law of total (or iterated) expectation)
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= Pr(Y = 1|A = 1) 1
m

n∑
i=1

Pr(Ai = 1)

= Pr(Y = 1|A = 1) 1
m
E
[

n∑
i=1

Ai

]
= Pr(Y = 1|A = 1).

We therefore say that the estimators of (1.3) are unbiased for the components of
(1.2) if Yi|Ai ∼ Y |A and in turn for the components of (1.1) if additionally the
identifiability assumptions (consistency, exchangeability and positivity) are met.
More generally, given fixed θ, we say that an estimator θ̂ is unbiased for a quantity
θ if E[θ̂] = θ, and we refer to E[θ̂ − θ] as the bias of the estimator θ̂ (relative
to θ). This notion of bias relates to estimation. However, in this thesis we also
occasionally use the term bias to refer to the distance between the quantity that
is identified by the identification strategy and the value of the estimand. Of note,
there is often a connection between the bias of an estimator and the bias of an
identification strategy: in many cases, the former converges in some sense to the
latter as the sample size on which the estimator is based increases. Confounding
is often labeled a ‘source of bias’—an apt description regardless of the notion of
bias.

Bias, or the lack thereof, is only one of many properties of an estimator
that describe how ‘good’ an estimator approximates a target quantity. The other
properties include, but are not limited to, variance and mean squared error, which
are addressed in other chapters of this thesis.

1.2.2 Missing data

Identification is a relative notion—it is relative to a set of factual variables whose
distribution we seek to connect to the estimand. Including in this set of factuals
variables that are not observed by the end of data collection has little practical
value and, so, we eventually restrict our attention to the observed part. Before
we do, however, it is often useful—although not always necessary—to consider, as
an intermediate step, identification from a set of variables that may not be fully
observed. If the distribution of these variables can be inferred (or ‘recovered’)
from the distribution of the observed part, then identifiability from the former
implies identifiability from the latter.

This insight motivates the classification of missingness as either missingness
that is completely at random (MCAR), at random (MAR), or not at random
(MNAR) (Rubin, 1976). Consider a sequence (X1, ..., Xp) of p variables and
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an equally long sequence (R1, ..., Rp) of response indicators, with Ri = 0 if Xi is
observed and Ri = 1 otherwise, i = 1, ..., p. Data are said to be MAR relative to a
realisation (r1, ..., rp) of (R1, ..., Rp) and realisations (xi : ri = 1) of (Xi : ri = 1),
if for all levels (xi : ri = 0) of (Xi : ri = 0),

Pr(R1 = r1, ..., Rp = rp|X1 = x1, ..., Xp = xp)
= Pr(R1 = r1, ..., Rp = rp|Xi = xi : ri = 1);

and MCAR relative to this realisation (a stronger condition) if

Pr(R1 = r1, ..., Rp = rp|X1 = x1, ..., Xp = xp) = Pr(R1 = r1, ..., Rp = rp).

Missingness that is not ‘at random’ (or ‘completely at random’) is ‘not at random’.
An interesting special case where MAR is always satisfied is the case where the
first j variables, 1 ≤ j ≤ p, are always observed (i.e., R1 = ... = Rj = 1) and the
missingness of the other p − j variables satisfies

(Ri : j < i ≤ p) ⊥⊥ (Xi : j < i ≤ p)|(Xi : 1 ≤ i ≤ j).

For this special MAR condition, it is easy to determine whether the joint
distribution of (X1, ..., Xp, R1, ..., Rp) is recoverable from the distribution of its
observed part: the distribution of the partially observed (i.e., last p− j) variables
given the always observed (i.e., first j) variables is obtained by conditioning on
R1 = ... = Rp = 1.

It is interesting to consider counterfactual outcomes that are strictly ‘non-
factual’ as missing variables. If Y (0) = Y whenever A = 0 and there are no
missing factuals, the missingness of Y (0) in (1.1) is fully determined by A: Y (0)
is observed if and only if A = 0. The missingness is therefore ‘at random’. The
counterfactual outcome probability Pr(Y (0) = 1|A = 1) is however not identified
by Pr(Y (0) = 1|A = 1, R0 = 1), with R0 denoting the response indicator for
Y (0), because R0 = 1 if and only if A = 0 and, since Pr(A = 1, A = 0) = 0,
Pr(Y (0) = 1|A = 1, A = 0) is not defined.

1.2.3 Measurement error
Measurement error arises when our impression of a variable’s value is different
from its actual value. The variable can be considered unobserved and its
potentially wrong impression forms another, observed variable.

A special form of measurement error is misclassification, which means that
our measurement or impression of a categorical variable is inaccurate. As for
the above example, exposure misclassification means that our measurement or
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‘impression’ A∗ of A does not always coincide with A itself. While Y (a) might
equal Y if A = a for a = 0, 1, it is possible that Y (a) ̸= Y = Y (A) if A∗ = a.
This is sometimes described as a possible violation of the consistency assumption
(Gravel and Platt, 2018); the counterfactual outcome Y (a) need not coincide
with the observed Y even if A∗ = a. Upon replacing A with A∗, (1.2) becomes

Pr(Y = 1|A∗ = 1) versus Pr(Y = 1|A∗ = 0). (1.4)

A simple yet näıve approach is to take (1.4) as the basis for inference about
(1.1). However, that (1.1) and (1.4) are equivalent is not evident and may not
be true. More generally, like confounding and missing data, measurement error
is an obstacle in causal inference.

1.3 Objective and outline of thesis

There are many approaches to handling the obstacles of confounding, missing
data and measurement error. To address confounding, these approaches include
traditional regression analyses and the more modern propensity score methods
such as propensity score matching and inverse probability weighting (Rosenbaum
and Rubin, 1983; Robins et al., 2000). These methods rely on the availability
of other variables, covariates, such that conditional on these covariates, there is
exchangeability. Other methods, like instrumental variable analysis and negative
control methods, rest on different assumptions (Greenland, 2000; Lipsitch et al.,
2010). For missing data, simply discarding incomplete records has long been the
default approach. More principled approaches include expectation-maximisation,
multiple imputation, and inverse probability weighting (Dempster et al., 1977;
Rubin, 1987; Robins et al., 2000). Lastly, the impact of measurement error may
be mitigated by regression calibration, simulation extrapolation (SIMEX), latent
variable modelling, or inverse probability weighting (Buonaccorsi, 2010; Gravel
and Platt, 2018).

The development and study of the properties of methods to overcome the
abovementioned methodological obstacles in epidemiology is an active area of
research with many open questions. The aim of this thesis is to contribute to
this research and to provide more insight into the properties of methods for
confounding, missing data and measurement error.

The outline for the remainder of this thesis is as follows. We start by
considering in chapter 2 the task of reviewing the existing literature to gauge
the current state of knowledge about existing methodologies, identify gaps or
to provide a starting point for guidance development. The chapter gives an
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appraisal of methods for gathering information about the use of methods for the
study of causal effects. In all subsequent chapters, we zoom in on methods
of the latter kind. In chapters 3 and 4, we address the concern that
the combination of multiple imputation for missing data and propensity score
methods for confounding has worse performance than might be expected from
how they perform in isolation. In doing so, we compare two strategies from
epidemiological practice for implementing propensity score methods to multiply
imputed data sets and we give guidance on which is to be preferred. The study
of propensity score methods and missing data is continued in chapter 5, which
focuses on a class of machine learning methods, classification and regression
trees (CART), for estimating propensity scores in the presence of missing
covariate data. Chapter 6 then turns to propensity score matching and missing
outcome data. The chapter illustrates that when baseline exchangeability is
achieved through propensity score matching, bias might result from restricting
downstream analysis to the subset of individuals who have not dropped out
of the study by the administrative study end. In chapter 7, we consider
missing data mechanisms that are governed by study design. In studies on
the effects of time-varying exposures, adequate information on time-varying
participant characteristics might help mitigate time-dependent confounding.
However, the frequency with which these characteristics are measured may be
inadequate and participant characteristics are sometimes (wrongly) assumed
to remain constant in periods of no measurement (i.e., there is measurement
error). The chapter illustrates the impact of design choices regarding data
collection. Measurement error is also a dominant theme in chapter 8, in
which a weighting method for simultaneous adjustment for confounding and joint
exposure-outcome misclassification is developed. The method relies on standard
identifiability assumptions, such as exchangeability within levels of a collection of
partially observed variables, consistency, positivity, and MAR. In many studies
on causal effects, however, there are often concerns that standard identifiability
assumptions are violated. Negative controls are a tool with the potential to
detect or correct for confounding that is explained by fully unobserved variables.
This is the topic of chapter 9. The counterfactual outcomes framework and
attempts to identify estimands have become increasingly popular in much of the
causal inference literature, including the literature on negative controls. Case-
control studies have not yet enjoyed this trend. In chapter 10, we reconsider this
family of designs and recast classical concepts, assumptions and principles from
a modern perspective. It is shown how and when a variety of causal estimands
can be identified with these study designs. Causal inference and prediction are
two areas of epidemiology that are increasingly seen as overlapping. In precision
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medicine, it is not uncommon for treatment assignment decisions to be based on
‘prognostic scores’, predictions of the outcome of interest that would be realised if
the treatment were withheld. Chapter 11 deals with this topic and emphasises
that in order to obtain optimal results, the counterfactual outcomes under
both treatment levels, ‘treatment’ and ‘no treatment’, should be considered.
The methodological obstacles that we encounter in causal inference, including
confounding, missing data and measurement error, are therefore relevant in that
context too. To conclude, in chapter 12, we present a summary of the previous
chapters, along with a general discussion of this thesis in the light of the existing
literature, with suggestions for future research.
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