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General introduction and outline of thesis

What it means for something to cause something else has long been, and still
is, a topic of debate among philosophers. In epidemiology and other sciences, a
now-dominant approach to causality—the counterfactual or potential outcomes
framework—considers causal claims that address what-if questions, claims about
the consequences of hypothetical—possibly contrary-to-fact—actions (Neyman
et al., 1935; Rubin, 1974; Holland, 1986, 1988; Pearl, 2009; Hernán and Robins,
2020). Statements of this form arise naturally in medicine, for example, where we
are often faced with the problem of having to choose between treatment options
for a patient and where—to guide decision making—we might ask what would
happen with the patient’s well-being if we choose one treatment option versus
another.

1.1 Causal inference

Within the counterfactual outcomes framework, a causal effect is defined in terms
of a contrast between at least two hypothetical actions. That at most one of
mutually exclusive actions will actually become factual means that causal effects
are not directly apparent. To proceed in our endeavour to quantify a causal effect,
we start by looking for a way to equate our target quantity, the estimand, with
a known function of the distribution of factual, real-world variables (Petersen
and Van der Laan, 2014; Ahern, 2018). If we succeed in finding such a way, the
estimand is said to be identifiable (from this distribution of factuals) and the
expression that describes how it relates to the distribution is an identifiability
expression. If the distribution of factuals is compatible with at least two values
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Introduction

of the estimand, the estimand is said to be non-identifiable and no identifiability
expression exists.

The identifiability expression forms the basis for estimation. Where
identification connects the estimand with the theoretical (sometimes called
‘population’) distribution of factual variables, estimation concerns how these
theoretical distributions in turn relate to empirical distributions or finite random
samples. An estimator is a function of a random sample that is intended to
offer a close approximation of the estimand. Because the estimator is a function
of a random sample, its output (sometimes also labeled the estimator) is itself
a random variable. Given a fixed realisation of the sample, the output of an
estimator is fixed and known as an estimate.

1.2 Obstacles in causal inference

There are a number of obstacles in providing ‘good’ estimates of causal effects.
Some of these are purely statistical and relate only to estimation but others
complicate identification as well as estimation. Three of these—confounding,
missing data, and measurement error—are the main themes of this thesis and are
described briefly below by way of an example.

Suppose that the interest lies with a contrast between someone’s risk of
sustaining a health-related event had this person been subjected, possibly
contrary to fact, to exposure A = 1 (e.g., initiating a certain drug treatment,
immediately after diagnosis with some condition) and the risk of the possibly
contrary-to-fact situation where A was set to 0 (e.g., not initiating the drug
treatment immediately after diagnosis). To clarify which hypothetical or
counterfactual situation we are referring to, we write Y (0) for the indicator of the
event of interest that would be realised had the person been exposed to A = 0
and we likewise denote by Y (1) the event indicator that would be realised had the
person been exposed to A = 1. In the literature, and also in this thesis, rather
than enclosing it within parentheses, a reference to a counterfactual situation is
sometimes written in superscript (e.g., Y 0) or subscript (e.g., Y0) to indicate the
corresponding counterfactual version of a variable. In this example, the event
indicators each take one of two levels, 1 in case the event of interest takes place
and 0 otherwise. The interest can now be succinctly written as

Pr(Y (1) = 1) versus Pr(Y (0) = 1). (1.1)
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Chapter 1

1.2.1 Confounding
The simplest attempt at identifying the components of the contrast (1.1) is to
replace the counterfactual event risk Pr(Y (a) = 1) with Pr(Y = 1|A = a) for
a = 0, 1, yielding

Pr(Y = 1|A = 1) versus Pr(Y = 1|A = 0). (1.2)

The event indicator Y is the factual (observed), real-world outcome variable.
But under what conditions are (1.1) and (1.2) actually equivalent, or when is
Pr(Y (a) = 1) identified by Pr(Y = 1|A = a)? Three key identifiability conditions
are consistency, exchangeability, and positivity.

Consistency connects the counterfactual variables of interest with the factual,
real-world variables (Cole and Frangakis, 2009; VanderWeele, 2009; Pearl,
2010). It means that the counterfactual version of an outcome variable (e.g.,
characterising the well-being of a patient) under a given hypothetical action
coincides with its factual version if this hypothetical action agrees with (our
impression of) the real world. For example, if a patient is known to have received
treatment with a particular drug, consistency implies that the patient’s well-
being is the same as the patient’s well-being that would have been realised had
the patient been assigned this treatment. This seemingly trivial condition has
two noteworthy subtleties. First, a prerequisite is that the hypothetical actions of
interest are sufficiently well-defined. There may be many variations on “assigning
drug treatment” (e.g., in the dosing or timing of the treatment) and their impact
on the patient’s well-being need not be the same. The actions are sufficiently
well-defined if there is no ambiguity about the variation or all possible variations
equally affect the outcome variables of interest (i.e., there is treatment variation
irrelevance). Second, it may be that a patient’s treatment is misclassified,
resulting in a wrong impression about the real world. In turn, the patient’s well-
being need not coincide with its counterfactual counterpart that would be realised
had the received the registered treatment. We will reconsider misclassification
below. For now, let us assume that there is no such misclassification and that
Y (a) = Y if A = a, for a = 0, 1, so that

Pr(Y (a) = 1) = Pr(Y (a) = 1|A = a) Pr(A = a)
+ Pr(Y (a) = 1|A = 1 − a) Pr(A = 1 − a)

(by the law of total probability)
= Pr(Y = 1|A = a) Pr(A = a)

+ Pr(Y (a) = 1|A = 1 − a) Pr(A = 1 − a). (by consistency)
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The application of the law of total probability above and (1.2) require that
the conditional probabilities given A = 1 or A = 0 are defined, i.e., that A = 1
and A = 0 have positive probability (positivity).

Note that the right-hand side of the above equality has only one term that
contains a counterfactual outcome. Under exchangeability, this term can be
replaced and the above expression can be turned into an identifiability expression.
Exchangeability, or ‘no confounding’, here means that Y (a) ⊥⊥ A—shorthand for
Y (a) is independent of A—for a = 0, 1, so that

Pr(Y (a) = 1|A = 1 − a) = Pr(Y (a) = 1|A = a) (by exchangeability)
= Pr(Y = 1|A = a). (by consistency)

Hence, under consistency, exchangeability and positivity,

Pr(Y (a) = 1) = Pr(Y = 1|A = a) Pr(A = a)
+ Pr(Y = 1|A = a) Pr(A = 1 − a)

= Pr(Y = 1|A = a)[Pr(A = a) + Pr(A = 1 − a)]
= Pr(Y = 1|A = a)

and, so, (1.1) and (1.2) are equivalent. When the exchangeability condition is
violated, however, Pr(Y (a) = 1|A = a) ̸= Pr(Y (a) = 1|A = 1 − a) for a = 0 or
a = 1, and therefore Pr(Y = 1|A = 0) and Pr(Y = 1|A = 1) might not equal
Pr(Y (0) = 1) and Pr(Y (1) = 1), respectively.

Departure from identification of an estimand, brought about for example by
a violation of the exchangeability condition, may have a knock-on effect on the
properties of an estimator. Given a sample of n exposure-outcome pairs (Ai, Yi),
natural estimators of the components of the contrast (1.2) are

n∑
i=1

Ai∑n
j=1 Aj

Yi and
n∑

i=1

1 − Ai∑n
j=1(1 − Aj)Yi. (1.3)

Suppose that the number of exposures is fixed at m (i.e., ∑n
i=1 Ai = m). If for

a = 0, 1, Yi|Ai = a has the same distribution as Y |A = a, then

E
[

n∑
i=1

Ai∑n
j=1 Aj

Yi

]
= 1

m

n∑
i=1

E[AiYi]

= 1
m

n∑
i=1

E[Yi|Ai = 1] Pr(Ai = 1)

(by the law of total (or iterated) expectation)

8



Chapter 1

= Pr(Y = 1|A = 1) 1
m

n∑
i=1

Pr(Ai = 1)

= Pr(Y = 1|A = 1) 1
m
E
[

n∑
i=1

Ai

]
= Pr(Y = 1|A = 1).

We therefore say that the estimators of (1.3) are unbiased for the components of
(1.2) if Yi|Ai ∼ Y |A and in turn for the components of (1.1) if additionally the
identifiability assumptions (consistency, exchangeability and positivity) are met.
More generally, given fixed θ, we say that an estimator θ̂ is unbiased for a quantity
θ if E[θ̂] = θ, and we refer to E[θ̂ − θ] as the bias of the estimator θ̂ (relative
to θ). This notion of bias relates to estimation. However, in this thesis we also
occasionally use the term bias to refer to the distance between the quantity that
is identified by the identification strategy and the value of the estimand. Of note,
there is often a connection between the bias of an estimator and the bias of an
identification strategy: in many cases, the former converges in some sense to the
latter as the sample size on which the estimator is based increases. Confounding
is often labeled a ‘source of bias’—an apt description regardless of the notion of
bias.

Bias, or the lack thereof, is only one of many properties of an estimator
that describe how ‘good’ an estimator approximates a target quantity. The other
properties include, but are not limited to, variance and mean squared error, which
are addressed in other chapters of this thesis.

1.2.2 Missing data

Identification is a relative notion—it is relative to a set of factual variables whose
distribution we seek to connect to the estimand. Including in this set of factuals
variables that are not observed by the end of data collection has little practical
value and, so, we eventually restrict our attention to the observed part. Before
we do, however, it is often useful—although not always necessary—to consider, as
an intermediate step, identification from a set of variables that may not be fully
observed. If the distribution of these variables can be inferred (or ‘recovered’)
from the distribution of the observed part, then identifiability from the former
implies identifiability from the latter.

This insight motivates the classification of missingness as either missingness
that is completely at random (MCAR), at random (MAR), or not at random
(MNAR) (Rubin, 1976). Consider a sequence (X1, ..., Xp) of p variables and
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an equally long sequence (R1, ..., Rp) of response indicators, with Ri = 0 if Xi is
observed and Ri = 1 otherwise, i = 1, ..., p. Data are said to be MAR relative to a
realisation (r1, ..., rp) of (R1, ..., Rp) and realisations (xi : ri = 1) of (Xi : ri = 1),
if for all levels (xi : ri = 0) of (Xi : ri = 0),

Pr(R1 = r1, ..., Rp = rp|X1 = x1, ..., Xp = xp)
= Pr(R1 = r1, ..., Rp = rp|Xi = xi : ri = 1);

and MCAR relative to this realisation (a stronger condition) if

Pr(R1 = r1, ..., Rp = rp|X1 = x1, ..., Xp = xp) = Pr(R1 = r1, ..., Rp = rp).

Missingness that is not ‘at random’ (or ‘completely at random’) is ‘not at random’.
An interesting special case where MAR is always satisfied is the case where the
first j variables, 1 ≤ j ≤ p, are always observed (i.e., R1 = ... = Rj = 1) and the
missingness of the other p − j variables satisfies

(Ri : j < i ≤ p) ⊥⊥ (Xi : j < i ≤ p)|(Xi : 1 ≤ i ≤ j).

For this special MAR condition, it is easy to determine whether the joint
distribution of (X1, ..., Xp, R1, ..., Rp) is recoverable from the distribution of its
observed part: the distribution of the partially observed (i.e., last p− j) variables
given the always observed (i.e., first j) variables is obtained by conditioning on
R1 = ... = Rp = 1.

It is interesting to consider counterfactual outcomes that are strictly ‘non-
factual’ as missing variables. If Y (0) = Y whenever A = 0 and there are no
missing factuals, the missingness of Y (0) in (1.1) is fully determined by A: Y (0)
is observed if and only if A = 0. The missingness is therefore ‘at random’. The
counterfactual outcome probability Pr(Y (0) = 1|A = 1) is however not identified
by Pr(Y (0) = 1|A = 1, R0 = 1), with R0 denoting the response indicator for
Y (0), because R0 = 1 if and only if A = 0 and, since Pr(A = 1, A = 0) = 0,
Pr(Y (0) = 1|A = 1, A = 0) is not defined.

1.2.3 Measurement error
Measurement error arises when our impression of a variable’s value is different
from its actual value. The variable can be considered unobserved and its
potentially wrong impression forms another, observed variable.

A special form of measurement error is misclassification, which means that
our measurement or impression of a categorical variable is inaccurate. As for
the above example, exposure misclassification means that our measurement or
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‘impression’ A∗ of A does not always coincide with A itself. While Y (a) might
equal Y if A = a for a = 0, 1, it is possible that Y (a) ̸= Y = Y (A) if A∗ = a.
This is sometimes described as a possible violation of the consistency assumption
(Gravel and Platt, 2018); the counterfactual outcome Y (a) need not coincide
with the observed Y even if A∗ = a. Upon replacing A with A∗, (1.2) becomes

Pr(Y = 1|A∗ = 1) versus Pr(Y = 1|A∗ = 0). (1.4)

A simple yet näıve approach is to take (1.4) as the basis for inference about
(1.1). However, that (1.1) and (1.4) are equivalent is not evident and may not
be true. More generally, like confounding and missing data, measurement error
is an obstacle in causal inference.

1.3 Objective and outline of thesis

There are many approaches to handling the obstacles of confounding, missing
data and measurement error. To address confounding, these approaches include
traditional regression analyses and the more modern propensity score methods
such as propensity score matching and inverse probability weighting (Rosenbaum
and Rubin, 1983; Robins et al., 2000). These methods rely on the availability
of other variables, covariates, such that conditional on these covariates, there is
exchangeability. Other methods, like instrumental variable analysis and negative
control methods, rest on different assumptions (Greenland, 2000; Lipsitch et al.,
2010). For missing data, simply discarding incomplete records has long been the
default approach. More principled approaches include expectation-maximisation,
multiple imputation, and inverse probability weighting (Dempster et al., 1977;
Rubin, 1987; Robins et al., 2000). Lastly, the impact of measurement error may
be mitigated by regression calibration, simulation extrapolation (SIMEX), latent
variable modelling, or inverse probability weighting (Buonaccorsi, 2010; Gravel
and Platt, 2018).

The development and study of the properties of methods to overcome the
abovementioned methodological obstacles in epidemiology is an active area of
research with many open questions. The aim of this thesis is to contribute to
this research and to provide more insight into the properties of methods for
confounding, missing data and measurement error.

The outline for the remainder of this thesis is as follows. We start by
considering in chapter 2 the task of reviewing the existing literature to gauge
the current state of knowledge about existing methodologies, identify gaps or
to provide a starting point for guidance development. The chapter gives an
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appraisal of methods for gathering information about the use of methods for the
study of causal effects. In all subsequent chapters, we zoom in on methods
of the latter kind. In chapters 3 and 4, we address the concern that
the combination of multiple imputation for missing data and propensity score
methods for confounding has worse performance than might be expected from
how they perform in isolation. In doing so, we compare two strategies from
epidemiological practice for implementing propensity score methods to multiply
imputed data sets and we give guidance on which is to be preferred. The study
of propensity score methods and missing data is continued in chapter 5, which
focuses on a class of machine learning methods, classification and regression
trees (CART), for estimating propensity scores in the presence of missing
covariate data. Chapter 6 then turns to propensity score matching and missing
outcome data. The chapter illustrates that when baseline exchangeability is
achieved through propensity score matching, bias might result from restricting
downstream analysis to the subset of individuals who have not dropped out
of the study by the administrative study end. In chapter 7, we consider
missing data mechanisms that are governed by study design. In studies on
the effects of time-varying exposures, adequate information on time-varying
participant characteristics might help mitigate time-dependent confounding.
However, the frequency with which these characteristics are measured may be
inadequate and participant characteristics are sometimes (wrongly) assumed
to remain constant in periods of no measurement (i.e., there is measurement
error). The chapter illustrates the impact of design choices regarding data
collection. Measurement error is also a dominant theme in chapter 8, in
which a weighting method for simultaneous adjustment for confounding and joint
exposure-outcome misclassification is developed. The method relies on standard
identifiability assumptions, such as exchangeability within levels of a collection of
partially observed variables, consistency, positivity, and MAR. In many studies
on causal effects, however, there are often concerns that standard identifiability
assumptions are violated. Negative controls are a tool with the potential to
detect or correct for confounding that is explained by fully unobserved variables.
This is the topic of chapter 9. The counterfactual outcomes framework and
attempts to identify estimands have become increasingly popular in much of the
causal inference literature, including the literature on negative controls. Case-
control studies have not yet enjoyed this trend. In chapter 10, we reconsider this
family of designs and recast classical concepts, assumptions and principles from
a modern perspective. It is shown how and when a variety of causal estimands
can be identified with these study designs. Causal inference and prediction are
two areas of epidemiology that are increasingly seen as overlapping. In precision
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medicine, it is not uncommon for treatment assignment decisions to be based on
‘prognostic scores’, predictions of the outcome of interest that would be realised if
the treatment were withheld. Chapter 11 deals with this topic and emphasises
that in order to obtain optimal results, the counterfactual outcomes under
both treatment levels, ‘treatment’ and ‘no treatment’, should be considered.
The methodological obstacles that we encounter in causal inference, including
confounding, missing data and measurement error, are therefore relevant in that
context too. To conclude, in chapter 12, we present a summary of the previous
chapters, along with a general discussion of this thesis in the light of the existing
literature, with suggestions for future research.
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Full text mining and searching in systematic reviews

Abstract

Objective. Article full texts are often inaccessible via the standard search engines
of biomedical literature, such as PubMed and Embase, which are commonly
used for systematic reviews. Excluding the full text bodies from a literature
search may result in a small or selective subset of articles being included in
the review because of the limited information that is available in only title,
abstract and keywords. This article describes a comparison of search strategies
based on a systematic literature review of all manuscripts published in 5 top-
ranked epidemiology journals between 2000 and 2017. Study Design and Setting.
Based on a text-mining approach, we studied whether 9 different methodological
topics were mentioned across text fields (title, abstract, keywords, and text
body). The following methodological topics were studied: propensity score
methods, inverse probability weighting, marginal structural modelling, multiple
imputation, Kaplan-Meier estimation, number needed to treat, measurement
error, randomized controlled trial, and latent class analysis. Results. In total,
31,641 Hypertext Markup Language (HTML) files were downloaded from the
journals’ websites. For all methodological topics and journals, at most 50% of
articles with a mention of a topic in the text body also mentioned the topic in
the title, abstract or keywords. For each topic, a gradual decrease over calendar
time was observed of reporting in the title, abstract or keywords. Conclusion.
Literature searches based on title, abstract and keywords alone may not be
sufficiently sensitive for studies of epidemiological research practice. This study
also illustrates the potential value of full text literature searches, provided there
is accessibility of full text bodies for literature searches.
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Chapter 2

2.1 Introduction

Rigorous reviews of the scientific literature are essential for determining the
current state of knowledge on a specific topic, to identify research areas where
evidence is lacking, and as a starting point for guidance development. While
a majority of systematic reviews in epidemiology represents reviews of research
findings on a specific substantive medical research topic, such as the occurrence
of a particular disease or the effectiveness of a medical treatment, an important
category of systematic reviews is concerned primarily with epidemiological
research practice and reporting (Ali et al., 2015; Mendes and Batel-Marques,
2017; Brakenhoff et al., 2018; Copsey et al., 2018; Alfian et al., 2019).

A variety of strategies exist to identify and screen articles for eligibility for
systematic reviews (Conn et al., 2003; O’Mara-Eves et al., 2015; Page et al.,
2016; Lefebvre et al., 2018). Often, a staged search and screening approach is
implemented in which the eligibility criteria for articles are made more stringent
or more text fields are scrutinized with each step. In the earlier steps of the
process, articles are typically excluded from the review on the basis of a small
portion—e.g., title, abstract and keywords (TIABKW)—of all the available
information. The goal of a search and screening approach is to identify all or a
representative sample of the relevant literature on the topic of enquiry. However,
excluding a selective set of articles from further study may ultimately result in
a false impression of state of the literature being conveyed (O’Mara-Eves et al.,
2015; Lefebvre et al., 2018; Egger and Smith, 1998).

Reviews of methods often begin searching for relevant literature in the
same way as reviews on a substantive research topic. However, compared with
substantive topics, the epidemiological and statistical methods used are likely less
well documented in the small portion of information that is typically accessed in
the first stage(s) of a systematic literature search, notably TIABKW. In this
article, we investigate whether the traditional approach to systematic literature
searching is appropriate for reviews of epidemiological practice.

2.2 Methods

We identified and downloaded all articles (in HTML format) published in the
period 2000-2017 on the websites of five top-ranked epidemiological journals;
Epidemiology (EPI), Journal of Clinical Epidemiology (JCE), European Journal
of Epidemiology (EJE), International Journal of Epidemiology (IJE), and
American Journal of Epidemiology (AJE).
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All retrieved HTML pages were analyzed with R Statistical Software R Core
Team (2018). First, we sought to extract for each article its publication date,
title, abstract, keywords, and text body, in a largely automated fashion using R
base regular expression algorithms (see e.g. Crawley, or Supplementary R Code).
In-text references and reference lists were removed from the text bodies prior to
analysis. The following methodological topics were selected for investigation:
propensity score methods (PS), inverse probability weighting (IPW), marginal
structural modelling (MSM), multiple imputation (MI), Kaplan-Meier estimation
(KM), number needed to treat (NNT), measurement error (ME), randomized
controlled trial (RCT), and latent class analysis (LC). This set of topics reflects
a range of classical and modern methodological topics relevant to epidemiologic
research. We subsequently determined for each of these topics whether there was
any mention of the topic (see Supplementary Table S2.1 for details on the search
terms) and in which text field (title, abstract, keywords, and text body).

The results of the previous step were used to quantify sensitivities of fixed
combinations of text fields for identifying a mention of the method in any of
the article’s text fields (title, abstract, keywords or text body). For any fixed
topic, we refer to the sensitivity of a particular combination of text fields (e.g.,
TIABKW) as the fraction of articles with a mention of the topic in any of
these text fields among articles with a mention in the full text (i.e., in the title,
abstract, keywords or body). We computed sensitivities stratified by journal
and by publication date (year of publication). In a sensitivity analysis, the set of
articles was limited to those articles containing at least 2500 words with the aim of
focusing on original research articles. Additionally, we examined all articles with
a mention of propensity score methods to determine the article type and whether
or not the article described an empirical application of propensity score methods.
Finally, we performed a post-hoc analysis, designed to ignore ‘irrelevant’ topic
mentions (e.g., mention of a topic in the introduction or discussion of an article
only). In this analysis, we considered only topics mentioned in the methods and
results sections, provided these sections could be readily identified. Sensitivities
pertaining to this post-hoc analysis are understood to refer to the fraction of
articles with a mention of the topic in any of a given set of text fields among
articles with a mention in the title, abstract, keywords, methods or results text
fields.
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Figure 2.1: Sensitivities of topic mentioning in various text fields stratified by
journal. Colors relate to text fields as follows: light blue areas give the proportion
of articles with a topic mention in the title among all articles published in the
indicated journal with a mention in the title, abstract, keywords, or body; light
blue and blue areas together give the proportion of articles with a topic mention
in the title or abstract; and light blue, blue, and dark blue areas together give the
proportion of articles with a topic mention in the title, abstract, or keywords. PS,
propensity score; IPW, inverse probability weighting; MSM, marginal structural
modeling; MI, multiple imputation; KM, Kaplan-Meier; NNT, number needed
to treat; ME, measurement error; RCT, randomized controlled trial; LC, latent
class; AJE, American Journal of Epidemiology; IJE, International Journal of
Epidemiology; JCE, Journal of Clinical Epidemiology; EPI, Epidemiology; EJE,
European Journal of Epidemiology.
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Figure 2.2: Sensitivities of topic mentioning in various text fields over time.
Bullets give year-specific sensitivities with bullet size being proportional to
number of publications in the given year with a mention of the topic in any
text field (title, abstract, keywords, or body). Solid lines reflect logistic regression
fits with cubic spline transformations of publication date with four knots placed
equidistantly within [2000, 2017]. Colors relate to text fields as follows: for any
given journal, light blue lines give the year-specific sensitivities of a topic mention
in the title for a mention in the title, abstract, keywords, or body; blue lines
indicate the year-specific sensitivities of a topic mention in the title or abstract;

and dark blue areas give the year-specific sensitivities of a topic mention in the
title, abstract, or keywords. PS, propensity score; IPW, inverse probability
weighting; MSM, marginal structural modeling; MI, multiple imputation; KM,
Kaplan-Meier; NNT, number needed t o treat; ME, measurement error; RCT,
randomized controlled trial; LC, latent class.
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2.3 Results

We downloaded 31,641 HTML files from the journals’ websites; 10,580 from EPI,
4,187 from JCE, 2,251 from EJE, 6,249 from IJE, and 8,374 from AJE. These files
include (but are not limited to) what is published in HTML format of (indexed)
articles, issue index pages and conference abstracts. Here, we present results
based on those 31,641 files. In the Supplementary Material, results are presented
on the subset of publications with at least 2500 words, for which results are
comparable with what is presented here (Supplementary Figures S2.1 and S2.2).

Figures 2.1 and 2.2 present the sensitivities of TIABKW stratified by journal
and by publication date, respectively. At most 50% of articles with a topic
mention in any text field had a mention in the title, abstract or keywords.
Figures 2.3 and 2.4 depict the results for our post-hoc analysis. For some
topics (e.g., PS, MSM, and RCT), TIABKW mentions were considerably more
sensitive for a topic mention in the full text excluding rather than including
introduction and discussion. For other topics (e.g., MI, KM, and LC), TIABKW
identified fewer than half the number articles with a topic mention anywhere in
the full text, regardless of whether introduction and discussion were excluded.
Some methodological topics had a constant, low, sensitivity throughout the
study period (e.g., KM), whereas the sensitivity of TIABKW for the other
topics gradually declined over time (e.g., MI, PS, IPW). There were no relevant
differences in sensitivities of the reporting of topics across the different journals.
Focusing on the articles that mention PS in the full text, 247 out of 378 articles
mentioned PS in the text body but not in the title, abstract or keywords. Almost
a third (72/247, 29%) of these described an empirical application of the method.
This rate was more than doubled after we selected only those articles that, based
on the nature of their main conclusion, were deemed predominantly applied
research (60/87, 69%). Of the 131 articles that mentioned PS in the title, abstract
or keywords, 82 (63%) described an empirical application. The positive predictive
value of TIABKW for an empirical application was higher among predominantly
empirical/applied original articles (58/60, 97%).

2.4 Discussion

Search engines that limit the searching of scientific articles to TIABKW, such
as PubMed or Embase, are established starting points for systematic reviews
of substantive epidemiological study questions (e.g., systematics reviews of the
effects of a medical treatment). Our study illustrates that in systematic reviews
of research practice and reporting, searches that rely only on these tools may lead
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Figure 2.3: Sensitivities of topic mentioning in various text fields stratified by
journal, according to post hoc analysis. Colors relate to text fields as follows: light
blue areas give the proportion of articles with a topic mention in the title among
all articles published in the indicated journal with a mention in the title, abstract,
keywords, methods, or results text fields; light blue and blue areas together give
the proportion of articles with a topic mention in the title or abstract; and light
blue, blue, and dark blue areas together give the proportion of articles with a
topic mention in the title, abstract, or keywords. PS, propensity score; IPW,
inverse probability weighting; MSM, marginal structural modeling; MI, multiple
imputation; KM, Kaplan-Meier; NNT, number needed to treat; ME, measurement
error; RCT, randomized controlled trial; LC, latent class.
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Figure 2.4: Sensitivities of topic mentioning in various text fields over time,
according to post hoc analysis. Bullets give year-specific sensitivities for a mention
in the title, abstract, keywords, methods, or results text fields, with bullet size
being proportional to number of publications in the given year with a mention
of the topic in title, abstract, keywords, or methods or results (provided the
text field was identified and extracted). Solid lines reflect logistic regression
fits with cubic spline transformations of publication date with four knots placed
equidistantly within [2000, 2017]. Colors relate to text fields as follows: for any
given journal, light blue lines give the year-specific sensitivities of a topic mention
in the title for a mention in the title, abstract, keywords, or body; blue lines
indicate the year-specific sensitivities of a topic mention in the title or abstract;
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and dark blue areas give the year-specific sensitivities of a topic mention in the
title, abstract, or keywords. PS, propensity score; IPW, inverse probability
weighting; MSM, marginal structural modeling; MI, multiple imputation; KM,
Kaplan-Meier; NNT, number needed to treat; ME, measurement error; RCT,
randomized controlled trial; LC, latent class.

to a small and possibly selective subset of articles to be included in the review.
We found a large discrepancy in terms of the number of articles identified (as
potentially eligible) between searches that include text bodies and those that
are restricted to title, abstract and keywords. Moreover, methodological topics
tended to be documented in less detail in the title, abstract, or keywords as
methods become more mainstream, contributing to a possibly selective subset of
articles to be identified over time.

Reviewers are faced with the challenge of adequately handling increasingly
large volumes of literature, and ignoring certain text fields may help mitigate
this problem, but it may come at the cost of giving an inaccurate reflection
of the state of knowledge/practice on the topic of interest. The decision to
automate the selection of articles in systematic reviews using readily available
search engines is usually made on practical grounds. Full text mining may
however be a promising alternative. As noted by O’Mara-Eves et al., there are
at least two (not necessarily distinct) ways of using data and text mining in
selecting articles for further review: by reducing the list of items to be screened
manually or by manually assigning articles in a (development) subset of articles
to include/exclude categories in order to ‘train’ an algorithm to apply such
categorizations automatically. Depending on the complexity of the task for which
the algorithm is to be trained and the desired properties the trained algorithm
should possess, the second (supervised-learning) approach may actually be more
cumbersome than going through all articles manually. For the current analysis,
we used text mining only to prune articles that would be deemed related to the
topic of interest had we manually evaluated the paper. In some settings, e.g.,
where diverse or non-specific terminology is used, it may be difficult to find a
rule that allows for relevant articles to be identified with high sensitivity and
manageable specificity. In such cases, the adopted text mining approach may
still leave an intractably large amount of articles to screen manually.

While our review clearly shows a possibly large difference between TIABKW
searching versus full text searching, the discrepancies we found in this review in
the number of pruned articles need not always translate into the two approaches
giving a different impression of the state of research practice for any given
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methodological topic in epidemiology. This may depend on the review goals.
Also, even if articles are missed by limiting the research to TIABKW, an
important question remains whether the articles that would be omitted if we
ignored the full text, should have actually been included. The large discrepancy
that we found for the topic RCT, for example, is likely largely explained by many
articles only briefly addressing the study design in the discussion or introduction,
i.e., studies that may not be relevant to the reviewer (depending on the review
goals) (see Figure 2.3). That is, incorporating all available text fields in the
screening is likely to decrease the specificity for relevant articles, resulting in a
possibly much larger number of articles to be further screened on relevance. It
may therefore sometimes be appropriate to restrict oneself to certain text fields.
Of note, for the topic of PS, many studies that would be omitted by restricting
the search to TIABKW actually detailed an empirical application of the method.
Therefore, for reviews of research practice regarding PS many relevant articles
would be missed if the search/screening had been restricted to TIABKW only,
especially the more recently published articles.

A limitation of this study is that it was limited to only five high ranking
epidemiological journals and nine (partly related) methodological topics. Each of
these journals has a strong methodological focus, publishing on applied as well
as methodological topics. Consequently, we may expect that our results do not
directly translate to other fields, particularly to applied biomedical journals with
a less methodological focus.

There are several operational and legal challenges to consider for full
automated text data literature searches. Clearly, if researchers do not have access
to the full text of articles, initial screening based on title and abstract might be
the only viable option. Furthermore, in case of hundreds of thousands of full
text articles to be searched, downloading of the articles needs to be automated
to, which is currently prohibited by some publishers. An alternative approach
could be to restrict the search to open access articles only, but whether this is a
suitable alternative depends on the objective of the review. Furthermore, there
are practical barriers to perform full text searches, since this is not possible via
commonly used search engines such as Pubmed.

Given the various challenges to automated searches, in current practice, there
probably exists a trade-off between automated full-text literature searching in a
small number of journals or TIABKW searching in large databases. Although not
used in this study, both approaches could be supplemented with pearl growing
strategies such as MeSH terms and snowballing in an effort to increase the
sensitivity (Greenhalgh and Peacock, 2005; Ramer, 2005).

To conclude, searches that are based on TIABKW only may not be
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appropriate for systematic reviews of research practice and reporting. Provided
access to full text bodies for literature searches, full text mining is ideally
incorporated also in the first stages of a systematic literature review of
epidemiological practice.
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Catalá-López, L. Li, E. K. Reid, R. Sarkis-Onofre, et al. (2016): “Epidemiology
and reporting characteristics of systematic reviews of biomedical research: a
cross-sectional study,” PLoS medicine, 13, e1002028.

Ramer, S. L. (2005): “Site-ation pearl growing: methods and librarianship history
and theory,” Journal of the Medical Library Association, 93, 397.

R Core Team (2018): R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria, URL https://www.
R-project.org/.

27

https://www.R-project.org/
https://www.R-project.org/


Full text mining and searching in systematic reviews

Supplementary Material

Methodological topic Search terms
Methodological topic Search terms
Propensity score methods propensity score; propensity scoring
Inverse probability
weighting

“inverse-probability-weight; inverse
probability-weight; inverse-probability weight;
inverse probability weight; inverse weight;
inverse-weight; inverse-probability; inverse
probability”

Marginal structural
modelling

marginal structural

Multiple imputation multiple imputation; multiply imputed
Kaplan-Meier estimation kaplan-meier; kaplan meier
Number needed to treat number needed to; number-needed-to
Measurement Error misclassification; measurement error
Randomised controlled trial randomized controlled clinical trial; randomised

controlled clinical trial; randomized controlled
trial; randomised controlled trial

Latent class analysis latent variable; finite mixture

Table S2.1: Overview of search terms (strings) for each of the methodological
topics. Distinct strings are separated by semicolons. Articles with a mention of
at least one of the specified search strings were regarded as eligible for review
(i.e., as articles potentially referring to the topic of interest). A mention of a
term/string was established using case insensitive approximate string matching
with unit edit costs; an approximate match was said to exist if and only if the
Levenshtein distance was no greater than 10% of the number of search term
characters (i.e., based on the default settings of the R/3.5.0 function base::agrep).
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journal among articles of at least 2500 words.

29



Full text mining and searching in systematic reviews

1

1

1

1 Time (number of years between 1 January 2000 and publication date)

1

1 PS

1

1 IPW

1

1 MSM

1

1 PS/IPW/MSM

1

1 MI

1

1 KM

1

1 NNT

1

1 ME

1

1 RCT

1
1 LC

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

x

x 0 5 10 15

ylim

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ylim

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 range(x)

yl
im

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

range(x)

yl
im

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ●
●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

range(x)

yl
im

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

range(x)

yl
im

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

● ●

range(x)

yl
im

● ●

●

●

● ●

● ●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

range(x)

yl
im

● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
● ● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

range(x)

yl
im

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

range(x)

yl
im

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●

range(x)

yl
im

●

●

●

● ●

●
●

●
● ● ●

●
●

● ●●●
●

●

●
● ●

●
●

●

●
●

●
●

●
● ● ●●

●

●● ●

●

●
● ●

●
●

●

● ●

●
● ● ●

●
●

●

range(x)

yl
im

● ● ●

● ●
●

●
●

● ● ● ● ● ● ●
●

●
●

●

● ● ●

●

● ●

●
●

● ● ●

●

●
●

●

● ●

●

●

● ●

●

● ●

●
●

● ●
●

●

●

●
●

●
●

P(mention in title | (mention in title, abstract, keywords or body) AND time)

P(mention in title or abstract | (mention in title, abstract, keywords or body) AND time)

P(mention in title, abstract or keywords | (mention in title, abstract, keywords or body) AND time)

Figure S2.2: Sensitivities of topic mentioning in various text fields over time
among articles of at least 2500 words. Bullets give year-specific sensitivities with
bullet size being proportional to number of publications of at least 2500 words
in the given year with a mention of the topic in any text field (title, abstract,
keywords or body). Solid lines reflect logistic regression fits with cubic spline
transformations of publication date with four knots placed equidistantly within
[2000, 2017].
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Supplementary R Code

# The R code below was compiled to illustrate how the page source of
# the following article may be downloaded , how relevant parts may
# be extracted or modified , and how term mentions may be
# identified .

# Mi , X., B. G. Hammill , L. H. Curtis , M. A. Greiner , S. and
# Setoguchi , 2013. Impact of immortal person -time and time scale
# in comparative effectiveness research for medical devices : a case
# for implantable cardioverter - defibrillators , Journal of clinical
# epidemiology , 66(8) , pp.S138 -S144.

# ===================================================================
# Downloading file
# ===================================================================

# NB: The method used below retrieves the original / unrendered page
# source . What is returned may not contain all elements that are
# displayed by the web browser . Publisher APIs or headless browsers
# may be helpful when this occurs . For this example , the original
# page source is sufficient .

con <- url(" https ://www. jclinepi .com/ article /S0895 -4356(13) 00163 -7/
fulltext ",method =" libcurl ")

x <- suppressWarnings ( paste0 ( readLines (con),collapse =" \n "))

# ===================================================================
# Extracting relevant parts
# ===================================================================

# Page sources from the same journal typically have the same
# structure . Inspection of some source files should help with
# locating and , in turn , extracting the relevant parts . Below we
# make use of regular expressions .
? regexpr # But see also
# Crawley , M. J. (2013) . 2.12: Text characters strings and pattern
# matching . In M. J. Crawley [ editor ]. The R Book , Chichester : John
# Wiley & Sons.

# Title
m <- regexpr (’<h1 class =\" articleTitle \" >(.*?) </h1 >’,x)
title <- regmatches (x,m)

# Abstract
# To isolate the abstract we would like to extract everything
# between ’<h2 class ="< section class =" abstract ’
# and the matching ’</section >’. However , ’</section >’
# occurs multiple times in this target string , so greedily
# searching for ’</section >’ after
# ’<h2 class ="< section class =" abstract ’ is not effective here.
# The following functions handle this problem .

fMatchOpenClose <- function (open=’<div ’,close =’</div >’,text){
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opn <- gregexpr (open ,text)[[1L]]
cls <- gregexpr (close ,text)[[1L]]
n <- length (opn)
if(n!= length (cls))

stop( paste (’discrepancy between number of opening and ’,
’that of closing strings .’)

wh <- integer (n)
available <- !wh
for(i in seq_len(n)){

sgn <- c(rep (1L,n-i+1) ,rep(-1, sum( available )))
loc <- c(opn[i:n],cls[ available ])
ord <- order (loc)
sgn <- sgn[ord]
loc <- loc[ord]
clr <- loc[! cumsum (sgn)]
if(! length (clr)) stop(’invalid entry .’)
wh[i] <- clr [1L]
available [ which (cls == clr [1L]& available )[1L]] <- FALSE

}
m <- as. integer (opn)
attr(m,’match . length ’) <- as. integer (wh+ nchar ( close )-opn)
m <- list(m)
return (m)

}
fMatchOpenCloseStartStop <- function (

start =’<div id =" fulltext -body">’,
open=’<div ’,close =’</div >’,stop=’</div >’,text){
m <- fMatchOpenClose (open ,close ,text)[[1L]]
str <- as. integer ( regexpr (start ,text))
stp <- as. integer ( gregexpr (stop ,text)[[1L]]+ nchar (stop)) -1L
m0 <- as. integer (m)
m1 <- as. integer (m+attr(m,’match . length ’) -1L)
wh <- m0 >= str
m0 <- m0[wh]
m1 <- m1[wh]
w <- rep(seq_len( length (m0)) ,2L)
s <- c(rep (1L, length (m0)),rep (-1L, length (m1)))
m <- c(m0 ,m1)
o <- order (m)
w <- w[o][ which (! cumsum (s[o]))[1L]]
stp <- stp[ which (stp >= m1[w]) [1L]]
attr(str ,’match . length ’) <- stp -str +1L
return (str)

}
m <- fMatchOpenCloseStartStop ( start =’<section class =\" abstract ’,

open=’<section ’,close =’</section >’,stop=’</section >’,text=x)
abstract <- regmatches (x,m)

# Keywords
m <- regexpr (’<div class =\" keywords \" >(.*?) </div >’,x)
keywords <- regmatches (x,m)

# Body
m <- fMatchOpenCloseStartStop (

start =’<div class =\" content \">< section id =" sec1"’,open=’<div ’,
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close =’</div >’,stop=’</div >’,text=x)
body <- regmatches (x,m)
# NB: the reference list is not included in this text field .

# ===================================================================
# Modifying / cleaning extracted parts
# ===================================================================

title <- gsub(" <(.*?) >","",title )
abstract <- trimws (gsub("ˆ(.*?) Abstract ","",gsub(" <(.*?) >"," ",abstract )))
keywords <- gsub(" <(.*?) >","",keywords )
keywords <- trimws (gsub(" Keywords : \n","",keywords ))
unlist ( strsplit (keywords ,", ")) # note that " Defibrillators " and
# " implantable " now appear as distinct keywords because of the crude
# approach .
body <- gsub(

paste0 (’\\[ < span class =" bibRef \"(.*?) ’,
’See all References </a></span ></span >\\] ’),"",body)

# This also removes in -text references .
body <- gsub(" <(.*?) >"," ",body)

# ===================================================================
# Partial string matching
# ===================================================================

agrepl (" Inverse probability weighting ",title , ignore .case=TRUE) #F
agrepl (" Inverse probability weighting ",abstract , ignore .case=TRUE) #F
agrepl (" Inverse probability weighting ",keywords , ignore .case=TRUE) #F
agrepl (" Inverse probability weighting ",body , ignore .case=TRUE) #T

# The following function may be used to extract parts where a partial
# string match is found . A measure of the location of the match is
# also given .
getExcerpts <- function (term , before =’. ’,after =’. ’,count =1L,

fixed =TRUE ,text ,min_dist =25L,trim_ start =before ,trim_end=NULL){
if(count <1L||!is. integer ( count )) stop(" count must be positive integer .")
if(min_dist <1L||!is. integer (min_dist))

stop("else_ nchar must be positive integer .")
x <- gregexpr (term ,text , ignore .case=TRUE)[[1L]]
y <- as. integer (x)+attr(x," match . length ") -1L
x <- as. integer (x)
a <- gregexpr (before ,text , fixed = fixed )[[1L]]
b <- as. integer (a)+attr(a," match . length ") -1L
c <- gregexpr (after ,text , fixed = fixed )[[1L]]
d <- as. integer (c)+attr(c," match . length ") -1L
n <- nchar (text)
fn <- function (i){

v <- rev(a[b<x[i]])
m <- min(c( length (v),count ))
p <- if(!is.na(x[i])&&m >0&&x[i]-v[m]>= min_dist) v[m] else

max(c(1,x[i]-min_dist))
w <- d[c>y[i]]
m <- min(c( length (w),count ))
q <- if(!is.na(x[i])&&m >0&&w[m]-x[i]>= min_dist) w[m] else

min(c(n,x[i]+ min_dist))
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z <- p
attr(z," match . length ") <- q-p+1L
out <- regmatches (text ,z)
if(!is.null(trim_ start ))

out <- gsub( paste0 (’ˆ’,trim_ start ),’’,out)
if(!is.null(trim_end))

out <- gsub( paste0 (trim_end ,’$’),’’,out)
return (list( excerpt = trimws (out),location =x[i]/n))

}
l <- length (x)
out <- if(l) lapply (seq_len(l),fn) else NA
out <- list( excerpt = unlist ( lapply (out , function (x)x$ excerpt )),

location = unlist ( lapply (out , function (x)x$ location )))
return (out)

}
getExcerpts (" inverse probability ",text=body)
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Propensity score matching and multiple imputation

In a recently published simulation study, Mitra and Reiter compared two
approaches to implementing propensity score (PS) methods following multiple
imputation (Mitra and Reiter, 2016). Particular emphasis was on propensity
score matching following multiple imputation. In simulation studies, they
evaluated two possible approaches, i.e., the so-called Within and Across approach.
In both approaches, PSs are estimated in each of m imputed datasets. In the
Within approach, PS matching is performed within each imputed dataset. The
resulting m effect estimates are then pooled by averaging. In the Across approach,
for each subject the m estimated PSs are averaged first, after which PS matching
is performed once, based on each subject’s average PS. Apparent from the results
was the trend that although both approaches were biased, the Within method
was generally more biased than the Across approach, particularly when there was
missing confounder data.

We argue that these findings are due to the imputation model and the
matching algorithm rather than a genuine difference between the methods. While
Mitra and Reiter chose to leave the outcome out of the imputation model, it has
been shown that often the outcome should actually be included in the imputation
model (van Buuren, 2012). To illustrate this, we repeated a selection of Mitra
and Reiter’s simulations, which represent a setting of a binary treatment, a
continuous outcome, and two normally distributed covariates. Here, we focus on
the scenarios in which both covariates acted as confounders and both treated and
untreated subjects were assigned missing covariate values. Results are presented
in Table 3.1.

In line with Mitra and Reiter, when we applied PS matching while leaving the
outcome variable out of the imputation model, the Across approach outperformed
the Within approach in terms of bias (Table 1, scenario 1a). With the outcome
included in the imputation model (scenario 1b), the Within estimates still deviate
more from the true treatment effect than the Across estimates, but closely
approximate the mean estimate based on PS matching before the introduction of
missing values (0.053, 95%CI 0.043; 0.064). The bias observed in the absence of
missing data is largely due to non-positivity in the tails of the PS distributions of
treated and untreated subjects. As a result, treated subjects in the upper tail of
the PS distribution are matched to untreated subjects who tend to have lower PS
values, thus leading to suboptimal balance in PS between treated and untreated
subjects. This balance can, however, be improved, e.g., by using narrow callipers
for matching or increasing the sample size n and thus increasing the number of
potential matches. With n increased by a factor of 10 (Table 1, 1c) it becomes
apparent that the Within approach is superior to the Across provided the outcome
variable is included in the imputation model.
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Across Within
Pt. Est. Variance MSE Pt. Est. Variance MSE

Scenario 1: matching
a 0.282 0.081 0.161 0.557 0.051 0.361
b -0.012 0.032 0.032 0.060 0.024 0.027
c -0.048 0.003 0.005 0.025 0.002 0.003

Scenario 2: regression
a 0.166 0.039 0.066 0.438 0.032 0.224
b -0.077 0.020 0.026 0.002 0.018 0.018

Scenario 3: IPTW
a 0.092 0.002 0.010 0.043 0.001 0.003
b -0.701 0.805 1.296 0.227 0.616 0.668
c 0.011 0.001 0.002 -0.002 0.001 0.001
d -0.236 0.664 0.720 -0.022 0.658 0.658
e 0.901 0.009 82.793 0.888 0.009 83.030
f 9.638 2.008 2.139 9.967 2.065 2.066

Table 3.1: Properties of the Across and Within estimators. Abbreviations:
Pt. Est. = mean effect estimate across 1000 simulations; Variance = empirical
variance; MSE = mean squared error. Sample size n = 1100, except for scenario
1c where n = 11, 000. In scenario 1, effect estimates were based on PS matching
following multiple imputation with outcome left out (a) or included (b, c) in
the imputation model. In scenario 2 (a, b), treatment effects were estimated
using linear regression, regressing the outcome on treatment, the PS, and both
covariates. In 2a, the outcome was left out of the imputation model, whereas in
2b it was included. In scenario 3, effect estimates were based on IPTW, following
Mitra and Reiter (2016) (a, c, e), or using the traditional weights (see text) (b, d,
f). In scenarios 3a and 3b the outcome variable was not included in the imputation
model, whereas in scenarios 3c, 3d, 3e and 3f the outcome was included in the
imputation model. In all scenarios, the true effect of treatment on the outcome
was zero, except for scenarios 3e and 3f, in which it was 10.
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Mitra and Reiter also assessed multiple imputation followed by regression
adjustment (i.e., including the confounders as covariates in a linear regression
model). In this situation, we observed the same trend across the different
imputation models (Table 1, scenarios 2a and 2b). Again, upon inclusion of the
outcome variable in the imputation model, the Within approach yields unbiased
estimates, while the Across approach does not.

A third method of controlling for confounding that was studied by Mitra and
Reiter was inverse probability weighting. In scenario 3a, we estimated the true
effect using inverse probability of treatment weighting (IPTW) where, following
Mitra and Reiter (2016), the weight for any subject equalled 1 if a subject was
treated, and PS/(1-PS) if untreated. The treatment effect is then estimated by
the difference between the sum of the weighted outcomes in the treatment group
and the sum of the weighted outcomes in the control group, divided by the original
sample size n. In scenario 3b, we used the traditional weights discussed by, e.g.,
Lunceford and Davidian (2004) and Robins et al. (2000); i.e., 1/PS if a subject
was treated, and 1/(1-PS) otherwise. Note that these are equivalent to those of
scenario 3a multiplied by PS, meaning that the average of weighted outcomes
based on the weights used by Mitra and Reiter is necessarily closer to zero (since
PS < 1), than if the traditional weights were used. Again, we observed that
with the outcome variable included in the imputation model, the Within method
is superior to the Across (Table 1, scenarios 3c and 3d). Further, in scenarios
of a non-null treatment effect (Table 1, 3e and 3f, true effect = 10) simulations
suggest that the traditional weights are to be preferred—i.e., unless the interest
lies in estimating the average effect on the treated (Morgan and Todd, 2008), in
which case the denominator of the effect estimator should match the effective size
of the groups in the pseudopopulation.

In medical research, confounding and missing data are common problems that
often occur simultaneously. When multiple imputation is to be followed by PS
matching, researchers could apply the Across and the Within approaches that
were proposed by Mitra and Reiter. Provided the correct imputation model is
applied and there are no other sources of bias (e.g., model misspecification), the
Within approach appears to be superior to the Across approach in terms of bias
reduction.
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Propensity score methods and multiple imputation

Abstract

Background. In observational research on causal effects, missing data and
confounding are very common problems. Multiple imputation and propensity
score methods have gained increasing interest as methods to deal with these,
but despite their popularity methodologists have mainly focused on how they
perform in isolation. Methods. We studied two approaches to implementing
propensity score methods following multiple imputation, both of which have
been used in applied research, and compared their performance by way of
Monte Carlo simulation for a continuous outcome and partially unobserved
covariate, treatment or outcome data. In the first, propensity score analysis
is performed within each of m imputed datasets, and the resulting m effect
estimates are averaged. In the alternative approach, for each subject the m
estimated propensity scores are averaged first, after which the propensity score
method is implemented based on each subject’s average propensity score. Results.
The Within approach was found to be superior in terms of bias as well as variance
in settings with missing covariate data. In settings with incomplete treatment
or outcome values only, the approaches yielded similar results. Reasons for
discrepancies between the approaches are provided. Conclusion. We advise
researchers not to use the second approach as the default method, because
even when data are missing completely at random, this may yield biased effect
estimates.
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4.1 Introduction

Establishing causal associations between risk factors, treatments, or other
exposures, and outcomes is a key aim in many epidemiologic studies. However,
in observational studies, the attempt is often hampered by missing data and
confounding.

Simply ‘ignoring’ missing data, which typically means that a complete case
analysis is performed, often is inappropriate, because the conditions under which
it is unbiased are very restrictive (Rubin, 2004; Schafer and Graham, 2002; van
Buuren, 2012; Daniel et al., 2012). Even when these conditions are met, for
example because the complete cases are truly a random subset of the study
sample, discarding incomplete records may render the estimator unnecessarily
inefficient (Rubin, 2004; Schafer and Graham, 2002; van Buuren, 2012). An
alternative to complete case analysis is multiple imputation (MI), in which
missing data are filled in with random draws from their predictive distributions
based on the observed data, thereby producing multiple plausible datasets.
Inferences are typically made using a simple set of rules known as Rubin’s Rules
(Rubin, 2004). MI is a popular method for dealing with missing data, because it
is flexible, relatively easy to implement with readily available statistical packages,
and often provides valid estimates of effect and standard errors in situations where
simpler techniques, including complete case analysis, fail (Rubin, 2004; Schafer
and Graham, 2002; van Buuren, 2012).

To address the problem of confounding, researchers have traditionally used
multivariable regression for data analysis. More recently, the use of propensity
score methods has gained increasing interest (Stürmer et al., 2006). A subject’s
propensity score is the conditional probability of being assigned to treatment
given their measured covariates (Rosenbaum and Rubin, 1983; Austin, 2011).
Among those subjects with the same propensity score, the distribution of
measured covariates is expected to be the same between treated and untreated
individuals (Rosenbaum and Rubin, 1983). Thus, by conditioning on the
propensity score treatment status becomes independent of covariates. Several
propensity score methods have been described: stratification, matching on the
propensity score, inverse probability of treatment weighting (IPW), and covariate
adjustment in multivariable regression (Rosenbaum and Rubin, 1983; Austin,
2011). However, despite increasing popularity, it is largely unclear how these
perform in the presence of missing data.

Few have investigated approaches that combine missing data techniques with
methods for confounding. Mitra and Reiter (2016) studied two approaches that
combine multiple imputation with propensity score matching. In both, missing
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covariate data are imputed m times through multiple imputation. For each of
the completed datasets, a propensity score is then estimated for each subject.
In the so-called Within approach, propensity score analysis is performed within
each of m imputed datasets, and the resulting m effect estimates are averaged.
In the Across approach, for each subject the m estimated propensity scores are
averaged first, after which the propensity score method is implemented based on
each subject’s average propensity score. While both approaches were shown to be
superior to complete case analysis in terms of bias, it was found that the Across
method was less biased than the Within method, especially in the presence of
missing covariate data (Mitra and Reiter, 2016). However, as with any simulation
study, these results may not extend beyond the settings that were considered. For
example, while it was assumed that the treatment and outcome variables were
fully observed, none have compared approaches in settings with incomplete data
for one or both of these variables. Furthermore, although it has been argued that
often the outcome should be included in the imputation model (Moons et al.,
2006; Sterne et al., 2009; van Buuren, 2012), it was excluded from the imputation
model in the previous study. Moreover, with the outcome included, subsequent
simulations have found the Within approach to be preferred (Penning de Vries
and Groenwold, 2016; Leyrat et al., 2017). Nevertheless, in applied research, the
Across approach appears to have gained interest since its introduction (Neuderth
et al., 2016; Olszewski et al., 2015; Gregory et al., 2016; Chiu et al., 2016; Brown
et al., 2016; Sulkowski et al., 2014, 2015; Kutney-Lee et al., 2014; Ekström et al.,
2016).

Our aim was therefore to provide further insight into how propensity scores
analysis should be applied in combination with multiple imputation. Specifically,
we compared the Within and Across approaches in settings with missing covariate
data, missing treatment indicators, and missing outcomes. The remainder of this
article is structured as follows. The notation and set-up for the simulations are
detailed in Sections 4.2 and 4.3. Results are presented in Section 4.4 and discussed
in Section 5.5. Finally, we conclude with a summary in Section 4.6.

4.2 Notation

Suppose the random vector Z = (X1, X2, ..., Xg, T, Y ) is observed on n subjects.
The first g variables of Z represent covariates, whereas T and Y refer to a binary
treatment indicator variable and a continuous outcome, respectively. Realisations
are printed in lower case letters. We denote an n × (g + 2) matrix by Z, whose
ith row Zi = (Xi1, Xi2, ..., Xig, Ti, Yi) represents the ith (i = 1, 2, ..., n) subject’s
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record. For each i, j element in Z, define a missing indicator variable Mij that
takes the value of 1 if it is observed and 0 otherwise. Further, we write z =
(zobs, zmis) to indicate that z can be partitioned into an observed part zobs and a
missing part zmis. In multiple imputation, values of zmis are imputed m times by
drawing from posterior predictive distributions, resulting in m completed datasets
z(k), k = 1, 2, ..., m that may be subjected to propensity score analysis. A detailed
description of the Across and Within approaches are given in the Supplementary
Material.

4.3 Simulation methods

We used a series of Monte Carlo simulations to examine the performance of the
Across, the Within, and complete case approaches under various missing data
mechanisms. The simulations were carried out in several stages. In the first stage,
complete data are generated following one of the data generating mechanisms
detailed below. These were chosen for comparability with Mitra and Reiter
(2016). Second, missing data are introduced into one of the variables. Third, a
number of approaches are applied to estimate the treatment-outcome effect. For
each scenario (combination of complete data generating mechanism and missing
data mechanism), this process was repeated 1000 times. A full factorial design
was used. All simulations were conducted with R Statistical SoftwareR Core
Team (2016) version 3.1.1. For multiple imputation we used the mice package
(van Buuren and Groothuis-Oudshoorn, 2011). Continuous and binary variables
were imputed using the norm and logreg options, respectively. The number of
imputations was set to m = 5 for efficiency. For any incomplete variable, all other
variables, including the outcome, were included in the imputation model. Failing
to include the outcome in the imputation model may lead to imputed datasets
that do not reflect the association between covariate and outcome that would
have been observed had there been no missing values. The consequence of this
is that if one adjusts for the imputed covariate values to estimate the treatment
effect, the variation in outcomes between the treatment groups that is due to the
partially unobserved covariate would in part be attributed to the differences in
treatment status.

4.3.1 Data generating mechanisms
We considered g = 2 covariates, a binary treatment indicator variable (Ti) and a
continuous outcome for n = 1100 subjects. Data were simulated by sequentially
drawing (Xi1, Xi2), Ti, and Yi for i = 1, 2, ..., n from the respective distributions.
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Let (Xi1, Xi2) ∼ N(µ, Σ), where µ = (10, 10) and Σ has variances equal to 5 and
covariance 2.5 (correlation 0.5).

The value of Ti was assigned by drawing from a Bernoulli distribution with
parameter (i.e. the probability of treatment assignment) defined as a function of
the ith subject’s covariate data. In particular, we let

Pr(Ti = 1|Xi1, Xi2) = expit{−7.8 + 0.255Xi1 + 0.255Xi2}

where expit{η} is the inverse logit function exp(η)/(1 + exp(η)). As such, the log
odds of treatment increases with 0.255 for every unit increase in either X1 or X2.
This mechanism assigns approximately 100 subjects to treatment (T = 1) and
1000 subjects to the control group (T = 0).

We defined the outcome Yi such that, for all i,

Yi = 2Ti + Xi1 + 0.5Xi2 + εi, εi ∼ N(0, σ2)

where εi is independent of (Ti, Xi1, Xi2). The interest lies in estimating treatment
effect βT Y = 2, that is, the conditional treatment effect, which—because of
homogeneity and the collapsibility of the causal difference in means—equals the
marginal treatment effect. Clearly, both covariates serve as a confounder for
the association between T and Y . We varied σ2 = 1, 9 to show that larger
residual variances (σ2 = 9) correspond with larger discrepancies between Across
and Within estimates in the case of missing covariate data.

4.3.2 Missing data mechanisms
To aid understanding, we initially restricted ourselves to simple missing
data mechanisms, namely univariate missing completely at random (MCAR)
mechanisms, and finally considered univariate missing at random (MAR) settings.
The mechanisms for generating missing data were as follows:

(i) MCAR covariate values. Any subject’s X2 value was allowed to be missing
with probability Pr(Mi2 = 1|Z) = p, p = 0.2, 0.4, 0.6, 0.8. For columns
j = 1, 3, 4 in Z, we let Pr(Mij = 1|Z) = 0.

(ii) MCAR treatment indicator values. We allowed for missing treatment status
with Pr(Mi3 = 1|Z) = p, p = 0.2, 0.4, 0.6, 0.8, and let the missingness
probability of the other variables equal 0.

(iii) MCAR outcome values. We considered the same missing data
mechanisms as in ii except that we simulated missing outcomes as opposed
to missing treatment indicator values.
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(iv) MAR covariate values. Two MAR mechanisms were considered. Under
mechanism MAR1, missing covariate values were simulated with Pr(Mi2 =
1|Z) = expit{−8.2 + 0.8Xi1}(1 − Ti). Under mechanism MAR2, Pr(Mi2 =
1|Z) = expit{−13 + 0.8Yi}. These mechanisms set approximately 40% of
the subjects’ X2 values to missing.

4.3.3 Effect estimators

For all simulated datasets, the Within and Across estimates were obtained
as described in the Supplementary Material. Because of their common use,
complete case analyses were also performed for comparison. A number of
propensity score methods were investigated. The regression estimates of the
treatment effect were obtained by linearly regressing the outcome on treatment
and the logit of the estimated propensity score. The term matching is used to
refer to pair matching performed by selecting for each treated subject a single
untreated control without replacement using a greedy nearest neighbour matching
algorithm. No restrictions were placed on the maximum acceptable difference
between the propensity scores of any two matched subjects. We also performed
matching on the logit of the propensity score using a calliper distance of 0.05.
A fourth effect estimator was obtained using IPW where treated subjects are
weighted by the inverse of their propensity score and untreated subjects by the
inverse of its complement. Finally, we applied iterative IPW using a convergence
threshold of 10−4 and a maximum of 100 iterations per dataset (van der Wal,
2011). Calliper matching and iterative IPW were used because matching and
IPW are sensitive to practical non-positivity (Cole and Hernán, 2008; van der
Wal, 2011).

To improve covariate balance in the presence of practical non-positivity, van
der Wal proposed an algorithm in which the dataset is iteratively reweighted
(van der Wal, 2011). The idea underpinning this algorithm is as follows. By fitting
a propensity model on the weighted dataset, new weights can be estimated that
(partially) adjust for the residual confounding. Multiplying these weights with the
original yields weights that when applied to the dataset correct for confounding
more than the original weights. As the covariate balance improves, the probability
of being assigned to treatment becomes less dependent on the covariate values,
and so the variance of the log-transformed new weights reduces. The above
process is therefore repeated until the variance drops below a convergence
threshold.

The iterative inverse probability weighting (IIPW) algorithm was defined
in the context of fully observed data. With multiply imputed data, one can
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apply IIPW within each imputed dataset, in a way consistent with the Within
approach, until the algorithm converges within each dataset or until a maximum
number of iterations is reached. Alternatively, at each iteration one can average
the estimated propensity scores across the imputed datasets, as per the Across
approach, before reweighting the imputed datasets. Sample R code for these
algorithms is provided in the Supplementary Material.

4.3.4 Variance estimation
An appealing property of the standard multiple imputation approach is that
it facilitates estimation of standard errors that reflect both the variability in
the data and the uncertainty in the imputations (Rubin, 2004). However, for
the Across approach, the between-imputation variance component of Rubin’s
multiple imputation variance estimator cannot fully capture the uncertainty of
the imputations. For example, when there are only missing covariates, the
between-imputation variance would be zero, because the same set of propensity
scores is used for each dataset.

As an alternative to Rubin’s rules for variance estimation, analysts can
implement a bootstrapping procedure that is akin to the full mechanism
bootstrapping approach described by Efron (Efron and Tibshirani, 1994). Here,
bootstrapping is implemented as follows:

1. Sample with replacement n rows from the incomplete dataset z to obtain a
bootstrapped dataset zb.

2. Impute missing values m times through multiple imputation, producing for
k = 1, 2, ..., m an imputed dataset z(k)

b .

3. Apply the analysis procedure (e.g. Within or Across approach) to the m
imputed datasets to obtain a single effect estimate β̂b for the bootstrapped
dataset.

4. Repeat steps 1–3 B times to obtain B bootstrap replicates.

The bootstrap variance and confidence interval for the effect estimate β̂ can be
obtained from the bootstrap replicates using standard formulae.

For the scenarios with MAR missingness, we estimated variances and
confidence intervals using Rubin’s rules and the bootstrapping procedure outline
above. As discussed, the former can be expected to yield too narrow standard
errors and therefore suboptimal coverage. To illustrate this, we applied Rubin’s
rules for the regression estimators using the modified degrees of freedom formula
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detailed elsewhere (Barnard and Rubin, 1999; Hughes et al., 2014) to obtain
95% confidence intervals. As for bootstrapping, we calculated bootstrap sample
variances and 95% percentile confidence intervals, using the 2.5th and 97.5th
percentiles as the lower and upper bounds, based on 1000 bootstrap samples.

4.3.5 Performance measures

The primary performance measure of interest is bias, estimated by the mean
deviation of the estimated effect from the true effect of treatment on the outcome
(βT Y ) across all 1000 simulations, but we also provide empirical variances and
mean squared errors (MSE). For the MAR scenarios, coverage probabilities and
the mean estimated variances relative to the corresponding empirical variances
are also provided. Based on 1000 simulations, the Monte Carlo standard error
for the true coverage probability of 0.95 is

√
(0.95(1 − 0.95)/1000) ≈ 0.0069,

implying that the estimated coverage probability is expected to lie with 95%
probability between 0.936 and 0.964 (Burton et al., 2006). Empirical coverage
rates outside this interval provide evidence against the true coverage probabilities
being equivalent to the nominal level of 0.95.

4.4 Results

4.4.1 Bias

In this section, we present graphically the estimated biases for the effect
estimators of interest. Results on these and other performance measures are
presented in tabular form in the Supplementary Material.

1 Missing (MCAR) covariate values

Figure 4.1 depicts the estimated biases for the scenarios with MCAR covariate
data. Apart from those based on matching or IPW, the complete case and Within
estimators were not identifiably biased. The Across approach, however, showed
substantial bias, especially when either the missingness probability, the residual
variance σ2 or both were large. The regression-, matching-, calliper matching-,
and IIPW-based estimators were all negatively biased for the Across approach. In
contrast, Across IPW estimates were on average overestimated. Complete case
matching and IPW estimates were also systematically overestimated, with the
extent of bias increasing with the extent of missingness.
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Figure 4.1: Biases of treatment effect estimators for various degrees of missing
(MCAR) covariate data and residual variances σ2. Abbreviations: C. matching,
calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse
probability weighting; CCA, complete case analysis. Error bars represent 95%
confidence intervals for the simulation estimates of bias.
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2 Missing (MCAR) treatment indicator values

Figure 4.2 depicts the estimated biases for the scenarios with MCAR treatment
indicator values. The Across and Within estimates were on average highly
similar. Apparent from the figure is also the trend that as the percentage of
incomplete cases increases, the treatment effect becomes on average progressively
more underestimated by both the Across and Within estimators. Conversely, the
complete case matching and IPW estimators systematically overestimated the

Figure 4.2: Biases of treatment effect estimators for various degrees of missing
(MCAR) treatment indicator values and residual variances σ2. Abbreviations: C.
matching, calliper matching; IPW, inverse probability weighting; IIPW, iterative
inverse probability weighting; CCA, complete case analysis. Error bars represent
95% confidence intervals for the simulation estimates of bias.
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treatment effect, particularly for large missingness probabilities.

3 Missing (MCAR) outcome values
Figure 4.3 depicts the estimated biases for the scenarios with MCAR outcomes.
For all propensity score methods, the Across and Within estimators yielded
identical results. Again, the complete case matching and IPW estimators
showed bias, particularly when the extent of missingness was large. The
corresponding Within and Across estimators were less biased. The regression-,
calliper matching-, and IIPW-based estimators resulted in minimal bias.

4 Missing (MAR) covariate values
Figure 4.4 depicts the estimated biases for the scenarios with MAR covariate data.
The complete case matching and IPW estimators generally showed more bias than
in the corresponding MCAR covariate settings with a comparable proportion of
incomplete records (40%). The regression-, calliper matching-, and IIPW-based
estimators showed minimal bias for both the complete case analysis and Within
approach when the missingness of X2 depended on X1 and T (mechanism MAR1).
As for the scenarios where the missingness dependend on the outcome Y (MAR2),
the Within but not the complete case approach yielded estimates close to the true
treatment effect. As before, Across estimates were systematically too low for the
regression-, matching-, calliper matching-, and IIPW-based estimators.

4.4.2 Other performance measures
In general, the Within estimators were associated with the smallest empirical
variances and MSEs. The simulations also illustrate the implications of
using Rubin’s rules in estimating the variance. The variances of the Across
regression estimators were underestimated and the coverage probability too low
(see Supplementary Material). Conversely, when applying the bootstrapping
procedure, the estimated variances were on average close to the respective
empirical variances. Despite generally adequate coverage probabilities for
the Within approach, the variances for calliper matching-, and IIPW-based
estimators were on average overestimated.

4.5 Discussion

Our primary focus was on examining the relative performance of two approaches
to implementing propensity score methods following multiple imputation.
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Figure 4.3: Biases of treatment effect estimators for various degrees of missing
(MCAR) outcomes and residual variances σ2. Abbreviations: C. matching,
calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse
probability weighting; CCA, complete case analysis. Error bars represent 95%
confidence intervals for the simulation estimates of bias.
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Figure 4.4: Biases of treatment effect estimators under various (MAR)
missingness mechanisms and residual variances σ2. Abbreviations: C. matching,
calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse
probability weighting; CCA, complete case analysis. Under mechanism MAR1,
the missingness of X2 depends on X1 and T only. Under MAR2, the missingness
depends on Y only. Both MAR1 and MAR2 result in ∼40% incomplete records.
Error bars represent 95% confidence intervals for the simulation estimates of bias.
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Although the Across approach has been applied in practice, our simulations show
that it fails in settings with missing confounder data, even when the missingness
is completely at random and complete case estimators are unbiased.

As described in the Supplementary Material, untreated subjects with
propensity scores that are by random variability underestimated are more likely
to be selected as matches, or are assigned greater weight in IIPW, than subjects
whose propensity score is overestimated. This problem of random variability is
inherent to semi-parametric propensity score methods, and is not expected to
introduce bias when regression adjustment is used. However, its impact was
negligible in our simulations, because the calliper matching and IIPW estimates
were highly similar to the regression estimates. The second explanation for
the discrepancy in bias between the approaches rests on the resemblance of
the Across approach to conditional mean imputation in the context of missing
covariate data. This explanation is consistent with our observations that the
Across approach showed more bias for larger missingness probabilities and larger
residual variances.

Conversely, in the absence of missing confounder data, the Across approach
is not comparable to conditional mean imputation. Instead, the bias observed in
settings with missing treatment indicator values probably is largely attributable
to a phenomenon, known as separation or ‘perfect prediction’, that is associated
with regression models for categorical responses. Separation occurs if the
responses, here treatment status, can be perfectly separated by a single predictor
or a linear combination of predictors. The problem lies with the Normal
approximation to the posterior distribution of the parameters of the logistic
regression model that is used by the software to predict missing treatment
indicator values. When in the presence of separation, logistic regression is applied
to the complete cases, modelling the probability of being assigned to treatment
as Pr(Ti = 1|Xi1, Xi2, Yi) = expit{α0 + α1Xi1 + α2Xi2 + α3Yi}, then we can find
an infinite sequence of parameter specifications with monotonically increasing
likelihood converging to unity, such that for at least one parameter α the estimate
α̂ tends to infinity (Albert and Anderson, 1984; Heinze and Schemper, 2002).
Hence, the maximum likelihood estimate does not exist. Nevertheless, given the
near-flat nature of the likelihood, typically very large values for the maximum
likelihood estimate α̂ and its variance are returned by standard software. If the
Normal approximation to the posterior distribution of the parameters is applied,
then it is not unlikely that values are drawn such that in the imputation step
subjects with incomplete data are assigned to the treatment group whilst the
observed data clearly suggests that these subjects should be assigned to the
control group (White et al., 2010). In other words, the Normal approximation
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to the posterior distribution is poor. One way to prevent these implausible
imputations is to add to the dataset a few observations such that separation is
no longer present and with such small weights that the impact on the imputation
model is limited (White et al., 2010). mice implements such a data augmentation
method to deal with this phenomenon (van Buuren and Groothuis-Oudshoorn,
2011; van Buuren, 2012), but we suspect that in our simulations the impact of
the weights was large enough to produce bias.

MAR1 is an example of a mechanism that accentuates practical non-positivity.
Under this mechanism, untreated subjects with large X1 values are more likely
to be assigned missing X2 values than others. When untreated subjects have
systematically lower X2 values even before the introduction of missingness, the
consequence of this mechanism is that the propensity score distributions of groups
of treated and untreated subjects become more distinct. As a result, estimators
that are sensitive to practical non-positivity (e.g. matching and IPW) become
more biased. Note that the matching and IPW methods described in Section
4.3.3 are estimators of the average effect on the treated (ATT) and the average
effect (ATE) on all subjects, respectively (Williamson et al., 2012). A sufficient
condition for these measures of effect to coincide is that of collapsibility and
treatment effect homogeneity. This joint condition is met in our simulations.
The assumptions of ATT and ATE estimators with respect to positivity are,
however, not the same. ATE estimators require the covariate distributions of the
treated and untreated to have common support, whereas ATT estimators require
only the support of the treated to be shared by that of the untreated but not
vice versa (Lechner, 2008) This largely explains the discrepancies in bias across
PS methods in our simulations.

Daniel et al. (2012) show how causal diagrams can be used to infer that
in nearly all scenarios considered here conditioning on the complete cases (i.e.
prior to PS matching, IPW, or IIPW) does not itself induce bias. It follows
that when other sources of bias, here practical non-positivity and confounding,
are adequately addressed, the treatment effect can be validly estimated. Among
the missing data mechanisms considered, it is only MAR2 that biases complete
case analyses, namely by inducing a relation between treatment status and the
(unmeasured) error on the outcome through collider stratification.

Although unbiasedness is arguably more crucial than valid variance
estimation, sufficiently large variances, even if they can be estimated validly,
may render unbiased estimators of little practical use (Burton et al., 2006).
In our simulations, the Within approach was superior or comparable to the
Across in terms of either criterion. Another drawback of the latter approach
is the difficulty in making inferences as to the precision of effect estimates.
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Bootstrapping may provide correct standard errors, but we acknowledge that
this approach is computationally intensive. Further, because coverage is affected
by the bias in both variance and effect estimation, it is likely to be poor in general
for Across estimators. Bootstrapping for the (calliper) matching estimators
here yielded slightly overestimated variances and conservative empirical coverage
rates. A similar phenomenon was observed by Austin and Small (2014).
The bootstrapping procedure defined in Section 4.3.4 resembles the ‘complex
bootstrap’ of Austin and Small. The rather large discrepancies between the
mean estimated variances and the empirical variances for the IIPW estimators
are possibly attributable to the unstable nature of inverse probability weighting.
Further investigation and development of bootstrapping approaches to variance
estimation for the (calliper) matching and (iterative) IPW estimators represent
an interesting direction for future research.

Our findings contrast with those of Mitra and Reiter (2016). A crucial
difference between the simulations is the inclusion of the outcome in the model
used to impute missing covariate values. Failing to include the outcome leads
to imputed datasets that do not reflect the association between covariate and
outcome that would have been observed had there been no missing values. The
consequence of this is that if one adjusts for the imputed covariate values to
estimate the treatment effect, the variation in outcomes between the treatment
groups that is due to the partially unobserved covariate would in part be
attributed to the differences in treatment status.

As with any simulation study, an important limitation of this study is the
potentially limited generalisability. The scenarios considered here represent only
a small and simplified subset of those likely to be encountered in applied research.
Some of the missingness probabilities that were studied are probably unrealistic,
and only a single sample size was considered. Practical non-positivity and
separation are perhaps less relevant in settings with larger samples and fewer
incomplete cases. Furthermore, we considered only two covariates and assumed
that the propensity score and imputation models could be correctly specified.
Applied researchers do not have the luxury of knowing the data generating and
missing data mechanisms and often need to assess and account for multiple
sources of bias. However, rather than scrutinising methods for these issues in
isolation only, it may be interesting to additionally study how they perform in
combination. Conducting simulations for specific scenarios of interest may be
particularly desirable given the limited generalisability of our results. If these are
not possible, we advise researchers not to use the Across approach as the default
method, because it appears to offer no advantage over the Within method.
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4.6 Conclusion

In medical research, confounding and missing data are common problems that
often occur simultaneously. When multiple imputation is to be followed by
the implementation of a propensity score method, researchers could apply the
Across and Within approaches. The present study highlights a number of aspects
of the Across approach that render it suboptimal. Our simulations indicate
that the Within approach is superior to the Across approach in terms of both
bias and variance in settings with missing confounder data. For incomplete
treatment and/or outcome data, the approaches yield similar estimates. We
advise researchers not to use the Across approach as the default method, because
even in MCAR settings, this may yield biased effect estimates. Finally, when
matching or IPW are the propensity methods of choice, we recommend practical
non-positivity to be adequately addressed, e.g. by using a narrow calliper or an
iterative reweighting algorithm.
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Supplementary Material

This Supplementary Material has three parts. The first contains a discussion
of the Within and Across approaches; the second part provides sample R code
for the iterative inverse probability weighting estimators for the complete case,
Across and Within approaches; and the third part provides the results on all
performance measures.

S4.1 Within and Across approaches

Two approaches to implementing propensity score methods in the presence of
missing data are described: the Within and Across approaches (Mitra and
Reiter, 2016). The first step in the analysis procedure is to estimate within each
completed dataset a vector of propensity scores e(k) = (e(k)

1 , e
(k)
2 , ..., e

(k)
n ) typically

using logistic regression. In the Within approach, any propensity score method
is implemented within each completed dataset using e(k), yielding β̂

(k)
W . The

Within estimate β̂W is defined as the average of β̂
(1)
W , β̂

(2)
W , ..., β̂

(m)
W . In the Across

approach, the propensity score method is implemented within each completed
dataset, now using eA = (eA

1 , eA
2 , ..., eA

n), where eA
i = ∑m

k=1 e
(k)
i /m. As in the

Within approach, the resulting estimates β̂
(1)
A , β̂

(2)
A , ..., β̂

(m)
A are averaged, yielding

the single estimate β̂A. This procedure deviates slightly from the Across approach
described by Mitra and Reiter (2016). The modified Across approach described
here is equivalent to the original procedure when T and Y are fully observed,
but can additionally accommodate missings on T and/or Y . Henceforth, we will
refer to this modified procedure simply as the Across approach.

Note that only the Within approach fully adheres to Rubin’s original MI
algorithm, where averaging across imputations is deferred until the last step. In
the context of semi-parametric propensity score methods, such as matching, this
may seem unsatisfactory. Untreated subjects who would be considered unsuitable
matches based on their ‘true’ propensity scores, may be included in the matched
set because by random variability their estimated propensity scores, based on
the imputed data, better resemble the treated subjects’ propensity scores. When
the outcome is associated with the propensity score, this may then lead to bias.
Intuitively, the Across approach may then be preferable because of the lesser
reliance on random variability. However, for large m the Across approach is
comparable to conditional mean imputation, which as we now illustrate may
introduce bias.

Consider for simplicity the case with only a single continuous covariate X,

62



Chapter 4

and suppose that the treatment-outcome effect can be parameterised in the linear
regression

E(Y |T, X) = β0 + β1T + β2X

where β1 is the parameter of interest. Further, assume that the relationship
between the probability of being assigned to treatment (T = 1) given X can be
modelled by a logistic function

Pr(T = 1|X) = exp(α0 + α1X)
1 + exp(α0 + α1X)

In this case, we may rewrite the treatment-outcome model in terms of a linear
transformation logit e(X) = α0 + α1X of the covariate values, the logit of the
propensity score e(X),

E(Y |T, X) = (β0 − β1α−1
1 α0) + β1T + β1α−1

1 logit{e(X)}

The ordinary least squares estimator of the true treatment effect β1 is unbiased
if the regressors of the linear model are T and X, or T and logit e(X). A similar
observation can be made in the case of multiple covariates (Wan and Mitra, 2016).
However, if we impute missing X values using conditional mean imputation, and
regress Y on T and the (linearly transformed) imputed covariates to estimate
the treatment effect, then, as illustrated in Figure S4.1, the estimator will be
biased—provided that the conditional variance of Y given T and X is greater
than zero and treatment assignment depends on X.

Likewise, in the case of missing (e.g. MCAR) X values, averaging
(transformed) imputed values across many multiply imputed datasets (i.e.
effectively conditional mean imputation) also renders the effect estimator biased.
The crux of the matter lies in that the default imputation model is the linear
regression with X as the dependent variable and T and Y as the independent
variables, whereas the analysis model regards Y as the dependent variable.
Switching dependent and independent variables results in best fit equations that
are not in general equivalent (unless orthogonal regression is used). Bias can
therefore also be expected for the Across approach, because in the context of
missing covariate data it is comparable to conditional mean imputation, except
that taking the logit of the average propensity score is not the same as taking
the average of the logit of propensity scores.

It follows from this discussion that the Across approach should be similar in
terms of bias to the Within approach when there are only missings on T or Y ,
because averaging propensity scores across datasets does not affect the variability
in the imputed values of these variables. Moreover, if there were missing outcome
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values only, the imputation model with Y as the outcome and T and X as the
regressors would clearly be compatible with the analysis model. Hence, even
conditional mean imputation of missing Y would suffice for unbiased estimation
of the treatment effect, provided the missingness is ‘ignorable’. Furthermore,
when treatment and covariates are fully observed, clearly the propensity scores
do not differ across imputed datasets, and so the Across and Within estimators
yield identical effect estimates.

S4.2 Iterative inverse probability weighting: R code

truncate <- function (x,left =0.05 , right =0.95) {
Q <- quantile (x, probs =c(left , right ))
x[x>Q[2]] <- Q[2]; x[x<Q[1]] <- Q[1]
return (x)

}

IIPTW <- function (
# Iterative Inverse Probability of Treatment Weighting
# Returns a list with weights and number of iterations
data , # a dataframe containing columns T, X1 , X2 and Y
formula =‘T˜X1+X2 ’,
T =‘T’
left =0,
right =1,
cstop =1e-4,

Figure S4.1: A single random sample (left) with missing completely at random
(MCAR) covariate data imputed using conditional mean imputation (right). A
valid treatment effect (A) is obtained by the regression of Y on T and X (the
analysis model) applied to the complete cases. Applying the analysis model to
the subset with covariate values imputed through conditional mean imputation
yields a biased treatment effect estimate (B).
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maxit =100 ,
estimand =‘ATE ’
){
warning <- FALSE
it <- 1
n <- nrow(data)
w <- rep (1,n)
for(i in 1: maxit ){

psnew <- predict (glm( formula =as. formula ( formula ),family =binomial ,data=
data , weights =w),type=‘ response ’)

if( estimand ==‘ ATE ’){wnew <- ifelse (data[,T]==1 ,1/psnew ,1/(1- psnew ))}
if( estimand ==‘ ATT ’){wnew <- ifelse (data[,T]==1 ,1 , psnew /(1- psnew ))}
if( estimand ==‘ ATU ’){wnew <- ifelse (data[,T]==1 ,(1 - psnew )/psnew ,1)}
if(i >=2 && var(log(wnew)) <= cstop ){it <- i; break }
if(i== maxit ){it <- i; warning <- TRUE}
w <- truncate (w*wnew ,left , right )
w <- w/mean(w)

}
if( warning == TRUE){ warning (‘ Algorithm did not converge ’);it <-NA}
return (list(w=data$w,it=it))

}

IIPTW .A <- function (
# Iterative Inverse Probability of Treatment Weighting
# consistent with the Across approach
# Returns a list with weights for each imputed dataset and the number of

iterations
data , # a list of multiply imputed datasets
formula =‘T˜X1+X2 ’,
T =‘T’,
left =0,
right =1,
cstop =1e-4,
maxit =100 ,
estimand =‘ATE ’
){
warning <- FALSE
it <- 1
m <- length (data)
n <- nrow(data [[1]])
for(i in 1:m){data [[i]]$w <- rep (1,n)}
psnew <- matrix (nrow=n,ncol=m)
for(i in 1: maxit ){

for(u in 1:m){
psnew [,u] <- predict (glm( formula =as. formula ( formula ),family =binomial

,data=data [[u]], weights =data [[u]]$w),type=‘ response ’)
}
psnewA <- apply (psnew ,1, mean)
for(u in 1:m){

if( estimand ==‘ ATE ’){data [[u]]$wnew <- ifelse (data [[u]][ ,T]==1 ,1/
psnewA ,1/(1- psnewA ))}

if( estimand ==‘ ATT ’){data [[u]]$wnew <- ifelse (data [[u]][ ,T]==1 ,1 ,
psnewA /(1- psnewA ))}

if( estimand ==‘ ATU ’){data [[u]]$wnew <- ifelse (data [[u]][ ,T]==1 ,(1 -
psnewA )/psnewA ,1)}
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}
if(i >=2 && prod( unlist ( lapply (data ,FUN= function (x){var(log(x$wnew)) <=

cstop })))==1){it <- i; break }
if(i== maxit ){it <- i; warning <- TRUE}
for(u in 1:m){

data [[u]]$w <- truncate (data [[u]]$w*data [[u]]$wnew ,left=left , right =
right )

data [[u]]$w <- data [[u]]$w/mean(data [[u]]$w)
}

}
if( warning == TRUE){ warning (‘ Algorithm did not converge .’);it <-NA}
return (list(w= lapply (data , function (x)x$w),it=it))

}

IIPTW .W <- function (
# Iterative Inverse Probability of Treatment Weighting
# consistent with the Within approach
# Returns a list with weights for each imputed dataset and the number of

iterations
data , # a list of multiply imputed datasets
formula =‘T˜X1+X2 ’,
T =‘T’,
left =0,
right =1,
cstop =1e-4,
maxit =100 ,
estimand =‘ATE ’
){
out <- lapply (data ,FUN=IIPTW , formula =formula ,T=T,left=left , right =right ,

cstop =cstop , maxit =maxit , estimand = estimand )
w <- lapply (out , function (x)x$w)
itmax <- max( unlist ( lapply (out , function (x)x$it)))
return (list(w=w,it= itmax ))

}
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S4.3 Results

Table S4.1: Performance of treatment effect estimators for various degrees p of
missing (MCAR) covariate data and residual variances σ2. Abbreviations: CCA,
complete case analysis; p, missingness probability (%); PS method, propensity
score method; ¯̂

β − β, estimated bias; Emp. var., empirical variance; MSE,
empirical mean squared error; C. matching, calliper matching; IPW, inverse
probability weighting; IIPW, iterative inverse probability weighting.

CCA Within Across

σ2 p PS method ¯̂
β − β

Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE

1 20 Regression -0.002 0.016 0.016 -0.003 0.015 0.015 -0.063 0.016 0.020
Matching 0.037 0.033 0.034 0.037 0.021 0.022 -0.028 0.029 0.030
C. matching -0.003 0.032 0.032 -0.001 0.019 0.019 -0.069 0.028 0.033
IPW 0.091 0.322 0.330 0.067 0.263 0.268 0.077 0.262 0.268
IIPW 0.001 0.031 0.031 0.008 0.043 0.043 -0.025 0.172 0.173

40 Regression -0.003 0.020 0.020 -0.002 0.017 0.017 -0.128 0.022 0.039
Matching 0.050 0.044 0.046 0.039 0.020 0.021 -0.086 0.032 0.040
C. matching -0.005 0.046 0.046 -0.002 0.019 0.019 -0.134 0.032 0.050
IPW 0.048 0.461 0.463 0.022 0.288 0.288 0.039 0.288 0.289
IIPW 0.006 0.088 0.088 0.005 0.039 0.039 -0.081 0.029 0.036

60 Regression 0.011 0.029 0.030 0.010 0.021 0.021 -0.199 0.042 0.082
Matching 0.078 0.071 0.077 0.051 0.024 0.026 -0.150 0.048 0.071
C. matching 0.015 0.075 0.075 0.012 0.024 0.024 -0.203 0.054 0.096
IPW 0.127 0.566 0.582 0.061 0.257 0.261 0.088 0.254 0.262
IIPW 0.017 0.064 0.064 0.017 0.036 0.036 -0.132 0.038 0.056
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Table S4.1 continued.

CCA Within Across

σ2 p PS method ¯̂
β − β

Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE

1 80 Regression 0.008 0.060 0.060 0.002 0.042 0.042 -0.335 0.128 0.240
Matching 0.112 0.172 0.185 0.055 0.040 0.043 -0.268 0.117 0.189
C. matching 0.004 0.198 0.198 0.006 0.045 0.045 -0.340 0.143 0.258
IPW 0.281 0.884 0.963 0.079 0.264 0.271 0.127 0.254 0.270
IIPW 0.014 0.107 0.108 0.018 0.053 0.054 -0.217 0.089 0.136

9 20 Regression 0.013 0.134 0.134 -0.002 0.112 0.112 -0.106 0.116 0.127
Matching 0.063 0.242 0.246 0.029 0.142 0.142 -0.071 0.209 0.214
C. matching 0.021 0.251 0.251 -0.008 0.139 0.139 -0.116 0.217 0.231
IPW 0.082 0.539 0.545 0.057 0.405 0.409 0.075 0.410 0.416
IIPW 0.021 0.284 0.285 0.012 0.207 0.207 -0.056 0.220 0.223

40 Regression -0.003 0.174 0.174 0.009 0.115 0.115 -0.222 0.139 0.188
Matching 0.047 0.314 0.316 0.051 0.140 0.142 -0.188 0.202 0.237
C. matching 0.001 0.339 0.339 0.011 0.143 0.143 -0.249 0.217 0.279
IPW 0.085 0.747 0.754 0.077 0.430 0.436 0.109 0.433 0.445
IIPW -0.012 0.346 0.346 0.010 0.224 0.224 -0.148 0.240 0.261

60 Regression 0.001 0.287 0.287 0.009 0.130 0.130 -0.363 0.214 0.346
Matching 0.073 0.489 0.494 0.050 0.146 0.149 -0.321 0.278 0.380
C. matching 0.012 0.548 0.548 0.012 0.153 0.153 -0.386 0.315 0.464
IPW 0.111 1.172 1.184 0.088 0.457 0.465 0.135 0.458 0.476
IIPW 0.013 0.550 0.550 0.031 0.283 0.284 -0.246 0.413 0.474

80 Regression 0.027 0.589 0.589 0.015 0.180 0.180 -0.593 0.490 0.842
Matching 0.142 1.076 1.096 0.075 0.189 0.194 -0.507 0.483 0.740
C. matching 0.018 1.225 1.225 0.024 0.198 0.199 -0.625 0.612 1.002
IPW 0.214 1.848 1.894 0.091 0.459 0.467 0.170 0.435 0.464
IIPW 0.005 0.997 0.997 0.029 0.290 0.291 -0.503 0.483 0.735
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Table S4.2: Performance of treatment effect estimators for various degrees
p of missing (MCAR) treatment indicator values and residual variances σ2.
Abbreviations: CCA, complete case analysis; p, missingness probability (%); PS
method, propensity score method; ¯̂

β − β, estimated bias; Emp. var., empirical
variance; MSE, empirical mean squared error; C. matching, calliper matching;
IPW, inverse probability weighting; IIPW, iterative inverse probability weighting.

CCA Within Across

σ2 p PS method ¯̂
β − β

Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE

1 20 Regression 0.008 0.015 0.015 -0.003 0.014 0.014 -0.005 0.014 0.014
Matching 0.049 0.032 0.035 0.042 0.020 0.022 0.038 0.027 0.028
C. matching 0.003 0.032 0.032 -0.002 0.018 0.018 -0.006 0.026 0.026
IPW 0.041 0.347 0.348 0.017 0.253 0.254 0.018 0.247 0.247
IIPW 0.005 0.029 0.029 -0.005 0.033 0.033 -0.026 0.027 0.027

40 Regression 0.004 0.019 0.019 -0.026 0.015 0.016 -0.031 0.015 0.016
Matching 0.048 0.044 0.046 0.017 0.019 0.019 0.014 0.024 0.024
C. matching -0.003 0.044 0.044 -0.024 0.019 0.020 -0.027 0.024 0.025
IPW 0.104 0.423 0.433 0.029 0.211 0.212 0.029 0.203 0.204
IIPW 0.001 0.054 0.054 -0.022 0.039 0.039 -0.059 0.028 0.032

60 Regression -0.005 0.033 0.033 -0.071 0.021 0.027 -0.081 0.022 0.028
Matching 0.064 0.071 0.075 -0.024 0.026 0.027 -0.030 0.032 0.033
C. matching -0.005 0.070 0.070 -0.067 0.025 0.030 -0.072 0.031 0.036
IPW 0.147 0.545 0.567 -0.005 0.165 0.165 -0.006 0.154 0.154
IIPW 0.005 0.112 0.112 -0.066 0.041 0.045 -0.132 0.040 0.057

80 Regression 0.015 0.065 0.065 -0.163 0.033 0.060 -0.186 0.034 0.069
Matching 0.096 0.160 0.169 -0.108 0.040 0.051 -0.111 0.042 0.054
C. matching 0.003 0.187 0.187 -0.157 0.039 0.063 -0.160 0.042 0.068
IPW 0.278 0.927 1.004 -0.111 0.128 0.141 -0.104 0.113 0.124
IIPW 0.020 0.170 0.171 -0.160 0.045 0.070 -0.257 0.076 0.142
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Table S4.2 continued.

CCA Within Across

σ2 p PS method ¯̂
β − β

Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE

9 20 Regression 0.011 0.131 0.131 0.002 0.131 0.131 -0.001 0.131 0.131
Matching 0.053 0.222 0.225 0.045 0.155 0.157 0.043 0.204 0.206
C. matching 0.004 0.228 0.228 0.001 0.156 0.156 -0.002 0.209 0.209
IPW 0.099 0.528 0.538 0.074 0.409 0.415 0.077 0.402 0.408
IIPW 0.023 0.257 0.258 0.021 0.223 0.223 0.003 0.215 0.215

40 Regression -0.021 0.183 0.184 -0.046 0.185 0.187 -0.052 0.185 0.188
Matching 0.026 0.327 0.328 0.001 0.217 0.217 0.001 0.245 0.245
C. matching -0.030 0.341 0.342 -0.039 0.215 0.216 -0.037 0.250 0.251
IPW 0.067 0.815 0.820 0.020 0.457 0.458 0.030 0.433 0.434
IIPW 0.012 0.541 0.541 -0.030 0.273 0.273 -0.068 0.271 0.276

60 Regression 0.022 0.297 0.297 -0.047 0.290 0.292 -0.060 0.290 0.294
Matching 0.072 0.472 0.478 -0.000 0.309 0.309 -0.002 0.324 0.324
C. matching 0.004 0.532 0.532 -0.046 0.314 0.316 -0.047 0.331 0.333
IPW 0.146 1.021 1.042 0.016 0.470 0.471 0.037 0.449 0.450
IIPW 0.015 0.485 0.485 -0.044 0.356 0.358 -0.093 0.352 0.360

80 Regression -0.017 0.549 0.549 -0.161 0.501 0.527 -0.188 0.504 0.540
Matching 0.125 1.011 1.026 -0.100 0.527 0.536 -0.106 0.538 0.549
C. matching 0.052 1.189 1.191 -0.160 0.535 0.561 -0.165 0.553 0.581
IPW 0.232 1.954 2.008 -0.068 0.683 0.688 -0.029 0.645 0.646
IIPW -0.023 1.029 1.029 -0.130 0.600 0.617 -0.209 0.584 0.627
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Table S4.3: Performance of treatment effect estimators for various degrees p
of missing (MCAR) outcomes and residual variances σ2. Abbreviations: CCA,
complete case analysis; p, missingness probability (%); PS method, propensity
score method; ¯̂

β − β, estimated bias; Emp. var., empirical variance; MSE,
empirical mean squared error; C. matching, calliper matching; IPW, inverse
probability weighting; IIPW, iterative inverse probability weighting.

CCA Within Across

σ2 p PS method ¯̂
β − β

Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE

1 20 Regression 0.004 0.014 0.014 0.005 0.015 0.015 0.005 0.015 0.015
Matching 0.053 0.033 0.036 0.044 0.024 0.026 0.044 0.024 0.026
C. matching 0.010 0.033 0.033 0.006 0.024 0.024 0.006 0.024 0.024
IPW 0.084 0.324 0.331 0.059 0.261 0.265 0.059 0.261 0.265
IIPW -0.011 0.244 0.244 0.007 0.064 0.064 0.007 0.064 0.064

40 Regression 0.004 0.020 0.020 0.003 0.022 0.022 0.003 0.022 0.022
Matching 0.054 0.049 0.052 0.039 0.034 0.035 0.039 0.034 0.035
C. matching 0.002 0.046 0.046 0.001 0.032 0.032 0.001 0.032 0.032
IPW 0.087 0.421 0.428 0.049 0.290 0.292 0.049 0.290 0.292
IIPW -0.002 0.074 0.074 0.011 0.101 0.101 0.011 0.101 0.101

60 Regression 0.004 0.031 0.031 0.003 0.035 0.035 0.003 0.035 0.035
Matching 0.061 0.068 0.071 0.047 0.043 0.045 0.047 0.043 0.045
C. matching 0.000 0.073 0.073 0.010 0.043 0.043 0.010 0.043 0.043
IPW 0.171 0.524 0.553 0.056 0.291 0.294 0.056 0.291 0.294
IIPW 0.011 0.060 0.061 -0.004 0.189 0.189 -0.004 0.189 0.189

80 Regression 0.003 0.073 0.073 0.000 0.082 0.082 0.000 0.082 0.082
Matching 0.116 0.166 0.179 0.040 0.092 0.094 0.040 0.092 0.094
C. matching 0.020 0.193 0.193 -0.001 0.090 0.090 -0.001 0.090 0.090
IPW 0.234 1.029 1.084 0.045 0.301 0.303 0.045 0.301 0.303
IIPW 0.015 0.300 0.301 0.002 0.087 0.087 0.002 0.087 0.087
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Table S4.3 continued.

CCA Within Across

σ2 p PS method ¯̂
β − β

Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE ¯̂

β − β
Emp.
var. MSE

9 20 Regression -0.004 0.135 0.135 -0.003 0.139 0.139 -0.003 0.139 0.139
Matching 0.051 0.245 0.248 0.023 0.198 0.199 0.023 0.198 0.199
C. matching 0.007 0.254 0.254 -0.016 0.199 0.200 -0.016 0.199 0.200
IPW 0.065 0.499 0.503 0.035 0.450 0.451 0.035 0.450 0.451
IIPW -0.015 0.311 0.311 -0.001 0.434 0.434 -0.001 0.434 0.434

40 Regression -0.002 0.181 0.181 -0.004 0.199 0.199 -0.004 0.199 0.199
Matching 0.054 0.333 0.336 0.031 0.255 0.256 0.031 0.255 0.256
C. matching -0.002 0.358 0.358 -0.011 0.265 0.265 -0.011 0.265 0.265
IPW 0.149 0.665 0.687 0.079 0.456 0.463 0.079 0.456 0.463
IIPW 0.003 0.380 0.380 0.006 0.283 0.283 0.006 0.283 0.283

60 Regression 0.007 0.293 0.293 0.004 0.326 0.326 0.004 0.326 0.326
Matching 0.070 0.476 0.481 0.042 0.373 0.375 0.042 0.373 0.375
C. matching -0.007 0.548 0.549 0.004 0.381 0.381 0.004 0.381 0.381
IPW 0.170 1.119 1.148 0.077 0.675 0.681 0.077 0.675 0.681
IIPW 0.034 0.637 0.638 0.019 0.393 0.393 0.019 0.393 0.393

80 Regression 0.007 0.597 0.597 0.024 0.698 0.699 0.024 0.698 0.699
Matching 0.139 1.055 1.074 0.053 0.723 0.726 0.053 0.723 0.726
C. matching 0.034 1.244 1.245 0.018 0.727 0.728 0.018 0.727 0.728
IPW 0.320 1.938 2.041 0.060 1.000 1.004 0.060 1.000 1.004
IIPW 0.036 1.115 1.116 0.004 0.824 0.824 0.004 0.824 0.824
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Table S4.4 continued.

Within Across

σ2 MDM PS method
Variance estimation/95%CI
method CP VR CP VR

1 MAR1 Regression Bootstrapping 0.951 1.046 0.929 1.041
Rubin’s rules 0.975 1.378 0.899 0.783

Matching Bootstrapping 0.969 1.234 0.959 1.435
C. matching Bootstrapping 0.967 1.287 0.944 1.607
IPW Bootstrapping 0.845 0.976 0.839 0.975
IIPW Bootstrapping 0.941 2.768 0.935 5.319

MAR2 Regression Bootstrapping 0.956 1.197 0.878 1.249
Rubin’s rules 0.971 1.330 0.484 0.224

Matching Bootstrapping 0.964 1.252 0.894 1.372
C. matching Bootstrapping 0.959 1.297 0.839 1.409
IPW Bootstrapping 0.869 0.980 0.888 0.992
IIPW Bootstrapping 0.959 1.873 0.895 2.242

9 MAR1 Regression Bootstrapping 0.957 1.035 0.940 1.039
Rubin’s rules 0.957 1.076 0.923 0.914

Matching Bootstrapping 0.968 1.192 0.977 1.580
C. matching Bootstrapping 0.969 1.201 0.976 1.704
IPW Bootstrapping 0.896 1.034 0.893 1.034
IIPW Bootstrapping 0.947 1.126 0.945 1.503

MAR2 Regression Bootstrapping 0.948 1.057 0.893 1.152
Rubin’s rules 0.953 1.081 0.671 0.453

Matching Bootstrapping 0.936 1.150 0.872 1.525
C. matching Bootstrapping 0.910 1.181 0.800 1.568
IPW Bootstrapping 0.927 1.035 0.941 1.070
IIPW Bootstrapping 0.960 1.959 0.880 1.596
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Propensity score estimation, CART and missing covariates

Abstract

Data mining and machine learning techniques such as classification and regression
trees (CART) represent a promising alternative to conventional logistic regression
for propensity score estimation. Whereas incomplete data preclude the fitting
of a logistic regression on all subjects, CART is appealing in part because some
implementations allow for incomplete records to be incorporated in the tree fitting
and provide propensity score estimates for all subjects. Based on theoretical
considerations, we argue that the automatic handling of missing data by CART
may however not be appropriate. Using a series of simulation experiments, we
examined the performance of different approaches to handling missing covariate
data; (i) applying the CART algorithm directly to the (partially) incomplete
data, (ii) complete case analysis, and (iii) multiple imputation. Performance
was assessed in terms of bias in estimating exposure-outcome effects among the
exposed, standard error, mean squared error and coverage. Applying the CART
algorithm directly to incomplete data resulted in bias, even in scenarios where
data were missing completely at random. Overall, multiple imputation followed
by CART resulted in the best performance. Our study showed that automatic
handling of missing data in CART can cause serious bias and does not outperform
multiple imputation as a means to account for missing data.
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Chapter 5

5.1 Introduction

Propensity score analysis has gained increasing popularity as means to adjust
for measured confounding (Rosenbaum and Rubin, 1983; Stürmer et al., 2006).
Inference typically proceeds by stratification on the propensity score, propensity
score adjustment in a regression model, inverse probability weighting (IPW)
or matching based on propensity scores given measured covariates (Rosenbaum
and Rubin, 1983; Austin, 2011a). It is standard practice to obtain estimates
of the propensity score by a parametric (logistic) regression of the exposure on
measured covariates. However, parametric models rely on assumptions about
the distribution of variables in relation to one another, including the functional
form and the presence or absence of interactions. If any of these are violated,
covariate balance may not be attained, potentially leading to bias in making
causal inferences about the exposure-outcome relation of interest (Drake, 1993).

It has been suggested that machine learning and data mining methods, such
as classification and regression tree analysis (CART), be used to estimate the
relationship between the exposure and measured covariates. These methods
avoid making the assumptions regarding functional form and interaction as
in a standard logistic regression. The utility of data mining methods to
estimate propensity scores in complete data settings has been studied previously
(Setoguchi et al., 2008; Lee et al., 2010; Westreich et al., 2010; Wyss et al.,
2014). However, in practice, researchers are often faced with missing values on
the measured variables. Whereas incomplete data preclude logistic regression
on all subjects, some CART algorithms allow for incomplete records to be
incorporated in the tree fitting and provide propensity score estimates for all
subjects. The ability of CART to accommodate missing values has been described
as advantageous (Lee et al., 2010; McCaffrey et al., 2004; Moisen, 2008; Rai
et al., 2017). However, the precise impact of missing data on the performance
of CART-based propensity score estimators has received little attention. The
objective of this study was therefore to examine the performance of various
CART-based propensity score estimation procedures in the presence of missing
data. Throughout, particular emphasis is placed on the causal odds ratio for the
marginal effect among the exposed (or Average Effect among the ‘Treated’, ATT)
as the effect measure of interest.

The remainder of this article is structured as follows. In Section 5.2, we briefly
review pertinent theory. Based on analytical work, we identify caveats in the
handling of missing data by CART. Section 5.3 describes a series of Monte Carlo
simulations that were used to evaluate the performance of various approaches to
handling missing data, including (i) subjecting incomplete data directly to the
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CART algorithm, (ii) complete case analysis, and (iii) multiple imputation. In
Section 5.4, we apply and compare the approaches in a case study on the effect of
influenza vaccination and mortality. We conclude with a summary and discussion
of our findings in the context of the existing literature.

5.2 Theory

5.2.1 Propensity score analysis of complete data

Counterfactual outcomes and estimating causal effects
We adopt a perspective of potential or counterfactual outcomes, formal accounts
of which are given for example by Neyman et al. (1935), Rubin (1974), Holland
(1986), Holland (1988) and Pearl (2009).

Consider a sequence S = (X1, X2, ..., Xn) of variables and let F =
(fX1 , fX2 , ..., fXn) be a collection of functions fXj that deterministically map
a realisation of the predecessors (Xi : i < j) of Xj and of exogenous variable εXj

into a realisation of Xj . We may write the random variables X1, X2, ..., Xn as
follows:

X1 = fX1(εX1),
X2 = fX2(X1, εX2),

...
Xn = fXn(X1, X2, ..., Xn−1, εXn).

 (5.1)

Now, for any intervention setting Xt to xt for all t in a subset T of {1, 2, ..., n},
the counterfactual versions of X1, X2, ..., Xn are obtained by applying (5.1) with
Xt = fX(X1, ..., Xt−1, εXt) replaced with Xt = xt if t ∈ T .

Specifically, let S = (W, A, Y, R) so that W = fW (εW ), A = fA(W, εA),
Y = fY (W, A, εY ), and R = fR(W, A, Y, εR). W may be thought of as a (random
vector of) baseline or pre-exposure variable(s), A denotes the binary exposure
of interest, Y the outcome, and R a missing indicator vector of W . A subject’s
counterfactual outcomes Y0 and Y1, obtained if exposure A were set possibly
contrary to fact to 0 and 1, respectively, are defined such that Y0 = fY (W, 0, εY )
and Y1 = fY (W, 1, εY ).

Causal effects are readily defined in terms of counterfactual outcomes. In
this article, the focus is on the causal odds ratio (OR) for the marginal effect of
exposure A on binary outcome Y among the exposed (A = 1), that is,

OR = E[Y1|A = 1]/(1 − E[Y1|A = 1])
E[Y0|A = 1]/(1 − E[Y0|A = 1]) .
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Under consistency as defined by Cole and Frangakis (2009), Y1 is equal to the
observed outcome Y for subjects in the exposure group. Y0, on the other hand, is
not observed for exposed subjects. We may, however, validly estimate the causal
OR under a set of conditions, which includes no interference between subjects
(or Stable Unit Treatment Value Assumption, Tchetgen and VanderWeele, 2012),
consistency, positivity, and conditional exchangeability (Lesko et al., 2017). To
simplify arguments and notation, we shall assume that all of these conditions hold,
with the exception of conditional exchangeability, unless otherwise indicated.
If there exists a (set of) variable(s) Z such that the potential outcomes are
conditionally independent of exposure status given Z, we may write

P (Y0|A = 1) = E[P (Y0|A = 1, Z)|A = 1]
= E[P (Y0|A = 0, Z)|A = 1]
= E[P (Y |A = 0, Z)|A = 1],

so that the causal OR may be expressed entirely in terms of observables

OR = E[Y |A = 1]/(1 − E[Y |A = 1])
E{E[Y |A = 0, Z]|A = 1}/(1 − E{E[Y |A = 0, Z]|A = 1}) .

W satisfies the definition of Z whenever εY ⊥⊥ εA|W . In practice, validly
estimating E[Y |A = 0, Z] may be difficult when Z is multidimensional and Y is
rare (Albert and Anderson, 1984). In this case, it may be desirable to summarise
Z in a single balancing score (Rosenbaum and Rubin, 1983).

The propensity score
The propensity score e(W ), defined as the conditional probability of exposure
given covariates W , satisfies a number of balancing properties. First, covariate(s)
W and exposure A are conditionally independent given the propensity score,
and conditional exchangeability given covariate(s) W implies conditional
exchangeability given e(W ) (Rosenbaum and Rubin, 1983, Theorems 1 and 3).
Thus, the causal OR becomes

OR = E[Y |A = 1]/(1 − E[Y |A = 1])
E{E[Y |A = 0, e(W )]|A = 1}/(1 − E{E[Y |A = 0, e(W )]|A = 1}) .

This formulation has motivated the propensity score matching approach as
discussed by Rosenbaum and Rubin (1983).

Balance may also be attained by inverse probability weighting (Appendix
A). To simplify arguments and notation, we assume that W and Y take a
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discrete joint distribution; however, the results extend to continuous or mixed
discrete/continuous distributions. To obtain an IPW estimator of the ATT, let

φ(w, a) = φ∗(w, a)
E[φ∗(W, A)|A = a] , φ∗(w, a) = I(a = 1) + I(a = 0) e(w)

1 − e(w) ,

for realisations w of W and a of A, where I denotes the indicator function taken
the value 1 if the argument is true and 0 otherwise. Weighting by φ yields
independence between covariate(s) W and A; that is, for all w,

φ(w, 0) Pr(W = w|A = 0) = φ(w, 1) Pr(W = w|A = 1).

Also, conditional exchangeability given W implies exchangeability following
weighting by φ; that is, if (Y0, Y1) ⊥⊥ A|W = w for all w, then∑

w

φ(w, 0) Pr(Y0 = y0, Y1 = y1, W = w|A = 0)

=
∑
w

φ(w, 1) Pr(Y0 = y0, Y1 = y1, W = w|A = 1)

for all y0, y1. Thus, the causal OR becomes

OR =
∑

w φ(w, 1) Pr(Y = 1, W = w|A = 1){
1 −

∑
w φ(w, 1) Pr(Y = 1, W = w|A = 1)

}
/ ∑

w φ(w, 0) Pr(Y = 1, W = w|A = 0){
1 −

∑
w φ(w, 0) Pr(Y = 1, W = w|A = 0)

} .

In words, this means that the causal odds ratio is equal to the crude odds
ratio of the ATT in the (pseudo-)population that is obtained by weighting each
observation by φ.

Ensemble CART methods in the absence of missing data
We will now briefly describe how CART can be applied to estimate the propensity
score. Detailed information can be found elsewhere (McCaffrey et al., 2004;
Breiman, 1996; Ridgeway, 1999; Breiman, 2001; Elith et al., 2008; Hastie et al.,
2009). CART is a type of supervised learning task that entails finding a set of
rules, subject to constraints, that partition the data into regions based on the
input data (covariates) such that within regions, target values (e.g., exposure
levels) meet a desirable level of homogeneity. Typically, a tree is built in a
recursive manner by splitting the dataset into increasingly homogeneous subsets
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and choosing the splitting rule at each step or node that best splits the data
further, with ‘best’ referring to the greatest improvement in terms of some
homogeneity metric, such as the Gini index (Therneau and Atkinson, 2017).
Ensemble techniques by definition fit more than one tree to the data and combine
them to form a single predictor of ‘the outcome’ (in the case of propensity
score, the assigned exposure). The aim of ensemble techniques is to enhance
performance and reduce issues of overfitting by a single tree (Elith et al., 2008;
Moisen, 2008; Hastie et al., 2009). We focus here on two popular CART ensemble
methods, namely boostrap aggregated (bagged) CART and boosted CART.

Bootstrap aggregated CART. Bagged CART involves drawing bootstrap
samples form the original study sample (Breiman, 1996). A CART tree is formed
in each bootstrap sample, yielding multiple predictors of the target variable. For
each subject, the final prediction is formed by the average or majority vote across
all predictors. In the context of propensity scores, the prediction of a single tree
for any given subject may be defined as the proportion of exposed subjects among
those individuals that are assigned to the same region by the given tree. The final
propensity score is the average of the predictions across all bootstrap samples.
Propensity score matching may then be thought of as matching exposed subjects
to unexposed subjects from the same or ‘nearby’ region.

Boosted CART. Boosted CART is related to bagged CART in the sense that
it is an ensemble method; multiple trees are fit and merged to form a single
predictor. With boosted CART, trees are fit in a forward, stagewise procedure.
In boosting, trees are fit iteratively to the data such those observations whose
observed exposure levels are poorly predicted by the predictor of the previous
iteration receive greater weight at the current iteration (Ridgeway, 1999; Elith
et al., 2008). Some implementations construct trees using data splits aimed not
at achieving homogeneity of the exposure values themselves, but at achieving
homogeneity of prediction error of the estimator obtained in the previous step
(McCaffrey et al., 2004; Elith et al., 2008). With each iteration, a new predictor
is formed by making adjustments to the predictor obtained in the previous step.
The final predictor is constructed with contributions from all trees.

5.2.2 Ignorable missing data and generalised propensity scores

In this section, we briefly review the concept of ignorable missing data, and
discuss a generalisation of the propensity score which allows for missing data as
well as strategies to incorporate missing data directly in the CART fitting. For
certain CART algorithms (in our case boosted CART), the inherent missing data
strategy yields estimates of the generalised propensity score.
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Ignorable missing data
Suppose W = (W1, W2, ..., Wp) and R = (R1, R2, ..., Rp) are random vectors
of size p such that for j = 1, 2, ..., p, Rj = 0 if Wj is missing and Rj = 1 if
Wj is observed. Following Rubin (1976), define the extended random vector
V = (V1, V2, ..., Vp) with range to include the special value ∗ to indicate a missing
datum: Vj = Wj if Rj = 1 and Vj = ∗ if Rj = 0. Let v be a particular
sample realisation of V , so that each vj is either a known quantity or ∗. These
values imply a realisation for the random variable R, denoted r. For notational
convenience, we write W = (W obs, W mis) and V = (V obs, V mis) to indicate that
each may be partitioned into two vectors corresponding to all j such that rj = 1
for observed data and rj = 0 for missing data. It is important to note that these
partitions are defined with respect to r, the observed pattern of missing data.
Given a realisation r of R, and provided that A, Y are observed, covariate data
are said to be missing at random (MAR) if Pr(R = r|W obs, W mis = u, A, Y )
and Pr(R = r|W obs, W mis = u′, A, Y ) are the same for all u, u′ and at each
possible value of the parameter vector ϕ that fully characterises the missing data
mechanism (Rubin, 1976). If in addition to MAR, the parameter ϕ is distinct, in
the sense of Rubin (1976), from the vector θ that parameterises the distribution
of the data that we would have based inference on had there been no missingness,
then missing data is said to be ignorable and it is not necessary to consider the
missing data or the missing data mechanism in making inferences about θ (Rubin,
1976, 1987; Schafer, 1997). Thus, if the missing data mechanism is ignorable, one
may validly model the complete data to create imputations for the missing data
(Rubin, 1987; Van Buuren, 2012).

The generalised propensity score
The generalised propensity score e∗(V ) is defined as the conditional exposure
probability given the extended covariate vector V (D’Agostino Jr. and Rubin,
2000). That is,

e∗(V ) = Pr(A = 1|W obs, R)
=
∑
w

Pr(A = 1|W, R) Pr(W mis = w|W obs, R).

Using the same argumentation to establish the balancing properties of the usual
propensity score, it can be shown that the generalised propensity score has the
same balancing properties with respect to V as the usual propensity score has with
respect to W . Thus, the observed covariate data and missingness information
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and exposure A are conditionally independent given the generalised propensity
score, and conditional exchangeability given the extended covariate(s) V implies
conditional exchangeability given the generalised propensity score e∗(V ).

To obtain an IPW estimator of the ATT, let

γ(v, a) = γ∗(v, a)
E[γ∗(V, A)|A = a] , γ∗(v, a) = I(a = 1) + I(a = 0) e∗(v)

1 − e(v) ,

for realisations v of V and a of A, Then, weighting by γ renders V independent
of A; that is, for all v,

γ(v, 0) Pr(V = v|A = 0) = γ(v, 1) Pr(V = v|A = 1).

Also, conditional exchangeability given V implies conditional exchangeability
following weighting by γ; that is, if (Y0, Y1) ⊥⊥ A|V , then∑

v

γ(v, 0) Pr(Y0 = y0, Y1 = y1, V = v|A = 0)

=
∑

v

γ(v, 1) Pr(Y0 = y0, Y1 = y1, V = v|A = 1)

for all y0, y1.
Importantly, the propensity score e(W ) need not equal the generalised

propensity score e∗(V ). That is, given the observed covariate data, the
unobserved covariate data need not provide the same information about exposure
allocation as does the missing data pattern. In addition, neither covariate balance
given the propensity score (W ⊥⊥ A|e(W )) nor balance of the observed data and
missingness information given the generalised propensity score (V ⊥⊥ A|e∗(V ))
generally implies covariate balance given the generalised propensity score (W ⊥⊥
A|e∗(V )).

More crucially perhaps, conditional exchangeability given the generalised
propensity score is not guaranteed even if conditional exchangeability given the
usual propensity score holds or the generalised propensity score balances both
observed and unobserved covariate data (i.e., neither (Y0, Y1) ⊥⊥ A|e(W ) nor
W ⊥⊥ A|e∗(V ) nor both imply that (Y0, Y1) ⊥⊥ A|e∗(V ); see Appendix B for an
example).

This suggests that it is not generally desirable to distribute across exposure
groups both the observed data and the missingness information by adjusting for
the generalised propensity score. However, there are situations conceivable in
which it is appropriate to base inference on the generalised rather than the usual
propensity score. Until now, we have assumed an ordering of the variables in
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which the outcome Y precedes R, the missingness pattern of W . Consequently,
Y was defined as a function fY of W , A and exogenous variable εY and not
of R. Consider now a setting where S = (W, R, A, Y ) so that R forms a
predecessor of A and Y (and, therefore, a potential common cause of A and Y ).
Then, if exchangeability can be attained by conditioning on e∗(V ), conditional
exchangeability given e(W ) need not hold (see Appendix C for an example).

Thus, the choice between adjustment for the generalised versus the usual
propensity score should ideally rest on the relative extent to which conditional
exchangeability holds given the generalised versus the usual propensity score. In
practice, it is not possible to estimate directly the true propensity score when
covariate data are missing (Rosenbaum and Rubin, 1983; D’Agostino Jr. and
Rubin, 2000; Cham and West, 2016). However, under ignorability of missing
data, one may ‘recover’ the unobserved data, e.g., via multiple imputation (Rubin,
1987; Van Buuren, 2012), prior to estimating propensity scores. Henceforth, we
assume that exchangeability can be attained by conditioning on the complete
covariate data or, therefore, the usual propensity score, if data were not missing.
We also assume that missing data is ignorable.

Applying CART to incomplete data

Bootstrap aggregated CART. In this study, we used bagged CART as implemented
in the R package ipred (Peters and Hothorn, 2017, version 0.9-6). This
implementation allows for missing data by first evaluating homogeneity at a
given node among only those observations whose candidate splitting variable
is observed. Once the splitting variable and split point have been decided, the
algorithm uses a surrogate splits approach to classify records whose splitting
variable is missing based on the other variables included in the tree fitting
(Therneau and Atkinson, 2017).

The bagged CART algorithm replaces missing confounder values without
regard of the outcome or exposure status. As a result, any two subjects whose
covariate data are identical, except possibly for the missing covariate, would be
allocated to the same covariate region by any given tree. However, subjects
within a given region need not be exchangeable. In fact, systematic differences
in the outcome of the causal model (Y ) between exposed and unexposed subjects
may be in part attributable to the missing covariate (confounder). As such, even
under completely at random missingness (MCAR), we would expect propensity
score matching or IPW based on bagged CART to yield bias in the direction of
confounding by the missing covariate.
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Boosted CART. An implementation of boosted CART to estimate propensity
scores is available in the R package twang (Ridgeway et al., 2017, version 1.5).
This implementation allows for incomplete records to be incorporated in the
tree fitting by regarding missingness as a special covariate level and assigning to
a given (non-terminal) node three child nodes; one to which any individual is
allocated whose splitting variable is missing, one for observed values that exceed
some threshold, and one for the remainder. That is, rather than modelling the
relationship between exposure and covariates, an attempt is made to model the
association between exposure on the one hand and observed covariate data and
missingness information on the other hand, and, therefore, to construct scores
that balance the missingness across the matched or weighted exposure groups. In
other words, the algorithm represents an estimator of the generalised propensity
score.

While boosted CART may be successful at distributing missingness rates
across exposure groups, it makes no attempt at distributing the unobserved
values. If the partially observed covariate represents a confounder, systematic
differences across exposure groups may persist after propensity score matching or
IPW based on the generalised propensity score. As such, under MCAR, we would
expect boosted CART to yield a propensity score matching or IPW estimator
that is biased in the direction of confounding by the partially observed covariate.
When missingness is MAR dependent on the outcome, boosted CART tends to
render exposure groups more comparable in terms of the outcome and, therefore,
attenuate the apparent exposure-outcome effect.

Bias when applying CART to incomplete data. In summary, above, we argued
that using either boosted CART or bagged CART to estimate propensity scores
may yield a biased estimator of the causal ATT, when applying the CART
algorithm directly to the (partially) incomplete data. In bagged CART, missing
confounder values are replaced, yet this procedure may not be appropriate, since
exposure and outcome status are ignored in this process. Boosted CART, on
the other hand, balances observed covariate values as well as missing indicator
values. Since the latter may depend on the outcome (under the assumption of
ignorability), boosted CART potentially balances outcome values too, yielding a
biased estimator of the causal effect.

5.3 Monte Carlo simulations

We now describe a simulation study in which we evaluated the performance
of CART-based propensity score matching and IPW in the presence of missing
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confounder data.

5.3.1 Methods

Simulation structure

We performed a series of Monte-Carlo simulation experiments based on the
simulation structure described in Setoguchi et al. (2008) with modifications so
as to allow for missing data. For n = 2000 subjects, we independently generated
10 covariates Wi (four confounders, three predictors of the exposure only, and
three predictors of the outcome only), a binary exposure variable A, and a binary
outcome Y (Figure 5.1). Missing data were introduced into one or two covariates.
A number of CART-based approaches were used to estimate propensity scores,
before and after the introduction of missing data, and in turn the log odds
ratio for the exposure-outcome effect among the treated. For comparison, we
also estimated propensity scores in imputed datasets using a correctly specified
propensity score model, and using a logistic model with main effects only. The
process was repeated 5000 times for each of eight simulation scenarios that varied
primarily by missing data mechanism. All simulations were conducted with R-
3.2.2 on a Windows 7 (64-bit) platform (R Core Team, 2016).

Data generation

Data were generated by sequentially going through the following steps. First, the
covariates were generated by sampling from a multivariate normal distribution

A Y

W7

W6

W5

W1
W2 W3 W4

W8

W9

W10

Figure 5.1: Complete data structure for simulation experiments. Dashed
arcs without arrowheads connecting variables indicate non-zero entries for the
corresponding variables in the covariance matrix of the joint distribution of all
Wi, i = 1, 2, ..., 10.
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with zero means and unit variances; correlations were set to zero except for the
correlations between W1 and W5, W2 and W6, W3 and W8, and W4 and W9,
which were set to 0.2, 0.9, 0.2, and 0.9, respectively. Second, covariates W1, W3,
W5, W6, W8, and W9 were dichotomised, setting any value to 1 if greater than 0
and to 0 otherwise.

Following Setoguchi et al. (2008), the binary exposure variable A was related
to the covariate vector following the propensity score model Pr(A = 1|W ) =
expit{0.8W1 − 0.25W2 + 0.6W3 − 0.4W4 − 0.8W5 − 0.5W6 + 0.7W7 − 0.25W 2

2 −
0.4W 2

4 + 0.7W 2
7 + 0.4W1W3 − 0.175W2W4 + 0.3W3W5 − 0.28W4W6 − 0.4W5W7 +

0.4W1W6 − 0.175W2W3 + 0.3W3W4 − 0.2W4W5 − 0.4W5W6}. Realisations a for
A were generated by drawing a pseudo-value from the uniform(0,1) distribution
and setting a to 1 if this number was less than the true propensity score and to
0 otherwise. Consequently, A can be thought of as a exposure that is generated
by a non-linear and non-additive propensity score model. This model assigns
approximately half of subjects to the exposure group.

Outcomes were generated following the mechanism described by Setoguchi
et al. (2008) with slight modifications to increase the outcome fraction (from
approximately 2% to 20% or 40%). Specifically, the binary outcome, Y , was
modelled as a Bernoulli random variable given A and W : an independent
random number, εY , was drawn from the uniform distribution; Y was set to 1 if
this number was less than the inverse logit (expit) of a linear transformation
η(A, W ) = −1 + 0.3W1 − 0.36W2 − 0.73W3 − 0.2W4 + 0.71W8 − 0.19W9 +
0.26W10 + γA of A and W and to 0 otherwise. The true conditional log odds
ratio for the exposure-outcome effect was set to 1 or −1 depending on the
scenario. The outcome incidence was roughly 40% for scenarios with γ = 1;
and 20% for scenarios with γ = −1. The counterfactual outcomes Y0 and Y1
for any subject with realisations w of W and u of εY are found by computing
I(u < expit{η(0, w)}) and I(u < expit{η(1, w)}), I denoting the indicator
function. With knowledge of the counterfactual outcomes, it can be inferred
that with γ = 1, the marginal log odds ratio for the true exposure-outcome effect
among the exposed (or treated; ATT) is approximately 0.906; with γ = −1,
the marginal log odds ratio is approximately −0.926 (Hernán and Robins, 2017).
Note that these are different from the conditional causal odds ratios as a result
of the non-collapsibility property of the odds ratio.

We considered ignorable missing data mechanisms for introducing missing
data.

MCAR missingness. For all subjects, irrespective of complete data, values of
W3 were set to missing with probability p, characterising the MCAR mechanism.
The missingness probability of the other variables was set to zero.
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MAR missingness. Let M3 be a missing indicator variable that takes the
value of one if and only if the value of W3 is missing. Similarly, define M4 to be
the missing indicator variable pertaining to W4. Given the full data, W3 and W4
were set to missing independently of one and other and with probability equal to
Pr(M3 = 1|W, A, Y ) = p and Pr(M4 = 1|W, A, Y ) = expit{α0 + α1W1 + α2A +
α3Y }. The missingness probability of the other variables was set to zero.

Scenarios
We evaluated the performance of various CART-based methods in eight scenarios
(Table 5.1). The intercepts α0 in scenarios five through eight were chosen so as to
yield roughly the same average proportion of missing data points per generated
dataset of 24000 data points (2000 records on 10 covariates, one exposure and one
outcome variable), namely 3%. The average proportion of missing data points
and the fraction of incomplete records were largest in scenario 2 (5% and 60%,
respectively; see Table 5.1). In all of the scenarios considered, data are ‘missing
at random’ and it is assumed that there is conditional exchangeability given
measured covariates (i.e., (Y0, Y1) ⊥⊥ A|W ).

Note that in scenarios 3 trough 8, conditioning on M may break the
independence between A and unobserved outcome predictor εY through what
is known as collider stratification (cf. Pearl, 2009). One might therefore expect
that that discarding incomplete records in these scenarios would result in bias. In

Scenario γ MCAR/MAR p α0 α1 α2 α3 PMP PIR
1 1 MCAR 0.3 – – – – 0.03 0.30
2 1 MCAR 0.6 – – – – 0.05 0.60
3 1 MAR 0.0 −0.7 0.0 0.0 1.5 0.04 0.48
4 −1 MAR 0.0 −1.0 0.0 0.0 1.5 0.03 0.35
5 1 MAR 0.1 −1.6 0.5 0.5 0.5 0.03 0.37
6 1 MAR 0.1 −2.1 0.5 0.5 1.5 0.03 0.37
7 1 MAR 0.1 −2.3 0.5 1.5 0.5 0.03 0.36
8 1 MAR 0.1 −2.2 1.5 0.5 0.5 0.03 0.37

Table 5.1: Description of scenarios. γ equals the conditional log odds ratio
for the effect of A on Y given W . Given the full data, variables W3 and W4
were set to missing independently of one and other and with probabilities p and
expit{α0 + α1W1 + α2A + α3Y }, respectively. Abbreviations: MCAR, missing
completely at random; MAR, missing at random; PMP, average proportion of
missing data points; PIR, average proportion of incomplete records.
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scenarios 3 and 4, however, covariate missingness M is conditionally independent
of exposure status and covariate data given the outcome (i.e., M ⊥⊥ (A, W )|Y ).
As a result, in these scenarios, the conditional OR for the effect of A on Y given
W is equal to the conditional OR given W among the complete cases (Westreich,
2012). Bias of complete case estimators in scenarios 3 and 4 therefore cannot
be attributed to collider stratification, despite the presence of an unobserved
outcome predictor. Instead, it could result from the non-collapsibility of the
odds ratio and changes in the covariate distribution brought about by narrowing
the focus of inference to the complete cases (Hernán and Robins, 2017).

Estimators

Bagged CART was based on 100 bootstrap replicates (Lee et al., 2010). We
imposed complexity constraints on the tree fitting algorithm using the rpart
package default control settings. For boosted CART, we used 20000 iterations, a
shrinkage parameter of 0.0005, and an iteration stopping rule based on the mean
Kolmogorov-Smirnov test statistic (Lee et al., 2010; McCaffrey et al., 2004).

The CART methods were combined with several common approaches to
handling missing data: leaving missingness information as is (i.e., subjecting
incomplete data directly to the CART algorithm); complete case analysis (CCA);
and multiple imputation (MI). MI was implemented with the mice package
(version 2.46.0) using the logreg and norm options to impute missing binary
and continuous variables, respectively, and otherwise default settings (Van
Buuren and Groothuis-Oudshoorn, 2011). Imputation models included, apart
from the variable to be imputed, all other variables, including the outcome,
as untransformed main effects only. Propensity score analysis was performed
within imputed datasets using the respective sets of estimated propensity scores
(Penning de Vries and Groenwold, 2016) and results were combined using Rubin’s
(1987) rules.

In addition to using CART, as stated, we also estimated propensity scores in
imputed datasets using a correctly specified propensity score model (LRc), and
using a logistic model with main effects only (LRm).

Within each (multiply imputed) dataset, the ATT was estimated from a
logistic model with robust variance estimation using the survey package (Lumley,
2014, version 3.31). We used both propensity score matching and inverse
probability weighting. Matching was performed using a greedy 1:1 nearest
neighbour algorithm, matching exposed (A = 1) to unexposed individuals (A = 0)
(Austin, 2011a). For any given (imputed) dataset, matching was performed
on the logit of the propensity score, using a calliper distance of 20% of the
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standard deviation of the logit propensity score estimates (Austin, 2011b). With
the ATT as the estimand, IPW weights were defined as 1 for exposed subjects
and PS/(1 − PS) for unexposed subjects (PS denoting the estimated propensity
score). To avoid undefined weights (1/0) or logit propensity scores (logit(0)),
we placed bounds on the estimated propensity scores, truncating all estimates
less than 0.001 to 0.001 and setting estimates greater than 0.999 to 0.999. MI-
based estimates were pooled using Rubin’s rules to yield for each original dataset
a single effect estimate, standard error estimate, and 90% confidence interval
(90%CI).

Performance metrics

We evaluated the performance of the various methods through several measures:
bias, estimated by the mean deviation of the estimated from the true marginal
exposure-outcome effect on the log scale; empirical standard error; mean
estimated standard error; mean squared error (MSE); and 90%CI coverage,
estimated by the percentage of the 5000 data sets in which the 90%CI included the
true exposure-outcome effect. Based on 5000 simulation runs, the Monte Carlo
standard error for the true coverage probability of 0.90 is

√
(0.90(1−0.90)/5000) ≈

0.0042, implying that the estimated coverage probability is expected to lie with
95% probability between 0.893 and 0.907. Empirical coverage rates outside this
interval provide evidence against the true coverage probabilities being equivalent
to the nominal level of 0.90. The primary interest, however, was to gauge
the effect of missing data on the various effect estimators. Therefore, we also
compared, for each scenario, the effect estimates before and after the introduction
of missing data.

5.3.2 Results

In this section, we present (Table 5.2) and describe the results for IPW-based
estimators only. Trends for estimators based on propensity score matching are
similar and the results are presented in full in the Supplementary Material.

Bias

Before the introduction of missing data, baCART and bCART showed small to
no bias (with absolute values ranging from 0.000 to 0.011 on the log odds ratio
scale). MI+LRc performed generally well and to a similar extent as MI+baCART
and MI+bCART. MI+LRm consistently underestimated the true effect when
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inference was based on IPW; this trend was weaker for inference based on
propensity score matching (Supplementary Table 1). Among all CART-based
missing data approaches considered, multiple imputation yielded the least biased
estimators overall (with a maximum absolute value of bias of 0.026 versus 0.221
and 0.138 for CART-only and CCA estimators, respectively), whereas bCART
deviated on average the most from the true effect after the introduction of
missingness.

As expected, baCART and bCART were biased (with −0.029 and −0.039,
respectively, for scenario 1 and −0.064 and −0.072 for scenario 2) under MCAR
in the direction of confounding by W3, whereas CCA and MI produced exposure-
outcome effect estimates that were on average very close to the true effect. In
scenarios 3 and 4, where missingness was outcome-dependent, bCART was biased
toward the null after the introduction of missingness (with bias estimates of
−0.117 and 0.064 for scenario 3 and 4, respectively, where the causal log odds
ratios were approximately 0.906 and −0.926); baCART was downwardly biased in
both scenarios (with bias estimates of −0.088 and −0.112). Estimators based on
CCA or MI with CART were considerably less biased. In scenarios 5 through 8,
CCA estimators systematically underestimated the true effect, particularly when
the effect of the exposure or the outcome on the missingness probability was large
(scenarios 6 and 7, where bias estimates ranged from −0.116 to −0.138). In these
scenarios (5 through 8), baCART produced estimates that were on average close
to the true effect, except in scenario 6, where the effect was clearly underestimated
(estimated bias −0.050). bCART resulted in estimates that deviated in the same
direction and to a similar or greater extent from the true effect as compared
with CCA estimators. Again, MI with CART resulted in estimates that were
on average close to the true effect. Increasing the effect of covariate W1 on the
missingness probability (scenario 8 versus 5) had no evident impact on the results
of any of the estimators.

Other performance

As expected, discarding incomplete records (CCA) resulted in relatively large
empirical standard errors. Interestingly, MI+LRc had the largest empirical
standard error in most scenarios, probably as a consequence of the complexity of
the fitted propensity score models. In comparing empirical and mean estimated
standard errors, note that multiple imputation produced generally conservative
estimates of the standard error. This is consistent with previous observations
(Van Buuren, 2012). Among the CART-based estimators, the MSE was largest
for CCA in nearly all scenarios. MI estimators had consistently small MSE.
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Overall, the best performance in terms of MSE was attained by MI estimators,
followed by baCART and bCART. Multiple imputation with CART resulted in
empirical coverage rates close to or slightly higher than the nominal 90% and
those of the other estimators.

5.3.3 Additional simulation experiment
To investigate the estimator performances in a simpler setting, we repeated
the simulation experiment of scenario 2 with the squared and interaction terms
removed from the exposure allocation model of the data generating mechanism.
The results, presented in Supplementary Table 2, indicate generally the same
trends as previously noted. Of note, in the absence of missing data, inverse
weighting based on CART showed noticeably more bias than in scenarios 1
through 8. This is probably related to CART’s inherent limited ability to
model smooth functions. Multiply imputing missing data followed by CART
yielded approximately the same extent of bias. However, this bias appears to be
partially cancelled out by the bias introduced by CART’s automatic handling
of missing data to the extent that CART alone performed better with than
without missing data. Nonetheless, relative to the extent of bias of the respective
CART algorithm before the introduction of missing data, multiple imputation
with CART outperformed both CCA with CART and CART applied directly to
incomplete data in terms of bias.

5.4 Case study

In this section, we illustrate the application of the CART-based estimators
to an empirical dataset, constructed to assess the association between annual
influenza vaccination and mortality risk among elderly (Groenwold et al., 2009).
The dataset comprises 44418 complete records on vaccination status, mortality
during the influenza epidemic period and potential confounders (age, sex, health
status and prior health care and medication use). Among the 32388 vaccinated
individuals 266 died, whereas 113 out of 12030 nonvaccinated individuals died
(crude odds ratio 0.87, 90%CI 0.73–1.05). To control for measured confounders,
propensity scores were estimated via bCART and a pseudopopulation was
constructed using IPW such as to preserve the covariate distribution of the
vaccination group. This resulted in an odds ratio of 0.60 (90%CI 0.49–0.73)
for the marginal effect of vaccination on mortality risk among the vaccinated.
Substituting bCART with baCART yielded an odds ratio of 0.65 (90% 0.53–
0.81). As expected, introducing MCAR missingness into a confounder by setting
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Missingness
None MCAR MAR

Method OR (90%CI) OR (90%CI) OR (90%CI)
baCART 0.65 (0.53–0.81) 0.69 (0.56–0.85) 0.53 (0.44–0.66)
bCART 0.60 (0.49–0.73) 0.63 (0.51–0.77) 0.79 (0.63–0.98)
CCA+baCART – 0.55 (0.41–0.73) 0.62 (0.46–0.84)
CCA+bCART – 0.50 (0.37–0.66) 0.56 (0.42–0.75)
MI+baCART – 0.60 (0.47–0.75) 0.70 (0.55–0.89)
MI+bCART – 0.58 (0.47–0.72) 0.63 (0.51–0.78)
LRm† 0.59 (0.49–0.71) 0.62 (0.51–0.76) 0.70 (0.57–0.86)

Table 5.1: Estimated effects of vaccination on mortality risk among the elderly
in dataset with no missing data, MCAR missingness or outcome-dependent MAR
missingness. Estimates are adjusted for age, sex, health status and prior health
care and medication use. Abbreviations: MCAR, missing completely at random;
MAR, missing at random; OR, odds ratio; 90%CI, 90% confidence interval;
CART, classification and regression trees, baCART, bootstrap aggregated CART;
bCART, boosted CART; CCA, complete case analysis; MI, multiple imputation;
LRm, main effects logistic regression. †In case of (MCAR or MAR) missingness,
MI was implemented before LRm.

a random 50% of subjects’ number of prior general practitioner (GP) visits to
missing, resulted in odds ratio estimates that were closer to the crude effect.
Setting the number of GP visits to missing with probability 0.5 for all subjects
who died and zero otherwise, resulted in estimates substantially closer to the null
for bCART and away from the null for baCART. Thus, as in our simulations,
outcome-dependent MAR missingness resulted in apparent attenuation of the
exposure-outcome effect as estimated by bCART. Table 5.1 shows the results
also for the complete case and multiple imputation equivalents of baCART and
bCART as well as for IPW based on propensity score estimation using main
effects logistic regression and with weights truncated to the interval from the
0th to the 97.5th percentile. To better handle potential violations of standard
imputation model assumptions, we used a nonparametric multiple imputation
strategy (option cart rather than norm in the mice package) to estimate the
effect of vaccination on mortality risk (Doove et al., 2014). Interestingly, in the
MAR setting, bCART and baCART yielded the two most extreme estimates for
the effect of vaccination on mortality risk among the elderly.
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5.5 Discussion

In this paper we examined the workings of CART based propensity score
estimators in scenarios with missing covariate data. Although CART has been
described as a promising approach to automatically handle missing covariate data
when developing a propensity score (Setoguchi et al., 2008; Lee et al., 2010), there
has been little discussion on the performance of these methods. Through analysis
and simulations we showed that the application of CART for propensity score
estimation can yield serious bias in estimates of exposure-outcome relations. We
showed that this problem not only pertains to the situation of MAR but critically
also to the situations with MCAR, which are often considered harmless when bias
is concerned resulting only in larger variance of the estimator of exposure-outcome
relations.

An attractive property of CART-based methods relative to standard logistic
regression procedures, is perhaps not having to discard incomplete records.
Indeed, in our simulations, discarding incomplete records resulted in the largest
empirical standard errors. Alternatively, multiple imputation may be used to
replace missing values under MCAR or MAR prior to propensity score estimation.
This approach was shown to work well in our simulations. One criticism of
multiple imputation in its parametric form is that it makes possibly erroneous
distributional assumptions. In particular, the standard multiple imputation
algorithms do not properly capture nonlinear relations like interaction effects
(Cham and West, 2016). Multiple imputation algorithms that use nonparametric
methods have been developed. For example, Doove et al. (2014), following
Burgette and Reiter (2010), proposed CART to be incorporated as imputation
method in the multiple imputation by chained equations framework. As with
parametric multiple imputation, the algorithm is designed to account for the
inherent variability in the data. However, while the approach of Doove et al.
(2014) seems promising, there is still room for improvement. Particularly, the
algorithm does not explicitly account for uncertainty about the (implicit) CART
trees’ model parameters. To address this, Shah et al. (2014) proposed a promising
algorithm in which random forest CART is embedded in the multiple imputation
by chained equations framework and imputation models are fitted to bootstrap
samples. An implementation is available via the R package CALIBERrfimpute
(Shah, 2014).

In interpreting our findings, it is important to note that we considered
only a small number of scenarios. We assumed throughout that data were
MCAR or MAR and that there was no unmeasured confounding (conditional
exchangeability given measured confounders). As noted, there are situations
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conceivable in which it is not problematic to estimate the generalised propensity
score. If the missingness information conveys information about a strong
unmeasured confounder, estimating the generalised propensity score may allow
for partial control of unmeasured confounding. On the other hand, adjusting for
missingness information, e.g., through the generalised propensity score (estimated
by some CART algorithms), may be problematic particularly when it is a strong
proxy for the outcome, an intermediate, or a common effect of the exposure and
outcome.

Our arguments for caution when using CART to estimate propensity scores in
the presence of missing data are in line with the recommendation to incorporate
information on the outcome in imputing missing covariate data (Penning de Vries
and Groenwold, 2016; Leyrat et al., 2017; Moons et al., 2006). Since propensity
score estimation is typically done without any information on the outcome (Rubin
et al., 2008), any missing data imputation (e.g., with a surrogate) that is inherent
to the propensity score estimation procedure will likely fail. An important feature
of the propensity score matching or weighting methodology is that, in the absence
of missing data, it need not make distributional assumptions about the outcome
in relation to the exposure and covariates in constructing a matched or weighted
dataset. In the presence of missing covariate data, omitting information on the
outcome in imputing missing covariate data, however, imposes a structure on the
data that likely contrasts with the true data distribution and the analysis model.
This is similar to the idea of models being “uncongenial” in the sense of Meng
(1994). The current study also relates to the literature on the missing indicator
method, given its resemblance with the approach to handling missing data taken
by the boosted CART algorithm. Like the automatic handing of missing data by
the boosted CART algorithm, the missing indicator method typically results in
bias (Groenwold et al., 2012).

It has been suggested to perform balance diagnostics on the matched or
weighted study sample at hand (Austin, 2011a). If systematic differences persist
between exposure groups following matching or weighting, this may be an
indication that the propensity score estimation algorithm requires modification
(Austin and Stuart, 2015). In the context of CART, one may assign greater
weight to subjects at a certain covariate level in evaluating exposure homogeneity
at any given node. We did not adopt an iterative approach to propensity score
estimation and balance diagnostics in our simulation studies for several reasons.
First, doing so would increase the computational burden of the simulations.
Second, whereas CART facilitates the estimation of propensity scores that
balance the entire covariate joint distribution across exposure groups, standard
balance diagnostics procedures typically ignore the complex relationship between
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exposure and covariates. For example, when using the standardised mean
difference, it is typically assumed that all variables that need to be balanced
with respect to the mean are identified and included in the set over which
a summary (e.g., weighted mean or maximum) standardised mean difference
is calculated. The utility of the metric may be poor if important variables
(e.g., higher order moments) are omitted. Other balance metrics, such as the
Kolomogorov-Smirnov metric, Lévy distance, and overlapping coefficient (Belitser
et al., 2011; Franklin et al., 2014; Ali et al., 2015) often fail to reflect the extent
of imbalance with respect to the entire covariate joint distribution. In addition,
what constitutes good balance ultimately depends on the outcome model too.
Substantial imbalance may be acceptable for covariates that are weakly predictive
of the outcome, while small departures from perfect balance may be problematic
for covariates that are strongly predictive of the outcome.

We emphasise that our simulations were not designed to compare CART
versus logistic regression as means to estimate propensity scores. Main
effects logistic regression here and in previous studies demonstrated a robust
performance against model misspecification in terms of bias when inference was
based on propensity score matching (Setoguchi et al., 2008). This is likely
attributable to the set-up of the simulations. The outcome model included
homogeneous exposure-outcome effects and main effects only. Since between-
exposure-group imbalances with respect to interaction terms or higher order
moments of covariates need not accompany systematic differences in outcomes,
it is not surprising that propensity score matching based on main effects
logistic regression may perform roughly the same in terms of bias as propensity
score matching based on logistic regression with correct model specification.
Further studies comparing CART versus main effects logistic regression may well
demonstrate more clearly the advantageous properties of CART in settings with
both complex propensity score and complex outcome models.

In summary, we compared various approaches to handling missing data in
estimating propensity scores via CART. While the use of machine learning
in estimating propensity scores seems promising for handling complex full
data structures, it unlikely represents a suitable substitute for well-established
methods, such as multiple imputation, to deal with missing data.
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Appendices

Appendix A
For realisations w of W and a of A, let

φ(w, a) = φ∗(w, a)
E[φ∗(W, A)|A = a] , φ∗(w, a) = I(a = 1) + I(a = 0) e(w)

1 − e(w) .

We show in this subsection that weighting by φ yields independence between
covariate(s) W and A; that is, for all w,

φ(w, 0) Pr(W = w|A = 0) = φ(w, 1) Pr(W = w|A = 1).

Also, conditional exchangeability given W implies exchangeability following
weighting by φ; that is, if (Y0, Y1) ⊥⊥ A|W = w for all w, then∑

w

φ(w, 0) Pr(Y0 = y0, Y1 = y1, W = w|A = 0)

=
∑
w

φ(w, 1) Pr(Y0 = y0, Y1 = y1, W = w|A = 1)

for all y0, y1.
We begin by considering E[φ∗(W, A)|A = a]. It is easy to see that

E[φ∗(W, A)|A = 1] = 1. For a = 0, we have

E[φ∗(W, A)|A = 0] = E
[

e(W )
1 − e(W )

∣∣∣A = 0
]

= E
[Pr(A = 1|W )

Pr(A = 0|W )
∣∣∣A = 0

]
=
∑
w

Pr(A = 1|W = w)
Pr(A = 0|W = w) Pr(W = w|A = 0)

=
∑
w

Pr(W = w|A = 1) Pr(A = 1)/ Pr(W = w)
Pr(W = w|A = 0) Pr(A = 0)/ Pr(W = w) Pr(W = w|A = 0)

= 1
Pr(A = 0)

∑
w

Pr(W = w|A = 1) Pr(A = 1)

= Pr(A = 1)
Pr(A = 0)

Since φ(w, 1) = 1, to prove the first statement it suffices to show that
φ(w, 0) Pr(W = w|A = 0) = Pr(W = w|A = 1) for all w. Now,

φ(w, 0) Pr(W = w|A = 0)
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= e(w)
1 − e(w)

Pr(A = 0)
Pr(A = 1) Pr(W = w|A = 0)

= Pr(A = 1|W = w)
Pr(A = 0|W = w)

Pr(A = 0)
Pr(A = 1) Pr(W = w|A = 0)

= Pr(W = w|A = 1) Pr(A = 1)
Pr(W = w|A = 0) Pr(A = 0)

Pr(A = 0)
Pr(A = 1) Pr(W = w|A = 0)

= Pr(W = w|A = 1),

for all w, as desired.
To complete this proof, observe that∑

w

φ(w, 0) Pr(Y0 = y0, Y1 = y1, W = w|A = 0)

=
∑
w

Pr(A = 1|W = w)
Pr(A = 0|W = w)

Pr(A = 0)
Pr(A = 1) Pr(Y0 = y0, Y1 = y1, W = w|A = 0)

=
∑
w

Pr(W = w|A = 1) Pr(A = 1)/ Pr(W = w)
Pr(W = w|A = 0) Pr(A = 0)/ Pr(W = w)

Pr(A = 0)
Pr(A = 1)

× Pr(Y0 = y0, Y1 = y1|W = w, A = 0) Pr(W = w|A = 0)
=
∑
w

Pr(W = w|A = 1) Pr(Y0 = y0, Y1 = y1|W = w, A = 0)

for all y0, y1. Under conditional exchangeability given W , i.e., (Y0, Y1) ⊥⊥ A|W ,
we have Pr(Y0 = y0, Y1 = y1|W = w, A = 0) = Pr(Y0 = y0, Y1 = y1|W =
w, A = 1) for all w. Hence, ∑w φ(w, 0) Pr(Y0 = y0, Y1 = y1, W = w|A = 0)
becomes ∑w Pr(W = w|A = 1) Pr(Y0 = y0, Y1 = y1|W = w, A = 1), which is
equal to Pr(Y0 = y0, Y1 = y1|A = 1). Since φ(w, 1) = 1, we also have that∑

w φ(w, 1) Pr(Y0 = y0, Y1 = y1, W = w|A = 1) = Pr(Y0 = y0, Y1 = y1|A = 1) for
all y, which completes this proof.

Appendix B
In this subsection, we give an example of a simple setting where (Y0, Y1) ⊥⊥
A|e(W ) and W ⊥⊥ A|e∗(V ) hold, yet (Y0, Y1) ⊥̸⊥ A|e∗(V ).

Let W , A and Y be binary mutually independent random variables and
suppose that covariate missingness is MAR dependent on Y . Specifically, let
Pr(W = 1) = 0.5 and Pr(A = 1|W = w) = Pr(A = 1) = 0.5 for all
w. Further, define Y = I(εY < (1 + A)/10), where εY ∼ U(0, 1) such that
εY ⊥⊥ (A, W ). Thus, there is conditional exchangeability given W , so that
Pr(Y = 1|A = a, W = w) = Pr(Ya = 1|A = a, W = w) = (1 + a)/10 for
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all a, w. Rosenbaum and Rubin (1983, Theorems 1 and 3) and Appendix A
establish conditional exchangeability given e(W ) and exchangeability following
inverse probability weighting with weights defined on the basis of e(W ). Now,
let Pr(R = 0|W, A, Y, εY ) = 0.1 + 0.5Y . It is easily verified that W ⊥⊥ A|e∗(V ).
However, e∗(V ) = 4/7 if and only if V = ∗ or, equivalently, R = 0. Since
R ⊥⊥ εY |(A, Y ) and R ⊥⊥ A|Y , for any u ∈ (0, 1), we therefore have

Pr(εY ≤ u|A = a, e∗(V ) = 4/7)
= Pr(εY ≤ u|A = a, R = 0)
=
∑

y

Pr(εY ≤ u|A = a, Y = y) Pr(Y = y|A = a, R = 0)

=
∑

y

{
Pr(εY ≤ u|A = a, Y = y)

× Pr(R = 0|Y = y) Pr(Y = y|A = a)∑
y′ Pr(R = 0|Y = y′) Pr(Y = y′|A = a)

}
=
∑

y

Pr(εY ≤ u|A = a, Y = y)(1 + 5y)[(1 + a)y + (9 − a)(1 − y)]
15 + 5a

,

where

Pr(εY ≤ u|A = a, Y = y) = Pr(Y = y|A = a, εY ≤ u) Pr(εY ≤ u)
Pr(Y = y|A = a)

= q(y, u, a)u
(1 + a)y/10 + (9 − a)(1 − y)/10 ,

with q(y, u, a) = 1 − y + (−1)1−ymin{(1 + a)/10, u}/u. In particular, Pr(εY ≤
0.5|A = a, e∗(V ) = 4/7) equals 2/3 if a = 0 and 3/4 if a = 1. Hence, εY ⊥̸⊥
A|e∗(V ) and, given the definitions of Y , Y0 and Y1, we have (Y0, Y1) ⊥̸⊥ A|e∗(V ).

Appendix C

This subsection details an example where (Y0, Y1) ⊥⊥ A|e∗(V ), yet (Y0, Y1) ⊥̸⊥
A|e(W ).

Suppose that W and that A and Y are all binary random variables. Further,
let (A, R) be marginally independent of W , let A conditionally depend on R
given W , and let Y conditionally depend on A and R given W . Specifically, let
Pr(W = 1) = 0.5, Pr(R = 0|W ) = 0.1, Pr(A = 1|R, W ) = 2(1 + R)/10, and Y =
I(εY < 2(1 + 2R)/20), where εY ⊥⊥ (W, R, A). To see that (Y0, Y1) ⊥⊥ A|e∗(V ),

104



Chapter 5

first note that

e(w) = Pr(A = 1|W = w)
= Pr(A = 1|W = w, R = 0) Pr(R = 0|W = w)

+ Pr(A = 1|W = w, R = 1) Pr(R = 1|W = w)
= 0.38,

for w = 0, 1, and that e∗(v) equals Pr(A = 1|R = 0) = 0.20 if v = ∗ and
Pr(A = 1|R = 1) = 0.40 otherwise. Now,

Pr(Y0 = 1|A = a, e∗(V ) = 0.20) = Pr(Y0 = 1|A = a, e∗(V ) = 0.20)
= Pr(Y0 = 1|A = a, R = 0)
= Pr(εY < 2(1 + 2R)/20|A = a, R = 0)
= Pr(εY < 0.10|A = a, R = 0)
= Pr(εY < 0.10) = 0.10

for a = 0, 1. Also, Pr(Y0 = 1|A, e∗(V ) = 0.40) = 0.10. Thus, Y0 ⊥⊥ A|e∗(V ).
Similarly, it can be shown that (Y0, Y1) ⊥⊥ A|e∗(V ). Next, observe that

Pr(Y0 = 1|A = a, e(W ) = 0.38) = Pr(Y0 = 1|A = a)
= Pr(Y0 = 1|A = a, R = 0) Pr(R = 0|A = a)

+ Pr(Y0 = 1|A = a, R = 1) Pr(R = 1|A = a)

= 0.10Pr(A = a|R = 0) Pr(R = 0)
Pr(A = a)

+ 0.30Pr(A = a|R = 1) Pr(R = 1)
Pr(A = a)

= 0.20a0.801−a0.01 + 0.40a0.601−a0.27
0.38a0.621−a

,

which is not invariant to changes in a = 0, 1. Hence, (Y0, Y1) ⊥̸⊥ A|e(W ).
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Supplementary Material

Table S5.1: Performance metrics of propensity score matching estimators in
5000 simulated datasets with and without missing data. Abbreviations: SE,
standard error; MSE, mean squared error; 90%CI, 90% confidence interval;
CART, classification and regression trees; baCART, bootstrap aggregated CART;
bCART, boosted CART; CCA, complete case analysis; MI, multiple imputation;
LRc, logistic regression with correctly specified model; LRm, logistic regression
with main effects only.

Scenario

Metric
Missing
data Method 1 2 3 4 5 6 7 8

Bias Without baCART -0.050 -0.048 -0.052 -0.046 -0.052 -0.052 -0.053 -0.051
bCART -0.054 -0.053 -0.056 -0.047 -0.054 -0.055 -0.055 -0.054

With baCART -0.094 -0.114 -0.061 -0.116 -0.054 -0.056 -0.031 -0.046
bCART -0.115 -0.170 -0.165 0.110 -0.135 -0.365 -0.228 -0.129
CCA+baCART -0.072 -0.110 -0.068 -0.127 -0.109 -0.191 -0.175 -0.093
CCA+bCART -0.063 -0.070 -0.040 -0.104 -0.102 -0.169 -0.171 -0.079
MI+baCART -0.056 -0.054 -0.026 -0.031 -0.035 -0.033 -0.032 -0.030
MI+bCART -0.062 -0.065 -0.063 -0.061 -0.056 -0.059 -0.056 -0.054
MI+LRc -0.010 -0.014 -0.006 0.000 -0.006 -0.005 -0.004 -0.004
MI+LRm -0.006 -0.004 -0.012 -0.017 -0.008 -0.010 -0.008 -0.005
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Propensity score estimation, CART and missing covariates

Table S5.2: Performance metrics of inverse probability weighting and matching
estimators in 5000 simulated datasets of additional simulation experiment.
Abbreviations: Bias dif., estimated bias after minus estimated bias before
introduction missing data; Emp. SE, empirical standard error; Mean ŜE, mean
estimated standard error; MSE, mean squared error; CART, classification and
regression trees; baCART, bootstrap aggregated CART; bCART, boosted CART;
CCA, complete case analysis; MI, multiple imputation; LRc, logistic regression
with correctly specified model; LRm, logistic regression with main effects only.

Metric
Missing
data Method Bias

Bias
dif.

Emp.
SE

Mean
ŜE MSE Coverage

Inverse probability weighting
Without baCART 0.061 ref. 0.104 0.106 0.015 0.851

bCART 0.028 ref. 0.119 0.123 0.015 0.902
With baCART 0.008 -0.053 0.113 0.113 0.013 0.902

bCART -0.019 -0.048 0.118 0.121 0.014 0.909
CCA+baCART 0.039 -0.023 0.171 0.178 0.031 0.906
CCA+bCART 0.041 0.013 0.185 0.192 0.036 0.903
MI+baCART 0.068 0.007 0.105 0.109 0.016 0.846
MI+bCART 0.027 -0.001 0.119 0.128 0.015 0.919
MI+LRc 0.004 0.132 0.141 0.017 0.927
MI+LRm 0.005 0.130 0.138 0.017 0.920
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Table S5.2 continued.

Metric
Missing
data Method Bias

Bias
dif.

Emp.
SE

Mean
ŜE MSE Coverage

Matching
Without baCART -0.003 ref. 0.121 0.121 0.015 0.901

bCART -0.061 ref. 0.133 0.138 0.021 0.879
With baCART -0.045 -0.042 0.124 0.121 0.017 0.869

bCART -0.137 -0.075 0.134 0.137 0.037 0.731
CCA+baCART -0.097 -0.094 0.220 0.222 0.058 0.871
CCA+bCART -0.092 -0.031 0.239 0.245 0.066 0.880
MI+baCART 0.007 0.010 0.117 0.134 0.014 0.938
MI+bCART -0.063 -0.001 0.129 0.155 0.021 0.923
MI+LRc 0.007 0.112 0.131 0.013 0.946
MI+LRm 0.007 0.112 0.131 0.013 0.944
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not account for bias due to censoring
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Propensity score matching and censoring

Abstract

This article gives a review of the limitations of propensity score matching as a
tool for confounding control in the presence of censoring. Using an illustrative
simulation study, we emphasize the importance of explicit adjustment for selective
loss to follow-up and explain how this may be achieved.
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In epidemiological research, valid causal inference is often hampered by
confounding and selective loss to follow-up. Confounding is increasingly often
addressed by means of propensity score (PS) matching. The analysis of a PS
matched dataset closely resembles that of a randomised controlled trial (RCT);
one expects that, on average, the distribution of covariates will be similar between
treatment groups after propensity score matching or randomisation so that in
the absence of other forms of bias systematic differences in outcomes between
treatment groups can be attributed to treatment. Importantly, as is the case
with RCTs (Groenwold et al., 2014). PS matching (or randomisation in the case
of an RCT) typically does not account for selective loss to follow-up, and the
confounder balance that was achieved through PS matching (or randomisation)
may falsely reassure researchers and readers that the treatment groups under
study were (and remained) comparable. The problem of selective loss to follow-
up can, however, be potentially remedied by the same methods that have been
proposed to address the problem in RCTs, namely inverse probability weighting,
multiple imputation, or regression adjustment (Groenwold et al., 2014).

Two examples

In a study on the dose-response relationship between sulfonylurea derivatives
(SU) and major adverse cardiovascular events in elderly patients with type
2 diabetes, patients were censored if they switched their treatment regimen
(Abdelmoneim et al., 2016). Matching on a high-dimensional PS created
treatment groups (high and low dose SU) that were very similar in terms baseline
characteristics, including those reflecting disease severity, comedication use, and
comorbidity state. Possibly, however, those who switched treatments at any
point during follow-up represent a selective subset, for example because switching
occurred more often among those who used more concomitant medication. Over
time, this may have distorted the balance in comedication that was initially
achieved through PS matching.

Another example is a study comparing outcomes between incremental and
thrice-weekly initiation of haemodialysis (Park et al., 2016). Following PS
matching, the groups were similar in terms of a number of baseline characteristics
including age, sex, and primary renal disease. However, approximately half of the
participants were lost to follow-up at 12 months. Again, this may have induced a
selection bias if the loss to follow-up affected the treatment groups differentially.
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Propensity score matching and censoring

An illustration of the problem

Through a small simulation study, we will illustrate the effect of ignoring
selectively missing outcomes, whilst focusing on PS matching to control for
confounding. Throughout, it is assumed that there is exchangeability for
treatment and censoring, consistency, no model misspecification, and positivity,
so that the observed covariates are sufficient to adjust for both confounding and
selection bias due to loss to follow-up (Robins et al., 2000; Hernán et al., 2000;
Cole and Hernán, 2008).

For this illustration, we consider a hypothetical setting representing an
observational study of a binary treatment variable T , a binary outcome variable
Y , and a trichotomous confounder X. The probability of a subject dropping out
before their outcome could be assessed depends on both T and X. Data were
generated for 10,000 subjects using the mechanism detailed in the Supplementary
Material. The interest lies in the marginal odds ratio (OR) of 2 for the average
treatment effect on the treated (ATT). However, in this observational setting,
causal inference is hampered by confounding. This motivates the use of PS
matching, which typically provides an estimate of the ATT (Williamson et al.,
2012). Here, PSs were estimated by a logistic regression of T on X. We then
matched treated to untreated subjects on the estimated PSs with replacement.
As an alternative to PS matching to estimate the ATT, we also used inverse
probability weighting, with weights of 1 and PS/(1−PS) for treated and untreated
subjects, respectively. Treatment effects were estimated by applying a logistic
regression to the matched or weighted pseudopopulations. We refer to these
approaches as PS1 and IPW1, respectively. This procedure was repeated 1000
times. Bias was estimated on the log-odds ratio scale as the average deviation
from the true log-odds ratio log 2.

The results in Table 6.1 show that both PS1 and IPW1 yielded substantial
bias. The reason for this bias is apparent from Figure 6.1, which depicts the
balance in the population before and after matching and/or weighting. Although
PS1 and IPW1 are suited to balance confounders (Figure 6.1(a) and (b)), as
subjects are lost to follow-up, the balance achieved through matching or weighting
is not guaranteed to uphold in the dataset used for the analysis (Figure 6.1(c)). In
fact, since the probability of dropping out depends on both T and X, conditioning
on not being lost at follow-up (i.e. performing an analysis on those subjects for
whom an outcome is observed) induces an association between X and T (Pearl,
2009; Hernán et al., 2004), thereby biasing the relation between T and Y through
what is formally known as collider stratification bias.

To account for selective loss to follow-up, we applied Inverse-Probability-of-
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Figure 6.1: Balance on the confounder X across treatment groups in a
hypothetical setting
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The untreated group is represented in grey; the treated group in white.
Frequencies are relative to treatment (treated/untreated) group size; hence,
equally sized bars indicate confounder balance. In the following, PS and PC
denote the propensity score and the probability of censoring (being lost to follow-
up) given T and X, respectively.
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Panel (a) shows the balance in the original unweighted population. Reweighting
observations using weights of 1 and PS/(1 − PS) for treated and untreated
subjects, respectively, results in the balance shown in (b). The same result is
obtained by matching treated subjects to untreated with similar PS. Removing
observations with censored outcomes from this inverse probability weighted or PS
matched dataset results in imbalance (c). The balance shown in (d) is obtained by
weighting the original observations with 1/(1 − PC) and PS/[(1 − PC)(1 − PS)]
for treated and untreated subjects, respectively, and conditioning on noncensored
observations. The same result is obtained by reweighting the PS matched dataset
by 1/(1 − PC) for each subject.

Censoring-Weighting (IPCW) (Robins et al., 2000; Cole and Hernán, 2008). In
this simple setting with only one point of follow-up, the IPCW weights reduce to
the inverse probability of not being lost to follow-up (censored). Probabilities of
censoring (PC) were estimated by logistic regression of C, a censoring indicator,
on T and X applied to the original datasets. We then applied two additional
estimators, PS2 and IPW2. In PS2, the matched sets obtained through PS1
were additionally weighted by 1/(1−PC) for each subject. In IPW2, the weights
1/(1−PC) and PS/[(1−PS)(1−PC)] for the treated and untreated, respectively,
were applied to the original datasets, and only subjects with observed outcomes
were included in the analysis. Again, treatment effects were estimated by
applying a logistic regression to the matched and/or weighted pseudopopulations.

The results in Table 6.1 show that both PS2 and IPW2 yielded estimates that
on average were very close to the true effect. The reason is that PS2 and IPW2

Table 6.1: Performance of inverse probability weighting (IPW) and PS matching
estimators

Estimator Bias (95%CI) OR
PS1 −0.134 (−0.139, −0.129) 1.749
IPW1 −0.135 (−0.139, −0.130) 1.748
PS2 0.002 (−0.003, 0.008) 2.004
IPW2 0.002 (−0.003, 0.007) 2.003

For definitions of PS1, IPW1, PS2, and IPW2, see text. Bias was estimated
by the average deviation of the estimated log-odds ratios β̂ from the true effect
β = log 2 across 1000 simulated samples. 95%CI = ¯̂

β−β±1.96
√

(σ̂2/1000), where
σ̂2 denotes the empirical variance of β̂. OR = exp ¯̂

β (True OR = 2).
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restore the imbalance that resulted from conditioning on not being lost to follow-
up by reweighting observations such that X and T are no longer associated, and
X takes the distribution of the treated subjects (Figure 6.1(d)).

Covariate imbalance in the absence of censoring

It should be borne in mind that with two or more points of follow-up, covariate
imbalance can develop even in the absence of censoring—specifically, that is,
leaving the risk set for reasons other than sustaining the outcome of interest.
Conditioning on past survival may induce an association between treatment and
marginally independent covariates if past survival is a common effect of both
(Hernán et al., 2004; Hernán, 2010; Aalen et al., 2015; Sjölander et al., 2016). If
these covariates are also predictive of survival at a subsequent point of follow-
up, this conditioning may therefore open a backdoor path, thereby inducing a
selection bias. Thus, neither RCTs or PS matching or weighting analyses are
guaranteed to be free of selection bias, because such selection occurs after baseline
imbalances have been removed through randomisation, matching or weighting.

Conclusion

PS methods have gained increasing interest as means to adjust for confounding
(Stürmer et al., 2006). However, as illustrated, PS matching does not account for
bias due to censoring. In fact, the balance of confounders across treatment groups
that was achieved by PS matching may be ruined by selective censoring. This
problem can potentially be remedied by inverse probability of censoring weighting
(as shown here), multiple imputation, or regression adjustment. It is important
to be aware, however, that in contrast to PS matching and inverse probability
weighting, the estimand of conventional multivariable regression analysis is not
typically a marginal effect such as the ATT. Also, our simulations were done
under the assumption that the censoring mechanism was independent of the
outcome. Importantly, neither of the above methods is suited to solve the problem
of censored data when the missingness depends on unobserved variables that are
predictive of the outcome or on the outcome itself. It is only when the missingness
can be explained by observed data, such as in our illustration, that such biases
may be adequately addressed by one of the above methods. If loss to follow-up
is a completely random process, the confounder balance that was achieved by
PS matching is expected to be preserved and conventional analysis on those for
whom an outcome was observed will still be appropriate.
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Supplementary Material

In our hypothetical setting, the mechanism for generating data is defined
by sequentially sampling for each subject (independently) from the following
distributions. Covariate X takes values 0, 1, and 2 only, each with probability
1/3. T |X = x has the Bernoulli distribution with probability Pr(T = 1|x) =
expit{−1 + x}, were Pr(T = 1|x) is shorthand notation for Pr(T = 1|X = x).
C|x, t has the Bernoulli distribution with Pr(C = 1|x, t) = expit{−1.5 + 0.5x +
2t}. Finally, Y |x, t, c has the Bernoulli distribution with probability Pr(Y =
1|x, t, c) = expit{−1 + x + 0.789t}. Potential outcomes Yť,č under the combined
treatment and censoring state (ť, č) are distributed such that Pr(Yť,č = 1|x, t, c) =
Pr(Y = 1|x, t, c) = expit{−1 + x + 0.789ť}. By the law of total probability,
Pr(Yť,č = 1|t) = ∑t

c=0
∑2

x=0 Pr(Yť,č = 1|x, t, c) Pr(C = c|x, t) Pr(X = x|t), where,
by Bayes’ theorem, Pr(X = x|t) = Pr(T = t|x) Pr(X = x)/∑2

x=0[Pr(T =
t|x) Pr(X = x)]. The interest lies in the marginal odds ratio θ for the treatment
effect on the treated, if contrary to fact all subjects had remained uncensored;
θ = Odds(Pr(Y1,0 = 1|T = 1))/Odds(Pr(Y0,0 = 1|T = 1)), where Odds(p) =
p/(1 − p). It follows that θ ≈ 2.
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Abstract

Purpose. In studies of effects of time-varying drug exposures, adequate
adjustment for time-varying covariates is often necessary to properly control for
confounding. However, the granularity of the available covariate data may not be
sufficiently fine, for example when covariates are measured for participants only
when their exposure levels change. Methods. To illustrate the impact of choices
regarding the frequency of measuring time-varying covariates, we simulated data
for a large target trial and for large observational studies, varying in covariate
measurement design. Covariates were measured never, on a fixed-interval basis,
or each time the exposure level switched. For the analysis, it was assumed
that covariates remain constant in periods of no measurement. Cumulative
survival probabilities for continuous exposure and non-exposure were estimated
using inverse probability weighting to adjust for time-varying confounding, with
special emphasis on the difference between five-year event risks. Results.
With monthly covariate measurements, estimates based on observational data
coincided with trial-based estimates, with five-year risk differences being zero.
Without measurement of baseline or post-baseline covariates, this risk difference
was estimated to be 49% based on the available observational data. With
measurements on a fixed-interval basis only, five-year risk differences deviated
from the null, to 29% for six-monthly measurements, and with magnitude
increasing up to 35% as the interval length increased. Risk difference estimates
diverged from the null to as low as −18% when covariates were measured
depending on exposure level switching. Conclusion. Our simulations highlight
the need for careful consideration of time-varying covariates in designing studies
on time-varying exposures. We caution against implementing designs with long
intervals between measurements. The maximum length required will depend on
the rates at which treatments and covariates change, with higher rates requiring
shorter measurement intervals.
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7.1 Introduction

In many pharmacoepidemiologic studies, the use of the drugs that are investigated
may change over time. In case of such time-varying exposures, the exposure
effect can be defined in different ways. For example, one could contrast initiating
drug treatment at a particular point in time (irrespective of whether the use is
continued) with not initiating, or continuous drug use with continuous non-use.
While analyses of point interventions (e.g., a single-dose vaccination) require
adjustment for confounding at baseline only, for analyses of a time-varying
exposure, information on time-varying covariates might be required to mitigate
bias due to time-varying confounding. However, the granularity of the available
information about the time-varying covariates may not be sufficiently fine to
adequately control for confounding.

One special case of where this issue may arise is where researchers choose
to measure covariates for study subjects only when their exposure levels have
changed since the last measurement. If exposure levels do not change, covariate
levels are (implicitly) assumed to remain constant, which is an implementation
of a method generally known as last-observation-carried-forward (LOCF). The
accurateness of the observed covariate data may then depend on the observed
exposure history. In studies of antidepressant use and the risk of hip fracture, for
example, comorbidities and use of co-medication were assessed only at baseline
and whenever patients switched exposure level or after every six months in the
absence of switching (Ali et al., 2016; Souverein et al., 2016).

In this paper, we investigate the impact of various covariate measurement
designs on the estimation of time-varying exposure effects in observational studies
with time-varying confounding. We illustrate, by way of simulation, the potential
for bias of inverse-probability-weighting (IPW) estimators under static designs of
fixed-interval covariate measurement and under dynamic designs with covariates
being measured depending on the observed exposure history. IPW estimators
are considered as these are increasingly used for estimating causal effects of time-
varying exposures, can accommodate exposure-covariate feedback (Hernán and
Robins, 2020), and readily allow for ‘adjusted’ survival curves to be created (Cole
and Hernán, 2004).

7.2 Methods

We first simulated data for a hypothetical study, the ‘target trial’, which if
implemented on theoretical population of interest would readily allow us to
identify the exposure effect of interest (Hernán and Robins, 2016). In practice, it
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is not always possible to implement a target trial, but we use it here as a means to
clarify the exposure effect of interest and we simulate from it to give a reference
against which to compare results from analyses that are based on simulated
data for observational studies. We considered multiple observational studies,
each with the same data-generating mechanism but with different covariate
measurement designs to evaluate their impact. Having simulated data, we then
estimated the survival curves for the period of five years, using a weighting
approach (described below) that was designed to keep treatment arms comparable
throughout follow-up in terms of measured covariates. For each of the trial and
observational studies, we first generated data on a single sample of n = 150 000
individuals, which is sufficiently large to allow us to ignore sampling variability
and regard differences between the survival curves as measures of the impact
of the measurement designs on the large sample bias of the IPW estimators.
The results corresponding to this single simulation run are described in detail
below. In the online supplementary material, we summarise the results of 5000
independent simulation runs for sample sizes 150 000, 10 000, 1000, and 100. R
code for the simulations is also provided as online supplementary material.

Set-up

The target trial has the following key design elements: (1) study participants
(subjects who satisfy the eligibility criteria) are randomised at a well-defined
baseline time point t0 to either being issued a drug prescription (A0 = 1)—say, a
prescription for a daily dose of some antidepressant drug for the next one-month
period—or to not being issued the prescription (A0 = 0) at t0; (2) participants
are then followed over time until the occurrence of an event (e.g., the first hip
fracture or death if the subject dies without having sustained a hip fracture
during follow-up) or the administrative study end, whichever comes first; (3)
provided event-free survival is long enough, study participants in the (A0 = 1)-
group are issued a further prescription after every month since t0 and those in
the (A0 = 0)-group do not receive a prescription during follow-up. For a given
subject, we define Ak to be the indicator variable that takes the value of 1 if
the subject is on a one-month prescription on month k; Ak = 0 otherwise. We
further define Y to be the amount of follow-up time between baseline and the
subject’s (first) event and let Yk be that part of Y that relates to month k. We
stipulate that study participants are event-free at the start of the study and that
subjects do not get lost to follow-up before the administrative study end, which
we stipulated to be five years (or K = 60 months) post-baseline.

The observational studies differ from the target trial in the following ways
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only: (1) the decision to allocate a subject to A0 = 1 versus A0 = 0 is not
made by randomisation; (2) the decisions to renew prescriptions for subjects in
the (A0 = 1)-group or to never issue a prescription throughout the follow-up
period for those in the (A0 = 0)-group are not determined by their baseline
allocations A0. Rather, for month k = 0, 1, ..., the decision to set exposure Ak

to 0 or 1 is based only on past exposure history (Aj : j < k) and certain binary
covariates Lk. In this observational setting, subjects can switch at the start of
each month between exposure levels ‘being on prescription’ (or ‘exposed’) versus
‘not being on prescription’ (or ‘not exposed’). In variations on this setting,
covariate data were measured according to one of the following measurement
designs: (1) covariates were not measured at all, thus precluding any adjustment
for confounding and effectively forcing us to implement a ‘crude’ estimator; (2)
covariates were measured on a monthly basis, which is sufficient for identification
of our target quantity; (3) covariates were measured on a six-monthly basis
starting at baseline; (4) covariates were measured when the respective subject’s
exposure level switched; (5) covariates were measured with an exposure level
switch and at a six-monthly basis in the absence of exposure level switching. We
also considered variations on designs (3) and (5) where, instead of six months, the
fixed measurement interval have a length of 2, 3, 9, 12, ..., or 60 months. Where
design (3) means that measurement times are known before the start of follow-
up, designs (4) and (5) are dynamic in the sense that whether or not a subject’s
covariate level is measured depends on the subject’s time-varying variables.

L0 L1

A0 A1

Y0 Y1

U L0 L1

A0 A1

Y0 Y1

U

Figure 7.1: Directed acyclic graphs representing the data-generating mechanism
for the first two months of the target trial (left) and observational study (right).
Here, U represents a unmeasured common cause of the measured covariates L0, L1
and outcome variables Y0, Y1. The absence of directed paths from exposure
variables to outcome variables reflects the absence of a causal exposure-outcome
effect.
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Data-generating mechanism
To simulate longitudinal data for a setting with time-varying confounding we used
a variation on the approaches described by Havercroft and Didelez (2012) and
Young and Tchetgen Tchetgen (2014). The data-generating mechanisms for the
target trial and observational studies are described in the Appendix and produce
data that are consistent with the directed acyclic graphs (DAGs) of Figure 7.1.
In the trial setting (left panel of Figure 7.1), the absence of arrows going into
the exposure variables reflects the absence of (time-varying) confounding. In the
target trial, post-baseline exposures are fully determined by the baseline level of
exposure, which takes the value of 1 for half of subjects (i.e., exposure status does
not change over time). In the observational study, however, approximately 40%
of subjects will have switched exposure level by the end of follow-up in each of
the arms that are defined by baseline exposure level.

Defining and estimating the exposure effect
We define the exposure effect of interest as a contrast between continuous
exposure (Aj = 1 for j = 0, 1, ...) versus continuous non-exposure (Aj = 0 for
j = 0, 1, ...). In particular, we suppose that the interest lies with a contrast
between the five-year event-free survival probabilities that we would observe had
everyone received continuous exposure versus continuous non-exposure; i.e., a
contrast that is identified in the target trial as

Pr(Y ≥ 60|A0 = 1) versus Pr(Y ≥ 60|A0 = 0).

As indicated by the absence of a directed path of arrows from the exposure
variables to the outcome variables in the DAG for the target trial, the difference
between these two survival probabilities is zero.

To account for time-varying confounding in the observational studies, we
implemented IPW by applying a crude (Kaplan-Meier) estimator to an artificial
data set where, given any time during follow-up, a subject received a weight
of zero if the subject had experienced an exposure level switch by that time
and otherwise a weight equal to the reciprocal of the product of the estimated
probabilities of their observed exposure levels until that time given the respective
measured exposure and covariate histories. That is, for a = 0, 1, a subject’s
weight for month k was

Wk =
k∏

j=0

1
Pr(Aj = a|Y ≥ j, A0 = ... = Aj−1 = a, L0, ..., Lj)
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if the subject received exposure level a in months 0 through k (i.e., A0 =
... = Ak = a). Subjects were censored (i.e., received a weight of zero) from
the time at which they switched to another exposure level. Apart from the
covariate measurement design, the validity of the approach also rests on the
correct specification of the model for the conditional treatment probabilities. To
ensure correct specification for the reference measurement design (1), we assumed
that the exposure Ak given survival and past exposure and covariate levels was
Bernoulli distributed with mean equal to

Pr(Ak = 1|Y ≥ k, A0, ..., Ak−1, L0, ..., Lk)

= exp[α0 + α1I(k = 0) + α2Ak−1 + α3Lk]
1 + exp[α0 + α1I(k = 0) + α2Ak−1 + α3Lk]

for some α0, α1, α2, α3, which were estimated by a pooled logistic regression under
this model. Throughout, variables that were unobserved by measurement design
were handled with LOCF.

7.3 Results

Figure 7.2 shows the estimated survival curves for the ‘always treat’ and ‘never
treat’ protocols. Consistent with the absence of a directed path from the exposure
variables to the outcome variables in the DAGs of Figure 7.1, the trial-based
estimates of the survival curves overlap (Figure 7.2, panel A). Where we observed
a five-year event risk of 31% in both arms of the target trial, in the observational
setting, we observed a risk of 64% and 15% in those who do and those who
do not receive a treatment prescription at baseline, respectively, giving a risk
difference of 49% (panel B). With monthly covariate measurement, IPW resulted
in survival curves that virtually coincide with those of the trial (panel C), for
which we found a risk difference of zero. Six-monthly measurements (panel D),
however, brought the curves closer to those of the no measurement setting (panel
B), i.e., in the ‘direction of confounding’. The five-year risks with six-monthly
measurements were estimated to be to 50% and 21%, respectively, giving a risk-
difference of 29%. In Figure 7.3, panel A, it is shown that the estimated risk
differences at two and five years increase with the interval measurement length,
until they reach a plateau of approximately 20% and 35%, respectively. When the
interval length was set equal to the maximum follow-up duration (60 months),
only baseline covariates were measured, which resulted in an estimated five-year
risk difference that was approximately 15 percent points closer to the target
than that of no covariate measurement at all (Figure 7.2, panel B). When we
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Figure 7.2: Estimated event-free survival curves for ‘always treat’ and ‘never
treat’ protocols based on target trial (panel A) and observational study (B through
F) with varying covariate measurement designs: no covariate measurement
(B), continuous to monthly covariate measurement (C), six-monthly covariate
measurement (D), covariate measurement only with covariate level switching (E),
and with exposure switching and six-monthly in periods without switching (F).
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implemented measurement design (4), the estimated 5-year risk difference flipped
to the other side of the null, −14% (panel E), with five-year risks estimated to
be 27% and 41% for the ‘always treat’ and ‘never treat’ protocols, respectively.
For design (5), we observed a 5-year risk difference of −5%, somewhere between
the results of design (3) and (4) (panel F). With increasingly large measurement
intervals within periods of no switching, the estimated two-year risk difference
steadily decreased to approximately −15% (Figure 7.3, panel B). The estimated
five-year risk was also −15% with 60 months between measurements in periods
of no switching, equal to the observed risk of design (4), as expected. However, it
was lowest, approximately −18%, with an interval length of around 30 months.

The bias estimates of the survival curves and 5-year risk differences that were
derived by averaging across 5000 independent samples of sizes 150 000, 10 000
and 1000 are nearly identical to the corresponding estimates described above and
given in Figures 7.2 and 7.3 (cf. online supplementary material). For sample size
100, however, we observed substantial (small sample) bias for all measurement
designs, even in the reference observational setting with full/monthly covariate
measurement.
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Figure 7.3: Estimated two- and five-year event risk differences comparing ‘always
treat’ versus ‘never treat’ protocols. Estimates derive from observational studies
with varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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7.4 Discussion

We used simulation to study and illustrate the potential for bias due to
measurement design choices in the estimation of the effects of time-varying
exposures. The potential for bias in settings with static or fixed-interval covariate
measurement designs has recently been illustrated already (Young et al., 2019).
We additionally showed that bias might arise in settings where decisions to
measure are driven by observed values of the time-varying exposure.

As expected, in our simulations, fixed-interval measurement resulted in
bias in the direction of confounding, bias that is attributable to residual
confounding. Interestingly, we found bias in the opposite direction when we
implemented measurement designs where covariates were measured preferentially
with exposure level switches. Together with LOCF, these measurement designs
introduced a form of differential misclassification, which may result in bias even
in the absence of confounding (Webster-Clark et al., 2020). Researchers familiar
with DAGs might be alerted by the presence of colliders in the DAG that encodes
part of the misclassification mechanism. For example, on the DAG of the right
panel of Figure 7.1, the differential misclassification of L1 can be represented by
adding a measured version of L1 with incoming arrows from L0, L1, A0 and A1.
The measured variable can then be seen to be a collider on the path from A1
to Y1 via L1 and U . By conditioning on the collider (and not the unmeasured
variable L1 or U), the path is opened, potentially leading to collider-stratification
bias (Hernán and Robins, 2020).

In addition to adequate measurement of the time-varying covariates, the
validity of IPW rests on the correct specification of the model for the distribution
of the treatment variables given survival and past covariate and exposure
levels. It is possible that the biases that we observed are partly due to model
misspecification.

We considered a specific and relatively simple setting with a single, binary
covariate, no censoring before the administrative study end and an interest in
static rather than dynamic treatment strategies. These features are not required
for valid inference with IPW (Hernán and Robins, 2020). However, the magnitude
and direction of bias in other settings may differ from those observed in the
current study. We stress that the bias that was observed in our simulation does
not depend critically on the choice of IPW as a means to control for time-varying
confounding. The choices regarding the frequency of covariate measurements will
likely also affect the properties other methods, including the commonly applied
Cox’ regression analysis with time-varying covariates. The extent to which such
choices impact a particular study are obviously context-specific. For example,
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it will likely depend on the rate at which subjects cross over between treatment
arms as well as on the extent to which covariates are subject to change over time.

In conclusion, our simulations highlight the need for adequate measurement
of time-varying covariates in observational studies on the effects of time-varying
exposures. Researchers should consider differential covariate misclassification
as a possible source of bias when designing covariate measurement strategies
(Webster-Clark et al., 2020). Whether or not covariates are measured with every
exposure level switch, we caution against implementing measurement designs with
long intervals between measurements, particularly when the impact of the design
choices are poorly understood. The maximum interval length that is sufficient to
yield negligible bias will depend on the rates at which treatments and covariates
can change (Young et al., 2019), with higher rates requiring shorter measurement
intervals.
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Supplementary Material

Table S7.1: Summary of estimated 5-year (always-versus-never-exposed) risk
differences over 5000 simulation runs for sample sizes 150 000, 10 000, 1000, and
100. (Continued on next page.)

Study/measurement design† Mean estimate
(95% CI)‡

Empirical
variance

Mean
squared error

Sample size: 150 000
A: Target trial -0.000 (-0.000, 0.000) 0.000 0.000
B: Observational study 1 0.485 (0.485, 0.485) 0.000 0.235
C: Observational study 2 -0.000 (-0.000, 0.000) 0.000 0.000
D: Observational study 3 0.286 (0.286, 0.286) 0.000 0.082
E: Observational study 4 -0.134 (-0.134, -0.134) 0.000 0.018
F: Observational study 5 -0.044 (-0.044, -0.043) 0.000 0.002

Sample size: 10 000
A: Target trial 0.000 (-0.000, 0.000) 0.000 0.000
B: Observational study 1 0.485 (0.485, 0.486) 0.000 0.236
C: Observational study 2 0.000 (-0.000, 0.001) 0.001 0.001
D: Observational study 3 0.286 (0.286, 0.287) 0.000 0.082
E: Observational study 4 -0.135 (-0.136, -0.134) 0.002 0.021
F: Observational study 5 -0.043 (-0.044, -0.042) 0.001 0.003

†The target trial and observational studies are described in the main text.
Observational studies 1 through 5 differ in covariate measurement design: in
observational study 1 (B), covariates were never measured; in study 2 (C),
covariates were measured on a monthly basis; in study 3 (D), covariates were
measured on a six-monthly basis starting at baseline; in study 4 (E), covariates
were measured when the respective subject’s exposure level switched; ...
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Figure S7.1: Mean estimated event-free survival probabilities across 5000
samples of size 150 000 based on target trial (panel A) and observational
study (B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).
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Table S7.1 continued.

Study/measurement design† Mean estimate
(95% CI)‡

Empirical
variance

Mean
squared error

Sample size: 1000
A: Target trial 0.000 (-0.001, 0.001) 0.001 0.001
B: Observational study 1 0.486 (0.485, 0.487) 0.002 0.238
C: Observational study 2 0.014 (0.012, 0.016) 0.007 0.007
D: Observational study 3 0.291 (0.289, 0.292) 0.003 0.087
E: Observational study 4 -0.132 (-0.136, -0.128) 0.026 0.044
F: Observational study 5 -0.028 (-0.031, -0.025) 0.009 0.009

Sample size: 100
A: Target trial -0.000 (-0.003, 0.003) 0.009 0.009
B: Observational study 1 0.484 (0.481, 0.488) 0.016 0.251
C: Observational study 2 0.117 (0.110, 0.123) 0.060 0.073
D: Observational study 3 0.320 (0.315, 0.324) 0.026 0.129
E: Observational study 4 -0.004 (-0.014, 0.007) 0.154 0.154
F: Observational study 5 0.091 (0.084, 0.099) 0.072 0.080

... in study 5 (F), covariates were measured with an exposure level switch and at a
six-monthly basis in the absence of exposure level switching. ‡95% CI refers to the
pointwise 95% confidence interval µ̂ ± 1.96

√
σ̂2/5000, where µ̂ denotes the mean

estimated risk difference and σ̂2 its empirical variance, i.e., the sample variance
of the sample of 5000 estimates
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Figure S7.2: Mean estimated two- and five-year event risk differences across
5000 samples of size 150 000. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Figure S7.3: Mean estimated event-free survival probabilities across 5000
samples of size 10 000 based on target trial (panel A) and observational study
(B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).
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Figure S7.4: Mean estimated two- and five-year event risk differences across
5000 samples of size 10 000. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Figure S7.5: Mean estimated event-free survival probabilities across 5000
samples of size 1000 based on target trial (panel A) and observational study
(B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).

145



Dynamic covariate measurement

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60
−40

−20

0

20

40

A: Fixed−interval measurement

●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60
−40

−20

0

20

40

B: Exposure−dependent measurement

R
is

k 
di

ffe
re

nc
e 

(%
)

Interval length (months)

● ●2−year risk difference 5−year risk difference

Figure S7.6: Mean estimated two- and five-year event risk differences across
5000 samples of size 1000. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Figure S7.7: Mean estimated event-free survival probabilities across 5000
samples of size 100 based on target trial (panel A) and observational study
(B through F) with varying covariate measurement designs: no covariate
measurement (B), continuous to monthly covariate measurement (C), six-monthly
covariate measurement (D), covariate measurement only with covariate level
switching (E), and with exposure switching and six-monthly in periods without
switching (F).
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Figure S7.8: Mean estimated two- and five-year event risk differences across
5000 samples of size 100. Estimates derive from observational studies with
varying covariate measurement designs. Panel A gives the estimates for fixed-
interval measurement; panel B gives the estimates for covariate measurement with
exposure switching and with fixed-length intervals in periods without switching.
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Supplementary R code

# R code to supplement ’Bias of time - varying exposure effects due to
# time - varying covariate measurement strategies ’
# Compiled by Bas B.L. Penning de Vries (last updated : 7 Dec 2020)

# ===================================================================
# Preliminaries
# ===================================================================

# settings
K <- 60L # maximum number of months of follow -up
n <- 1.5 e5L # sample size

# useful functions :
expit <- function (x) 1/(1+ exp(-x))
locf <- function (x){

# Last Observation Carried Forward
isNA <- is.na(x)
if(isNA [1L]) stop(’the first element is NA.’)
y <- rep(x[!isNA], tabulate ( cumsum (!isNA)))
return (y)

}
qFirst <- function (x,last= FALSE ){

# Tests whether elements in x are the first occurrence of the
# corresponding values
if(last) x <- rev(x)
n <- length (x)
w <- seq_len(n)
o <- order (x)
x <- x[o]
y <- c(TRUE ,x[-1L]!=x[-n])
z <- y[ match (w,o)]
if(last) z <- rev(z)
return (z)

}

# ===================================================================
# Data generating mechanism
# ===================================================================

drawSample <- function (n, trial = FALSE ){
sq <- seq (0,K -1e -6)
A <- L <- matrix (nrow=n,ncol= length (sq))
colnames (A) <- paste0 ("A",sq)
colnames (L) <- paste0 ("L",sq)
U <- runif (n)
lagL <- lagA <- rep (0L,n)
S <- rep (0,n)
for(j in seq_ along (sq)){

Surv <- S >=(j -1L)
Lk <- ifelse (Surv , runif (n)<expit ( -.5+.25*(j==1L)+6*(U -.5)+

.5*(lagA -.5) +1*(lagL -.5)),NA)
g <- if( trial ) {if(j==1L) rep (.5 ,n) else lagA} else
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expit (4*(j==1L)+10*(lagA -.5) +4*(Lk -.5))
Ak <- ifelse (Surv , runif (n)<g,NA)
L[,j] <- Lk
A[,j] <- Ak
eta <- 7*(U -.5)
s <- suppressWarnings (rexp(n,rate=exp ( -6+ eta)))
s[is.na(s)] <- 0
S <- S+Surv*pmin(s ,1L)
Surv <- ifelse (Surv ,s >1L, FALSE )
lagL <- Lk; lagA <- Ak

}
status <- S<K
S[! status ] <- K
return (data. frame (L*1L,A*1L,S=S, status = status ))

}
coarsen <- function (data , design ="I",after =6L){

# assumes ’data ’ to be in long format
out <- switch (design ,

I={ # exposure switch
lagA <- ifelse ( qFirst (data$unit) ,0L,c(0L,data$A[-nrow(data)]))
M <- (data$ start !=0L)&data$A== lagA&data$start >=0L
data$L[M] <- NA
return (data)

},
II ={
# set to missing if not multiple of ’after ’ months from baseline

M <- data$ start %% after !=0L&data$start >=0L
data$L[M] <- NA
return (data)

},
III ={
# set to missing if no switch of exposure AND not multiple of
# ’after ’ months from since last exposure switch

lagA <- ifelse ( qFirst (data$unit) ,0L,c(0L,data$A[-nrow(data)]))
M <- (data$ start !=0L)&data$A== lagA&data$start >=0L
cs <- cumsum (M)
wh <- cumsum (!M)
qf <- qFirst (wh)
monthsSinceLastSwitch <- cs -cs[qf ][ match (wh , unique (wh))]
M[! monthsSinceLastSwitch %% after ] <- FALSE
data$L[M] <- NA
return (data)

}
)

}

# ===================================================================
# Data pre - processing functions
# ===================================================================

longFormat <- function (data){
n <- nrow(data)
w_L <- grep("ˆL -[:0 -9:]+$",colnames (data))
wL <- grep("ˆL[:0 -9:]+$",colnames (data))
wA <- grep("ˆA[:0 -9:]+$",colnames (data))
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unit <- matrix (seq_len(n),nrow=n,ncol= length (wA),
byrow = FALSE )[!is.na(data[,wA ])]

column <- matrix (seq_ along (wA),nrow=n,ncol= length (wA),
byrow =TRUE)[!is.na(data[,wA ])]

w <- cbind (unit , column )[ order (unit) ,]
out <- data. frame (unit=w[,1L], start =w[,2L]-1L)
out$stop <- out$ start +1L
out$stop[ qFirst (out$unit ,TRUE)] <- data$S
out$L <- data[,wL ][w]
out$A <- data[,wA ][w]
out$ event <- FALSE
out$ event [ qFirst (out$unit ,TRUE)] <- data$ status
rownames (out) <- NULL
return (out)

}
lagVariables <- function (data ,m=1L){

lagL <- matrix (nrow=nrow(data),ncol=m)
colnames (lagL) <- paste0 ("lag",seq_len(m),"L")
lagA <- matrix (nrow=nrow(data),ncol=m)
colnames (lagA) <- paste0 ("lag",seq_len(m),"A")
wh <- which ( colnames (data)%in%c( colnames (lagL),colnames (lagA)))
if(any(wh)) data <- data[,-wh ,drop= FALSE ]
record <- data$start -min(data$ start )+1L
for(i in seq_len(m)){

lagL[,i] <- ifelse (record >i,c(rep (0L,i),
data$L[-( nrow(data) -0:(i -1))]) ,0L)

lagA[,i] <- ifelse (record >i,c(rep (0L,i),
data$A[-( nrow(data) -0:(i -1))]) ,0L)

}
data <- cbind (data ,lagL ,lagA)
return (data)

}
LOCF <- function (data){

data$L <- locf(data$L)
return (data)

}
qAdhering <- function (data){

switched <-
ifelse ( qFirst (data$unit),TRUE ,c(TRUE ,diff(data$A)!=0L))*1L

cs <- cumsum ( switched )
mt <- with(data , match (unit , unique (unit)))
return (cs == cs[ qFirst (data$unit)][ mt ])

}

# ===================================================================
# Estimators
# ===================================================================

getPS <- function (data){
fit <- glm(A˜I(! start )+ lag1A +L,data=data[data$start >=0L,,

drop= FALSE ], family = binomial )
return ( unname ( predict (fit , newdata =data ,type=" response ")))

}
estimateIPW <- function (data ,ps){

data$ps <- ps
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data <- data[data$start >=0L ,]
data <- data[ qAdhering (data) ,]
lp <- log( ifelse (data$A >0L,data$ps ,1- data$ps))
cs <- cumsum (lp)
ql <- qFirst (data$unit ,TRUE)
data$W <- 1/exp(cs -c(0,cs[ql][- sum(ql)])[ match (data$unit ,

unique (data$unit))])
EW0 <- with(data[data$A==0L,], tapply (W,start ,mean))
EW1 <- with(data[data$A==1L,], tapply (W,start ,mean))
mt0 <- with(data , match (start , unique ( start )))
mt1 <- with(data , match (start , unique ( start )))
data$sW <- data$W/ ifelse (data$A >0L,EW1[mt1],EW0[mt0 ])
fit <- with(data , survival :: survfit ( survival :: Surv(start ,stop ,

event )˜A, weights =sW , timefix = FALSE ))
smmry <- survival ::: summary . survfit (fit , times =0:K)
est <- split ( smmry $surv , smmry $ strata )
names (est) <- c(" surv0 "," surv1 ")
est$ surv0 <- c(est$surv0 ,rep(rev(est$ surv0 )[1L],

K+1L- length (est$ surv0 )))
est$ surv1 <- c(est$surv1 ,rep(rev(est$ surv1 )[1L],

K+1L- length (est$ surv1 )))
return (est)

}
crudePP <- function (data){

data <- data[data$start >=0L ,]
data <- data[ qAdhering (data),,drop= FALSE ]
ql <- qFirst (data$unit ,TRUE)
time <- data$stop[ql]
status <- data$ event [ql]
group <- data$A[ql]
fit <- survival :: survfit ( survival :: Surv(time , status )˜ group )
smmry <- survival ::: summary . survfit (fit , times =0:K)
est <- split ( smmry $surv , smmry $ strata )
names (est) <- c(" surv0 "," surv1 ")
est$ surv0 <- c(est$surv0 ,rep(rev(est$ surv0 )[1L],

K+1L- length (est$ surv0 )))
est$ surv1 <- c(est$surv1 ,rep(rev(est$ surv1 )[1L],

K+1L- length (est$ surv1 )))
return (est)

}

# ===================================================================
# Data generation & estimation
# ===================================================================

trial <- longFormat ( drawSample (n, trial =TRUE))
wide <- drawSample (n)
long <- lagVariables ( longFormat (wide))
longI <- lagVariables (LOCF( coarsen (long ,"I")))
longII <- lagVariables (LOCF( coarsen (long ,"II")))
longIII <- lagVariables (LOCF( coarsen (long ,"III")))

estA <- crudePP ( trial )
estB <- crudePP (long)
estC <- estimateIPW (long , getPS (long))
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estD <- estimateIPW (longII , getPS ( longII ))
estE <- estimateIPW (longI , getPS ( longI ))
estF <- estimateIPW (longIII , getPS ( longIII ))

sq <- c(1L ,2L,seq (3L ,60L ,3))
estVarD <- estVarF <- list ()
for(i in seq_ along (sq)){

cat("\r",i,"/",length (sq),sep=""); flush . console ()
longIIi <- lagVariables (LOCF( coarsen (long ,"II",after =sq[i])))
estVarD [[i]] <- estimateIPW (longIIi , getPS ( longIIi ))
longIIIi <- lagVariables (LOCF( coarsen (long ,"III",after =sq[i])))
estVarF [[i]] <- estimateIPW (longIIIi , getPS ( longIIIi ))

}
names ( estVarD ) <- names ( estVarF ) <- sq
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Confounding and exposure-outcome misclassification

Abstract

Joint misclassification of exposure and outcome variables can lead to considerable
bias in epidemiological studies of causal exposure-outcome effects. In this paper,
we present a new maximum likelihood based estimator for marginal causal
effects that simultaneously adjusts for confounding and several forms of joint
misclassification of the exposure and outcome variables. The proposed method
relies on validation data for the construction of weights that account for both
sources of bias. The weighting estimator, which is an extension of the outcome
misclassification weighting estimator proposed by Gravel and Platt (Statistics
in Medicine, 2018), is applied to reinfarction data. Simulation studies were
carried out to study its finite sample properties and compare it with methods
that do not account for confounding or misclassification. The new estimator
showed favourable large sample properties in the simulations. Further research is
needed to study the sensitivity of the proposed method and that of alternatives to
violations of their assumptions. The implementation of the estimator is facilitated
by a new R function (ipwm) in an existing R package (mecor).
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8.1 Introduction

In epidemiological research on causal associations between a particular exposure
and a certain outcome, erroneous information on either or both of these variables
poses a serious methodological obstacle in making valid inferences. In particular,
joint misclassification of exposure and outcome can lead to considerable bias of
standard causal effect estimators, with direction and magnitude depending on
various factors, including the misclassification mechanism and the direction and
magnitude of the true effect (Kristensen, 1992; Brenner et al., 1993; Vogel et al.,
2005; Jurek et al., 2008; VanderWeele and Hernán, 2012; Brooks et al., 2018).

Exposure and outcome misclassification is typically categorised according to
two separate properties: whether or not the misclassification is differential and
whether or not it is dependent relative to some covariate vector L containing
patient characteristics (Kristensen, 1992; VanderWeele and Hernán, 2012). Joint
misclassification of exposure and outcome is said to be nondifferential if (1)
the sensitivity and specificity of exposure classification are constant across all
categories of the (true) outcome given L and (2) the sensitivity and specificity
of outcome classification are constant across all categories of the (true) exposure
given L; otherwise it is differential. Misclassification is said to be independent
if the joint probability of any exposure and outcome classification given any
true exposure and outcome categories and L can be factored into the product of
the corresponding probabilities for exposure and outcome separately; otherwise,
it is dependent. In Dawid’s notation (1979), that is, if true exposure level A
and true outcome Y are (potentially mis)classified as B and Z, respectively,
misclassification is nondifferential if and only if B ⊥⊥ Y |A, L and Z ⊥⊥ A|Y, L and
independent if and only if Z ⊥⊥ B|Y, A, L.

Epidemiological research hampered by joint misclassification of some type is
likely voluminous (Brooks et al., 2018). Examples of studies affected by exposure
and outcome misclassification can be found, for example, in the literature on
the causal effects of drug use, which is largely based on routinely collected data,
where exposures are typically operationalised on the basis of prescription records
and where outcomes are often self-reported (Marcum et al., 2013; Culver et al.,
2012; Leong et al., 2013; Ni et al., 2017). In applied epidemiological research,
misclassification or some of its potential consequences are often ignored (Jurek
et al., 2006; Brakenhoff et al., 2018). The assertion often made in the discussion
of study results that observed measures of association are biased toward the
null under nondifferentiality, for example, is not generally true unless additional
conditions are presupposed (Brenner et al., 1993; Brooks et al., 2018).

Methods to adjust for misclassification rely on additional information that
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can be used to estimate or correct for bias. One potential source of information
is validation data obtained through supposedly infallible measurement. Recently,
Gravel and Platt (2018) proposed an inverse probability weighting (IPW) method
to simultaneously address confounding and outcome misclassification by means of
internal validation data. Other methods likewise suppose that either the exposure
or the outcome is subject to misclassification (Babanezhad et al., 2010; Braun
et al., 2017; Gravel and Platt, 2018; Shu and Yi, 2019). In what follows, we
propose an extension of Gravel and Platt’s method to allow for confounding
adjustment and joint exposure and outcome misclassification. This flexible
estimator allows for the misclassifications to be dependent, differential or both. In
Section 8.2, inverse probability weights for confounding and joint misclassification
are introduced through a hypothetical study based on the illustrative example
of Gravel and Platt. Section 8.3 details methods for estimation of the various
components of the proposed weights based on validation data. In Section 8.4, we
describe a series of Monte Carlo simulations that were used to study properties
of the proposed method in finite samples. We conclude with a summary and
discussion of our findings in context of the existing literature.

8.2 Data distribution for illustration and development of
weighting method

We first consider the data and setting described by Gravel and Platt and suppose
that Table 8.1 represents a simple random (i.i.d.) sample from (or that its cell
counts are proportional to the respective densities in) the population of interest.
This illustration is based on a cohort study on the association between post-
myocardial infarction statin use (A) and the 1-year risk of reinfarction (Y ). In
what follows, we will refer to this example as the ‘reinfarction example’.

Throughout we take the counterfactual framework for causal inference, formal
accounts of which are given for example by Neyman, Rubin, Holland, and Pearl
(Neyman et al., 1935; Rubin, 1974; Holland, 1986, 1988; Pearl, 2009). The
interest, we suppose, lies in estimating g(E[Y (0)],E[Y (1)]) for some function
g, where Y (0) and Y (1) denote the counterfactual outcomes for hypothetical
interventions setting A to 0 and 1, respectively. Common choices of g define
g(p0, p1) = p1 − p0 (risk difference), g(p0, p1) = p1/p0 (risk ratio) or g(p0, p1) =
[p1/(1−p1)]/[p0/(1−p0)] (odds ratio). For our numerical example and simulation
studies, we concentrate on the causal marginal odds ratio (OR) in particular, with

OR = g(E[Y (0)],E[Y (1)]) = E[Y (1)]/(1 − E[Y (1)])
E[Y (0)]/(1 − E[Y (0)]) , (8.1)
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but the results naturally extend to other effect measures.

8.2.1 No misclassification
Under conditional exchangeability given L (i.e., (Y (0), Y (1)) ⊥⊥ A|L), consistency
(Y (a) = Y if A = a) and positivity (Pr(A = a|L = l) > 0 for a = 0, 1 and
all l in the support of L), the mean counterfactuals E[Y (0)] and E[Y (1)] can
be expressed in terms of ‘observables’ (meaning, here, variables that would be
observed in the absence of measurement error) as follows:

E[Y (0)] = E[WY |A = 0] and E[Y (1)] = E[WY |A = 1],

where W denotes the inverse probability of the allocated exposure level A given
L multiplied by the prevalence of the allocated exposure level A (i.e., W =
Pr(A)/ Pr(A|L); Supplementary Appendix S8.1). We therefore have

g(E[Y (0)],E[Y (1)]) = g(E[WY |A = 0],E[WY |A = 1]). (8.2)

Replacing components of the right-hand side of (8.2) with sample analogues,
we obtain the following estimator for the setting where L is binary:

ÔR := g(Ê[ŴY |A = 0], Ê[ŴY |A = 1])

= Ê[ŴY |A = 1]/(1 − Ê[ŴY |A = 1])
Ê[ŴY |A = 0]/(1 − Ê[ŴY |A = 0])

= (Ŵ10n110 + Ŵ11n111)/(n110 + n111 + n010 + n011 − Ŵ10n110 − Ŵ11n111)
(Ŵ00n100 + Ŵ01n101)/(n100 + n101 + n000 + n001 − Ŵ00n100 − Ŵ01n101)

,

(8.3)

where nyal denotes the number of subjects with Y = y, A = a, L = l and where
Ŵal is the product of the proportion of subjects in the sample with A = a and

Table 8.1: Cross-classification of the reinfarction data for 33,007 individuals as
given by Gravel and Platt (2018).

L = 0 L = 1
A = 0 A = 1 A = 0 A = 1

Y = 0 11602 13116 1302 5363
Y = 1 890 589 49 96
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the inverse of the proportion of subjects with A = a among those with L = l.
For the data in Table 8.1, we obtain ÔR ≈ 0.573. The corresponding crude odds
ratio (i.e., with Ŵ = 1) is 0.509.

8.2.2 Joint misclassification
Suppose that rather than observing Y and A we observe Z and B, the
misclassified versions of Y and A, respectively. The relation between Z and
B on the one hand and Y , A and L on the other can be expressed as follows:

Pr(Z = z, B = b|Y = y, A = a, L = l)
= (πbyal)z(1 − πbyal)1−z(λyal)b(1 − λyal)1−b

for z, b ∈ {0, 1} and all possible realisations y, a, l of Y, A, L, and where πbyal =
Pr(Z = 1|B = b, Y = y, A = a, L = l) and λyal = Pr(B = 1|Y = y, A = a, L = l).

To simulate (dependent differential) misclassification in the reinfarction
dataset, we use the true positive and false positive rates given in Table 8.2.
The expected cell counts for these rates are given in Table 8.3.

We redefine the weights in (8.2) as a function of B and L (as per
Supplementary Appendix S8.1) such that

W = p(B)εBL∑
y

∑
a πByaL(λyaL)B(1 − λyaL)1−B(εaL)y(1 − εaL)1−y(δL)a(1 − δL)1−a

,

(8.4)

where p(B) is the prevalence of level B of the potentially misclassified version
of the exposure variable and where εal = Pr(Y = 1|A = a, L = l) and δl =

Table 8.2: True and false positive rates for reinfarction example. For b, y, a, l ∈
{0, 1}, λyal = Pr(B = 1|Y = y, A = a, L = l) and πbyal = Pr(Z = 1|B = b, Y =
y, A = a, L = l).

π0000 = 0.050 π0001 = 0.020 λ000 = 0.010
π1000 = 0.060 π1001 = 0.108 λ100 = 0.181
π0100 = 0.930 π0101 = 0.806 λ010 = 0.880
π1100 = 0.938 π1101 = 0.692 λ110 = 0.910
π0010 = 0.030 π0011 = 0.109 λ001 = 0.100
π1010 = 0.060 π1011 = 0.050 λ101 = 0.265
π0110 = 0.906 π0111 = 0.765 λ011 = 0.930
π1110 = 0.950 π1111 = 0.861 λ111 = 0.823
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Pr(A = 1|L = l) for all possible realisations a and l of A and L, respectively. In
Supplementary Appendix S8.1, it is shown that

E[Y (0)] = E[WZ|B = 0] and E[Y (1)] = E[WZ|B = 1], (8.5)

which suggests the plug-in estimator

ÔR := g(Ê[ŴZ|B = 0], Ê[ŴZ|B = 1])

= Ê[ŴZ|B = 1]/(1 − Ê[ŴZ|B = 1])
Ê[ŴZ|B = 0]/(1 − Ê[ŴZ|B = 0])

, (8.6)

where Ê denotes the sample mean operator and Ŵ the sample analogue (i.e.,
consistent estimator) of W in (8.4). For other effect measures (i.e., other choices
of g), the same plug-in strategy can be implemented.

In the absence of exposure misclassification, (8.4) reduces to

W =
(

(δL)A(1 − δL)1−A

p(A)

[
πA0AL

1 − εAL

εAL
+ πA1AL

])−1

. (8.7)

The first term within the round brackets corrects for confounding and represents
the propensity of the received exposure level A divided by prevalence of
exposure level A. The term within square brackets is a factor that corrects
for misclassification in the outcome variable. This correction factor is similar to

Table 8.3: Expected cell counts (rounded to integers) for reinfarction example
after misclassification was introduced. Because of rounding, the sum of all cell
entries is 33,006 rather than 33,007, the size of the reinfarction dataset.

L = 0 L = 1
A = 0 A = 1 A = 0 A = 1

Y = 0, A = 0, L = 0 10912 109 574 7
Y = 1, A = 0, L = 0 51 10 678 151
Y = 0, A = 1, L = 0 1527 10850 47 693
Y = 1, A = 1, L = 0 5 27 48 509
Y = 0, A = 0, L = 1 1148 116 23 14
Y = 1, A = 0, L = 1 7 4 29 9
Y = 0, A = 1, L = 1 334 4738 41 249
Y = 1, A = 1, L = 1 4 11 13 68
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that proposed by Gravel and Platt (2018). The only difference is that where in
(8.7) it does not depend on the fallible measurement Z of Y , Gravel and Platt
define different weights for subjects with Z = 0. Note, however, that the choice
of weights for subjects with Z = 0 does not affect the population quantity in (8.5)
or the estimator defined by (8.6), because the weights only appear in products
with Z, which equal zero if Z = 0.

As for the reinfarction example, the odds ratio estimate for the exposure-
outcome effect based on inverse probability weighting that assumes absence
of exposure or outcome misclassification is 1.120, while the corresponding
misclassification naive crude odds ratio is 1.031. Estimation of the population
weights W from observables using validation data is discussed in the next
section. As shown below, weighting using the proposed weights that account
for confounding and outcome and exposure misclassification results in an odds
ratio of OR = ÔR ≈ 0.573. Inference based on (8.7) rather than (8.4), i.e., using
Gravel and Platt’s method and ignoring misclassification in the exposure but
correcting for outcome misclassification, yields an odds ratio estimate of 0.934.

8.2.3 Parameterisation based on positive and negative predictive values

In the foregoing discussion, the proposed weights were expressed in terms of
sensitivity and specificity parameters. The sensitivity and specificity of Z with
respect to Y , given (B, A, L), are πB1AL and 1 − πB0AL, respectively. Similarly,
λY 1L and 1−λY 0L reflect the sensitivity and specificity, respectively, with respect
to A, conditional on Y and L.

As discussed below, it may be more convenient to choose a parameterisation
that is based on (positive and negative) predictive values. Define δ∗

l = Pr(B =
1|L = l), ε∗

bl = Pr(Z = 1|B = b, L = l), λ∗
zbl = Pr(A = 1|Z = z, B = b, L = l)

and π∗
azbl = Pr(Y = 1|A = a, Z = z, B = b, L = l). The weights in (8.4) can be

rewritten as

W =
∑

y

∑
a π∗

ByaL(λ∗
yaL)B(1 − λ∗

yaL)1−B(ε∗
aL)y(1 − ε∗

aL)1−y(δ∗
L)a(1 − δ∗

L)1−a∑
y

∑
a(λ∗

yaL)B(1 − λ∗
yaL)1−B(ε∗

aL)y(1 − ε∗
aL)1−y(δ∗

L)a(1 − δ∗
L)1−a

× p(B)
ε∗

BL(δ∗
L)B(1 − δ∗

L)1−B
. (8.8)

In the absence of exposure misclassification, these weights simplify to

W = p(A)
(δL)A(1 − δL)1−A

εAL

ε∗
AL

.
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8.3 Estimation of weights based on validation data

Estimation of the proposed weights can be done using a number of approaches
and we will here consider a maximum likelihood approach that assumes the
availability of internal validation data, i.e., that some study participants have
their observed exposure or outcome measured by an ‘infallible’ or ‘gold standard’
(100% accurate) classifier, and that all participants have the misclassified
exposure and outcome variables measured.

8.3.1 Validation subset inclusion mechanism

Let RY be the indicator variable that takes the value of 1 if the outcome is
observed (i.e., measured by an infallible classifier) and 0 otherwise. Similarly,
define RA to be the indicator variable that takes the value of 1 if the exposure
variable is observed and 0 otherwise. RY and RA reflect which subjects have
validation data available on Y and A, respectively. The subset of subjects with
validation data on Y need not fully overlap with the subset with validation data
on A.

The validation subsets can be approached from the missing data framework
of Rubin (1976) Provided that Z, B, L are free of missing values, Rubin’s missing
at random (MAR) condition is met if the vector (RY , RA) is conditionally
independent of (Y, A) given (Z, B, L).

8.3.2 Full likelihood approach based on parameterisation in terms of
sensitivities and specificities

Simultaneous estimation of the whole vector of δ, ε, λ and π parameters can be
done via maximum likelihood estimation as follows. Assuming i.i.d. observations
(Zi, Bi, Yi, Ai, Li) and ignorable missingness in the sense of Rubin (1976)
(MAR and distinctness), for valid likelihood-based inference it is appropriate
to maximise the following log-likelihood over the parameter space of θ, the vector
of δ, ε, λ and π parameters:

ℓ(θ) =
∑

i:RY i=RAi=1
log f(θ; Zi, Bi, Yi, Ai, Li)

+
∑

i:RY i=1∧RAi=0
log

∑
Ai

f(θ; Zi, Bi, Yi, Ai, Li)

+
∑

i:RY i=0∧RAi=1
log

∑
Yi

f(θ; Zi, Bi, Yi, Ai, Li)
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+
∑

i:RY i=RAi=0
log

∑
Yi

∑
Ai

f(θ; Zi, Bi, Yi, Ai, Li),

where

f(θ; Zi, Bi, Yi, Ai, Li)
= (πBiYiAiLi)Zi(1 − πBiYiAiLi)1−Zi(λYiAiLi)Bi(1 − λYiAiLi)1−Bi

× (εAiLi)Yi(1 − εAiLi)1−Yi(δLi)Ai(1 − δLi)1−Ai .

Evaluating this log-likelihood involves marginalising over unobserved quantities
in the last three terms of ℓ(θ). The log-likelihood equations may become
considerably more tractable if we choose a parameterisation of the likelihood
that is based on predictive values rather than sensitivities and specificities.

8.3.3 Full likelihood approach based on parameterisation in terms of
predictive values

Inference may alternatively be based on a log-likelihood that is parameterised in
terms of the vector θ∗ of the δ∗, ε∗, λ∗ and π∗ parameters, i.e.,

ℓ∗(θ∗) =
∑

i:RY i=RAi=1
log h(θ∗; Zi, Bi, Yi, Ai, Li)

+
∑

i:RY i=1∧RAi=0
log

∑
Ai

h(θ∗; Zi, Bi, Yi, Ai, Li)

+
∑

i:RY i=0∧RAi=1
log

∑
Yi

h(θ∗; Zi, Bi, Yi, Ai, Li)

+
∑

i:RY i=RAi=0
log

∑
Yi

∑
Ai

h(θ∗; Zi, Bi, Yi, Ai, Li),

where

h(θ∗; Zi, Bi, Yi, Ai, Li)
= (π∗

AiZiBiLi
)Yi(1 − π∗

AiZiBiLi
)1−Yi(λ∗

ZiBiLi
)Ai(1 − λ∗

ZiBiLi
)1−Ai

× (ε∗
BiLi

)Zi(1 − ε∗
BiLi

)1−Zi(δ∗
Li

)Bi(1 − δ∗
Li

)1−Bi .

If validation data is available on Y if and only if it is available on A, the complete
data log-likelihood ignoring the missing data mechanism can be conveniently
expressed as follows:

ℓ∗(θ∗) = ℓ∗
1(θ∗) + ℓ∗

2(θ∗) + ℓ∗
3(θ∗) + ℓ∗

4(θ∗), (8.9)
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with θ∗ denoting the vector of δ∗, ε∗, λ∗ and π∗ parameters and where

ℓ∗
1(θ∗) =

∑
i:RY i=RAi=1

Yi log(π∗
AiZiBiLi

) + (1 − Yi) log(1 − π∗
AiZiBiLi

),

ℓ∗
2(θ∗) =

∑
i:RY i=RAi=1

Ai log(λ∗
ZiBiLi

) + (1 − Ai) log(1 − λ∗
ZiBiLi

),

ℓ∗
3(θ∗) =

∑
i

Zi log(ε∗
BiLi

) + (1 − Zi) log(1 − ε∗
BiLi

),

ℓ∗
4(θ∗) =

∑
i

Bi log(δ∗
Li

) + (1 − Bi) log(1 − δ∗
Li

).

Now, assuming distinct parameter spaces for the vectors of π∗, λ∗, ε∗, and δ∗

parameters, the parameter values that maximise ℓ∗(θ∗) can be found by separately
maximising ℓ∗

1(θ∗) and ℓ∗
2(θ∗) in the validation subset with respect to the π∗ and λ∗

parameters, respectively, and ℓ∗
3(θ∗) and ℓ∗

4(θ∗) in the entire dataset with respect
to ε∗ and δ∗. Following Gravel and Platt (2018) and Tang et al. (2013), the sum of
the first and last two terms are therefore suitably labelled the internal validation
and main study log-likelihood, respectively. With this parameterisation, finding
the maximum likelihood estimates is readily achieved by taking advantage of
standard statistical software.

8.3.4 Equivalence of likelihood approaches based on different
parameterisations

Without restrictions imposed on

θl := (π000l, π100l, π010l, π110l, π001l, π101l, π011l, π111l, λ00l, λ10l, λ01l, λ11l,

ε0l, ε1l, δl) and
θ∗

l := (π∗
000l, π∗

100l, π∗
010l, π∗

110l, π∗
001l, π∗

101l, π∗
011l, π∗

111l, λ∗
00l, λ∗

10l, λ∗
01l, λ∗

11l,

ε∗
0l, ε∗

1l, δ∗
l ),

other than that θl, θ∗
l ∈ (0, 1)15, it can be shown that the maximum

likelihood estimator based on the internal validation design is invariant to
its parameterisation (sensitivities/specificities versus positive and negative
predictive values). This is because there exists a function mapping every
θl ∈ (0, 1)15 to a unique θ∗

l ∈ (0, 1)15 and vice versa. Maximising ℓ(θ) with
respect to θ is then equivalent to maximising ℓ(σ(θ∗)) (= ℓ∗(θ∗)) with respect to
θ∗ for some bijection σ such that θ = σ(θ∗); that is,

arg max
θ

ℓ(θ) = σ

(
arg max

θ∗
ℓ(σ(θ∗))

)
.
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If more restrictions are imposed on θ or θ∗, e.g., if we assume non-saturated
logistic models for the components of θ and θ∗, this equivalence no longer holds
and the resulting weight estimates may differ depending on the parameterisation.

8.3.5 Application
For the re-infarction data example, we assume validation data are available
according to a MAR mechanism characterised by

Pr(RY = 1|RA = s, Z = z, B = b, Y = y, A = a, L = l) = s,

Pr(RA = 1|Z = z, B = b, Y = y, A = a, L = l) = 0.25 + 0.10b.

This mechanism assigns validation data to an individual on either both Y and
A (30% of all individuals) or neither depending on their realisation of B, the
misclassified version of the exposure variable A (Supplementary Table S8.1).
Supplementary Tables S8.2 and S8.3 give the likelihood contributions for the
parameterisation based on predictive values and the closed form maximum
likelihood expressions, respectively. Maximum likelihood estimates can also
be found by fitting to the data the saturated logistic regression models of B
and Z on L and (B, L), respectively, and to the validation subset the fully
saturated logistic regression models of A and Y on (Z, B, L) and (A, Z, B, L),
respectively. Estimated weights are then obtained by plugging in the maximum
likelihood estimates into (8.8). As in the complete data setting where we
assumed the weights to be known, evaluating (8.6) then yields an odds ratio
of ÔR = OR ≈ 0.573.

8.4 Simulations

We performed a series of Monte Carlo simulation experiments to illustrate the
implementation of the proposed method, to study its finite sample properties and
to compare the method to estimators that ignore the presence of confounding or
joint exposure and outcome misclassification. All simulations were conducted
using R-3.5.0 ((R Core Team, 2018)) on x86 64-pc-linux-gnu platforms of the
high performance computer cluster of Leiden University Medical Center.

8.4.1 Methods
For all 54 simulation experiments, we generated nsim = 1000 samples of size
n according to the data generating mechanisms depicted in the directed acyclic
graphs of Figure 8.1. This multi-step data generating process included generating
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values on measurement error-free variables, introducing misclassification and
allocating individuals validation data. We applied various estimators to each
of the simulation samples to yield, for each scenario, an empirical distribution of
each point estimator and corresponding precision estimators. These distributions
were then summarised into various performance metrics. These metrics include
the empirical bias of the estimator on the log-scale (i.e., the mean estimated log-
OR minus the target log-OR across the nsim samples), the empirical standard
error (SE) of the estimator on the log-scale (i.e., the square root of the mean
squared deviation of the estimated log-OR from the mean log-OR), the empirical
mean squared error (MSE) (i.e., the sum of the squared SE and the squared bias),
the square root of the mean estimated variance (SSE, sample standard error)
and the empirical coverage probability (CP) (i.e., the fraction of simulation runs
per scenario where the 95% confidence interval (95%CI) contained the target
quantity).

1 Distribution of measurement error-free variables
Following Gravel and Platt (2018), we consider a setting based on that of
“Scenario A” in the work of Setoguchi et al. (2008) with slight modifications to
the propensity score and outcome models. We consider a fully observed covariate
vector L = (L0, ..., L10) whose distribution coincides with that of h(V ), where
V = (V1, ..., V10) has the multivariate normal distribution with zero means, unit
variances and correlations equal to zero except for the correlations between W1
and V5, V2 and V6, V3 and V8, and V4 and V9, which were set to 0.2, 0.9, 0.2, and
0.9, respectively. Function h was defined such that

h(V ) = (I(V1 > 0), V2, I(V3 > 0), V4, I(V5 > 0), I(V6 > 0), V7, I(V8 > 0),
I(V9 > 0), V10).

Thus, sampling from the distribution of L is equivalent to sampling from
the multivariate normal distribution with the given parameter values and
dichotomising the 1st, 3rd, 5th, 6th, 8th and 9th elements.

Next, let U1 and U2 be binary variables distributed according to the following
logistic models:

logit Pr(U1 = 1|L) = η0, (8.10)
logit Pr(U2 = 1|L, U1) = µ0. (8.11)

The distribution of the binary exposure variable A was defined according to the
model

logit Pr(A = 1|L, U1, U2) = α0 +∑10
j=1 αjLj + α11U1. (8.12)
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Letting U3 be a scalar random variable that is independent of
(A, L1, ..., L10, U1, U2) and uniformly distributed over the interval [0, 1], we
defined the counterfactual outcome Y (a), under the intervention setting A to
a, as

Y (a) = I
(
U3 < expit

{
β0 + γa +∑10

j=1 βjLj + β11U2
})

. (8.13)

With Y := Y (A), the above implies consistency, conditional exchangeability given
L and structural positivity.

2 Misclassification mechanism
For scenarios with joint misclassification, we defined B = U1 and Z = U2, so that
the predictive values take a standard logistic form:

logit Pr(Y = 1|A, B, L, Z) = β0 + γA +∑10
j=1 βjLj + β11Z (8.14)

logit Pr(A = 1|B, L, Z) = α0 +∑10
j=1 αjLj + α11B. (8.15)

For scenarios without exposure misclassification, we set α11 = 0 and defined
B = A and Z = U2, so that

logit Pr(Y = 1|A, B, L, Z) = β0 + γA +∑10
j=1 βjLj + β11Z, (8.16)

logit Pr(B = 1|L, Z) = α0 +∑10
j=1 αjLj . (8.17)

For simplicity, we removed any marginal dependence of Z on the covariates L
and U1 as well as any marginal dependence of U1 on L (cf. equations (8.10) and
(8.11)). Although models (8.10) through (8.15) take a standard logistic form, they
do not imply that the corresponding sensitivities and specificities can be written
in the same form. We chose the predictive values rather than the sensitivities
and specificities to take a standard logistic form so as to ensure correct model
specification in the estimation of the weights in the simulation experiments, in
which a likelihood approach based on predictive values was adopted (cf. (8.9)).

3 Missing data mechanism
For these simulations, we stipulated L, B and Z to be observed for all subjects.
We consider scenarios where the dataset can be partitioned into a subset with
validation data on all misclassified variables (denoted R = 1) and a dataset with
validation data on neither (R = 0). That is, we simulated data such that subjects
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have validation data on both A and Y or neither on A nor on Y . Values for the
response indicator R were generated according to the following (MAR) model:

logit Pr(R = 1|Z, B, Y, A, L) = logit Pr(R = 1|Z, B, L)
= ξ0 + ξ1Z + ξ2B + ξ3ZB.

4 Scenarios

We initially fixed most parameters of models (8.12) and (8.13) at the respective
values of “Scenario A” of Setoguchi et al. (2008): α1 = 0.8, α2 = −0.25, α3 = 0.6,
α4 = −0.4, α5 = −0.8, α6 = −0.5, α7 = 0.7, α8 = 0, α9 = 0, α10 = 0, β0 = −3.85,
β1 = 0.3, β2 = −0.36, β3 = −0.73, β4 = −0.2, β5 = 0, β6 = 0, β7 = 0, β8 = 0.71,
β9 = −0.19 and β10 = 0.26. Parameters η0 and α0 were fixed at zero and ξ1,
ξ2 and ξ3 at 2, 1 and −1, respectively. The remaining parameters and β0 were
allowed to vary across scenarios as per Table 8.4.

Scenarios differ by sample size n, the presence of outcome misclassification,
potentially misclassified outcome prevalence (via µ0), the associations between
the exposure and outcome on the one hand and the respective misclassified
versions on the other (via α11 and β11), outcome model intercept β0, the
conditional log-OR γ, or the size of the validation subset (via ξ0). Based on
an iterative Monte Carlo integration approach (Austin and Stafford, 2008), we
specified γ so as to keep the target marginal log odds ratio at −0.4.

L A Y

U1 U2

B Z R

L A Y

U1 U2

B Z R

Figure 8.1: Data structure for scenarios with misclassification on the outcome
only (left) or on both the exposure and outcome (right). Bullet arrowheads
represent deterministic relationships.
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5 Estimators

We considered five estimators of the OR for the marginal exposure-outcome
effect: a crude estimator (labeled Crude) that ignores both confounding and
misclassication of any variable, a misclassification naive estimator (labeled PS)
that addresses confounding through IPW, complete cases analysis (CCA) in which
IPW is applied only to the subset of subjects with validation data, the Gravel
and Platt estimator (GP) that ignores exposure misclassification, and the method
proposed in this article (labeled IPWM). Both GP and IPWM are implemented
using the R function mecor::ipwm (Nab, 2019; Nab et al., 2018), which in the
simulation settings considered uses iteratively reweighted least squares via the
stats::glm function for maximum likelihood estimation. GP coincides with
the approach of Gravel and Platt where it concerns point estimation, but they

Table 8.4: Simulation parameter values used in the Monte Carlo studies.
Scenarios indicated with ‘a’ have n = 10000, those with ‘b’ have n = 5000 and
those with ‘c’ have n = 1000.

Scenarios
Exposure
misclassification µ0 α11 β0 β11 γ ξ0

1a,1b,1c Absent −2 0 −3.85 2 −0.431 −1.5
2a,2b,2c Absent −3 0 −3.85 2 −0.417 −1.5
3a,3b,3c Absent −2 0 −3.85 4 −0.624 −1.5
4a,4b,4c Absent −2 0 −3.85 2 −0.431 −2.5
5a,5b,5c Present −2 2 −3.85 2 −0.431 −1.5
6a,6b,6c Present −3 2 −3.85 2 −0.417 −1.5
7a,7b,7c Present −2 4 −3.85 2 −0.431 −1.5
8a,8b,8c Present −2 2 −3.85 4 −0.624 −1.5
9a,9b,9c Present −2 2 −3.85 2 −0.431 −2.5
10a,10b,10c Absent −2 0 −2 2 −0.470 −1.5
11a,11b,11c Absent −3 0 −2 2 −0.445 −1.5
12a,12b,12c Absent −2 0 −2 4 −0.641 −1.5
13a,13b,13c Absent −2 0 −2 2 −0.470 −2.5
14a,14b,14c Present −2 2 −2 2 −0.470 −1.5
15a,15b,15c Present −3 2 −2 2 −0.445 −1.5
16a,16b,16c Present −2 4 −2 2 −0.470 −1.5
17a,17b,17c Present −2 2 −2 4 −0.641 −1.5
18a,18b,18c Present −2 2 −2 2 −0.470 −2.5
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differ in the construction of confidence intervals. Unlike Gravel and Platt (2018),
we used a non-parametric rather than a semi-parametric bootstrap procedure
for estimating standard errors and constructing confidence intervals. Semi-
parametrically generating response indicators would preferably require modelling
of (or making additional assumptions about) the missing data mechanism. In
particular, to obtain a bootstrap dataset, we defined the record of a unit as their
observed data and response indicators, imposed a uniform distribution across all
records in the original dataset, and drew independently as many records from
this distribution as the total number of records in the original dataset. For all
methods and each original dataset, we drew 1000 bootstrap datasets for variance
estimation and the construction of percentile confidence intervals.

All estimators are based on a function of the estimated outcome probability P1
in the exposed group and the estimated outcome probability P0 in the unexposed
group. However, since P1 and P0 may take a value of 0 or 1, the crude odds ratio
[P1/(1−P1)]/[P0/(1−P0)] need not exist. In contrast to what is often (implicitly)
done in simulation studies—i.e., studying the properties of the estimators after
conditioning on datasets where [P1/(1 − P1)]/[P0/(1 − P0)] is defined—we first
define P ∗

1 = (P1s+1)/(s+2) and P ∗
0 = (P0s+1)/(s+2) for a large positive number

s (here set to 106) and then regard [P ∗
1 /(1 − P ∗

1 )]/[P ∗
0 /(1 − P ∗

0 )] as the estimator
of the OR for the exposure-outcome association. This ensures the estimator is
always defined and effectively shrinks the outcome probabilities towards 0.5 and
the OR towards 1 (Supplementary Appendix S8.2).

For PS and CCA, we used a logistic regression of B and A, respectively,
on covariates L1 through L10 as main effects to estimate the propensity scores.
Taking the crude OR for the association between B and Z (PS) or A and Y
(CCA) over the data weighted by the reciprocal of the propensity of the received
exposure level provided an estimate of the target OR. R code for the methods
GP and IPWM is given in Supplementary Appendix S8.3.

8.4.2 Results

The treatment assignment mechanism detailed above resulted in average exposure
rates ranging from 17% to 51%, whereas average outcome rates ranged from 3%
to 22%. Across all simulation studies, the average outcome rate ranged from 6%
to 18%. Across all simulation studies with exposure misclassification, exposure
and joint misclassification rates ranged from 16% to 33% and from 2% to 6%,
respectively. Approximately 16% to 32% of subjects were allocated validation
data.
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The results on the performance of the various methods in simulations studies
1-9 are provided in Table 8.5 (see Supplementary Table S8.4 for the results on
all scenarios).

As expected, Crude, PS and CCA clearly showed bias with respect to the
target log OR of −0.4. The bias associated with restricting the analysis to
records with validation data is likely brought on to a large extent by collider
stratification, with R acting as the collider here (cf. Figure 8.1). Both Crude
and PS indicated a null effect, as one would anticipate in view of the marginal
and L-conditional independence of B and Z implied by the simulation set-up.
The empirical coverage probabilities were, although low for both estimators,
similar to substantially larger for PS as compared with Crude. Paralleling this
is that Crude, whose (implicit) propensity score model is inherently at least as
parsimonious, yielded similar to smaller empirical and sample standard errors as
compared with PS. With the average fraction of subjects with validation data
being as low as 16% (in scenarios with low ξ0) to 32%, it is not unsurprising that
Crude was subject to the largest degree of variability.

The results for the IPWM approach are generally favourable for large samples
and in line with its theoretical (large sample) properties. For scenarios with
smaller samples (scenarios 1c, 2c and 4c, 6c and 9c in particular), however, we
observed considerable bias (see Supplementary Table S8.4). Comparing CCA
with IPWM, we note a strong linear association between the methods in terms of
the absolute within-method differences in estimated bias between scenarios of size
10000 (scenarios labeled ‘a’) and the respective scenarios of size 1000 (scenarios
labeled ‘c’) (Pearson correlation 0.997). Note that the results for GP and IPWM
are identical for scenarios labeled 1-4 and 10-13 since the methods are equivalent
in terms of point estimation in the absence of exposure misclassification. In all
other scenarios, i.e., scenarios for which GP was not developed, GP performed
substantially worse than IPWM. The non-zero, albeit relatively small, systematic
deviations of the IPWM point estimates from the target −0.4, notably the
estimated bias of −0.097 (scenario 2b), may be attributable in part to the outcome
being rare (with prevalence ranging from 3% to 8% across scenarios labeled 1-9).
This is indicated by the superior performance of IPWM in scenarios where the
outcome is more prevalent (cf. scenarios labeled 1-9b versus 10-18b, which have
prevalence up to 22%). A similar observation was made by Gravel and Platt
(2018).

The standard errors for GP and IPWM were noticeably higher than those of
Crude and PS, which is unsurprising in view of the discrepancies in the number of
estimated parameters. As expected, increasing the sample size, the true outcome
rate (via β0) or both led to a decrease in the variability of IPWM (cf. Table 8.4
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and Supplementary Table S8.4). However, despite the large discrepancies between
SSE and SE for some scenarios, the empirical coverage probabilities of IPWM
were close to the nominal level of 0.95, except for scenarios 1c, 2c and 4c, where
we observed considerable bias.

8.5 Discussion

The analysis of epidemiologic data is often complicated by the presence of
confounding and misclassifications in exposure and outcome variables. In this
paper we propose a new estimator for estimating a marginal odds-ratio in the
presence of confouding and joint misclassification of the exposure and outcome
variables. In simulation studies, this weighting estimator showed promising finite
sample performance, reducing bias and mean squared error as compared with
simpler methods.

The proposed IPWM estimator is an extension of the inverse probability
weighting estimator recently proposed by Gravel and Platt (GP) which only
addresses the misclassification in the outcome (Gravel and Platt, 2018). IPWM
and GP are (mathematically) equivalent when the exposure is (assumed to be)
measured without misclassification error.

Like the Gravel and Platt approach, IPWM relies on estimates of sensitivity
and specificity or positive and negative predictive values for the misclassified
variables. In this paper, we used an internal validation approach where a
portion of subjects would receive error-free (‘gold standard’) measurements on
either or both the outcome and exposure. However, we anticipate that in some
settings the likelihood may not be fully identifiable from the data at hand. In
these settings, it may be possible to incorporate external rather than internal
information on the misclassification rates, possibly through a Bayesian approach
using prior assumptions about misclassification probabilities. When validation
data is external, however, it may be necessary to assume misclassification to be
independent of covariates L, because external studies seldom consider the same
covariates as the main study (Lyles et al., 2011). External validation approaches
also require the assumption that the misclassification parameters targeted in the
validation sample are transportable to the main study.

In the absence of internal and external validation data, it is possible to conduct
a sensitivity analysis within the weighting framework. Formula (8.8) for the
weights can readily be used in a sensitivity analysis in which the terms describing
the distribution of true exposure and outcome variables in relation to the observed
data (positive and negative predictive values) serve as sensitivity parameters of
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Table 8.5: Results for simulation studies 1-9b on the performance of different
causal estimators in various scenarios of confounding and misclassification in
exposure and outcome. Abbreviations: PS, propensity score method ignoring
misclassification; CCA, complete case analysis; GP, Gravel and Platt estimator
ignoring exposure misclassification, consistent with the methodology of Gravel
and Platt (2018) for point (but not for variance) estimation; IPWM, inverse
probability weighting method for confounding and joint exposure and outcome
misclassification; BSE, estimated standard error for the bias due to Monte Carlo
error; SE, empirical standard error; SSE, sample standard error; CP, empirical
coverage probability. In all scenarios, the true marginal log OR (estimand) was
−0.4.

Crude
Scenario Bias BSE MSE SE SSE CP
1b 0.394 0.004 0.169 0.119 0.118 0.122
2b 0.382 0.006 0.179 0.183 0.184 0.492
3b 0.394 0.004 0.169 0.117 0.118 0.116
4b 0.401 0.004 0.174 0.117 0.118 0.102
5b 0.401 0.003 0.169 0.090 0.088 0.007
6b 0.407 0.004 0.183 0.132 0.134 0.133
7b 0.396 0.003 0.164 0.086 0.088 0.009
8b 0.395 0.003 0.164 0.086 0.088 0.005
9b 0.398 0.003 0.166 0.089 0.088 0.005

PS
Scenario Bias BSE MSE SE SSE CP
1b 0.392 0.005 0.182 0.168 0.169 0.382
2b 0.379 0.008 0.213 0.264 0.258 0.738
3b 0.389 0.006 0.182 0.175 0.169 0.402
4b 0.389 0.006 0.182 0.176 0.168 0.392
5b 0.402 0.003 0.170 0.090 0.088 0.010
6b 0.407 0.004 0.183 0.131 0.135 0.136
7b 0.396 0.003 0.164 0.086 0.088 0.009
8b 0.395 0.003 0.164 0.086 0.088 0.004
9b 0.398 0.003 0.166 0.089 0.088 0.005
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the sensitivity analysis. The models for the predictive values can take complex
forms, however, thus complicating the analysis and presentation of results.

If internal validation is available, the subjects with validation data need
not form a completely random subset. The proposed method, IPWM, was
developed under the assumption that validation data allocation occurs in an
‘ignorable’ fashion (Rubin, 1976). In practice, it may be that the researchers have
limited control over the validation data allocation mechanism. For instance, it
is conceivable that individuals with specific indications (e.g., with a realisation
of L, B or Z) are practically ineligible to be assigned a double measurement of
the exposure (A and B) and outcome (Y and Z). Further, the estimator also
allows for validation subjects to receive either the double exposure or double

Table 8.5 continued.

CCA
Scenario Bias BSE MSE SE SSE CP
1b −0.078 0.015 0.226 0.469 0.491 0.899
2b −0.117 0.019 0.375 0.601 0.900 0.887
3b −0.020 0.010 0.091 0.301 0.300 0.919
4b −0.093 0.020 0.407 0.631 1.158 0.899
5b −0.145 0.009 0.103 0.286 0.286 0.903
6b −0.109 0.011 0.131 0.345 0.362 0.930
7b −0.213 0.007 0.101 0.237 0.250 0.865
8b −0.209 0.006 0.079 0.187 0.186 0.775
9b −0.175 0.012 0.184 0.392 0.411 0.902

GP
Scenario Bias BSE MSE SE SSE CP
1b −0.036 0.011 0.130 0.359 0.428 0.958
2b −0.097 0.016 0.265 0.505 0.861 0.938
3b −0.019 0.007 0.055 0.233 0.240 0.939
4b −0.045 0.016 0.253 0.501 1.087 0.944
5b 0.269 0.008 0.132 0.244 0.244 0.799
6b 0.280 0.010 0.177 0.314 0.339 0.862
7b 0.134 0.008 0.076 0.241 0.252 0.926
8b 0.259 0.004 0.087 0.140 0.144 0.570
9b 0.263 0.010 0.174 0.325 0.339 0.883
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Table 8.5 continued.

IPWM
Scenario Bias BSE MSE SE SSE CP
1b −0.036 0.011 0.130 0.359 0.428 0.958
2b −0.097 0.016 0.265 0.505 0.861 0.938
3b −0.019 0.007 0.055 0.233 0.240 0.939
4b −0.045 0.016 0.253 0.501 1.087 0.944
5b −0.017 0.009 0.082 0.286 0.284 0.942
6b −0.014 0.011 0.129 0.359 0.386 0.958
7b 0.004 0.008 0.059 0.243 0.261 0.969
8b −0.004 0.006 0.032 0.180 0.181 0.958
9b −0.025 0.012 0.141 0.374 0.415 0.956

outcome measurement. We simulated data such that subjects have validation
data on both the exposure and outcome variables or on neither. Although this
may greatly simplify analysis and enhance efficiency, in practice it is not necessary
to assume that this condition holds. An interesting scenario is where subjects
have validation data on at most one variable, i.e., on the exposure variable or
the outcome variable but not both. In this case, valid estimation would require
additional modelling assumptions; for example, the error-free outcome variable
cannot then be regressed on the error-free exposure variable.

To accommodate settings where validation data allocation is not completely at
random, we deviated from the semi-parametric bootstrap procedure for variance
estimation proposed by Gravel and Platt. Instead, the non-parametric procedure
we used requires less assumptions regarding the validation subset sampling
procedure. The non-parametric procedure showed good performance in our
simulations.

Whilst we have discussed under what conditions the proposed method
consistently estimates or at least identifies the target quantity, the assumptions
may be untenable in particular settings. Particularly, an infallible measurement
tool for the exposure and outcome that can be performed on a subset of the data
need not always exist. The robustness to deviations of infallibility is an interesting
and important direction for further research. This is especially relevant where
there exists considerable uncertainty about the tenability of the assumptions
that is difficult to incorporate in the analysis. An obvious and flexible alternative
to IPWM is to multiply impute missing values including absent measurement
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error-free variables before implementing IPW (MI+IPW). Although MI+IPW
and IPWM may be comparable in terms of their assumptions, it is yet unclear
how they behave under assumption violations such as misspecification of the
outcome model.

An advantageous property of MI+IPW is that it can easily accommodate
missing covariate values. Other alternatives that can accommodate missing
covariates were recently developed by Shu and Yi (2018). Their proposed
weighting estimators simultaneously addresses confounding, misclassification of
the outcome (but not of the exposure) and measurement error on the covariates
under a classical additive measurement error model. The methods can be
implemented using validation data or repeated measurements and use a simple
misclassification model (in which the outcome surrogate is independent of
exposure or covariates given the target outcome) that is suitable for performing
sensitivity analyses.

Another interesting area for further research is where the researchers do
have control over who is referred for further testing by the assumed infallible
measurement tool(s). An obvious choice is to adopt a completely at random
strategy (simple random sampling). However, other referral (sampling) strategies
exist and it is not clear what strategy leads to the most favourable estimator
properties for the given setting.

In summary, we have developed an extension to an existing method, to allow
for valid estimation of a marginal causal OR in the presence of confounding
and a commonly ignored and misunderstood source of bias—joint exposure and
outcome misclassification. The R function mecor::ipwm has been made available
to facilitate implementation (Nab, 2019; Nab et al., 2018).
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Supplementary Material

S8.1

Suppose A, B, Y and Z are random variables that take values in {0, 1}.

Theorem 8.1. For any a, l, let

φ(a, l) = φ∗(a, l)
E[φ∗(A, L)|A = a] and φ∗(a, l) = 1

Pr(A = a|L = l) .

If Y (A) = Y (consistency), (Y (0), Y (1)) ⊥⊥ A|L = l (conditional
exchangeability), Pr(A = a) > 0 and Pr(A = a|L = l) > 0 (positivity) for
all a and every l in the support of L, then

E[Y (a)] = E[φ(A, L)I(Y = 1)|A = a].

Proof. We begin by considering E[φ∗(A, L)|A = a]. By the law of the unconscious
statistician and Bayes’ theorem, we have

E[φ∗(A, L)|A = a] =
∑

l

Pr(L = l|A = a)
Pr(A = a|L = l)

=
∑

l

Pr(A = a|L = l) Pr(L = l)
Pr(A = a) Pr(A = a|L = l)

= 1
Pr(A = a)

∑
l

Pr(L = l)

= 1
Pr(A = a) .

Hence, for all a, y, we have∑
l

φ(a, l) Pr(Y = y, L = l|A = a) (8.18)

=
∑

l

Pr(Y = y, L = l|A = a) Pr(A = a)
Pr(A = a|L = l)

=
∑

l

Pr(Y = y|A = a, L = l) Pr(A = a|L = l) Pr(L = l)
Pr(A = a|L = l)

=
∑

l

Pr(Y = y|A = a, L = l) Pr(L = l)
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=
∑

l

Pr(Y (a) = y|A = a, L = l) Pr(L = l) (8.19)

=
∑

l

Pr(Y (a) = y|L = l) Pr(L = l) (8.20)

= Pr(Y (a) = y),

where (8.19) and (8.20) hold under consistency and conditional exchangeability
given L, respectively. Positivity ensures the weights are defined/exist. Hence,
E[φ(A, L)I(Y = 1)|A = a] = ∑

l φ(a, l) Pr(Y = 1, L = l|A = a) = E[Y (a)], as
desired.

Corollary 8.1. For any y, a, l, let

φ(a, l) = φ∗(a, l)
E[φ∗(A, L)|A = a] , φ∗(a, l) = 1

Pr(A = a|L = l) , and

ϕ(a, l) = Pr(Y = 1, L = l|A = a)
Pr(Z = 1, L = l|B = a) .

If Y (A) = Y , (Y (0), Y (1)) ⊥⊥ A|L and positivity holds, then

E[Y (a)] =
∑

l

φ(a, l) Pr(Y = 1, L = l|A = a)

=
∑

l

φ(a, l)ϕ(a, l) Pr(Z = 1, L = l|B = a)

= E[φ(B, L)ϕ(B, L)I(Z = 1)|B = a].

S8.2

Theorem 8.2. Fix some s > 0 and let P ∗ = (Ps + 1)/(s + 2) for all P ∈ [0, 1].
If (P0, P1) ∈ (0, 1) × (0, 1), then

1 <
P ∗

1 /(1 − P ∗
1 )

P ∗
0 /(1 − P ∗

0 ) <
P1/(1 − P1)
P0/(1 − P0) if P1 > P0,

1 = P ∗
1 /(1 − P ∗

1 )
P ∗

0 /(1 − P ∗
0 ) = P1/(1 − P1)

P0/(1 − P0) if P1 = P0, and

1 >
P ∗

1 /(1 − P ∗
1 )

P ∗
0 /(1 − P ∗

0 ) >
P1/(1 − P1)
P0/(1 − P0) if P1 < P0

Proof. Suppose (P0, P1) ∈ (0, 1) × (0, 1). If and only if

P ∗
1 /(1 − P ∗

1 )
P ∗

0 /(1 − P ∗
0 ) <

P1/(1 − P1)
P0/(1 − P0) , (8.21)
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then
P1s + 1

s + 1 − P1s

s + 1 − P0s

P0s + 1 <
P1

1 − P1

1 − P0
P0

,

P1s + 1
s + 1 − P1s

1 − P1
P1

<
P0s + 1

s + 1 − P0s

1 − P0
P0

.

Now, since

∂

∂P

{
Ps + 1

s + 1 − Ps

1 − P

P

}
= (−2P 2 + 2P − 1)S − 1

P 2(1 − (P − 1)S)2 < 0

over the interval (0, 1) for P , it follows that inequality (8.21) holds if P1 > P0.
Also, if P1 > P0, then, since ∂/(∂P ){(Ps + 1)/(s + 1 − Ps)} > 0 if P ∈ (0, 1), we
have

1 <
P ∗

1 /(1 − P ∗
1 )

P ∗
0 /(1 − P ∗

0 ) .

Similar arguments establish the assertion for the case where P1 < P0. It is easily
verified that if P1 = P0, then

P ∗
1 /(1 − P ∗

1 )
P ∗

0 /(1 − P ∗
0 ) = P1s + 1

s + 1 − P1s

s + 1 − P0s

P0s + 1 = 1

= P1
1 − P1

1 − P0
P0

= P1/(1 − P1)
P0/(1 − P0) ,

as desired.

S8.3

GP and IPWM were applied to every dataset data in R using the function
mecor::ipwm and the following code:

# GP:
formulasGP <- list(

Y˜Z+B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
B˜Z+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
Z˜L1+L2+L3+L4+L5+L6+L7+L8+L9+L10

)
mecor::ipwm(

formulas=formulasGP, data=data, outcome true=‘‘Y’’,
outcome mis=‘‘Z’’, exposure true=‘‘B’’, exposure mis=NULL, sp=1e6
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)

# IPWM:
formulasIPWM <- list(

Y˜A+Z+B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
A˜Z+B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
Z˜B+L1+L2+L3+L4+L5+L6+L7+L8+L9+L10,
B˜L1+L2+L3+L4+L5+L6+L7+L8+L9+L10

)
mecor::ipwm(

formulas=formulasIPWM, data=data, outcome true=‘‘Y’’,
outcome mis=‘‘Z’’, exposure true=‘‘A’’, exposure mis=‘‘B’’, sp=1e6

)
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S8.4 Supplementary Tables

Table S8.1: Expected cell counts (rounded to integers) for illustrative study
setting after misclassification and formation of validation subsets

L = 0 L = 1
RY RA Y A L A = 0 A = 1 A = 0 A = 1
0 0 0 m1 = 9371 m2 = 7147 m3 = 1011 m4 = 884
0 0 1 m5 = 1120 m6 = 3165 m7 = 80 m8 = 221
0 1 m9 = 0 m10 = 0 m11 = 0 m12 = 0
1 0 m13 = 0 m14 = 0 m15 = 0 m16 = 0
1 1 0 0 0 m17 = 2728 m18 = 38 m19 = 144 m20 = 2
1 1 1 0 0 m21 = 13 m22 = 3 m23 = 169 m24 = 53
1 1 0 1 0 m25 = 382 m26 = 3797 m27 = 12 m28 = 242
1 1 1 1 0 m29 = 1 m30 = 9 m31 = 12 m32 = 178
1 1 0 0 1 m33 = 287 m34 = 41 m35 = 6 m36 = 5
1 1 1 0 1 m37 = 2 m38 = 1 m39 = 7 m40 = 3
1 1 0 1 1 m41 = 84 m42 = 1658 m43 = 10 m44 = 87
1 1 1 1 1 m45 = 1 m46 = 4 m47 = 3 m48 = 24
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Confounding and exposure-outcome misclassification

Table S8.4: Results for simulation studies 1a-18a,1b-18b,1c-18c on the
performance of different causal estimators in various scenarios of confounding
and misclassification in exposure and outcome. Abbreviations: PS, propensity
score method ignoring misclassification; CCA, complete case analysis; GP,
Gravel and Platt estimator ignoring exposure misclassification; IPWM, inverse
probability weighting method for confounding and joint exposure and outcome
misclassification; BSE, estimated standard error for the bias due to Monte Carlo
error; SE, empirical standard error; SSE, sample standard error; CP, empirical
coverage probability. In all scenarios, the true marginal log OR (estimand) was
−0.4.

Crude PS
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
1a 0.401 0.003 0.167 0.081 0.083 0.004 0.399 0.004 0.173 0.117 0.120 0.080
2a 0.392 0.004 0.170 0.127 0.127 0.189 0.391 0.006 0.184 0.177 0.181 0.436
3a 0.400 0.003 0.167 0.083 0.083 0.005 0.391 0.004 0.167 0.119 0.119 0.104
4a 0.394 0.003 0.162 0.081 0.083 0.007 0.392 0.004 0.169 0.122 0.120 0.106
5a 0.398 0.002 0.162 0.061 0.062 0.000 0.398 0.002 0.162 0.061 0.062 0.000
6a 0.404 0.003 0.172 0.094 0.094 0.010 0.404 0.003 0.172 0.094 0.095 0.011
7a 0.399 0.002 0.163 0.062 0.062 0.000 0.399 0.002 0.163 0.062 0.062 0.000
8a 0.401 0.002 0.165 0.064 0.062 0.000 0.401 0.002 0.165 0.064 0.062 0.000
9a 0.400 0.002 0.164 0.064 0.062 0.000 0.400 0.002 0.164 0.064 0.062 0.000
10a 0.396 0.003 0.164 0.085 0.083 0.004 0.395 0.004 0.171 0.123 0.119 0.101
11a 0.396 0.004 0.173 0.128 0.127 0.176 0.388 0.006 0.185 0.187 0.182 0.455
12a 0.398 0.003 0.165 0.081 0.083 0.007 0.398 0.004 0.173 0.120 0.120 0.096
13a 0.399 0.003 0.166 0.083 0.083 0.004 0.395 0.004 0.171 0.120 0.119 0.102
14a 0.404 0.002 0.167 0.061 0.062 0.000 0.404 0.002 0.167 0.061 0.062 0.000
15a 0.398 0.003 0.167 0.092 0.094 0.011 0.398 0.003 0.167 0.092 0.095 0.012
16a 0.404 0.002 0.167 0.063 0.062 0.000 0.404 0.002 0.167 0.063 0.062 0.000
17a 0.399 0.002 0.163 0.061 0.062 0.000 0.399 0.002 0.163 0.061 0.062 0.000
18a 0.401 0.002 0.164 0.059 0.062 0.000 0.401 0.002 0.164 0.059 0.062 0.000
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Table S8.4 continued.

Crude PS
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
1b 0.394 0.004 0.169 0.119 0.118 0.122 0.392 0.005 0.182 0.168 0.169 0.382
2b 0.382 0.006 0.179 0.183 0.184 0.492 0.379 0.008 0.213 0.264 0.258 0.738
3b 0.394 0.004 0.169 0.117 0.118 0.116 0.389 0.006 0.182 0.175 0.169 0.402
4b 0.401 0.004 0.174 0.117 0.118 0.102 0.389 0.006 0.182 0.176 0.168 0.392
5b 0.401 0.003 0.169 0.090 0.088 0.007 0.402 0.003 0.170 0.090 0.088 0.010
6b 0.407 0.004 0.183 0.132 0.134 0.133 0.407 0.004 0.183 0.131 0.135 0.136
7b 0.396 0.003 0.164 0.086 0.088 0.009 0.396 0.003 0.164 0.086 0.088 0.009
8b 0.395 0.003 0.164 0.086 0.088 0.005 0.395 0.003 0.164 0.086 0.088 0.004
9b 0.398 0.003 0.166 0.089 0.088 0.005 0.398 0.003 0.166 0.089 0.088 0.005
10b 0.397 0.004 0.171 0.117 0.118 0.100 0.396 0.005 0.185 0.167 0.170 0.387
11b 0.391 0.006 0.185 0.179 0.183 0.466 0.362 0.008 0.199 0.261 0.253 0.732
12b 0.401 0.004 0.174 0.118 0.118 0.109 0.391 0.005 0.182 0.173 0.169 0.394
13b 0.404 0.004 0.176 0.111 0.117 0.080 0.396 0.005 0.185 0.169 0.167 0.367
14b 0.400 0.003 0.168 0.087 0.088 0.008 0.400 0.003 0.168 0.087 0.088 0.006
15b 0.397 0.004 0.176 0.135 0.134 0.161 0.397 0.004 0.176 0.135 0.135 0.161
16b 0.401 0.003 0.168 0.087 0.088 0.006 0.400 0.003 0.168 0.087 0.088 0.006
17b 0.403 0.003 0.170 0.087 0.088 0.003 0.403 0.003 0.170 0.087 0.088 0.004
18b 0.400 0.003 0.168 0.087 0.088 0.004 0.400 0.003 0.168 0.088 0.088 0.003
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Table S8.4 continued.

Crude PS
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
1c 0.394 0.009 0.232 0.277 0.275 0.698 0.366 0.013 0.292 0.398 0.391 0.871
2c 0.334 0.018 0.423 0.558 0.844 0.873 0.256 0.022 0.563 0.706 0.924 0.916
3c 0.383 0.009 0.222 0.274 0.276 0.739 0.371 0.013 0.297 0.399 0.393 0.875
4c 0.375 0.009 0.218 0.278 0.277 0.732 0.332 0.013 0.276 0.407 0.392 0.880
5c 0.405 0.006 0.204 0.200 0.199 0.470 0.405 0.006 0.205 0.201 0.199 0.474
6c 0.410 0.010 0.261 0.304 0.317 0.724 0.410 0.010 0.263 0.308 0.318 0.729
7c 0.406 0.006 0.203 0.196 0.199 0.469 0.406 0.006 0.204 0.198 0.200 0.469
8c 0.404 0.006 0.204 0.202 0.199 0.474 0.405 0.006 0.205 0.201 0.200 0.470
9c 0.406 0.006 0.202 0.192 0.198 0.468 0.404 0.006 0.201 0.193 0.199 0.470
10c 0.384 0.009 0.222 0.272 0.276 0.717 0.359 0.013 0.288 0.399 0.388 0.873
11c 0.358 0.014 0.324 0.443 0.825 0.864 0.296 0.020 0.471 0.619 0.902 0.923
12c 0.377 0.008 0.212 0.265 0.277 0.749 0.343 0.013 0.284 0.407 0.393 0.878
13c 0.377 0.008 0.210 0.259 0.276 0.741 0.341 0.013 0.274 0.397 0.390 0.888
14c 0.411 0.006 0.206 0.192 0.199 0.446 0.411 0.006 0.206 0.192 0.200 0.458
15c 0.393 0.009 0.241 0.294 0.315 0.764 0.393 0.009 0.242 0.296 0.316 0.770
16c 0.399 0.006 0.198 0.196 0.198 0.484 0.399 0.006 0.198 0.196 0.200 0.482
17c 0.395 0.006 0.193 0.191 0.199 0.471 0.394 0.006 0.191 0.190 0.199 0.474
18c 0.402 0.006 0.201 0.197 0.199 0.478 0.403 0.006 0.202 0.199 0.200 0.482
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Table S8.4 continued.

CCA GP
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
1a −0.011 0.010 0.091 0.302 0.315 0.932 −0.016 0.008 0.059 0.242 0.257 0.960
2a −0.038 0.013 0.165 0.404 0.398 0.909 −0.024 0.010 0.108 0.328 0.353 0.956
3a 0.004 0.007 0.044 0.210 0.208 0.939 −0.013 0.005 0.028 0.167 0.165 0.943
4a −0.050 0.014 0.189 0.432 0.441 0.905 −0.022 0.011 0.116 0.341 0.371 0.944
5a −0.128 0.006 0.054 0.194 0.199 0.890 0.271 0.005 0.100 0.163 0.168 0.633
6a −0.097 0.007 0.066 0.237 0.245 0.926 0.269 0.007 0.121 0.221 0.225 0.772
7a −0.232 0.005 0.082 0.168 0.173 0.736 0.118 0.005 0.043 0.171 0.173 0.904
8a −0.197 0.004 0.056 0.130 0.130 0.646 0.263 0.003 0.079 0.098 0.101 0.261
9a −0.173 0.008 0.101 0.266 0.270 0.883 0.257 0.007 0.116 0.224 0.229 0.795
10a 0.017 0.005 0.029 0.169 0.170 0.953 0.003 0.005 0.022 0.147 0.152 0.946
11a 0.007 0.006 0.040 0.200 0.193 0.947 −0.014 0.006 0.039 0.196 0.203 0.952
12a 0.058 0.005 0.028 0.157 0.154 0.928 −0.003 0.004 0.019 0.138 0.136 0.943
13a 0.018 0.007 0.056 0.236 0.237 0.946 −0.003 0.006 0.037 0.192 0.194 0.940
14a −0.092 0.003 0.018 0.099 0.105 0.864 0.265 0.003 0.079 0.091 0.095 0.191
15a −0.051 0.004 0.016 0.115 0.119 0.933 0.264 0.004 0.084 0.121 0.124 0.421
16a −0.166 0.003 0.036 0.094 0.092 0.559 0.138 0.003 0.028 0.096 0.096 0.710
17a −0.116 0.003 0.023 0.095 0.094 0.762 0.264 0.003 0.076 0.080 0.082 0.110
18a −0.115 0.005 0.035 0.149 0.144 0.859 0.266 0.004 0.088 0.131 0.128 0.455
1b −0.078 0.015 0.226 0.469 0.491 0.899 −0.036 0.011 0.130 0.359 0.428 0.958
2b −0.117 0.019 0.375 0.601 0.900 0.887 −0.097 0.016 0.265 0.505 0.861 0.938
3b −0.020 0.010 0.091 0.301 0.300 0.919 −0.019 0.007 0.055 0.233 0.240 0.939
4b −0.093 0.020 0.407 0.631 1.158 0.899 −0.045 0.016 0.253 0.501 1.087 0.944
5b −0.145 0.009 0.103 0.286 0.286 0.903 0.269 0.008 0.132 0.244 0.244 0.799
6b −0.109 0.011 0.131 0.345 0.362 0.930 0.280 0.010 0.177 0.314 0.339 0.862
7b −0.213 0.007 0.101 0.237 0.250 0.865 0.134 0.008 0.076 0.241 0.252 0.926
8b −0.209 0.006 0.079 0.187 0.186 0.775 0.259 0.004 0.087 0.140 0.144 0.570
9b −0.175 0.012 0.184 0.392 0.411 0.902 0.263 0.010 0.174 0.325 0.339 0.883
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Table S8.4 continued.

CCA GP
Scenario Bias BSE MSE SE SSE CP Bias BSE MSE SE SSE CP
10b 0.011 0.007 0.056 0.237 0.244 0.957 −0.002 0.007 0.050 0.223 0.221 0.939
11b 0.001 0.009 0.083 0.288 0.276 0.918 −0.019 0.010 0.093 0.304 0.304 0.938
12b 0.058 0.007 0.050 0.216 0.223 0.953 −0.007 0.006 0.038 0.194 0.197 0.949
13b −0.015 0.011 0.122 0.350 0.345 0.934 −0.023 0.009 0.077 0.277 0.287 0.950
14b −0.092 0.005 0.030 0.146 0.148 0.889 0.263 0.004 0.088 0.136 0.136 0.505
15b −0.060 0.005 0.033 0.170 0.170 0.929 0.263 0.006 0.101 0.177 0.183 0.712
16b −0.171 0.004 0.047 0.132 0.131 0.741 0.139 0.004 0.038 0.136 0.138 0.820
17b −0.121 0.004 0.032 0.134 0.135 0.842 0.263 0.004 0.082 0.115 0.118 0.388
18b −0.113 0.007 0.055 0.206 0.207 0.904 0.264 0.006 0.102 0.178 0.185 0.702
1c −1.163 0.098 10.972 3.101 3.092 0.792 −0.994 0.095 10.003 3.003 3.085 0.878
2c −2.086 0.131 21.614 4.155 3.415 0.733 −1.979 0.130 20.875 4.118 3.689 0.835
3c −0.184 0.029 0.880 0.920 1.477 0.887 −0.102 0.024 0.574 0.751 1.412 0.939
4c −2.730 0.148 29.275 4.671 3.710 0.722 −2.295 0.142 25.436 4.491 3.974 0.916
5c −0.254 0.029 0.904 0.916 1.764 0.891 0.288 0.018 0.409 0.571 1.106 0.951
6c −0.548 0.067 4.832 2.129 2.684 0.893 0.402 0.046 2.276 1.454 2.782 0.969
7c −0.223 0.020 0.467 0.646 1.303 0.912 0.109 0.020 0.424 0.642 1.322 0.952
8c −0.236 0.014 0.258 0.450 0.508 0.891 0.279 0.011 0.197 0.345 0.369 0.883
9c −0.662 0.079 6.624 2.487 3.186 0.896 0.314 0.053 2.915 1.678 2.454 0.972
10c −0.105 0.019 0.376 0.604 0.740 0.897 −0.098 0.017 0.294 0.534 0.790 0.943
11c −0.113 0.025 0.649 0.798 1.174 0.906 −0.183 0.031 1.006 0.986 1.758 0.931
12c 0.010 0.018 0.313 0.560 0.598 0.938 −0.053 0.021 0.455 0.673 0.703 0.937
13c −0.170 0.036 1.330 1.140 1.967 0.919 −0.129 0.030 0.920 0.950 1.983 0.948
14c −0.107 0.011 0.133 0.349 0.360 0.922 0.286 0.010 0.187 0.324 0.351 0.882
15c −0.088 0.013 0.187 0.424 0.417 0.913 0.276 0.015 0.314 0.488 0.664 0.951
16c −0.159 0.009 0.115 0.299 0.311 0.924 0.143 0.010 0.124 0.323 0.357 0.952
17c −0.133 0.010 0.114 0.311 0.323 0.918 0.259 0.009 0.144 0.277 0.304 0.872
18c −0.148 0.016 0.264 0.492 0.593 0.938 0.280 0.014 0.278 0.447 0.510 0.926
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Table S8.4 continued.

IPWM
Scenario Bias BSE MSE SE SSE CP
1a −0.016 0.008 0.059 0.242 0.257 0.960
2a −0.024 0.010 0.108 0.328 0.353 0.956
3a −0.013 0.005 0.028 0.167 0.165 0.943
4a −0.022 0.011 0.116 0.341 0.371 0.944
5a −0.004 0.006 0.035 0.186 0.194 0.954
6a −0.010 0.008 0.060 0.244 0.252 0.952
7a −0.013 0.005 0.030 0.172 0.179 0.951
8a 0.003 0.004 0.015 0.122 0.125 0.952
9a −0.019 0.008 0.065 0.255 0.265 0.948
10a 0.003 0.005 0.022 0.147 0.152 0.946
11a −0.014 0.006 0.039 0.196 0.203 0.952
12a −0.003 0.004 0.019 0.138 0.136 0.943
13a −0.003 0.006 0.037 0.192 0.194 0.940
14a −0.005 0.003 0.011 0.104 0.106 0.962
15a −0.001 0.004 0.017 0.129 0.134 0.963
16a 0.010 0.003 0.010 0.099 0.099 0.947
17a 0.001 0.003 0.009 0.096 0.095 0.943
18a 0.001 0.005 0.022 0.148 0.144 0.949
1b −0.036 0.011 0.130 0.359 0.428 0.958
2b −0.097 0.016 0.265 0.505 0.861 0.938
3b −0.019 0.007 0.055 0.233 0.240 0.939
4b −0.045 0.016 0.253 0.501 1.087 0.944
5b −0.017 0.009 0.082 0.286 0.284 0.942
6b −0.014 0.011 0.129 0.359 0.386 0.958
7b 0.004 0.008 0.059 0.243 0.261 0.969
8b −0.004 0.006 0.032 0.180 0.181 0.958
9b −0.025 0.012 0.141 0.374 0.415 0.956
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Table S8.4 continued.

IPWM
Scenario Bias BSE MSE SE SSE CP
10b −0.002 0.007 0.050 0.223 0.221 0.939
11b −0.019 0.010 0.093 0.304 0.304 0.938
12b −0.007 0.006 0.038 0.194 0.197 0.949
13b −0.023 0.009 0.077 0.277 0.287 0.950
14b −0.003 0.005 0.022 0.147 0.152 0.960
15b −0.006 0.006 0.035 0.187 0.198 0.963
16b 0.010 0.004 0.020 0.142 0.143 0.956
17b −0.003 0.004 0.017 0.131 0.136 0.956
18b 0.010 0.006 0.042 0.205 0.207 0.955
1c −0.994 0.095 10.003 3.003 3.085 0.878
2c −1.979 0.130 20.875 4.118 3.689 0.835
3c −0.102 0.024 0.574 0.751 1.412 0.939
4c −2.295 0.142 25.436 4.491 3.974 0.916
5c −0.101 0.029 0.849 0.916 1.771 0.950
6c −0.373 0.069 4.896 2.181 3.041 0.978
7c −0.027 0.022 0.470 0.685 1.298 0.961
8c −0.019 0.014 0.200 0.447 0.527 0.953
9c −0.372 0.068 4.769 2.152 2.579 0.989
10c −0.098 0.017 0.294 0.534 0.790 0.943
11c −0.183 0.031 1.006 0.986 1.758 0.931
12c −0.053 0.021 0.455 0.673 0.703 0.937
13c −0.129 0.030 0.920 0.950 1.983 0.948
14c −0.003 0.011 0.130 0.360 0.396 0.967
15c −0.018 0.016 0.263 0.512 0.705 0.984
16c 0.014 0.011 0.114 0.338 0.371 0.966
17c −0.005 0.010 0.101 0.318 0.349 0.952
18c −0.002 0.016 0.249 0.499 0.613 0.962
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Negative controls

Abstract

Unmeasured confounding is a well-known obstacle in causal inference. In
recent years, negative controls have received increasing attention as a important
tool to address concerns about the problem. The literature on the topic has
expanded rapidly and several authors have advocated the more routine use of
negative controls in epidemiological practice. In this paper, we review concepts
and methodologies based on negative controls for detection and correction of
unmeasured confounding bias. We argue that negative controls may lack both
specificity and sensitivity to detect unmeasured confounding and that proving
the null hypothesis of a null negative control association is impossible. We
focus our discussion on the control outcome calibration approach, the difference-
in-difference approach, and the double-negative control approach as methods
for confounding correction. For each of these methods, we highlight their
assumptions and illustrate the potential impact of violations thereof. Given the
potentially large impact of assumption violations, it may sometimes be desirable
to replace strong conditions for exact identification with weaker, easily verifiable
conditions, even when these imply at most partial identification of unmeasured
confounding. Future research in this area may broaden the applicability of
negative controls and in turn make them better suited for routine use in
epidemiological practice. At present, however, the applicability of negative
controls should be carefully judged on a case-by-case basis.
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9.1 Introduction

In epidemiological research on causal effects, there are often concerns that
one or more assumptions—such as exchangeability, no measurement error, or
assumptions about missing data—are violated. In efforts to lessen these concerns,
it has long been suggested that auxiliary variables be used that have a known
(e.g., null) causal relation with the exposure or outcome of interest (Rosenbaum,
1989; Lipsitch et al., 2010; Flanders et al., 2011). Observing an association that
contradicts the belief in a causal null might alert the analyst to violations of the
assumptions underlying the methods used in the study. Auxiliary variables known
to be causally unrelated to the variables of primary interest are called negative
controls and have potential in bias detection as well as partial or complete bias
correction in epidemiological research (Shi et al., 2020b).

In recent years, negative controls have received increasing attention in the
epidemiological and statistical literature. The literature on how to leverage
negative controls in studies on causal effects has rapidly expanded and several
authors have argued that negative controls should be more commonly employed
(Lipsitch et al., 2010; Arnold et al., 2016; Shi et al., 2020b). This paper aims to
complement these efforts to increase the more routine implementation of negative
controls with a discussion about a selection of caveats. Focusing on the use of
negative controls to address possible violations of the exchangeability assumption,
i.e., the assumption of no unmeasured confounding, we begin with a brief review
of relevant definitions and discuss assumptions for bias detection. We then review
methods for bias correction and study their sensitivity to assumption violations.

9.2 Negative controls

A negative control outcome (NCO) is a variable that is not causally affected by
the exposure of interest A (Tchetgen Tchetgen, 2013; Shi et al., 2020b). Likewise,
a negative control exposure (NCE) is a variable that does not causally affect the
outcome of interest Y , except possibly through the exposure of interest (Shi
et al., 2020b). The causal DAGs of Figure 9.1 (discussed later in this section)
give examples of settings where a variable Z classifies as an NCO, an NCE or
both. Given the absence of a direct causal effect of exposure A on an NCO Z
or of NCE Z on outcome Y , any observed association between A and an Z, or
between an Z and outcome Y given A, must be spurious. Leveraging negative
controls involves translating information about such spurious associations into
information about the spuriousness of associations between the primary exposure
and outcome variables of interest.
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9.2.1 Negative controls for unmeasured confounding detection

Let Y (a) denote the outcome that would be realised had exposure A been
set to a. Together with causal consistency (i.e., Y (a) = Y if A = a)
and positivity, epidemiologists often seek to invoke the exchangeability (or
unmeasured confounding) condition Y (a) ⊥⊥ A (possibly within levels of a
collection of observed variables) to establish identifiability of the effect of exposure
A on outcome Y (Hernán and Robins, 2020). In observational studies, however, it
is seldom evident that the exchangeability condition, E, for the exposure-outcome
relation of interest is achieved. A key idea of negative controls is to find a ‘control’
statement, C, that translates into information about E and which is more easily
verified or refuted.

Control statement C may refer to the absence of bias of a measure of the
association between A and Y and the NCO or NCE variable, respectively.
Knowing that any control association is noncausal renders the control statement
empirically verifiable. If C implies E, then a null finding for the control statement
would imply conditional exchangeability for the exposure-outcome relation of
interest. Conversely, if E implies C, evidence of bias of the control association
corroborates the existence of unmeasured confounding.

9.2.2 Caveats in the use of negative controls to detect unmeasured
confounding

There are a number of caveats concerning the use of negative controls for
confounding detection. These caveats mainly concern the link between the control
statement and exchangeability for the exposure-outcome relation of interest.
Unfortunately, the extent to which one confers information about the other need
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Y U

V
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Z

Y U

V

A

Z

Y

Figure 9.1: Causal directed acyclic graphs of settings where Z is a negative
control outcome (left), a negative control exposure (middle) or both (right).
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not be evident (Groenwold, 2013). A biased negative-control association need
not imply unmeasured confounding for the exposure-outcome relation of interest
and neither is the converse true generally.

First, while most applications of negative controls assume that confounding
is the only source of bias, in reality it may be one of potentially many sources
of bias. A spurious negative control association could have resulted, at least in
part, from collider stratification, measurement error or violations of assumptions
about missing data (Arnold et al., 2016). Even if unmeasured confounding for the
negative control association implies unmeasured confounding for the exposure-
outcome relation of interest, a biased negative control association need not be a
reflection of unmeasured confounding. Conversely, a (near) null finding could be
the result of opposing biases, masking the presence of unmeasured confounding.
In other words, negative controls are a tool that may lack both specificity and
sensitivity with respect to the type(s) of bias they are to detect.

Lipsitch et al. (2010) suggested a principle for establishing a link that is based
on the extent to which common causes of A and Y overlap with the common
causes of the exposure or outcome and the negative control variable. Clearly, for
an NCO, with complete overlap (e.g., V = U in Figure 9.1), the set of common
causes of A and Y is empty if and only if the set of common causes of A and the
NCO is empty. However, null values for certain measures of the effect of A on
an NCO or of an NCE on Y need not imply that the set of unobserved common
causes is empty, or, therefore, that there is conditional exchangeability for the
primary exposure-outcome relation. Indeed, near null values may be the result of
partially opposing confounding effects (or, more generally, opposing biases) and
the relative effects may be different for the NCO versus the primary outcome Y .

With finite samples rather than complete knowledge of the theoretical or
population distribution, sampling variability becomes relevant too, making it
more important to acknowledge the distinction between absence of evidence and
evidence of absence (Albert and Anderson, 1984). With finite samples, proving
the null hypothesis of a null negative control association is impossible. Even if
‘highly’ powered studies cannot detect bias for the negative control relation, it
may be injudicious to assume that the available data are sufficient to adequately
control for confounding of the primary relation of interest, because a small degree
of bias for the former relation may be associated with a substantial degree of bias
for the latter. Sample size and power considerations are often ignored or left at
secondary importance. While some papers have considered the power of negative
control tests (Rosenbaum, 1989; Birch, 1964), it is typically ignored how the
negative control association relates to the extent of bias for the exposure-outcome
relation of interest, yet high power to detect ‘small departures’ from exposure-
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NCO or NCE-outcome independence need not imply high power to detect small
bias due to unmeasured confounding of the primary relation of interest. What
are considered ‘small departures’ should therefore depend on the relation between
the negative control association and the bias for the exposure-outcome relation
of interest. Conversely, even if there is evidence of the contrary to the negative
control null hypothesis, the bias due to uncontrolled confounding for the primary
exposure-outcome relation may not be meaningful. In any case, it is important
to consider the relative size of the biases in the negative control and primary
exposure-outcome relations.

9.3 Negative control methods for uncontrolled confounding
adjustment

The more recent literature on negative controls has considered how and under
what conditions negative controls can be leveraged to partially or fully identify
target causal quantities rather than merely the presence of bias. Lipsitch et al.
(2010) gives conditions for valid inference about the direction of bias and thus for
partial identification of the target causal quantity. These conditions are reviewed
in Supplementary Appendix S9.1. In what follows, we review three methods
for full identification: the control outcome calibration approach (COCA), the
(generalised) difference-in-difference approach, and the double-negative control
approach. Proofs of identification are given in Supplementary Appendix S9.2
for completeness. For each of the methods, we illustrate the potential impact of
assumption violations on the identifiability of the targeted quantity. Throughout,
departures from identification are termed bias.

9.3.1 Control outcome calibration approach

Identification

It may be tempting to regard the confounded association between the exposure
of interest and an NCO as a direct measure of bias for the exposure-outcome
effect of interest. However, it cannot generally be assumed that the direction
or magnitude of bias are the same for the two relations. As an alternative
to the restrictive and probably unrealistic “bias equivalence” assumption, i.e.,
the assumption of equality between between the confounded negative control
association and the bias due to unmeasured confounding of the exposure-outcome
effect of interest, Tchetgen Tchetgen (2013) proposed the COCA. The assumption
of “bias equivalence” would especially likely be violated if the NCO and primary
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outcome are measured on different scales and the bias is bounded differently
depending on the scale, such as would be the case if the NCO were binary and
the primary outcome continuous. The COCA leverages an NCO to adjust for
unmeasured confounding without requiring that the NCO and primary outcome
are measured on similar scales.

The next result, due to Tchetgen Tchetgen (2013), describes a regression-
based approach to implementing the COCA, which—characteristically of the
COCA—relies on the assumption that a (set of) counterfactual primary
outcome(s) of interest is sufficient to render the NCO conditionally independent
of the exposure of interest. Some intuition behind this approach may be obtained
upon noting that the counterfactual outcomes may well capture information
about baseline covariates and therefore serve as a proxy for unobserved pre-
exposure variables that are predictive of the NCO. The reasoning rests on the
assumption that the same covariates that explain the lack of exchangeability
for the outcome of interest also explain the confounding of the exposure-
NCO relation. However, even then it is not evident nor guaranteed that the
counterfactual outcome proxy is sufficient to render the NCO and exposure
conditionally independent.

Theorem 9.1 (A regression-based approach to implementing the COCA under
rank preservation). Suppose that the following conditions hold for all levels a of
A:
• Consistency: Y (a) = Y if a = A.
• Rank preservation: for some constant θ, Y (0) = Y (a) − θa.
• Exposure-NCO independence given counterfactual outcome: Z ⊥⊥ A|Y (0).
• NCO model: for known one-to-one model link g,
g(E[Z|A, Y ]) = β0 + β1A + β2Y , where β0, β1, β2 are identified by a regression of
Z on A and Y , and β2 ̸= 0.

Then, E[Y (a) − Y (a − 1)] = θ is identified by −β1/β2.

Because counterfactual outcome Y (0) may not fully account for the
unmeasured confounding between the exposure and NCO, it is important that
the impact of assumption violations be gauged. To this end, Tchetgen Tchetgen
(2013) described a sensitivity analysis, given below in Theorem 9.2, for the special
case of Theorem 9.1 where g is the identity link and A is a linear combination of
Y (0) and an error term ∆. When the sensitivity parameter (ρ) is set to 0, it is
implicitly assumed that the NCO and exposure of interest are independent given
counterfactual outcome Y (0) (because χ is independent of (A, Y ) and therefore
of Y (0)) and, so, the result of Theorem 9.1 is recovered.
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Theorem 9.2 (Sensitivity analysis for violations of Z ⊥⊥ A|Y (0)). Suppose the
following conditions hold for all levels a of A:
• Consistency: Y (a) = Y if a = A.
• Rank preservation: for some constant θ, Y (0) = Y (a) − θa.
• Conditional exposure-NCO independence: Z ⊥⊥ A|(Y (0), ∆).
• Exposure model: A = α0 + α1Y (0) + ∆.
• NCO model: Z = β0 + β1Y (0) + ρ∆ + χ, χ ⊥⊥ (A, Y ).

Then, E[Z|A, Y ] = β∗
0 + β∗

1A + β∗
2Y for some β∗

0 , β∗
1 , β∗

2 , and if parameters
β∗

1 , β∗
2 are identified (by a regression of Z on A and Y ) and β∗

2 ̸= 0, then θ =
(β∗

1 − ρ)/β∗
2 .

Through the rank preservation assumption, Theorem 9.1 relies also on the
strong assumption that the set of all counterfactual outcomes of an individual
are deterministically linked. A prerequisite of this assumption is that the within-
person ranks of counterfactuals are the same for all individuals. In the next
section, we consider violations of this assumption. However, as Theorem 9.3
states, in the special case where the outcome and exposure of interest are binary,
there should be no concern about violations of this assumption as it can be
dropped entirely (Tchetgen Tchetgen, 2013).

Theorem 9.3 (COCA for binary primary outcome and exposure). Suppose
that the following conditions hold:
• Consistency: Y (a) = Y if a = A
• Positivity: 0 < Pr(A = a, Y = y) for y = 0, 1.
• Exposure-NCO independence given counterfactual outcome: Z ⊥⊥ A|Y (a).
• Non-zero denominator: E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] ̸= 0.

Then,

E[Y (a)] = E[Y |A = a] Pr(A = a)

+ E[Z|A = 1 − a] − E[Z|A = a, Y = 0]
E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] Pr(A = 1 − a).

If the assumptions of Theorem 9.3 are met for a = 1, the average treatment
effect among the treated (ATT) E[Y −Y (0)|A = 1] is identified. For identification
of the average treatment effect (ATE) E[Y (1)−Y (0)], the result requires that the
assumptions are met for a = 0, 1. We will consider violations of these assumptions
in the next section.
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Sensitivity to assumption violations

In this subsection, we consider the sensitivity of the COCA to assumption
violations. In particular we illustrate the potential impact of deviating from
rank preservation and of violating the assumption that counterfactual outcome
Y (0) renders the exposure and NCO conditionally independent. While classical
measurement error in the outcome does not hamper inference in terms of bias
in the classical linear regression setting, we also illustrate that this for of
measurement error does result in bias of the COCA.

First, to illustrate the potential impact of deviating from rank preservation,
consider the setting where A is binary and where the following models hold:

θ|A ∼ Normal(E[θ], σ2
θ),

Y (0)|A, θ ∼ Normal(α0 + α1A, σ2
Y ),

Y = Y (A) = Y (0) + θA,
Z|(A, θ, Y (0)) ∼ Normal(γ0 + γ1Y (0), σ2

Z).

 (9.1)

A standard implementation of the COCA as per Theorem 9.1 yields θ̂ = −β̂1/β̂2,
where β̂1 and β̂2 are the coefficients for A and Y of an ordinary least squares
regression of Z on A and Y .

Given a value of the ATE (i.e, E[θ]), the parameter values are fully determined
under models (9.1) by the joint distribution of the observed variables A, Y, Z
(Supplementary Appendix S9.3). In particular, given a fixed distribution of
(A, Y, Z), the variance of the individual effects Y (1) − Y (0) (i.e., Var(θ) = σ2

θ)
and the ATE are linearly related via

Var(θ) = Var(A)Var(Y ) − Cov(A, Y )2

(Var(A) + E[A]2)Cov(A, Z) (β̂1 − β̂2E[θ])

(Supplementary Appendix S9.3). For values of the ATE between −4 and 2, we
chose parameter values such that the distribution of (A, Y, Z) has marginal means
E[A] = 0.25, E[Y ] = 0 and E[Z] = 0, and covariance matrix3/16 1/2 1/2

1/2 3 2
1/2 2 4

 . (9.2)

Figure 9.2 shows the bias of the COCA for the ATE. As shown, the magnitude of
bias is zero under rank preservation but increases linearly with increasing variance
of individual exposure-outcome effects.
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In illustrating the sensitivity of the COCA against violations of rank
preservation, it was assumed that the other assumptions were maintained. We
now turn to the assumption of Exposure-NCO independence given counterfactual
outcome Y (0) and likewise assume that all other assumptions, including rank
preservation, are met. In particular, we consider the setting where Y (0) is the
sum of two independent variables U1, U2. By assuming the following models, we
also stipulate that some (albeit not necessarily the same) linear combination
α′

0 + α′
1U1 + α′

2U2 is sufficient to render the exposure of interest and NCO
conditionally independent:

U1 ⊥⊥ U2,
A|(U1, U2) ∼ Normal(α0 + α1U1 + α2U2, σ2

A),
Y = Y (A) = U1 + U2 + θA, θ constant,

Z|(U1, U2, A, Y ) ∼ Normal(α′
0 + α′

1U1 + α′
2U2, σ2

Z)

 (9.3)

Variables U1 and U2 can be viewed as common causes of the NCO and the
exposure and outcome of interest. Again, the COCA identifies the quantity
θ̂ = −β̂1/β̂2 based on an ordinary least squares regression of NCO Z on A and
Y , but this quantity is not generally equal to θ. Figure 9.3 shows the asymptotic
bias (departure from identification of the ATE) of the COCA plotted against α2
over the interval (−5, 5) for the special case where U1 and U2 take the standard
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Figure 9.2: Illustration of the effect of violating the rank preservation
assumption on the difference between the quantity identified by the COCA and
the ATE (bias). The dashed line depicts the relation between the variance of
individual exposure outcome effects Y (1) − Y (0) and the mean E[Y (1) − Y (0)]
(the ATE) under a fixed observed data distribution; the solid line describes the
relation between the ATE and the bias of the implementation of the COCA.
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normal distribution and where α0, α′
0, α′

2 = 0, α1, σ2
A, σ2

Z = 1 and α′
1 = 2. The

bias is zero only when counterfactual outcome Y (0) is proportional to the linear
combination of common causes U1 and U2 that renders the NCO and exposure
of interest conditionally independent.

With α2, α′
2 = 0, models (9.3) imply the same joint distribution of observed

variables A, Y, Z as models (9.4):

U1 ⊥⊥ U2,
A|(U1, U2) ∼ Normal(α0 + α1U1, σ2

A),
Y (A) = U1 + θA, θ constant,

Y = Y (A) + U2,
Z|(U1, U2, A, Y ) ∼ Normal(α′

0 + α′
1U1, σ2

Z)


(9.4)

An important difference between (9.3) and (9.4) is that the consistency
assumption is violated (provided that Var(U2) > 0). The observed outcome
Y is now the sum of the outcome of interest Y (A) and an independent mean-zero
error term. Figure 9.3 therefore also illustrates that the validity of the COCA
also critically rests on the absence of classical measurement error in the outcome.
At α2 = 0, Figure 9.3 gives the bias of the COCA under (9.4) with the values
for the parameters given above. Although ATE θ may not be identified in the
presence of classical measurement error, in Supplementary Appendix S9.3, partial
identification bounds are derived for θ.
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Figure 9.3: Illustration of the potential impact of violating the the assumption
that the NCO and exposure of interest are independent given counterfactual
outcome Y (0).
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9.3.2 Difference-in-difference approach

Identification
The difference-in-difference approach (DiD) proposed by Sofer et al. (2016) is
an alternative approach to the COCA and does not assume rank preservation,
nor does it require that the counterfactual outcome Y (0) renders the NCO and
exposure of interest conditionally independent. Instead, the approach relies on
bias equivalence for the primary exposure-outcome relation and the exposure-
NCO relation. The simplest version of the DiD approach identifies the ATT under
additive equi-confounding, as stated in Theorem 9.4, via the difference between
the crude difference in primary outcome means and the bias of the exposure-NCO
relation.

Theorem 9.4 (Difference-in-difference approach for the ATT under additive
equi-confounding). Suppose that the following conditions hold for all levels
a = 0, 1:
• Consistency: Y (a) = Y if a = A.
• Additive equi-confounding:
E[Y (0)|A = 1] − E[Y (0)|A = 0] = E[N |A = 1] − E[N |A = 0].

Then, E[Y (1) − Y (0)|A = 1] = (E[Y |A = 1] − E[Y |A = 0]) − (E[N |A =
1] − E[N |A = 0]).

Additive equi-confounding is relatively easy to interpret. However, the
assumption may be particularly likely to be violated when primary outcome
Y and NCO Z are measured on different scales. A generalized DiD approach
still identifies the ATT under a different constraint on the dependence between
Y (0) and A in relation to the dependence between N and A. In particular,
Theorem 9.5, based on Sofer et al. (2016), relies on quantile-quantile equi-
confounding, an example of which is depicted in Figure 9.4.

Theorem 9.5 (Generalized difference-in-difference approach for the ATT under
quantile-qualine equi-confounding). Suppose that the following conditions hold
for all levels a = 0, 1:
• Consistency: Y (a) = Y if a = A.
• Quantile-quantile equi-confounding: F0(F −1

1 (p)) = G0(G−1
1 (p)) for all

p ∈ [0, 1], where Fa(y) = Pr(Y (0) ≤ y|A = a), F −1
a (p) = min{y : p ≤ Fa(y)},

Ga(z) = Pr(Z ≤ z|A = a), G−1
a (p) = min{z : p ≤ Ga(z)}.

• F1 is strictly increasing.
Then, E[Y (1) − Y (0)|A = 1] = E[Y |A = 1] − E[F −1

0 (G0(G−1
1 (V )))], where

V ∼ Uniform[0, 1].
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Sensitivity to assumption violations
We now give a simple setting where neither additive nor quantile-quantile equi-
confounding is guaranteed to hold. The setting is characterised by two common
causes U1, U2 of the primary exposure and outcome and of the NCO. As before,
we let the relative effects of these common causes to differ between exposure,
primary outcome and NCO, and we suppose that the following models hold:

A ∼ Bernoulli(pA),
U1|A ∼ Normal(α0 + α1A, σ2

1),
U2|(U1, A) ∼ Normal(α′

0 + α′
1A, σ2

2),
Y (0)|(U1, U2, A) ∼ Normal(U1 + U2, σ2

Y ),
Y = Y (A) = Y (0) + θA, θ constant,

Z|(U1, U2, A, Y (0)) ∼ Normal(β0 + β1U1 + β2U2, σ2
Z).


(9.5)

Parameters α1, α′
1, β1, β2 control the dependence (confounding), through U1 and

U2, between A and Y (0) and between A and NCO Z; in the special case where
these parameters take the value 0, there is no confounding. The models of (9.5)
imply

Y (0)|A ∼ Normal((α0 + α′
0) + (α1 + α′

1)A, σ2
1 + σ2

2 + σ2
Y ),
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Figure 9.4: Example of quantile-quantile equi-confounding. Dashed curves
represents a = 1, solid curves a = 0. There is quantile-quantile equi-confounding
because for every two points (y0, p0) and (y0, p1) on the solid and dashed curves,
respectively, of the left panel, there exists z0 such that (z0, p0) and (z0, p1) lie on
the solid and dashed curves, respectively, of the right panel; quantiles y0 and z0
need not be the same.
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Y |A ∼ Normal((α0 + α′
0) + (α1 + α′

1 + θ)A, σ2
1 + σ2

2 + σ2
Y ),

Z|A ∼ Normal((β0 + β1α0 + β2α′
0) + (β1α1 + β2α′

1)A), β2
1σ2

1 + β2
2σ2

2 + σ2
Z).

Implementing the DiD for the ATT θ would therefore identify, under (9.5),
the quantity

(E[Y |A = 1] − E[Y |A = 0]) − (E[N |A = 1] − E[N |A = 0])
= (1 − β1)α1 + (1 − β2)α′

1 + θ,

with a bias of (1−β1)α1 +(1−β2)α′
1. The generalised DiD would instead identify

E[Y |A = 1] − E[F −1
0 (G0(G−1

1 (V )))]

= (α0 + α′
0) + (α1 + α′

1 + θ) −
∫ +∞

−∞
F −1

0 (G0(G−1
1 (p))) dp,

where G−1
1 is the quantile function of the associated with the distribution of

Z|A = 1, G0 is the cumulative distribution function for Z|A = 1 and F −1
0 the

quantile function of Y |A = 0.
Figure 9.5 shows, for various parameter specifications, the bias of the

(generalised) DiD for the ATT θ. Specifically, β1 was varied over (−2, 2) and
α′

1 over {0, 1}, while β2 was set to 2 − β1, and pA = 0.5, α0, α′
0, β0, θ = 0

and α1 = 1, σ2
1, σ2

2, , σ2
Y , σ2

Z = 1. The figure illustrates that under additive and
quantile-quantile equi-confounding the DiD and generalised DiD, respectively,
identify the ATT. It also shows that both approaches are sensitive—albeit
differently—to violations of their respective assumptions. Interestingly, even in
the absence of additive equi-confounding the generalised DiD could be subject
to considerable bias (Figure 9.5, right panel, where the bias for the DiD is
(1 − β1)α1 + (1 − β2)α′

2 = 2 − (β1 + β2) = 0). Beside the interpretability of
its assumptions, an appealing property of the standard DiD approach is that the
effects of common causes need not be the same for the NCO and primary outcome
of interest; if the net additive confounding is (close to) the same for the NCO
and primary outcome, then the ATT may be (nearly) identified.

9.3.3 Double-negative control approach

Identification
Recent developments on the use of negative controls to adjust for unmeasured
confounding leverage multiple negative control variables or proxies of unmeasured
common causes (Miao et al., 2018a,b; Shi et al., 2020a,b; Tchetgen et al., 2020).
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For example, the next result, due to Miao et al. (2018b), gives a set of conditions
sufficient to identify the expected marginal counterfactual outcome E[Y (a)] by
leveraging a pair of proxy variables B, Z of an unobserved variable U that
renders the counterfactual outcomes independent of the exposure of interest (i.e.,
conditional exchangeability given U).

Theorem 9.6 (The confounding bridge approach). Suppose that for all levels a
of A, the following conditions hold:
• Consistency: Y (a) = Y if a = A.
• Positivity: 0 < Pr(A = a|B) < 1 with probability 1.
• Latent ignorability: Y (a) ⊥⊥ (A, B)|U and Z ⊥⊥ (A, B)|U .
• Confounding bridge assumption: E[Y |A = a, U ] = E[h(Z)|A = a, U ] with
probability 1 for some h.
• Completeness: for all g, if E[g(Z)|A = a, B] = 0 with probability 1, then
Pr(g(Z) = 0|A = a) = 1.

Let H(a) be the collection of all h that satisfy E[Y − h(Z)|A = a, B] = 0 with
probability 1. Then, H(a) is non-empty, and for all h ∈ H(a), E[Y (a)] = E[h(Z)].

Figure 9.6 shows a directed acyclic graph that is consistent with the
assumptions of Theorem 9.6. The proxy variables can be seen to be negative
control variables in the sense of Shi et al. (2020b), thus making the confounding
bridge approach a (double-)negative control approach. Like the primary
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Figure 9.5: Illustrating of the potential impact of violating additive or quantile-
quantile equi-confounding on the bias of the (generalised) difference-in-difference
approach. Solid lines represent the difference-in-difference approach; dashed lines
the generalised difference-in-difference.
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exposure-outcome association, the exposure-NCO association is confounded by
U . The function h is referred to as a confounding bridge because the confounding
bridge assumption indicates that it links the Y -U association with the NCO-U
association. The NCE is not part of this link but is meant to help identify it.

The confounding bridge and completeness assumptions can be difficult to
grasp. For categorical variables, however, the assumptions are subsumed under
the conditions of the next result, due to Miao et al. (2018a) and Shi et al. (2020a).

Theorem 9.7 (The proximal g-formula for categorical variables). Let U, B, Z be
discrete random variables with finite support such that U has no more categories
than B or Z. Suppose that for all levels a of A, the following conditions hold:
• Consistency: Y (a) = Y if a = A.
• Positivity: 0 < Pr(A = a, B = b) for all categories b of B.
• Latent ignorability: Y (a) ⊥⊥ (A, B)|U and Z ⊥⊥ (A, B)|U .
• Full rank: Pr(Z|U) and Pr(U |A = a, B) have rank equal to the number of
levels of U .

Then, E[Y (a)] = h(Z) Pr(Z), where h(Z) = E[Y |A = a, B] Pr(Z|A =
a, B)−1.

Here, following Miao et al. (2018a), for any categorical variables X, Y, Z,
Pr(X|Y, Z) denotes the matrix of probabilities Pr(X = x|Y, Z) with a one-
to-one correspondence between rows and categories x of X and a one-to-one
correspondence between columns and categories z of Z. Interestingly, the
proximal g-formula can also be written as a weighted version of the standard

U

B

A

Z

Y

Figure 9.6: Causal directed acyclic graph with negative control pair satisfying
the latent ignorability condition of Theorem 9.6.
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g-formula:

E[Y |A = a, B]diag(W (a)) Pr(B)

with weights W (a) = (diag Pr(B))−1 Pr(Z|A = a, B)−1 Pr(Z) and diag(W (a))
and diag(B) denoting the diagonal matrices with main diagonals W (a) and B,
respectively. In the case that proxy variables B and Z are binary, the expression
simplifies to

E{E[WY |A = a, B]}

with weights

W = (1 − B)
Pr(B = 0)

Pr(Z = 1|A, B = 1) − Pr(Z = 1)
Pr(Z = 1|A, B = 1) − Pr(Z = 1|A, B = 0)

+ −B

Pr(B = 1)
Pr(Z = 1|A, B = 0) − Pr(Z = 1)

Pr(Z = 1|A, B = 1) − Pr(Z = 1|A, B = 0) .

Sensitivity to assumption violations
Theorem 9.7 can accommodate any number of categories of U by taking proxy
variables with sufficiently many categories, e.g., by combining sufficiently many
proxies. However, upon increasing the number of proxy variables, the latent
ignorability assumption becomes more difficult to satisfy in the sense that Y (a)
must be independent of increasingly many proxies given A and U . In this
subsection, we consider the sensitivity of the proximal g-formula for violations of
latent ignorability as well as of the assumption that U has no more categories
than the proxy variables.

In particular, we consider the case where the variables A, Y of interest and
the proxy variables B, Z are binary, where U is a pair (U1, U2) of independent
binary variables, and where the following models hold:

U1 ∼ Bernoulli(1/2),
U2|U1 ∼ Bernoulli(ρ),

B|U1, U2 ∼ Bernoulli(expit{α0 + U1 + U2}),
A|U1, U2, B ∼ Bernoulli(expit{β0 + U1 + β1U2 + B}),

Z|U1, U2, B, A ∼ Bernoulli(expit{γ0 + U1 − 1/2U2 + γ1A}),
Y |U1, U2, B, A, Z ∼ Bernoulli(expit{θ0 + U1 + U2 + Z + θ1B}),

where expit(x) = 1/(1 + exp[−x]) for all x. Intercepts α0, β0, γ0, θ0 were chosen
to ensure that Pr(B = 1) = Pr(A = 1) = 1/2 and Pr(Z = 1) = Pr(Y = 1) = 1/5.
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We let ρ = 0, β1 = 1, γ1 = 0, θ1 = 0 by default. In scenario A, instead of
taking β1 = 1, ρ = 0, we vary β1 over (−4, 4) under ρ = 1/2 to violate the full
rank assumption, which implies that U has no more categories than B or Z. In
scenario B, instead of taking γ1 = 0, we violate the latent ignorability assumption
by varying γ1 over (−4, 4) (i.e., Z is not a negative control outcome). In scenario
C, we violate the same assumption, now by varying θ1 over (−4, 4) (i.e., B is not
a negative control exposure) instead of taking θ1 = 0.

Figure 9.7 gives the bias of the proximal g-formula for the ATE E[Y (1)−Y (0)]
for all scenarios. Also shown are the differences between the crude risk differences
E[Y |A = 1] − E[Y |A = 0] and the ATE. The bias is zero under the default
parameters, which are consistent with the assumptions of Theorem 9.7. The
figure also illustrates that violations of these unverifiable assumptions can have
a large impact on the validity of the double-negative control approach.

In an other study, Vlassis et al. (2020) found bias of the crude risk difference
to be consistently smaller than that of the proximal g-formula. Our results
demonstrate that in some settings, the proximal g-formula results in considerably
more bias than what would result from ignoring unmeasured confounding.
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Figure 9.7: Bias of crude approach (dashed) and proximal g-formula (solid)
under violations of the cardinality assumption (Scenario A), negative control
outcome condition (Scenario B), or negative control exposure condition (Scenario
C).
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9.4 Conclusion

Negative controls have gained increasing interest in addressing concerns about
the validity of a study. The literature on the topic has tended to consider
increasingly ambitious tasks, from confounding detection to full identification
of causal effects, typically at the cost of stronger and more complex assumptions.
Efforts have been made to introduce negative controls to a broader audience and
ensure they are adopted in epidemiological practice (Shi et al., 2020b). However,
little attention has yet been given to the methods’ assumptions and potential
impact of assumptions violations. While the assumptions may be tenable enough
in some specific cases to justify an application, in others substantial violations
are possible. We have illustrated that assumption violations, some of which
are likely even in very simple settings, may have a considerable impact on the
validity of the negative control approach, thereby limiting its utility. Despite
the possible abundance of negative controls, their routine use in epidemiological
practice may fail to strengthen evidence about exposure-outcome effects unless
it can be safely assumed that assumption violations are absent or else if the
robustness against these violations is well understood. Given the potential
impact of assumption violations, it may sometimes be desirable to replace strong
conditions for identification with weaker conditions that are easier to verify,
even when these weaker conditions imply at most partial identification. Future
research in this area may broaden the applicability of negative controls and in
turn make them more suited for routine use in epidemiological practice. When
they are used, we advise that researches consider the results of their applications
carefully and explicitly in light of the methods’ limitations and assumptions.
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Supplementary Material

S9.1 Identifiability of the direction of bias using an NCO/NCE

Theorem (Identification of the direction of bias using an NCO/NCE). Suppose
the following conditions hold:
• Latent ignorability for some scalar U : Z ⊥⊥ (A, Y )|U and Y ⊥⊥ A|U .
• Primary exposure model: A = α0 + α1U + ϵ, ϵ ⊥⊥ U , E[ϵ] = 0.
• Primary outcome model: Y = γ0 + γ1U + θA + ε, ε ⊥⊥ (A, U), E[ε] = 0.
• NCO/NCE model: Z = β∗

0 + β∗
1U + δ, δ ⊥⊥ (A, Y, U),E[δ] = 0.

Then, θ̂ − θ has the same sign as

Cov(Y, Z)
Cov(A, Z) − θ̂.

Proof. For the ordinary least squares coefficient θ̂ = Cov(Y, A)/Var(A) in the
regression of Y on A, we have

θ̂ − θ = γ1
Cov(U, A)

Var(A) (by the primary outcome model)

= γ1α1
Var(U)
Var(A) . (by the primary exposure model)

Note that Var(E[A|U ]) = α2
1Var(U) and, by the law of total variance, Var(A) =

Var(E[A|U ]) + E[Var(A|U)]. Thus, Var(A) − E[Var(A|U)] = α2
1Var(U)

θ̂ − θ = γ1
α1

Var(A) − E[Var(A|U)]
Var(A) .

The fraction (Var(A)−E[Var(A|U)])/Var(A) can be interpreted as the proportion
of variance of A that is explained by U . By the law of total variance, the fraction
is bounded by 0 and 1.

Next, note that

Cov(Y, Z)
Cov(A, Z) = γ1Cov(Z, U) + θCov(A, Z)

Cov(A, Z) (by the primary outcome model)

= γ1
Cov(Z, U)
Cov(A, Z) + θ

= γ1
Cov(Z, U)

α1Cov(U, Z) + θ (by the primary exposure model)
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= γ1
α1

+ θ.

Hence,

θ̂ − θ =
(

Cov(Y, Z)
Cov(A, Z) − θ

)
Var(A) − E[Var(A|U)]

Var(A) ,

θ =
θ̂ − λ

Cov(Y, Z)
Cov(A, Z)
1 − λ

,

θ̂ − θ =
(

Cov(Y, Z)
Cov(A, Z) − θ̂

)
λ

1 − λ
,

where λ = (Var(A) − E[Var(A|U)])/Var(A). Clearly, since λ ∈ [0, 1], the sign of
the bias θ̂ − θ is identified by Cov(Y, Z)/Cov(A, Z) − θ̂.

No identifiability of the direction of bias when Z is not an NCE.
Consider the following models

U ∼ Normal(E[U ], Var(U)),
A = α0 + α1U + ϵ, ϵ|U ∼ Normal(0, Var(ϵ)),
Z = β∗

0 + β∗
1U + δ, δ|(U, A) ∼ Normal(0, Var(δ)),

Y = γ0 + γ1U + γ2Z + θA + ε, ε|(Z, A, U) ∼ Normal(0, Var(ε)),

which are compatible with those of the above theorem if γ2 = 0. If γ2 ̸= 0, then the
Latent ignorability condition is violated because Z ⊥̸⊥ (A, Y )|U . If it were possible
to infer from the distribution of the observables the direction of bias θ̂ − θ, then
there exists some function g of the joint distribution F of (A, Y, Z) such that
g(F )[θ̂ − θ] > 0. To prove that this is false, it suffices to show that for some F ,
the bias θ̂ − θ may be positive and negative, depending on unobservables, so that
for all g, we have g(F )[θ̂ − θ] ̸> 0.

Consider the models of the previous section with parameters set to the
following values to yield multivariate normal distributions G, H:
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G H G H

Var(U) 1 1 α1 1 1
E[U ] 0 0 β∗

1 1 1
Var(ϵ) 1 1 γ1 −5 1
α0 0 0 θ 1 −1
Var(δ) 1 1 γ2 3 1
β∗

0 0 0
Var(ε) 1 9
γ0 0 0

Given zero means of A, Y, Z, the corresponding covariance matrices

Cov(G) =


1 1 1 −1
1 2 1 0
1 1 2 2

−1 0 2 12

 , Cov(H) =


1 1 1 1
1 2 1 0
1 1 2 2
1 0 2 12


imply the same distribution for (A, Y, Z), despite the fact that the true effects θ
have opposite signs. This shows that in general the direction of bias cannot be
identified.

S9.2 Proofs to theorems in section 9.3

Proof to Theorem 9.1. For all a,

g−1(β0 + β2y) = E[Z|A = 0, Y = y] (by NCO model)
= E[Z|A = 0, Y (0) = y] (by consistency)
= E[Z|A = a, Y (0) = y]

(by exposure-NCO independence given counterfactual outcome)
= E[Z|A = a, Y (0) + θA − θA = y]
= E[Z|A = a, Y (a) = y + θa] (by rank preservation)
= E[Z|A = a, Y = y + θa] (by consistency)
= g−1(β0 + β1a + β2(y + θa))
= g−1(β0 + (β1 + β2θ)a + β2y),

so that, for a = 1,

β0 + β2y = β0 + (β1 + β2θ) + β2y,
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θ = −β1/β2.

Proof to Theorem 9.2.

Z = β0 + β1Y (0) + ρ(A − E[A|Y (0)]) + χ (by linear NCO model)
= β0 + β1Y (0) + ρ(A − α0 − α1Y (0)) + χ

(by linear exposure model)
= β0 + β1(Y (A) − θA) + ρ(A − α0 − α1Y (A) + α1θA) + χ

(by rank preservation)
= (β0 − ρα0) + (ρ + [ρα1 − β1]θ)A + (β1 − ρα1)Y + χ,

(by consistency)
and E[Z|A, Y ] = (β0 − ρα0 + E[χ]) + (ρ + [ρα1 − β1]θ)A + (β1 − ρα1)Y,

(by linear NCO model)

so that

β∗
1 = ρ + (ρα1 − β1)θ and β∗

2 = β1 − ρα1,

and, in turn, θ = (β∗
1 − ρ)/β∗

2 .

Proof to Theorem 9.3. We have

E[Z|A = 1 − a]
= E{E[Z|A = 1 − a, Y (a)]|A = 1 − a}
= E{E[Z|A = a, Y (a)]|A = 1 − a}

(by exposure-NCO independence given counterfactual outcome)
= E[Z|A = a, Y = 0] Pr(Y (a) = 0|A = 1 − a) +

+ E[Z|A = a, Y = 1] Pr(Y (a) = 1|A = 1 − a) (by consistency)
= E[Z|A = a, Y = 0] + {E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0]}

× Pr(Y (a) = 1|A = 1 − a),

so that

Pr(Y (a) = 1|A = 1 − a) = E[Z|A = 1 − a] − E[Z|A = a, Y = 0]
E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] .

It follows that

E[Y (a)] = E[Y (a)|A = a] Pr(A = a) + E[Y (a)|A = 1 − a] Pr(A = 1 − a)
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= E[Y |A = a] Pr(A = a) + E[Y (a)|A = 1 − a] Pr(A = 1 − a)
(by consistency)

= E[Y |A = a] Pr(A = a)

+ E[Z|A = 1 − a] − E[Z|A = a, Y = 0]
E[Z|A = a, Y = 1] − E[Z|A = a, Y = 0] Pr(A = 1 − a).

Proof to Theorem 9.4.

E[Y (1) − Y (0)|A = 1]
= E[Y (1)|A = 1] − E[Y (0)|A = 1]
= E[Y |A = 1] − E[Y (0)|A = 1] (by consistency)
= E[Y |A = 1] − (E[Y (0)|A = 1] − E[Y (0)|A = 0]) − E[Y (0)|A = 0]
= E[Y |A = 1] − (E[N |A = 1] − E[N |A = 0]) − E[Y (0)|A = 0]

(by additive equi-confounding)
= (E[Y |A = 1] − E[Y |A = 0]) − (E[N |A = 1] − E[N |A = 0])

(by consistency)

Proof to Theorem 9.5. By quantile-quantile equi-confounding, we have, for all
p ∈ [0, 1],

F0(F −1
1 (p)) = G0(G−1

1 (p)),
F −1

0 (F0(F −1
1 (p))) = F −1

0 (G0(G−1
1 (p))),

F −1
1 (p) = F −1

0 (G0(G−1
1 (p))). (under strictly monotonic F1)

Note that the right-hand side of the above equality is a functional of observables
because F0(y) = Pr(Y (0) ≤ y|A = 0) = Pr(Y ≤ y|A = 0) by consistency. Now,
letting V ∼ Uniform[0, 1], we have that F −1

1 (V ) ∼ Y (0)|A = 1 by the Probability
Integral Transform theorem, and so

E[Y (0)|A = 1] = E[F −1
0 (G0(G−1

1 (V )))].

Proof to Theorem 9.6. Let h be the function satisfying E[Y |A = a, U ] =
E[h(Z)|A = a, U ] with probability 1 (and note that this function exists by the
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confounding bridge assumption). Let U = {u : E[Y |A = a, U = u] = E[h(Z)|A =
a, U = u]}, so that Pr(U ∈ U) = 1 and

E[Y (a)] = E[Y (a)|U ∈ U ]
= E{E[Y (a)|U ]|U ∈ U}
= E{E[Y (a)|A = a, U ]|U ∈ U}

(since Y (a) ⊥⊥ A|U by latent ignorability)
= E{E[Y |A = a, U ]|U ∈ U} (by consistency)
= E{E[h(Z)|A = a, U ]|U ∈ U}
= E{E[h(Z)|U ]|U ∈ U} (since Z ⊥⊥ A|U by latent ignorability)
= E[h(Z)|U ∈ U ]
= E[h(Z)].

Next, note that by the confounding bridge assumption, for all U ∈ U ,

E[Y |A = a, U ] = E[h(Z)|A = a, U ]
E[Y |A = a, B, U ] = E[h(Z)|A = a, B, U ], (by latent ignorability)

so that

E{E[Y |A = a, B, U ]|A = a, B} = E{E[h(Z)|A = a, B, U ]|A = a, B}
E[Y |A = a, B] = E[h(Z)|A = a, B],

E[Y − h(Z)|A = a, B] = 0.

Let H(a) be the collection of all h′ satisfying E[Y − h′(Z)|A = a, B] = 0 with
probability 1. Now, for any h′ ∈ H(a), we must have

E[h(Z) − h′(Z)|A = a, B] = 0.

But from completeness, with g(Z) = h(Z) − h′(Z), it follows that h(Z) = h′(Z)
with probability 1. This concludes the proof.

Proof to Theorem 9.7. Since Z ⊥⊥ (A, B)|U , we have Pr(Z|A = a, B) =
Pr(Z|U) Pr(U |A = a, B). Since matrices Pr(Z|U) and Pr(U |A = a, B) are
of full rank, Pr(Z|A = a, B) is of full rank and has left or right inverse
Pr(Z|A = a, B)−1. Let h(Z) = E[Y |A = a, B] Pr(Z|A = a, B)−1 and observe
that

h(Z) = E[Y (a)|A = a, B] Pr(Z|A = a, B)−1 (by consistency)
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= E[Y (a)|U ] Pr(U |A = a, B) Pr(Z|A = a, B)−1

(since Y (a) ⊥⊥ (A, B)|U)
= E[Y (a)|U ] Pr(U |A = a, B)[Pr(Z|U) Pr(U |A = a, B)]−1

(since Z ⊥⊥ (A, B)|U)
= E[Y (a)|U ] Pr(U |A = a, B) Pr(U |A = a, B)−1 Pr(Z|U)−1

= E[Y (a)|U ] Pr(Z|U)−1.

It follows that E[Y (a)|U ] = h(Z) Pr(Z|U) and in turn E[Y (a)] =
E[Y (a)|U ] Pr(U) = h(Z) Pr(Z), as desired.

S9.3 Derivation of expressions in section 9.3.1

S9.3.1 Implications of models (9.1)

Expression of the COCA

An implementation of the COCA by ordinary least squares under the linear NCO
model E[Z|A, Y ] = β0 + β1A + β2Y , identifies the following quantity

θ̂ = − β̂1

β̂2

= −Cov(A, Z)Var(Y ) − Cov(Y, Z)Cov(A, Y )
Cov(Y, Z)Var(A) − Cov(A, Z)Cov(A, Y ) ,

where

Var(Y ) = Var(A)α2
1 + σ2

Y + σ2
θVar(A) + σ2

θE[A]2 + E[θ]2Var(A)
+ 2Var(A)α1E[θ],

Var(Z) = Var(A)α2
1γ2

1 + γ2
1σ2

Y + σ2
Z ,

Cov(A, Y ) = Var(A)α1 + Var(A)E[θ],
Cov(A, Z) = Var(A)α1γ1,

Cov(Y, Z) = γ1(Var(A)α2
1 + σ2

Y + Var(A)α1E[θ]).
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Deterministic relation between E[θ] and Var[θ] given observed data
distribution
From the expressions of the variances and covariates above, for arbitrary
E[θ], Var(A), it follows that

α1 = Cov(A, Y ) − Var(A)E[θ]
Var(A) ,

α0 = E[Y ] − (α1 + E[θ])E[A],

γ1 = Cov(A, Z)
Var(A)α1

,

γ0 = E[Z] − (α0γ1 + α1γ1E[A]),

σ2
Y = Cov(Y, Z) − γ1(Var(A)α2

1 + Var(A)α1E[θ])
γ1

,

σ2
θ = Var(Y ) − [Var(A)α2

1 + σ2
Y + Var(A)E[θ]2 + 2Var(A)α1E[θ]]

Var(A) + E[A]2 ,

σ2
Z = Var(Z) − (Var(A)α2

1γ2
1 + γ2

1σ2
Y ),

provided that Var(A), α1, γ1 ̸= 0, and σ2
Y , σ2

θ , σ2
Z ≥ 0. Note that the right-hand

sides of every equality are expressed only in terms of functionals of the available
data distribution and the left-hand sides of the equalities above it. It follows that
we have a deterministic relationship between Var(θ) and E[θ] given the observed
data distribution of (A, Y, Z). In fact, the relationship is linear:

σ2
θ = Var(Y )Cov(A, Z) − Cov(A, Y )Cov(Y, Z)

(Var(A) + E[A]2)Cov(A, Z)

− Cov(A, Y )Cov(A, Z) − Var(A)Cov(Y, Z)
(Var(A) + E[A]2)Cov(A, Z) E[θ].

= Var(A)Var(Y ) − Cov(A, Y )2

(Var(A) + E[A]2)Cov(A, Z) (β̂1 − β̂2E[θ]).

The distribution of Z|A, Y

First note that

E[θ|Y, A = 0] = E[θ|Y (0), A = 0] (by consistency)
= E[θ|A = 0] (since Y (0) ⊥⊥ θ|A)
= E[θ]. (since θ ⊥⊥ A)
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Next, for arbitrary a, consider E[θ|Y, A = a] and note that (θ, Y )|A = a takes
a bivariate normal distribution with means

E[θ|A = a] = E[θ],
E[Y |A = a] = E[Y (A)|A = a] (by consistency)

= E[Y (0) + θA|A = a]
= α0 + α1a + E[θ],

variances

Var(θ|A = a) = σ2
θ , (since θ ⊥⊥ A)

Var(Y |A = a) = Var(Y (A)|A = a) (by consistency)
= Var(Y (0) + θA|A = a)
= Var(Y (0)|A = a) + Var(θ) (since Y (0) ⊥⊥ θ|A and θ ⊥⊥ A)
= σ2

Y + σ2
θ ,

and correlation

Cor(Y, θ|A = a)

=
√

Cov2(Y, θ|A = a)
Var(Y |A = a)Var(θ|A = a)

=
√

E[(Y − E[Y |A = a])(θ − E[θ|A = a])|A = a]2
Var(Y |A = a)Var(θ|A = a)

=
√

E[(Y (A) − E[Y (A)|A = a])(θ − E[θ|A = a])|A = a]2
Var(Y |A = a)Var(θ|A = a) (by consistency)

=
√

E[(Y (0) + θA − E[Y (0) + θA|A = a])(θ − E[θ|A = a])|A = a]2
Var(Y |A = a)Var(θ|A = a)

=

√√√√√√ E[((Y (0) − E[Y (0)|A = a])
+ (θA − E[θ|A = a]))(θ − E[θ|A = a])|A = a]2

Var(Y |A = a)Var(θ|A = a)

=
√

[Cov(Y (0), θ|A = a) + Cov(θA, θ|A = a)]2
Var(Y |A = a)Var(θ|A = a)

=
√

a2Var(θ|A = a)2

Var(Y |A = a)Var(θ|A = a) (since Y (0) ⊥⊥ θ|A)
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= a

√
σ2

θ

σ2
Y + σ2

θ

.

Therefore,

E[θ|Y, A = a] = E[θ] +
√

σ2
θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[−(α0 + E[θ])a − α1a2 + aY ]

(DeGroot and Schervisch, 2012, Theorem 5.10.4, p. 340).
Hence,

E[θ|Y, A] = E[θ] +
√

σ2
θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[−(α0 + E[θ])A − α1A2 + AY ]

and

Z = γ0 + γ1Y (0) + ε, ε|(A, θ, Y (0)) ∼ Normal(0, σ2
Z)

= γ0 + γ1(Y (A) − θA) + ε

= γ0 + γ1(Y − θA) + ε (by consistency)
= γ0 − γ1θA + γ1Y + ε,

so that Z|A, Y has a normal distribution with mean

E[Z|A, Y ] = γ0 − γ1E[θ|Y, A]A + γ1Y

= γ0 − γ1A

[
E[θ] +

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[−(α0 + E[θ])A − α1A2 + AY ]
]

+ γ1Y

= γ0 − γ1E[θ]A +
√

σ2
θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

[(α0 + E[θ])γ1A2

+ α1γ1A3 − γ1A2Y ] + γ1Y

= β∗
0 + β∗

1A + β∗
2A2 + β∗

3A3 + β∗
4Y + β∗

5A2Y,

where

β∗
0 = γ0,

β∗
1 = −γ1E[θ],

β∗
2 =

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

(α0 + E[θ])γ1,
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β∗
3 =

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

α1γ1,

β∗
4 = γ1,

β∗
5 = −

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

γ1,

so E[θ] = −β∗
1/β∗

4 if β∗
4 ̸= 0. Therefore, with a continuous primary outcome

and non-binary exposure, the rank preservation assumption can sometimes be
dropped whilst maintaining identifiability. If A is binary, we have E[Z|A, Y ] =
β∗

0 + (β∗
1 + β∗

2 + β∗
3)A + β∗

4Y + β∗
5AY, where

(β∗
1 + β∗

2 + β∗
3) = γ1

√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

(α0 + α1) + γ1

(√
σ2

θ

σ2
Y + σ2

θ

σ2
θ

σ2
Y

− 1
)
E[θ]

= −β∗
5(α0 + α1) − (β∗

4 + β∗
5)E[θ].

This suggests a test for violations of rank preservation since the interaction term
coefficient β∗

5 is zero if and only if Var(θ) = 0 or β∗
4 = 0. Provided that β∗

4 ̸= 0,
a valid test of the null hypothesis β∗

5 = 0 is thus a valid test of rank preservation
under the above models.

S9.3.2 Implications of models (9.3)
Under models 9.3, we have the following variances and covariances:

Var(A) = α2
1Var(U1) + α2

2Var(U2) + σ2
A,

Var(Y ) = (1 + θα1)2Var(U1) + (1 + θα2)2Var(U2) + θ2σ2
A,

Var(Z) = (α′
1)2Var(U1) + (α′

2)2Var(U1) + σ2
Z ,

Cov(A, Y ) = (1 + θα1)α1Var(U1) + (1 + θα2)α2Var(U2) + θσ2
A,

Cov(A, Z) = α1α′
1Var(U1) + α2α′

2Var(U2),
Cov(Y, Z) = (1 + θα1)α′

1Var(U1) + (1 + θα2)α′
2Var(U2)

and means

E[A] = α0 + α1E[U1] + α2E[U2],
E[Y ] = θα0 + (1 + θα1)E[U1] + (1 + θα2)E[U2],
E[Z] = α0 + α1E[U1] + α2E[U2].
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S9.3.3 Partial identification in the presence of classical measurement
error in the outcome

Theorem. Suppose the following conditions hold:
• Rank preservation: Y (A) = Y (0) + θA, θ constant.
• Exposure-NCO independence given counterfactual outcome: Z ⊥⊥ A|Y (0).
• NCO model: Z = β∗

0 + β∗
1Y (0) + ε, ε ⊥⊥ (A, Y (0)),E[ε] = 0.

• Classical measurement error: Y = Y (A) + U , U ⊥⊥ (A, Y (0), Z), E[U ] = 0.
Then,

θ ∈
[
θ̂, θ̂

(
1 − R2 1

1 − Cor2(A, Y )

)
+ R2 Var(Y )

Cov(A, Y )

(
1 − 1

1 − Cor2(A, Y )

)]
,

where R2 = 1 −E[Var(Y |A)]/Var(Y ) is the proportion of variance of Y explained
by A, and θ̂ = −β̂1/β̂2 and β̂1 and β̂1 are the ordinary least squares coefficients
for A and Y in a linear regression of Z on A and Y .

Proof. We have that

Z = β∗
0 + β∗

1Y (0) + ε (by NCO model)
= β∗

0 + β∗
1(Y (A) − θA) + ε (by rank preservation)

= β∗
0 + β∗

1(Y − U − θA) + ε (under classical measurement error)
= β∗

0 + β∗
1Y − β∗

1U − β∗
1θA + ε,

where ε ⊥⊥ (Y, A, U) (since U ⊥⊥ ε|(A, Y (0)) and ε ⊥⊥ (A, Y (0)), so that ε ⊥⊥
(Y (0), A, U)).

Now, let

β̂1 = Cov(A, Z)Var(Y ) − Cov(Y, Z)Cov(A, Y )
Var(A)Var(Y ) − Cov2(A, Y )

,

β̂2 = Cov(Y, Z)Var(A) − Cov(A, Z)Cov(A, Y )
Var(A)Var(Y ) − Cov2(A, Y )

,

the ordinary least squares coefficients in a linear regression of Z on A and Y . We
have

Cov(A, Z) = β∗
1(Cov(A, Y ) − θVar(A)),

Cov(Y, Z) = β∗
1(Var(Y ) − Var(U) − θCov(A, Y )),
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so that

β̂1 = β∗
1

(
Cov(A, Y )Var(U)

Var(A)Var(Y ) − Cov2(A, Y )
− θ

)
,

β̂2 = β∗
1

(
1 − Var(A)Var(U)

Var(A)Var(Y ) − Cov2(A, Y )

)

and in turn

θ̂ = − β̂1

β̂2

= −Cov(A, Y )Var(U) − θ(Var(A)Var(Y ) − Cov2(A, Y ))
Var(A)Var(U) − (Var(A)Var(Y ) − Cov2(A, Y ))

,

θ = θ̂

(
1 − Var(A)Var(U)

Var(A)Var(Y ) − Cov2(A, Y )

)
+ Cov(A, Y )Var(U)

Var(A)Var(Y ) − Cov2(A, Y )

= θ̂

(
1 − Var(U)

Var(Y )
1

1 − Cor2(A, Y )

)

+ Var(U)
Var(Y )

Var(Y )
Cov(A, Y )

(
1 − 1

1 − Cor2(A, Y )

)
.

By the law of total (conditional) variance,

Var(Y ) = E[Var(Y |A)] + Var(E[Y |A])
= E[Var(Y |A, Y (0))|A] + E[Var(E[Y |A, Y (0)])|A] + Var(E[Y |A])
= Var(U) + E[Var(E[Y |A, Y (0)])|A] + Var(E[Y |A]).

Now, define R2 = (Var(Y ) −E[Var(Y |A)])/Var(Y ), the proportion of variance of
Y explained by A and observe that

R2 ≥ Var(U)
Var(Y ) ≥ 0.

Next, define

θ̃(λ) = θ̂

(
1 − λ

1
1 − Cor2(A, Y )

)
+ λ

Var(Y )
Cov(A, Y )

(
1 − 1

1 − Cor2(A, Y )

)
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and note that, because the first derivative of θ̃ is invariant to changes in λ, θ̃ is
monotonic. Hence

θ ∈ [θ̃(0), θ̃(R2)].
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Identification of causal effects in case-control studies

Abstract

Case-control designs are an important tool in contrasting the effects of well-
defined treatments. In this paper, we reconsider classical concepts, assumptions
and principles and explore when the results of case-control studies can be endowed
a causal interpretation. Our focus is on identification of target causal quantities,
or estimands. We cover various estimands relating to intention-to-treat or per-
protocol effects for popular sampling schemes (case-base, survivor, and risk-set
sampling), each with and without matching. Our approach may inform future
research on different estimands, other variations of the case-control design or
settings with additional complexities.

236



Chapter 10

10.1 Introduction

In causal inference, it is important that the causal question of interest is
unambiguously articulated (Hernán and Robins, 2020). The causal question
should dictate, and therefore be at the start of, investigation. When the target
causal quantity, the estimand, is made explicit, one can start to question how it
relates to the available data distribution and, as such, form a basis for estimation
with finite samples from this distribution.

The counterfactual framework offers a language rich enough to articulate a
wide variety of causal claims that can be expressed as what-if statements (Hernán
and Robins, 2020). Another, albeit closely related, approach to causal inference
is target trial emulation, an explicit effort to mitigate departures from a study
(the ‘target trial’) that, if carried out, would enable one to readily answer the
causal what-if question of interest (Hernán and Robins, 2016). While it may be
too impractical or unethical to implement, making explicit what a target trial
looks like has particular value in communicating the inferential goal and offers a
reference against which to compare studies that have been or are to be conducted.

The counterfactual framework and emulation approach have become
increasingly popular in observational cohort studies. Case-control studies,
however, have not yet enjoyed this trend. A notable exception is given by
Dickerman et al. (2020), who recently outlined an application of trial emulation
with case-control designs to statin use and colorectal cancer.

In this paper, we give an overview of how observational data obtained with
case-control designs can be used to identify a number of causal estimands and, in
doing so, recast historical case-control concepts, assumptions and principles in a
modern and formal framework.

10.2 Preliminaries

10.2.1 Identification versus estimation

An estimand is said to be identifiable if the distribution of the available data is
compatible with exactly one value of the estimand, or therefore, if the estimand
can be expressed as a function of the available data distribution. Identification
forms a basis for estimation with finite samples from this distribution (Petersen
and Van der Laan, 2014). Once the estimand has been made explicit and
an identifiability expression established, estimation is a purely statistical task.
While the expression will often naturally translate into a plug-in estimator,
there is, however, generally more than one way to translate an identifiability
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result into an estimator and different estimators may have important differences
in their statistical properties. Here, our focus is on identification, so that the
purely statistical issues of the next step in causal inference, estimation, can be
momentarily put aside.

10.2.2 Case-control study nested in cohort study

To facilitate understanding, it is useful to consider every case-control study as
being “nested” within a cohort study. A case-control study is effectively a cohort
study with missingness governed by the control sampling scheme. Therefore,
when the observed data distribution of a case-control study is compatible with
exactly one value of a given estimand, then so is the available or observed data
distribution of the underlying cohort study. In other words, identifiability of an
estimand with a case-control study implies identifiability of the estimand with
the cohort study within which it is nested. The converse is not evident and in fact
may not be true. In this paper, the focus is on sets of conditions or assumptions
that are sufficient for identifiability in case-control studies.

10.2.3 Set-up of underlying cohort study

Consider a time-varying exposure Ak that can take one of two levels, 0 or 1, at K
successive time points tk (k = 0, 1, ..., K − 1), where t0 denotes baseline (cohort

Figure 10.1: Illustration of possible courses of follow-up of an individual for a
study with baseline t0 and administrative study end t12.

1
2
3
4
5
6
7
8
9

● ● ● ● ● ●

● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Solid bullets indicate ‘exposed’; empty bullets indicate ‘not exposed’. The incident
event of interest is represented by a cross.
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entry or time zero). Study participants are followed over time until they sustain
the event of interest or the administrative study end tK , whichever comes first.
We denote by T the time elapsed from baseline until the event of interest and
let Yk = I(T < tk) indicate whether the event has occurred by tk. The lengths
between the time points are typically fixed at a constant (e.g., of one day, week,
or month). Figure 10.1 depicts twelve equally spaced time points over, say, twelve
months with several possible courses of follow-up of an individual. As the figure
illustrates, individuals can switch between exposure levels during follow-up, as
in any truly observational study. Apart from exposure and outcome data, we
also consider a (vector of) covariate(s) Lk, which describes time-fixed individual
characteristics or time-varying characteristics typically relating to a time window
just before exposure or non-exposure at tk, k = 0, 1, ..., K − 1.

10.2.4 Causal contrasts

Although there are many possible contrasts, particularly with time-varying
exposures, for simplicity we consider only two pairs of mutually exclusive
interventions: (1) setting baseline exposure A0 to 1 versus 0; and (2) setting
all of A0, A1, ..., AK−1 to 1 (‘always exposed’) versus all to 0 (‘never exposed’).
For a = 0, 1, we let counterfactual outcome Yk(a) indicate whether the event
has occurred by tk under the baseline-only intervention that sets A0 to a. By
convention, we write 1 = (1, 1, ..., 1) and 0 = (0, 0, ..., 0), and let Yk(1) and Yk(0)
indicate whether the event has occurred by tk under the intervention that sets
(A0, A1, ..., AK−1) all to 1 and all to 0, respectively. Further details about the
notation and set-up are given in Supplementary Appendix S10.1.

10.2.5 Case-control sampling

The fact that each time-specific exposure variable can take only one value per
time point means that at most one counterfactual outcome can be observed
per individual. This type of missingness is common to all studies. Relative
to the cohort studies within which they are nested, case-control studies have
additional missingness, which is governed by the control sampling scheme. In
this paper, we focus on three well-known sampling schemes: case-base sampling,
survivor sampling, and risk-set sampling. The next sections give an overview of
conditions under which intention-to-treat and always-versus-never-exposed per-
protocol effects can be identified with the data that are observed under these
sampling schemes.
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10.3 Case-control studies without matching

Table 10.1 summarises a number of identification results for case-control
studies without matching. More formal statements and proofs are given in
Supplementary Appendix S10.2. In all case-control studies that we consider
in this section, cases are compared with controls with regard to their exposure
status via an odds ratio, even when an effect measure other than the odds ratio
is targeted. An individual qualifies as a case if and only if they sustain the event
of interest by the administrative study end (i.e., YK = 1) and adhered to one of
the protocols of interest until the time of the incident event. In Figure 10.1, the
individual represented by row 1 is therefore regarded as a case (an exposed case
in particular) in our investigation of intention-to-treat effects but not in that of
per-protocol effects. Whether an individual (also) serves as a control depends on
the control sampling scheme.

10.3.1 Case-base sampling
The first result in Table 10.1 describes how to identify the intention-to-treat effect
as quantified by the marginal risk ratio

Pr(YK(1) = 1)
Pr(YK(0) = 1)

under case-base sampling. (For identification of a conditional risk ratio, see
Theorem 10.2 of Supplementary Appendix S10.2.) Case-base sampling, also
known as case-cohort sampling, means that no individual who is at risk at
baseline of sustaining the event of interest is precluded from selection as a control.
Selection as a control, S, is further assumed independent of baseline covariate L0
and exposure A0. Selecting controls from survivors only (e.g., rows 4, 5, 7 and 9
in Figure 10.1) violates this assumption when survival depends on L0 or A0.

To account for baseline confounding, inverse probability weights could be
derived from control data according to

W = A0
Pr(A0 = 1|L0, S = 1) + 1 − A0

1 − Pr(A0 = 1|L0, S = 1) . (10.1)

We then compute the odds of baseline exposure among cases and among controls
in the pseudopopulation that is obtained by weighting everyone by subject-
specific values of W . The ratio of these odds coincides with the target risk ratio
under the three key identifiability conditions of consistency, baseline conditional
exchangeability and positivity (Hernán and Robins, 2020).
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The identification result for case-base sampling suggests a plug-in estimator:
replace all functionals of the theoretical data distribution with sample analogues.
For example, to obtain the weight for an individual with baseline covariate level
l0, replace the theoretical propensity score Pr(A0 = 1|L0 = l0, S = 1) with an
estimate P̂r(A0 = 1|L0 = l0, S = 1) derived from a fitted model (e.g., a logistic
regression model) that imposes parametric constraints on the distribution of A0
given L0 among the controls.

10.3.2 Survivor sampling
With survivor (cumulative incidence or exclusive) sampling, a subject is eligible
for selection as a control only if they reach the administrative study end event-
free. To identify the conditional odds ratio of baseline exposure versus baseline
non-exposure given L0,

Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0) ,

selection as a control, S, is assumed independent of baseline exposure A0 given
L0 and survival until the end of study (i.e., YK = 0).

The directed acyclic graph (DAG) of Figure 10.2 is compatible with both
survivor sampling and case-base sampling. For those well versed in DAGs, it is
tempting to conclude from it that restricting the analysis to those included in
the study, i.e., conditioning on study inclusion, would result in bias (or departure
from identification), by way of collider stratification. Although conditioning on
study inclusion may indeed induce an association between baseline exposure and
unmeasured cause U of YK (within levels of L0), it is important to recognise it
need not result in bias (Westreich, 2012; Hughes et al., 2019).

In fact, as is shown in Supplementary Appendix S10.2, Theorem 10.3, the
above odds ratio is identified by the ratio of the baseline exposure odds given
L0 among the cases versus controls, provided the key identifiability conditions of
consistency, baseline conditional exchangeability, and positivity are met.

All estimands in Table 10.1 describe a marginal effect, except for the odds
ratio, which is conditional on baseline covariates L0. The corresponding marginal
odds ratio

Odds(YK(1) = 1)
Odds(YK(0) = 1)

is not identifiable from the available data distribution under the stated
assumptions (see remark to Theorem 10.3, Supplementary Appendix S10.2).
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However, approximate identifiability can be achieved by invoking the rare event
assumption (or rare disease assumption), in which case the marginal odds ratio
approximates the marginal risk ratio.

10.3.3 Risk-set sampling for intention-to-treat effect
With risk-set (or incidence density) sampling, for all time windows [tk, tk+1),
k = 0, ..., K − 1, every subject who is event-free at tk is eligible for selection as
a control for the period [tk, tk+1). This means that study participants may be
selected as a control more than once.

Consider the intention-to-treat effect quantified by the marginal (discrete-
time) hazard ratio (or rate ratio)

Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yk+1(0) = 1|Yk(0) = 0) .

(For identification of a conditional hazard ratio, see Theorem 10.5, Supplementary
Appendix S10.2.) For identification of the above marginal hazard ratio under risk-
set sampling, it is assumed that selection as a control between tk and tk+1, Sk,
is independent of the baseline covariates and exposure given eligibility at tk (i.e.,
Yk = 0). It is also assumed that the sampling probability among those eligible,
Pr(Sk = 1|Yk = 0), is constant across time windows k = 0, ..., K − 1. To this
end, it suffices that the marginal hazard Pr(Yk+1 = 1|Yk = 0) remains constant
across time windows and that every kth sampling fraction Pr(Sk = 1) is equal,
up to a proportionality constant, to the probability Pr(Yk+1 = 1, Yk = 0) of an
incident case in the kth window (see remark to Theorem 10.4, Supplementary
Appendix S10.2). For practical purposes, this suggests sampling a fixed number
of controls for every case from among the set of eligible individuals. To illustrate,
consider Figure 10.1 and note first of all that the individual represented by row
1 trivially qualifies as a case, because the individual survived until the event
occurred. Because the event was sustained between t5 and t6, the proposed
sampling suggests selecting a fixed number of controls from among those who
are eligible at t5. Thus, rows (and only rows) 4 through 9 as well as row 1 itself
in Figure 10.1 qualify for selection as a control for this case. Even though the
individual of row 1 is a case, the individual may also be selected as a control
when the individuals of row 2, 3 and 6 (but not 8) sustain the event.

Once cases and controls are selected, we can start to derive inverse probability
weights W according to equation (10.1). We then compute the odds of baseline
exposure among cases in the pseudopopulation that is obtained by weighting
everyone by W and the odds of baseline exposure among controls weighted by W
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multiplied by the number of times the individual was selected as a control. The
ratio of these odds coincides with the target hazard ratio under the three key
identifiability conditions of consistency, baseline conditional exchangeability and
positivity together with the assumption that the hazards in the numerator and
denominator of the causal hazard ratio are constant across the time windows.

10.3.4 Risk-set sampling for per-protocol effect
For the per-protocol effect quantified by the (discrete-time) hazard ratio (or rate
ratio)

Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yj+1(0) = 1|Yk(0) = 0) ,

eligibility again requires that the respective subject is event-free at tk (i.e.,
Yk = 0). Selection as a control between tk and tk+1, Sk, is further assumed
independent of covariate and exposure history up to tk given eligibility at tk (but
see Supplementary Appendix S10.2 for a slightly weaker assumption). As for the
intention-to-treat effect, it is also assumed that the probability to be selected as
a control Sk given eligibility is constant across time windows. This assumption is
guaranteed to hold if the marginal hazard Pr(Yk+1 = 1|Yk = 0) remains constant
across time windows and that every kth sampling fraction Pr(Sk = 1) is equal,
up to a proportionality constant, to the probability of an incident case in the
kth window. Figure 10.1 shows five incident events yet only three qualify as a
case (rows 2, 3 and 8) when it concerns per-protocol effects. When the first case
emerges (row 2), all rows meet the eligibility criterion for selection as a control.
When the second emerges, the individual of row 2, who fails to survive event-free
until t4, is precluded as a control. When the case of row 8 emerges, only the
individuals of rows 4, 5, 7 and 9 are eligible as controls.

Once cases and controls are selected, we can start to derive time-varying
inverse probability weights according to

Wk =
k∏

j=0

[
Aj

Pr(Aj = 1|L0, ..., Lj , A0, ..., Aj−1, Yj = 0, Sj = 1)

+ 1 − Aj

1 − Pr(Aj = 1|L0, ..., Lj , A0, ..., Aj−1, Yj = 0, Sj = 1)

]
.

It is important to note that the weights are derived from control information
but are nonetheless used to weight both cases and controls (Robins, 1999).
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The denominators of the weights describe the propensity to switch exposure
level. However, once the weights are derived, every subject is censored from
the time that they fail to adhere to one of the protocols of interest for all
downstream analysis. The uncensored exposure levels are therefore constant over
time. We then compute the baseline exposure odds among cases, weighted by
the weights Wk corresponding to the interval [tk, tk+1) of the incident event (i.e.,
Yk = 0, Yk+1 = 1), as well as the baseline exposure odds among controls, weighted
by ∑K−1

k=0 WkSk, the weighted number of times selected as control. The ratio
of these odds equals the target hazard ratio under the three key identifiability
conditions of consistency, sequential conditional exchangeability, and positivity
together with the assumption that hazards in the numerator and denominator of
the causal hazard ratio for the per-protocol effect are constant across the time
windows.

10.4 Case-control studies with matching

Table 10.2 gives an overview of identification results for case-control studies
with exact pair matching. Formal statements and proofs are given in
Supplementary Appendix S10.3, which also includes a generalisation of the
results of Table 10.2 to exact 1-to-M matching. While the focus in this section
is on exact covariate matching, for partial matching we refer the reader to
Supplementary Appendix S10.4, where we consider parametric identification by
way of conditional logistic regression.

Pair matching involves assigning a single control exposure level, which we
denote by A′, to every case. As for case-control studies without matching, in a
case-control studies with matching an individual qualifies as a case if and only if
they sustain the event of interest by the administrative study end (i.e., YK = 1)

Figure 10.2: Directed acyclic graph for a setting where inclusion (as case
or control) into the case-control study with case-base or survivor sampling is
determined by the outcome variable YK . U represents an unknown or unobserved
cause of YK . The dashed double-headed arrow represents an unmeasured or
observed common cause.

UL0

A0 YK Study inclusion
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and adhered to one of the protocols of interest until the time of the incident
event. How a matched control exposure is assigned is encoded in the sampling
scheme and the assumptions of Table 10.2. For example, for identification of
the causal marginal risk ratio under case-base sampling, A′ is sampled from
all study participants whose baseline covariate value matches that of the case,
independently of the participants’ baseline exposure value and whether they
survive until the end of study. The matching is exact in the sense that the
control exposure information is derived from an individual who has the same
value for the baseline covariate as the case.

The identification strategy is the same for all results listed in Table 10.2.
Only the case-control pairs (A0, A′) with discordant exposure values (i.e., (1, 0)
or (0, 1)) are used. Under the stated sampling schemes and assumptions, the
respective estimands are identified by the ratio of discordant pairs.

10.5 Discussion

This paper gives a formal account of how and when causal effects can be identified
in case-control studies and, as such, underpins the case-control application of
Dickerman et al. (2020). Like Dickerman et al., we believe that case-control
studies should generally be regarded as being nested within cohort studies. This
view emphasises that the threats to the validity of cohort studies should also be
considered in case-control studies. For example, in case-control applications with
risk-set sampling, researchers often consider the covariate and exposure status
only at, or just before, the time of the event (for cases) or the time of sampling
(for controls). However, where a cohort study would require information on
baseline levels or the complete treatment and covariate history of participants,
one should suspect that this holds for the nested case-control study too. To gain
clarity, we encourage researchers to move away from using person-years, -weeks,
or -days (rather than individuals) as the default units of inference (Hernán, 2015),
and to realise that inadequately addressed deviations from a target trial may lead
to bias (or departure from identifiability), regardless of whether the study that
attempts to emulate it is a case-control or a cohort study (Dickerman et al.,
2020).

What is meant by a cohort study differs between authors and contexts
(Vandenbroucke and Pearce, 2012). The term ‘cohort’ may refer to either a
‘dynamic population’, or a ‘fixed cohort’, whose “membership is defined in a
permanent fashion” and “determined by a single defining event and so becomes
permanent” (Rothman et al., 2008). While it may sometimes be of interest to
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ask what would have happened with a dynamic cohort (e.g., the residents of a
country) had it been subjected to one treatment protocol versus another, the
results in this paper relate to fixed cohorts.

Like the cohort studies within which they are (at least conceptually) nested,
case-control studies require an explicit definition of time zero, the time at which
a choice is to be made between treatment strategies or protocols of interest
(Dickerman et al., 2020). Given a fixed cohort, time zero is generally determined
by the defining event of the cohort (e.g., first diagnosis of a particular disease
or having survived one year since diagnosis). This event may occur at different
calendar times for different individuals. However, while a fixed cohort may be
‘open’ to new members relative to calendar time, it is always ‘closed’ along the
time axis on which all subject-specific time zeros take a common point.

In this paper, time was regarded as discrete. Since we considered arbitrary
intervals between time points and because, in real-world studies, time is never
measured in a truly continuous fashion, this does not represent an important
limitation for practical purposes. It is however important to note that the
intervals between interventions and outcome assessments (in a target trial) are
an intrinsic part of the estimand that lies at the start of investigation. Careful
consideration of time intervals in the design of the conceptual target trial and of
the actual cohort or case-control study is therefore warranted.

We emphasize that identification and estimation are distinct steps in causal
inference. Although our focus was on the former, identifiability expressions often
naturally translate into estimators. The task of finding the estimator with the
most appealing statistical properties is not necessarily straightforward, however,
and is beyond the scope of this paper.

We specifically studied two causal contrasts (i.e., pairs of interventions), one
corresponding to intention-to-treat effects and the other to always-versus-never
per-protocol effects of a time-varying exposure. There are of course many more
causal contrasts, treatment regimes and estimands conceivable that could be of
interest. We argue that also for these estimands, researchers should seek to
establish identifiability before they select an estimator.

The conditions under which identifiability is to be sought for practical
purposes may well include more constraints or obstacles to causal inference, such
as additional missingness (e.g., outcome censoring) and measurement error, than
we have considered here. While some of our results assume that hazards or hazard
ratios remain constant over time, in many cases these are likely time-varying
(Lefebvre et al., 2006; Guess, 2006). There are also more case-control designs
(e.g., the case-crossover design) to consider. These additional complexities and
designs are beyond the scope of this paper and represent an interesting direction
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for future research.
The case-control family of study designs is an important yet often

misunderstood tool for identifying causal relations (Knol et al., 2008; Pearce,
2016; Mansournia et al., 2018; Labrecque et al., 2021). Although there is much to
be learned, we believe that the modern arsenal for causal inference, which includes
counterfactual thinking, is well-suited to make transparent for these classical
epidemiological study designs what assumptions are sufficient or necessary to
endow the study results with a causal interpretation and, in turn, help resolve or
prevent misunderstanding.
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S10.1 Notation and set-up

We will suppose that the interest lies with the effect of a time-varying exposure
that can take one of two levels at any given time on a failure time outcome.
In particular, we consider a strictly increasing sequence (t0, t1, ..., tK) of K + 1
time points (with tK+1 = −t−1 = +∞ for notational convenience). For k =
0, 1, ..., K − 1, let Ak denote the level of time-varying exposure of interest at tk.
We denote the history of any stochastic sequence (X0, X1, ..., XK−1) up to and
including tk by Xk = (X0, X1..., Xk) for k = 0, 1, ..., K − 1 (and let X = XK−1
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and X−1 = 0 for notational convenience). For example, A = (A0, A1, ..., AK−1).
Denote by T (a) the counterfactual time elapsed until the event of interest since t0
that would have been realised had A been set to a, and let Yk(a) = I(T (a) < tk)
for k = 0, 1, ..., K, where I represents the indicator function. By convention, we
stipulate that for all k, Yk(a) is invariant to the kth through K − 1th elements of
a (i.e., current survival status is not affected by future exposures). With slight
abuse of notation, for k = 0, 1..., K, we let Yk(a0) denote the outcome that would
have been realised had (only) A0 been set to a0.

Consistency
For theorems about per-protocol effects, we assume consistency of the form: for
k = 1, ..., K and all a, Yk(a) = Yk if al = Al for all l = 0, ..., k−1 such that Yl = 0.
For theorems about intention-to-treat effects, a weaker condition is sufficient and
assumed: for k = 1, ..., K and a = 0, 1, Yk(a) = Yk if a = A0. The assumption
may be further relaxed for theorems in which the estimand does not involve Yk(a),
k < K: for a = 0, 1, YK(a) = YK if a = A0.

Conditional exchangeability
We also consider a sequence of variables L = (L0, L1, ..., LK−1) that satisfies one
of the following conditions:

∀k, ∀a : (Yk+1(a), ..., YK(a)) ⊥⊥ Ak|Yk(a) = 0, Lk, Ak−1 = ak−1,
(sequential conditional exchangeability, SCE)

where ak−1 is understood to represent the (k − 1)th through (K − 1)th elements
of a, or

∀a0 : (Y1(a0), ..., YK(a0)) ⊥⊥ A0|L0,
(baseline conditional exchangeability, BCE)

although sometimes a weaker form of BCE suffices: ∀a0 : YK(a0) ⊥⊥ A0|L0.

Positivity
For the theorems that follow, we assume positivity to preclude division by zero
and undefined conditional probabilities, so that the weights that we will encounter
are finite and strictly greater than 1. The assumption can sometimes be relaxed
if we are willing to interpolate or extrapolate under (parametric) modelling
assumptions.
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S10.2 Identification results for non-matching strategies

Intention-to-treat effect
For simplicity, it is assumed below that the covariates are discrete. The results
can however be extended to more general distributions.

Theorem 10.1 (Case-base sampling for marginal intention-to-treat effect).
Suppose BCE holds as well as

Pr(S = 1|L0, A0) = Pr(S = 1) = δ (S1)

for some δ ∈ (0, 1]. Then,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) ,

where

W = 1
Pr(A0 = a|L0, S = 1)

∣∣∣∣
a=A0

,

Proof. First, observe that Pr(A0 = a|L0, S = 1) = Pr(A0 = a|L0) for a = 0, 1,
because

Pr(A0 = a|L0, S = 1) = Pr(S = 1|L0, A0 = a) Pr(A0 = a|L0)
Pr(S = 1|L0)

= δ

δ
Pr(A0 = a|L0) (by S1)

= Pr(A0 = a|L0)

Hence,

W = 1
Pr(A0 = a|L0)

∣∣∣∣
a=A0

.

Now, consider the numerator of the left-hand side of the main equation in
Theorem 10.1 and note that, because of the above, we have

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
∑1

y=0 E
[
I(A0 = 1)WYK |YK = y

]
Pr(YK = y)∑1

y=0 E
[
I(A0 = 0)WYK |YK = y

]
Pr(YK = y)
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=
E
[
I(A0 = 1)WYK

]
E
[
I(A0 = 0)WYK

]
=

E
[
WYK |A0 = 1

]
Pr(A0 = 1)

E
[
WYK |A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WYK |A0 = a

]
= E

{
E
[
WYK |L0, A0 = a

]
|A0 = a

}
=
∑

l

Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
∑

l

Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by consistency)

=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by baseline conditional exchangeability)

=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(A0 = a|L0 = l) Pr(L0 = l)
Pr(A0 = a|L0 = l) Pr(A0 = a)

= 1
Pr(A0 = a)

∑
l

Pr(YK(a) = 1, L0 = l)

= Pr(YK(a) = 1)
Pr(A0 = a) ,

so that
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Next, consider the denominator of the left-hand side of the main equation in
Theorem 10.1 and observe that

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
E
[
I(A0 = 1)WS

]
E
[
I(A0 = 0)WS

] =
E
[
WS|A0 = 1

]
Pr(A0 = 1)

E
[
WS|A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WS|A0 = a

]
= E{E

[
WS|L0, A0 = a

]
|A0 = a}

=
∑

l

Pr(S = 1|L0, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)
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=
∑

l

δ Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l) (by S1)

= δ

Pr(A0 = a)
∑

l

Pr(L0 = l)

= δ

Pr(A0 = a) ,

so that
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = 1.

It follows that
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Theorem 10.2 (Case-base sampling for conditional intention-to-treat effect).
Suppose BCE hold as well as S1, or the weaker version Pr(S = 1|L0, A0) =
Pr(S = 1|L0) = δL0 ∈ (0, 1]. Then,

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Pr(YK(1) = 1|L0)
Pr(YK(0) = 1|L0) .

Proof. We have

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
=
∑1

y=0 E
[
I(A0 = 1)YK |L0, YK = y

]
Pr(YK = y|L0)∑1

y=0 E
[
I(A0 = 0)YK |L0, YK = y

]
Pr(YK = y|L0)

=
E
[
I(A0 = 1)YK |L0

]
E
[
I(A0 = 0)YK |L0

]
=

E
[
YK |L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
YK |L0, A0 = 0

]
Pr(A0 = 0|L0)
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=
E
[
YK(1)|L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
YK(0)|L0, A0 = 0

]
Pr(A0 = 0|L0)

(by consistency)

=
E
[
YK(1)|L0

]
Pr(A0 = 1|L0)

E
[
YK(0)|L0

]
Pr(A0 = 0|L0)

. (by baseline conditional exchangeability)

Also,

E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
E
[
I(A0 = 1)S|L0

]
E
[
I(A0 = 0)S|L0

]
=

E
[
S|L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
S|L0, A0 = 0

]
Pr(A0 = 0|L0)

= δL0 Pr(A0 = 1|L0)
δL0 Pr(A0 = 0|L0)

(under the assumption that Pr(S = 1|L0, A0) = Pr(S = 1|L0) = δL0 ∈ (0, 1])

= Pr(A0 = 1|L0)
Pr(A0 = 0|L0) .

It immediately follows that

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Pr(YK(1) = 1|L0)
Pr(YK(0) = 1|L0) .

Corollary 10.1. If in addition to the conditions of Theorem 10.2,

Pr(YK = 1|L0 = l, A0 = 1)
Pr(YK = 1|L0 = l, A0 = 0) = θ (homogeneity condition H1)

for all l and some constant θ, then

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) ,

because of the collapsibility of the risk ratio.
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Theorem 10.3 (Survivor sampling for conditional intention-to-treat effect).
Suppose BCE holds as well as

Pr(S = 1|L0, A0, YK) = Pr(S = 1|L0, YK) = δL0 × (1 − YK) (S2)

for some δL0 ∈ (0, 1]. Then,

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0) .

Proof. First, consider the numerator of the left-hand side of the equation in
Theorem 10.3 and observe

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

] = Pr(YK = 1|L0, A0 = 1)
Pr(YK = 1|L0, A0 = 0)Odds(A0 = 1|L0)

= Pr(YK(1) = 1|L0, A0 = 1)
Pr(YK(1) = 1|L0, A0 = 0)Odds(A0 = 1|L0)

(by consistency)

= Pr(YK(1) = 1|L0)
Pr(YK(1) = 1|L0)Odds(A0 = 1|L0).

(by baseline conditional exchangeability)

Next, consider the denominator and observe that

E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
E
[
I(A0 = 1)S|L0

]
E
[
I(A0 = 0)S|L0

]
=

E
[
S|L0, A0 = 1

]
E
[
S|L0, A0 = 0

]Odds(A0 = 1|L0)

= δL0 Pr(YK = 0|L0, A0 = 1)
δL0 Pr(YK = 0|L0, A0 = 0)Odds(A0 = 1|L0) (by S2)

= Pr(YK(1) = 0|L0, A0 = 1)
Pr(YK(0) = 0|L0, A0 = 0)Odds(A0 = 1|L0)

(by consistency)

= Pr(YK(1) = 0|L0)
Pr(YK(0) = 0|L0)Odds(A0 = 1|L0).

(by baseline conditional exchangeability)
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It follows that
E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] = Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0) .

Remark to Theorem 10.3. Under BCE, the stronger version of S2,

Pr(S = 1|L0, A0, YK) = Pr(S = 1|YK) = δ × (1 − YK) (S2∗)

for some δ ∈ (0, 1] and with

W = 1
Pr(A0 = a|L0)

∣∣∣∣∣
a=A0

,

we have
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Odds(YK(1) = 1)
Odds(YK(0) = 1) (10.2)

(see proof below). However, from

Pr(A0 = a|L0, S = 1) = Pr(S = 1|L0, A0 = a) Pr(A0 = a|L0)
Pr(S = 1|L0)

= δ Pr(YK = 0|L0, A0 = a) Pr(A0 = a|L0)
δ Pr(YK = 0|L0) (by S2∗)

= Pr(A0 = a|L0, YK = 0),

it follows that the weights W above are not identified by

1
Pr(A0 = a|L0, S = 1)

∣∣∣∣∣
a=A0

when YK ⊥̸⊥ A0|L0. (However, Pr(A0 = a|L0, S = 1) approximates Pr(A0 =
a|L0) under a rare event assumption.) In fact, the target marginal odds ratio
is not identifiable, under BCE and S2∗ with unknown δ, from the available data
distribution, which is formed by the distribution of (L0, A0, YK , S)|(YK = 1 ∨ S =
1). A proof is given below.
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Proof of (10.2) under stated conditions. As shown in the proof to Theorem 10.1,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Now,

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
E
[
I(A0 = 1)WS

]
E
[
I(A0 = 0)WS

] =
E
[
WS|A0 = 1

]
Pr(A0 = 1)

E
[
WS|A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WS|A0 = a

]
= E{E

[
WS|L0, A0 = a

]
|A0 = a}

=
∑

l

Pr(S = 1|L0, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
∑

l

δ Pr(YK = 0|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l) (by S2∗)

= δ

Pr(A0 = a)
∑

l

Pr(YK = 0|L0 = l, A0 = a) Pr(L0 = l)

= δ

Pr(A0 = a)
∑

l

Pr(YK(a) = 0|L0 = l, A0 = a) Pr(L0 = l)

(by consistency)

= δ

Pr(A0 = a)
∑

l

Pr(YK(a) = 0, L0 = l)

(by baseline conditional exchangeability)

= δ Pr(YK(a) = 0)
Pr(A0 = a) ,

so that
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Pr(YK(1) = 0)
Pr(YK(0) = 0)

and, in turn,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = Odds(YK(1) = 1)
Odds(YK(0) = 1) .
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Proof of nonidentifiability of target marginal odds ratio under stated conditions.
Consider two distributions of (L0, A0, YK , S) satisfying S2∗, each characterised by
the following conditionals:

YK ∼ Bernoulli(α),
S|YK ∼ Bernoulli(δ × (1 − YK)),

L0|YK , S ∼ L0|YK ∼ Bernoulli(5/10 − 2/10 × YK),
A0|L0, YK , S ∼ A0|L0, YK ∼ Bernoulli(3/10 + 2/10 × L0 + 3/10 × YK).

The parameter values of the distributions are given in the table below.

Parameter Distribution 1 Distribution 2
α 1/10 2/10
δ 1/10 9/40

Now, for all l, a, y, s ∈ {0, 1},

Pr(L0 = l, A0 = a, YK = y, S = s|YK = 1 ∨ S = 1)

= Pr(L0 = l, A0 = a, YK = y, S = s, YK = 1 ∨ S = 1)
Pr(YK = 1 ∧ S = 0) + Pr(YK = 0 ∧ S = 1) + Pr(YK = 1 ∧ S = 1)

= I(y = 1 ∨ s = 1) Pr(L0 = l, A0 = a, YK = y, S = s)
Pr(YK = 1) + δ Pr(YK = 0)

= I(y = 1 ∨ s = 1)

× Pr(L0 = l, A0 = a|YK = y) Pr(S = s|YK = y) Pr(YK = y)
α + δ(1 − α)

=


Pr(L0 = l, A0 = a|YK = 0)

(
1 − α

α + δ(1 − α)

)
if y = 0 ∧ s = 1,

Pr(L0 = l, A0 = a|YK = 1) α

α + δ(1 − α) if y = 1 ∧ s = 0,

0 otherwise,
where

α

α + δ(1 − α) = 10/19

under Distribution 1 and under Distribution 2. Hence, Distribution 1 and 2 imply
the same available data distribution.

However, as we now show, the distributions imply different target marginal
odds ratios. Since

Pr(YK(a) = 1) =
1∑

l=0
Pr(YK(a) = 1|L0 = l) Pr(L0 = l)
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=
1∑

l=0
Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l) (by BCE)

=
1∑

l=0
Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l) (by consistency)

=
1∑

l=0

Pr(L0 = l, A0 = a|YK = 1) Pr(YK = 1)
Pr(L0 = l, A0 = a)

×
1∑

y=0
Pr(L0 = l|YK = y) Pr(YK = y)

=
1∑

l=0

(
1 + Pr(L0 = l, A0 = a|YK = 0) Pr(YK = 0)

Pr(L0 = l, A0 = a|YK = 1) Pr(YK = 1)

)−1

×
1∑

y=0
Pr(L0 = l|YK = y) Pr(YK = y)

for a = 0, 1, we have

Pr(YK(1) = 1) = 5 + 2α

10 + (25/7)/odds(α) + 5 − 2α

10 + (125/12)/odds(α) and

Pr(YK(0) = 1) = 5 + 2α

10 + (25/2)/odds(α) + 5 − 2α

10 + (125/3)/odds(α) ,

so that

Odds(YK(1) = 1)
Odds(YK(0) = 1) =


587, 791
167, 166 ≈ 3.5 under Distribution 1,

512, 539
148, 789 ≈ 3.4 under Distribution 2.

Hence, we found an available data distribution that is compatible with more
than one value of the target marginal odds ratio. This concludes the proof.

Theorem 10.4 (Risk-set sampling for marginal intention-to-treat effect).
Suppose BCE holds as well as

Pr(Sk = 1|L0, A0, Yk) = Pr(Sk = 1|Yk) = δ × (1 − Yk), (S3)

for some δ ∈ (0, 1]. If

Pr(Yk+1(a) = 1|Yk(a) = 0) = θa (H2)
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for a = 0, 1 and some constants θ0, θ1, then

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] = Pr(Yk+1(1) = 1|Yk+1(1) = 0)
Pr(Yk+1(0) = 1|Yk+1(0) = 0) ,

where

W = 1
Pr(A0 = a|L0, S0 = 1)

∣∣∣∣
a=A0

,

Proof. First, observe that Pr(A0 = a|L0, S0 = 1) = Pr(A0 = a|L0) for a = 0, 1,
because

Pr(A0 = a|L0, S0 = 1) = Pr(S0 = 1|L0, A0 = a) Pr(A0 = a|L0)
Pr(S0 = 1|L0)

= δ

δ
Pr(A0 = a|L0) (by S3)

= Pr(A0 = a|L0)

Hence,

W = 1
Pr(A0 = a|L0)

∣∣∣∣
a=A0

.

For the numerator of the main result of Theorem 10.4, we thus have

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
E
[
I(A0 = 1)WYK

]
E
[
I(A0 = 0)WYK

]
=

E
[
WYK |A0 = 1

]
Pr(A0 = 1)

E
[
WYK |A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WYK |A0 = a

]
= E

{
E
[
WYK |L0, A0 = a

]
|A0 = a

}
=
∑

l

Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
∑

l

Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by consistency)
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=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

(by baseline conditional exchangeability)

=
∑

l

Pr(YK(a) = 1|L0 = l) Pr(A0 = a|L0 = l) Pr(L0 = l)
Pr(A0 = a|L0 = l) Pr(A0 = a)

= 1
Pr(A0 = a)

∑
l

Pr(YK(a) = 1, L0 = l)

= Pr(YK(a) = 1)
Pr(A0 = a) ,

so that

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] = Pr(YK(1) = 1)
Pr(YK(0) = 1)

=
∑K−1

k=0 Pr(Yk+1(1) = 1, Yk(1) = 0)∑K−1
k=0 Pr(Yk+1(0) = 1, Yk(0) = 0)

=
∑K−1

k=0 Pr(Yk+1(1) = 1|Yk(1) = 0) Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk+1(0) = 1|Yk(0) = 0) Pr(Yk(0) = 0)

=
∑K−1

k=0 θ1 Pr(Yk(1) = 0)∑K−1
k=0 θ0 Pr(Yk(0) = 0)

(by H2)

= θ1
θ0

∑K−1
k=0 Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk(0) = 0)

For the denominator, we have

E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] =
E
[
W
∑K−1

k=0 Sk|A0 = 1
]
Pr(A0 = 1)

E
[
W
∑K−1

k=0 Sk|A0 = 0
]
Pr(A0 = 0)

,

where

E
[
W
∑K−1

k=0 Sk|A0 = a
]

= ∑K−1
k=0 E

{
E
[
WSk|L0, A0 = a

]
|A0 = a

}
=

K−1∑
k=0

∑
l

Pr(Sk = 1|L0, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l)

=
K−1∑
k=0

∑
l

δ Pr(Yk = 0|L0 = l, A0 = a) Pr(L0 = l|A0 = a)
Pr(A0 = a|L0 = l) (by S3)
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=
K−1∑
k=0

∑
l

δ Pr(Yk = 0|L0 = l, A0 = a) Pr(L0 = l)
Pr(A0 = a)

=
K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0|L0 = l, A0 = a) Pr(L0 = l)
Pr(A0 = a) (by consistency)

=
K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0|L0 = l) Pr(L0 = l)
Pr(A0 = a)

(by baseline conditional exchangeability)

= 1
Pr(A0 = a)

K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0, L0 = l)

= 1
Pr(A0 = a)

K−1∑
k=0

δ Pr(Yk(a) = 0),

so that
E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] =
∑K−1

k=0 δ Pr(Yk(1) = 0)∑K−1
k=0 δ Pr(Yk(0) = 0)

=
∑K−1

k=0 Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk(0) = 0)

.

It follows that
E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W ∑K−1

k=0 Sk

]
E
[
I(A0 = 0)W ∑K−1

k=0 Sk

] = Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yk+1(0) = 1|Yk(0) = 0) .

Remark to Theorem 10.4. Condition S3 holds if, for some constant δ∗
k,

Pr(Sk = 1) = δ∗
k Pr(Yk+1 = 1, Yk = 0),

Sk ⊥⊥ (L0, A0, Y k)|Yk = 0,
Pr(Sk = 1|Yk = 1) = 0.

 (S3∗)

The first requirement of S3∗ essentially means that the frequency of incident cases
in the kth window is proportional to the frequency of controls selected in this
window. Under S3∗, S3 is met with δ = δ∗

k Pr(Yk+1 = 1|Yk = 0), because

Pr(Sk = 1|L0, A0, Y k) = Pr(Sk = 1|Yk)
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= Pr(Sk = 1|Yk = 0) × (1 − Yk)
= Pr(Sk = 1|Yk = 0) × (1 − Yk)

= Pr(Sk = 1)
Pr(Yk = 0) × (1 − Yk)

= δ∗
k Pr(Yk+1 = 1, Yk = 0)

Pr(Yk = 0) × (1 − Yk)

= δ∗
k Pr(Yk+1 = 1|Yk = 0) × (1 − Yk).

Therefore, stipulating that δ∗
k is k-invariant is to state that Pr(Yk+1 = 1|Yk = 0)

is constant for k = 0, ..., K − 1.

Theorem 10.5 (Risk-set sampling for conditional intention-to-treat effect).
Suppose BCE holds as well as S3, or the weaker version Pr(Sk = 1|L0, A0, Yk) =
Pr(Sk = 1|L0, Yk) = δL0 × (1 − Yk), δL0 ∈ (0, 1]. If

Pr(Yk+1(a) = 1|L0 = l, Yk(a) = 0) = θa (H3)

for a = 0, 1, all l and some constants θ0, θ1, then

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)∑K−1

k=0 Sk|L0
]

E
[
I(A0 = 0)∑K−1

k=0 Sk|L0
] = Pr(Yk+1(1) = 1|L0, Yk(1) = 0)

Pr(Yk+1(0) = 1|L0, Yk(0) = 0) .

The proof to Theorem 10.5 is similar to that of Theorem 10.4 and therefore
omitted.

Per-protocol effect
In this subsection, an individual qualifies as a case if and only if YK = 1 and
the subject adheres to the protocol that was assigned at baseline. For any study
participant, let Sk denote selection as a control for the period [tk, tk+1) and
suppose Sk satisfies

Sk = 1 ⇒ Yk = 0 with probability 1, and
Pr(Sk = 1|Lk, Ak, Yk = 0) = Pr(Sk = 1|Ak−1, Yk = 0) and

Pr(Sk = 1|Ak−1, A0 = ... = Ak−1, Yk = 0) = δ,

 (S4)

for some δ ∈ (0, 1].
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Remark to Theorem 10.6. Condition S4 holds if, for some constant δ∗
k,

Pr(Sk = 1) = δ∗
k Pr(Yk+1 = 1, Yk = 0, ∀j < k : Aj = A0) and

Sk ⊥⊥ (Lk, Ak, Y k)|(Yk = 0, ∀j < k : Aj = A0) and
Sk = 1 ⇒ (Yk = 0, ∀j < k : Aj = A0) with probability 1.

 (S4∗)

The first requirement of S4∗ essentially means that the frequency of protocol-
adherent incident cases in the kth window is proportional to the frequency of
controls selected in this window. Under S4∗, S4 is met with δ = δ∗

k Pr(Yk+1 =
1|Yk = 0, ∀j < k : Aj = A0), because

Pr(Sk = 1|Lk, Ak, Y k)
= Pr(Sk = 1|Yk = 0, ∀j < k : Aj = A0)

× (1 − Yk) × I(∀j < k : Aj = A0)

= Pr(Sk = 1)
Pr(Yk = 0, ∀j < k : Aj = A0) × (1 − Yk) × I(∀j < k : Aj = A0)

= δ∗
k Pr(Yk+1 = 1, Yk = 0, ∀j < k : Aj = A0)

Pr(Yk = 0, ∀j < k : Aj = A0) )

× (1 − Yk) × I(∀j < k : Aj = A0)
= δ∗

k Pr(Yk+1 = 1|Yk = 0, ∀j < k : Aj = A0))
× (1 − Yk) × I(∀j < k : Aj = A0).

Similarly, condition S4 holds if, for some constant δ∗∗
k ,

Pr(Sk = 1) = δ∗∗
k Pr(Yk+1 = 1, Yk = 0) and

Sk ⊥⊥ (Lk, Ak, Y k)|(Yk = 0) and
Sk = 1 ⇒ Yk = 0 with probability 1,

 (S4∗∗)

in which case, δ = δ∗∗
k Pr(Yk+1 = 1|Yk = 0), because

Pr(Sk = 1|Lk, Ak, Y k)
= Pr(Sk = 1|Yk = 0) × (1 − Yk)

= Pr(Sk = 1)
Pr(Yk = 0) × (1 − Yk)

= δ∗∗
k Pr(Yk+1 = 1, Yk = 0)

Pr(Yk = 0) × (1 − Yk)

= δ∗∗
k Pr(Yk+1 = 1|Yk = 0) × (1 − Yk).
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Theorem 10.6 (Risk-set sampling for marginal per-protocol effect). Suppose
SCE and S4 hold. If

Pr(Yk+1(a) = 1|Yk(a) = 0) = θa (H4)

for a = 0, 1 and some constants θ0, θ1, then

E
[∑K−1

k=0 I(Ak = 1)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = 0)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[
I(A0 = 1)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

E
[
I(A0 = 0)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

= Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yk+1(0) = 1|Yk(0) = 0) ,

where

Wk =
k∏

j=0

1
Pr(Aj = aj |Lj , Aj−1, Yj = 0, Sj = 1)

∣∣∣∣
aj=Aj

.

Proof. First, observe that Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0, Sk = 1) =
Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0) for a′, a = 0, 1, because

Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0, Sk = 1)

=

Pr(Sk = 1|Lk, (∀j < k : Aj = a), Ak = a′, Yk = 0)
× Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0)

Pr(Sk = 1|Lk, (∀j < k : Aj = a), Yk = 0)

= δ

δ
Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0). (by S4)

Hence, if ∀j < k : Aj = A0, then

Wk =
k∏

j=0

1
Pr(Aj = aj |Lj , Aj−1, Yj = 0)

∣∣∣∣
aj=Aj

.

For the numerator of the main result of Theorem 10.6, we thus have

E
[∑K−1

k=0 I(Ak = 1)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = 0)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0 ⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a′)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]

272



Chapter 10

=
∑K−1

k=0 E
[
WkYk+1(1 − Yk)I(∀j ≤ k : Aj = a)

]∑K−1
k=0 E

[
WkYk+1(1 − Yk)I(∀j ≤ k : Aj = a′)

]

=

K−1∑
k=0

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a, Lk = lk)∏k
j=0 Pr(Aj = a|Yj = 0, Lk = lk, ∀i < j : Ai = a)

K−1∑
k=0

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a′, Lk = lk)∏k
j=0 Pr(Aj = a′|Yj = 0, Lk = lk, ∀i < j : Ai = a′)

,

where

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a, Lk = lk)∏k
j=0 Pr(Aj = a|Yj = 0, Lk = lk, ∀i < j : Ai = a)

=
∑
lk

Pr(Yk+1 = 1|Yk = 0, Lk = lk, ∀j ≤ k : Aj = a)

× Pr(Lk = lk|Yk = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1 = 1|Yj = 0, Lj = lj , ∀i ≤ j : Ai = a)

× Pr(Lj = lj |Yj = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
=
∑
lk

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk = lk, ∀j ≤ k : Aj = a)

× Pr(Lk = lk|Yk(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i ≤ j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
(by consistency)

=
∑
lk

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk = lk, ∀j < k : Aj = a)

× Pr(Lk = lk|Yk(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
(by sequential conditional exchangeability)
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=
∑
lk−1

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
=
∑
lk−1

Pr(Yk+1(a) = 1, Yk(a) = 0|Yk−1(a) = 0, Lk−1 = lk−1, ∀j < k : Aj = a)

× Pr(Lk−1 = lk−1|Yk−1(a) = 0, Lk−2 = lk−2, ∀j < k − 1 : Aj = a)

×
k−2∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj , ∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)
...

(by repeating previous three steps, under sequential conditional exchangeability)
= Pr(Yk+1(a) = 1, Yk(a) = 0)

and, similarly,

∑
lk

Pr(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = a′, Lk = lk)∏k
j=0 Pr(Aj = a′|Yj = 0, Lk = lk, ∀i < j : Ai = a′)

= Pr(Yk+1(a′) = 1, Yk(a′) = 0).

Hence,

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a′)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)
]

=
∑K−1

k=0 Pr(Yk+1(a) = 1, Yk(a) = 0)∑K−1
k=0 Pr(Yk+1(a′) = 1, Yk(a′) = 0)

=
∑K−1

k=0 Pr(Yk+1(a) = 1|Yk(a) = 0)∏k
j=1 Pr(Yj(a) = 0|Yj−1(a) = 0)∑K−1

k=0 Pr(Yk+1(a′) = 1|Yk(a′) = 0)∏k
j=1 Pr(Yj(a′) = 0|Yj−1(a′) = 0)

=
∑K−1

k=0 θa(1 − θa)k∑K−1
k=0 θa′(1 − θa′)k

(H4)

= 1 − (1 − θa)K

1 − (1 − θa′)K
(since (1 − r)∑u

k=l ark = a(rl − ru+1) for any real a, r)
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For the denominator, we have

E
[
I(A0 = a)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

E
[
I(A0 = a′)∑K−1

k=0 WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

=
E
[∑K−1

k=0 I(Ak = a)WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

E
[∑K−1

k=0 I(Ak = a′)WkSk|∀j : Yj = 0 ⇒ Aj = A0
]

=
∑K−1

k=0 E
[
I(Ak = a)WkSk|∀j : Yj = 0 ⇒ Aj = A0

]∑K−1
k=0 E

[
I(Ak = a′)WkSk|∀j : Yj = 0 ⇒ Aj = A0

]

=

∑K−1
k=0 E

[
I(Ak = a)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
× Pr(Yk = 0|∀j : Yj = 0 ⇒ Aj = A0)∑K−1
k=0 E

[
I(Ak = a′)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
× Pr(Yk = 0|∀j : Yj = 0 ⇒ Aj = A0)

(by S4)

=

∑K−1
k=0 E

[
I(Ak = a)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
× Pr(Yk = 0, ∀j ≤ k : Aj = A0)∑K−1
k=0 E

[
I(Ak = a′)WkSk|Yk = 0, ∀j ≤ k : Aj = A0

]
Pr(Yk = 0, ∀j ≤ k : Aj = A0)

=
∑K−1

k=0 E
[
WkSk|Yk = 0, ∀j ≤ k : Aj = a

]
Pr(Yk = 0, ∀j ≤ k : Aj = a)∑K−1

k=0 E
[
WkSk|Yk = 0, ∀j ≤ k : Aj = a′]Pr(Yk = 0, ∀j ≤ k : Aj = a′)

=

K−1∑
k=0

∑
lk

E
[
Sk|Yk = 0, Lk = lk, ∀j ≤ k : Aj = a

]
× Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a)∏k

j=0 Pr(Aj = a|Yj = 0, Lj = lj , ∀i < j : Ai = a)
K−1∑
k=0

∑
lk

E
[
Sk|Yk = 0, Lk = lk, ∀j ≤ k : Aj = a′]
× Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a′)∏k

j=0 Pr(Aj = a′|Yj = 0, Lj = lj , ∀i < j : Ai = a′)

=

K−1∑
k=0

∑
lk

δ
Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a)∏k

j=0 Pr(Aj = a|Yj = 0, Lj = lj , ∀i < j : Ai = a)
K−1∑
k=0

∑
lk

δ
Pr(Yk = 0, Lk = lk, ∀j ≤ k : Aj = a′)∏k

j=0 Pr(Aj = a′|Yj = 0, Lj = lj , ∀i < j : Ai = a′)

(by S4)

=

∑K−1
k=0

∑
lk

δ
∏k

j=0
Pr(Yj = 0, Lj = lj |Yj−1 = 0, Lj−1 = lj−1,

∀i < j : Ai = a)∑K−1
k=0

∑
lk

δ
∏k

j=0
Pr(Yj = 0, Lj = lj |Yj−1 = 0, Lj−1 = lj−1,

∀i < j : Ai = a′)
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=

K−1∑
k=0

∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj = 0, Lj−1 = lj−1, ∀i < j : Ai = a) ×
Pr(Yj = 0|Yj−1 = 0, Lj−1 = lj−1, ∀i < j : Ai = a)

K∑
k=0

−1
∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj = 0, Lj−1 = lj−1, ∀i < j : Ai = a′) ×
Pr(Yj = 0|Yj−1 = 0, Lj−1 = lj−1, ∀i < j : Ai = a′)

=

K−1∑
k=0

∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a) ×
Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a)

K−1∑
k=0

∑
lk

δ
k∏

j=0

Pr(Lj = lj |Yj(a′) = 0, Lj−1 = lj−1, ∀i < j : Ai = a′) ×
Pr(Yj(a′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1, ∀i < j : Ai = a′)

(by consistency)

=

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1, ∀i < j : Ai = a) ×
Pr(Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a)

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1, ∀i < j : Ai = a′) ×
Pr(Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a′)

=

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1, ∀i < j − 1 : Ai = a) ×
Pr(Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a)

K−1∑
k=0

∑
lk−1

δ
k∏

j=0

Pr(Yj(a′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1, ∀i < j − 1 : Ai = a′) ×
Pr(Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2, ∀i < j − 1 : Ai = a′)

(by sequential conditional exchangeability)

=

∑K−1
k=0

∑
lk−1

δ
∏k

j=0
Pr(Yj(a) = 0, Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a)∑K−1
k=0

∑
lk−1

δ
∏k

j=0
Pr(Yj(a′) = 0, Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a′)

=

K−1∑
k=0

∑
lk−2

δ

Pr(Yk(a) = 0|Yk−1(a) = 0, Lk−2 = lk−2, ∀i < k − 1 : Ai = a) ×∏k−1
j=0 Pr(Yj(a) = 0, Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a)
K−1∑
k=0

∑
lk−2

δ

Pr(Yk(a′) = 0|Yk−1(a′) = 0, Lk−2 = lk−2, ∀i < k − 1 : Ai = a′) ×∏k−1
j=0 Pr(Yj(a′) = 0, Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,

∀i < j − 1 : Ai = a′)
... (by sequential conditional exchangeability)
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=
∑K−1

k=0 δ Pr(Yk(a) = 0)∑K−1
k=0 δ Pr(Yk(a′) = 0)

=
∑K−1

k=0 Pr(Yk(a) = 0)∑K−1
k=0 Pr(Yk(a′) = 0)

=
1 +∑K−1

k=1
∏k

j=1 Pr(Yj(a) = 0|Yj−1(a) = 0)
1 +∑K−1

k=1
∏k

j=1 Pr(Yj(a′) = 0|Yj−1(a′) = 0)

= 1 +∑K−1
k=1 (1 − θa)k

1 +∑K
k=1(1 − θa′)k

(by H4)

= 1 + [1 − θa − (1 − θa)K−1]/θa

1 + [1 − θa′ − (1 − θa′)K−1]/θa′

(since (1 − r)∑u
k=l ark = a(rl − ru+1) for any real a, r)

= θa′(1 − (1 − θa)K−1)
θa(1 − (1 − θa′)K−1) .

Hence,

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)|YK = 1
]

E
[∑K−1

k=0 I(Ak = 1 − a)WkI(Yk+1 = 1, Yk = 0, ∀j ≤ k : Aj = A0)|YK = 1
]

E
[∑K−1

k=0 I(Ak = a)WkSk

]
E
[∑K−1

k=0 I(Ak = 1 − a)WkSk

]
= 1 − (1 − θa)K−1

1 − (1 − θa′)K−1 × θa(1 − (1 − θa′)K−1)
θa′(1 − (1 − θa)K−1)

= θa/θa′ ,

which completes the proof.

S10.3 Identification results for exact 1:M matching strategies

Intention-to-treat effect
In this subsection, cases are defined by YK = 1 and have baseline exposure A0.
All cases are assigned a (possibly variable) number M ≥ 0 of control exposures
A′

i, i = 1, ..., M , subject to

Pr(M > 0|YK = 1) > 0 and
M ⊥⊥ A0|(L0, YK = 1) and

∀l, a, a′ : Pr(A′
i = a′|L0 = l, A0 = a, YK = 1, M, M > 0)

= Pr(A0 = a′|L0 = l),

 (M1)
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or
Pr(M > 0|YK = 1) > 0 and
M ⊥⊥ A0|(L0, YK = 1) and

∀l, a, a′ : Pr(A′
i = a′|L0 = l, A0 = a, YK = 1, M, M > 0)

= Pr(A0 = a′|L0 = l, YK = 0),

 (M2)

or
Pr(M > 0|YK = 1) > 0 and

M ⊥⊥ A0|(L0, YK = 1, J) and
∀l, a, a′ : Pr(A′

i = a′|L0 = l, A0 = a, Y K , J = j, M, M > 0)
= Pr(A0 = a′|L0 = l, Yj = 0),
where J = max{k = 0, 1, ..., K : Yk = 0}.


(M3)

That is, cases are matched with subjects that have the same baseline covariate
level and who are alive at baseline (M1), at the end of study (M2), or whenever
the case is alive (M3).

For simplicity, it is assumed below that the variables are discrete. The results
can however be extended to more general distributions.

Theorem 10.7 (Case-base sampling for marginal intention-to-treat effect). If
M1 and BCE hold and

Pr(YK = 1|L0 = l, A0 = 1)
Pr(YK = 1|L0 = l, A0 = 0) = θ (H1)

for all l and some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Pr(YK(1) = 1)

Pr(YK(0) = 1) .

Proof. We have

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
]

=
E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]

× Odds(A0 = 1|YK = 1, M > 0),

where
E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]
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=

E
[∑m

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M = m
]

× Pr(M = m|A0 = 1, YK = 1, M > 0)∑
m>0

E
[∑m

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M = m
]

× Pr(M = m|A0 = 0, YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 0|L0 = l, A0 = 1, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 1|L0 = l, A0 = 0, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

Pr(A0 = 0|L0 = l)
× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑

m>0

m∑
i=1

∑
l

Pr(A0 = 1|L0 = l)
× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

(by M1)

=

∑
m>0

m∑
i=1

∑
l

Pr(A0 = 0|L0 = l)
× Pr(M = m, L0 = l, A0 = 1|YK = 1)∑

m>0

m∑
i=1

∑
l

Pr(A0 = 1|L0 = l)
× Pr(M = m, L0 = l, A0 = 0|YK = 1)

× 1
Odds(A0 = 1|YK = 1, M > 0)

=
∑

m>0
∑m

i=1
∑

l q(l, m) Pr(YK = 1|L0 = l, A0 = 1)∑
m>0

∑m
i=1

∑
l q(l, m) Pr(YK = 1|L0 = l, A0 = 0)

× 1
Odds(A0 = 1|YK = 1, M > 0)

(under M1 and definition of q(l, m) (see below))

=
∑

m>0
∑m

i=1
∑

l q(l, m)θ Pr(YK = 1|L0 = l, A0 = 0)∑
m>0

∑m
i=1

∑
l q(l, m) Pr(YK = 1|L0 = l, A0 = 0)

× 1
Odds(A0 = 1|YK = 1, M > 0) (by H1)

= θ

Odds(A0 = 1|YK = 1, M > 0)
where q(l, m) = Pr(M = m|L0 = l, YK = 1) Pr(A0 = 0|L0 = l) Pr(A0 = 1|L0 =
l) Pr(L0 = l).

It follows that
E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Pr(YK = 1|L0, A0 = 1)

Pr(YK = 1|L0, A0 = 0)
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= Pr(YK(1) = 1|L0, A0 = 1)
Pr(YK(0) = 1|L0, A0 = 0)

(by consistency)

= Pr(YK(1) = 1|L0)
Pr(YK(0) = 1|L0)

(by baseline conditional exchangeability)

= Pr(YK(1) = 1)
Pr(YK(0) = 1) .

Theorem 10.8 (Survivor sampling for conditional intention-to-treat effect).
Suppose M2 and BCE hold. If

Odds(YK = 1|L0, A0 = 1)
Odds(YK = 1|L0, A0 = 0) = θ (H5)

for some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Odds(YK(1) = 1|L0)

Odds(YK(0) = 1|L0) .

Proof. We have

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
]

=
E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]

× Odds(A0 = 1|YK = 1, M > 0),

where

E
[∑M

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M > 0
]

=

∑
m>0

E
[∑m

i=1 I(A′
i = 0)

∣∣A0 = 1, YK = 1, M = m
]

× Pr(M = m|A0 = 1, YK = 1)∑
m>0

E
[∑m

i=1 I(A′
i = 1)

∣∣A0 = 0, YK = 1, M = m
]

× Pr(M = m|A0 = 0, YK = 1)
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=

∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 0|L0 = l, A0 = 1, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑
m>0

m∑
i=1

∑
l

Pr(A′
i = 1|L0 = l, A0 = 0, YK = 1, M = m)

× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

Pr(A0 = 0|L0 = l, YK = 0)
× Pr(M = m, L0 = l|A0 = 1, YK = 1, M > 0)∑

m>0

m∑
i=1

∑
l

Pr(A0 = 1|L0 = l, YK = 0)
× Pr(M = m, L0 = l|A0 = 0, YK = 1, M > 0)

(by M2)

=

∑
m>0

m∑
i=1

∑
l

Pr(YK = 0|L0 = 0, A0 = 0) Pr(A0 = 0|L0 = l)
× Pr(M = m, L0 = l, A0 = 1|YK = 1)

Pr(YK = 0|L0 = l)

∑
m>0

m∑
i=1

∑
l

Pr(YK = 0|L0 = 0, A0 = 1) Pr(A0 = 1|L0 = l)
× Pr(M = m, L0 = l, A0 = 0|YK = 1)

Pr(YK = 0|L0 = l)

× 1
Odds(A0 = 1|YK = 1, M > 0)

=

∑
m>0

m∑
i=1

∑
l

q(l, m) Pr(YK = 1|L0 = l, A0 = 1)
× Pr(YK = 0|L0 = 0, A0 = 0)∑

m>0

m∑
i=1

∑
l

q(l, m) Pr(YK = 1|L0 = l, A0 = 0)
× Pr(YK = 0|L0 = 0, A0 = 1)

× 1
Odds(A0 = 1|YK = 1, M > 0)

(under M2 and definition of q(l, m) (see below))

=

∑
m>0

m∑
i=1

∑
l

q(l, m)θ Pr(YK = 1|L0 = l, A0 = 0)
× Pr(YK = 0|L0 = 0, A0 = 1)∑

m>0

m∑
i=1

∑
l

q(l, m) Pr(YK = 1|L0 = l, A0 = 0)
× Pr(YK = 0|L0 = 0, A0 = 1)

× 1
Odds(A0 = 1|YK = 1, M > 0) (by H5)

= θ

Odds(A0 = 1|YK = 1, M > 0)

where q(l, m) = Pr(M = m|L0 = l, YK = 1) Pr(A0 = 0|L0 = l) Pr(A0 = 1|L0 =
l) Pr(L0 = l)/ Pr(YK = 0|L0 = l).
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From the definition of θ, it follows that

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Odds(YK(1) = 1|L0, A0 = 1)

Odds(YK(0) = 1|L0, A0 = 0)
(by consistency)

= Odds(YK(1) = 1|L0)
Odds(YK(0) = 1|L0)

(by baseline conditional exchangeability)

= Odds(YK(1) = 1)
Odds(YK(0) = 1) .

Theorem 10.9 (Risk-set sampling for conditional intention-to-treat effect).
Suppose M3 and BCE hold. If

Pr(Yj+1 = 1|L0, A0 = 1, Yj = 0)
Pr(Yj+1 = 1|L0, A0 = 0, Yj = 0) = θ (H6)

for j = 0, 1, ..., K and some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
] = Pr(Yj+1(1) = 1|L0, Yj(1) = 0)

Pr(Yj+1(0) = 1|L0, Yj(0) = 0) .

Proof. If J = max{k = 0, 1, ..., K : Yk = 0}, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M > 0
]

=

∑
m>0

E
[∑m

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M = m
]

× Pr(M = m|YK = 1, M > 0)∑
m>0

E
[∑m

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M = m
]

× Pr(M = m|YK = 1, M > 0)

=

∑
m>0

E
[∑m

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1, M = m
]

× Pr(M = m, YK = 1)∑
m>0

E
[∑m

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1, M = m
]

× Pr(M = m, YK = 1)
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=

∑
m>0

K−1∑
j=0

∑
l

E
[∑m

i=1 I(A′
i = 0, A0 = 1)

∣∣L0 = l, J = j, M = m
]

Pr(L0 = l, J = j, M = m)

∑
m>0

K−1∑
j=0

∑
l

E
[∑m

i=1 I(A′
i = 1, A0 = 0)

∣∣L0 = l, J = j, M = m
]

× Pr(L0 = l, J = j, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 0, A0 = 1)
∣∣L0 = l, J = j, M = m

]
× Pr(L0 = l, J = j, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 1, A0 = 0)
∣∣L0 = l, J = j, M = m

]
× Pr(L0 = l, J = j, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 0, A0 = 1)
∣∣L0 = l, Yj = 0, Yj+1 = 1, M = m

]
× Pr(L0 = l, Yj = 0, Yj+1 = 1, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′

i = 1, A0 = 0)
∣∣L0 = l, Yj = 0, Yj+1 = 1, M = m

]
× Pr(L0 = l, Yj = 0, Yj+1 = 1, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A′
i = 0|L0 = l, A0 = 1, Yj = 0, Yj+1 = 1, M = m)
× Pr(L0 = l, A0 = 1, Yj = 0, Yj+1 = 1, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A′
i = 1|L0 = l, A0 = 0, Yj = 0, Yj+1 = 1, M = m)
× Pr(L0 = l, A0 = 0, Yj = 0, Yj+1 = 1, M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A0 = 0|L0 = l, Yj = 0)
× Pr(L0 = l, A0 = 1, Yj = 0, Yj+1 = 1, M = m)

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A0 = 1|L0 = l, Yj = 0)
× Pr(L0 = l, A0 = 0, Yj = 0, Yj+1 = 1, M = m)

(by M3)

=
∑

m>0
∑m

i=1
∑K−1

j=0
∑

l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 1, Yj = 0)∑
m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)

(under M3 and definition of qj(l, m) (see below))

= θ

∑
m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)∑

m>0
∑m

i=1
∑K−1

j=0
∑

l qj(l, m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)
(by H6)

= θ.

where qj(l, m) = Pr(M = m|L0 = l, Yj = 0) Pr(A0 = 1|L0 = l, Yj = 0) Pr(A0 =
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0|L0 = l, Yj = 0) Pr(L0 = l, Yj = 0).
Thus,

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣YK = 1
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣YK = 1
]

= Pr(Yj+1 = 1|L0, A0 = 1, Yj = 0)
Pr(Yj+1 = 1|L0, A0 = 0, Yj = 0)

= Pr(Yj+1(1) = 1|L0, A0 = 1, Yj(1) = 0)
Pr(Yj+1(0) = 1|L0, A0 = 0, Yj(0) = 0) (by consistency)

= Pr(Yj+1(1) = 1|L0, Yj(1) = 0)
Pr(Yj+1(0) = 1|L0, Yj(0) = 0) .

(by baseline conditional exchangeability)

Per-protocol effect
In this subsection, an individual qualifies as a case if and only if YK = 1 and the
subject adheres to the protocol that was assigned at baseline (i.e., Ak = A0 for
all k = 0, 1, ..., K if Yk = 0). All cases are assigned a (possibly variable) number
M ≥ 0 control exposures A′

i, i = 1, ..., M , subject to

Pr(M > 0|YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0)) > 0 and
M ⊥⊥ A0|(J, YK = 1, LJ = lJ , ∀i ≤ J : Ai = A0) and

∀l, a : Pr(A′
i = a′|LJ = lJ , ∀j ≤ J : Aj = A0, A0 = a,

YJ = 0, J, M, M > 0)
= Pr(AJ = a′|LJ = lJ , ∀j ≤ J : Aj = A0, YJ = 0),
where J = max{k = 0, 1, ..., K : Yk = 0}.


(M4)

Theorem 10.10 (Risk-set sampling for conditional per-protocol effect). Suppose
M4 holds. If

Pr(Yj+1 = 1|Lj = lj , Yj = 0, ∀i ≤ j : Ai = 1)
Pr(Yj+1 = 1|Lj = lj , Yj = 0, ∀i ≤ j : Ai = 0)

= θ (H7)

for all j, lj and some constant θ, then

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]
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= Pr(Yj+1(1) = 1|Lj = lj , Yj(1) = 0, ∀i ≤ j : Ai = 1)
Pr(Yj+1(0) = 1|Lj = lj , Yj(0) = 0, ∀i ≤ j : Ai = 0)

.

Proof. Let J = max{k = 0, 1, ..., K : Yk = 0}. Then, for a = 0, 1,

E
[

M∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣YK = 1, ∀j ≤ J : Aj = A0, M > 0
]

=
K−1∑
j=0

∑
lj

E
[

M∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣
Lj = lj , J = j, YK = 1, ∀j ≤ J : Aj = A0, M > 0

]
× Pr(Lj = lj , J = j|YK = 1, ∀i ≤ J : Ai = A0, M > 0)

=
K−1∑
j=0

∑
lj

E
[

M∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣
Lj = lj , Yj = 0, Yj+1 = 1, ∀j ≤ J : Aj = A0, M > 0

]
× Pr(Lj = lj , Yj = 0, Yj+1 = 1|YK = 1, ∀i ≤ J : Ai = A0, M > 0)

=
∑
m>0

K−1∑
j=0

∑
lj

E
[

m∑
i=1

I(A′
i = 1 − a, A0 = a)

∣∣∣∣∣
Lj = lj , Yj = 0, Yj+1 = 1, ∀j ≤ J : Aj = A0, M = m

]
× Pr(M = m, Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0, M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

E
[
I(A′

u = 1 − a, A0 = a)
∣∣∣∣∣

Lj = lj , Yj = 0, Yj+1 = 1, ∀j ≤ J : Aj = A0, M = m

]
× Pr(M = m, Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0, M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A′
u = 1 − a|Lj = lj , Yj = 0, Yj+1 = 1,

∀j ≤ J : Aj = a, M = m)
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× Pr(M = m, A0 = a, Lj = lj , Yj = 0, Yj+1 = 1|
∀j ≤ J : Aj = A0, M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A0 = 1 − a|Yj = 0, Lj = lj ,

∀i ≤ j : Ai = A0)
× Pr(M = m, A0 = a, Lj = lj , Yj = 0, Yj+1 = 1|
∀j ≤ J : Aj = A0, M > 0) (by M4)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A0 = 1 − a|Yj = 0, Lj = lj , ∀i ≤ j : Ai = A0)

× Pr(M = m, Lj = lj , A0 = a, Yj+1 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
× Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = a, Yj = 0, ∀i ≤ j : Ai = A0)

× qj(lj , m) Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1,
(under M4)

where

qj(lj , m) = Pr(M = m|Lj = lj , Yj = 0, Yj+1 = 1, ∀i ≤ j : Ai = A0)
× Pr(A0 = 1 − a|Yj = 0, Lj = lj , ∀i ≤ j : Ai = A0)
× Pr(A0 = a|Yj = 0, Lj = lj , ∀i ≤ j : Ai = A0)
× Pr(Lj = lj , Yj = 0, ∀i ≤ j : Ai = A0).

It follows that

E
[∑M

i=1 I(A′
i = 0, A0 = 1)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]

E
[∑M

i=1 I(A′
i = 1, A0 = 0)

∣∣∣YK = 1, ∀j : (Yj = 0 ⇒ Aj = A0), M > 0
]

=

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
×qj(lj , m) Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 0, Yj = 0, ∀i ≤ j : Ai = A0)
×qj(lj , m) Pr(YK = 1, ∀i : (Yi = 0 ⇒ Ai = A0), M > 0)−1
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=

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
× qj(lj , m)

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0, ∀i ≤ j : Ai = A0)
× qj(lj , m)

= θ

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = ljYj = 0, ∀i ≤ j : Ai = 0)
× qj(lj , m)

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , Yj = 0, ∀i ≤ j : Ai = 0)
× qj(lj , m)

(by H7)
= θ.

The desired results follows by consistency.

S10.4 Parametric identification by conditional logistic
regression for exact or partial 1:M matching

We now allow for the possibility that cases (YK = 1) are matched to M ≥ 0
controls on only part of L0. That part of L0 on which exact matching is done
will be denoted L∗

0; the other part is denoted L′
0, so that L0 = (L∗

0, L′
0). The

identification result below rests on the assumption that cases are assigned M ≥
0 pairs (A′

i, L′
i) of baseline exposure and baseline covariate data, i = 1, ..., M ,

subject to

Pr(M > 0|YK = 1) > 0 and
M ⊥⊥ (A0, L0)|(L∗

0, YK = 1) and
∀l, l′, a : Pr(A′

i = a, L′
i = l′|L∗

0 = l, L′
0, A0, YK = 1, M, M > 0)

= Pr(A0 = a, L′
0 = l′|L∗

0 = l, YK = 0) and
(L′

0, A0), (L′
1, A′

1), ..., (L′
M , A′

M ) are mutually independent
given (L∗

0, YK = 1, M > 0).


(M2∗)

It is assumed below that the variables are discrete with finite support for
simplicity. The results can however be extended to more general distributions.

Theorem 10.11 (Conditional logistic regression for conditional intention-to-treat
effect). Suppose BCE and M2∗ hold. For some known real-valued functions fj,
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j = 1, ..., p, assume the following model:

logit Pr(YK(a) = 1|L0) = α +
p∑

j=1
fj(a, L∗

0, L′
0)βj (Outcome Model)

For i = 0, ..., M , let Xi,j = fj(A′
i, L∗

0, L′
i) − fj(A0, L∗

0, L′
0), with A′

0 = A0, and
assume for any γ1, ..., γp ∈ R, not all zero, that

Pr
(

M∨
i=1

[ p∑
j=1

γjXi,j ̸= 0
]∣∣∣∣∣YK = 1, M > 0

)
> 0, (Linear Independence)

where
∨

denotes the logical OR operator (i.e., given any indexed collection (Pi)i∈I

of propositions,
∨

i∈I Pi is the proposition that Pi is true for at least one i ∈ I).
Then,

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

is uniquely maximized at β̃ = β.

Proof. We first demonstrate that

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

has at most one maximum by showing that it is strictly concave as a function of
β̃. Let X = (X1, ..., XM ) and Xi = (Xi,1, ..., Xi,p), i = 1, ..., M . To show that
function f ,

f(β) = E
[

log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,jβj

])−1∣∣∣∣∣YK = 1, M > 0
]

=
∑
m>0

∑
x

log
(

1 +
m∑

i=1
exp

[ p∑
j=1

xi,jβj

])−1

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0),

is convex (and −f concave) it suffices to show that its Hessian is positive
semidefinite, i.e., that ∑p

t=1
∑p

u=1 βkβlHk,l(β) ≥ 0 for all β ∈ Rp, where

Hk,l(β) = ∂

∂βl

∂

∂βk
f(β).
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Positive definiteness of the Hessian, i.e., ∑p
k=1

∑p
l=1 βkβlHk,l(β) > 0 for all β ∈ Rp

such that βk ̸= 0 for some k ∈ {1, ..., p}, implies strict convexity of f (and −f
strictly concave).

Letting g(Xi, β) = exp
{∑p

j=1 Xi,jβj
}

for i = 1, ..., M , we have

Hk,l(β) = ∂

∂βl

∂

∂βk
f(β)

= ∂

∂βl

∑
m>0

∑
x

∑m
i=1 xi,kg(xi, β)

1 +∑m
i=1 g(xi, β)

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)

= ∂

∂βl

∑
m>0

∑
x

∑m
i=1 xi,kg(xi, β)

1 +∑m
i=1 g(xi, β)

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)

=
∑
m>0

∑
x

(
1 +

m∑
i=1

g(xi, β)
)−2

×
[(

1 +
m∑

i=1
g(xi, β)

)(
m∑

i=1
Xi,kXi,lg(xi, β)

)

−
(

m∑
i=1

Xi,kg(xi, β)
)(

m∑
i=1

Xi,lg(xi, β)
)]

× Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0),

so that, with vi =
√

g(xi, β) and wi = ∑p
j=1 xi,jβj

√
g(xi, β),

p∑
k=1

p∑
l=1

βkβlHk,l(β)

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
[ p∑

k=1

p∑
l=1

βkβl

(
1 +

m∑
i=1

g(xi, β)
)(

m∑
i=1

xi,kxi,lg(xi, β)
)

−
p∑

k=1

p∑
l=1

βkβl

(
m∑

i=1
xi,kg(xi, β)

)(
m∑

i=1
xi,lg(xi, β)

)]

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2
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×
[(

1 +
m∑

i=1
g(xi, β)

)(
m∑

i=1
g(xi, β)

( p∑
k=1

βkxi,k

)( p∑
l=1

βlxi,l

))

−
(

m∑
i=1

p∑
k=1

βkxi,kg(xi, β)
)(

m∑
i=1

p∑
l=1

βlxi,lg(xi, β)
)]

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
[(

1 +
m∑

i=1
g(xi, β)

)(
m∑

i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2)

−
(

m∑
i=1

p∑
k=1

βkxi,kg(xi, β)
)2]

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
[

m∑
i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2

+
(

m∑
i=1

v2
i,j

)(
m∑

i=1
w2

i,j

)

−
(

m∑
i=1

vi,jvi,j

)2]

≥
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
m∑

i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2

. (by the Cauchy-Schwarz inequality)

Now,∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
m∑

i=1

( p∑
k=1

βkxi,k

√
g(xi, β)

)2

=
∑
m>0

∑
x

Pr(X = x|YK = 1, M = m) Pr(M = m|YK = 1, M > 0)(
1 +∑m

i=1 g(xi, β)
)2

×
m∑

i=1
g(xi, β)

( p∑
k=1

βkxi,k

)2
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= E
[(

1 +
M∑

i=1
g(Xi, β)

)−2 M∑
i=1

g(Xi, β)
( p∑

k=1
βkXi,k

)2∣∣∣∣∣YK = 1, M > 0
]

≥ 0

with strict inequality under Linear Independence. Thus,

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

has at most one maximum.
It remains to be shown that

E
[

− log
(

1 +
M∑

i=1
exp

[ p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1, M > 0
]

is maximized at β̃ = β, i.e., ∂/∂β̃kf(β̃) = 0 for all k = 1, ..., p at β̃ = β.
Now,

∂

∂β̃k

f(β̃) = E
[∑M

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣YK = 1, M > 0
]

=
∑
l∗

∑
m>0

E
[∑m

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣L∗
0 = l∗, YK = 1, M = m

]
× Pr(L∗

0 = l∗, M = m|, YK = 1, M > 0),

where

E
[∑m

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣L∗
0 = l∗, YK = 1, M = m

]

=
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]
× exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
× Pr(A0 = a0, A′

1 = a1, ..., Am = am, L′
0 = l0, ..., L′

m = lm|
L∗

0 = l∗, YK = 1, M = m)

=
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]
× exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
291



Identification of causal effects in case-control studies

× h(a0, ..., aM , l0, ..., lM )

× Pr
(
A0 = a0, A′

1 = a1, ..., AM = aM , L′
0 = l0, ..., L′

m = lm
∣∣∣∨

σ

[
(A0 = aσ(0), L′

0 =σ(0), A′
1 = aσ(1), L′

1 =σ(1), ..., Am = aσ(m), L′
m =σ(m))

]
,

L∗
0 = l∗, YK = 1, M = m

)
,

where permutation σ denotes a bijection from {0, 1, ..., M} to itself and

h(a0, ..., aM , l0, ..., lM )

= Pr
(∨

σ

[
(A0 = aσ(0), L′

0 =σ(0), A′
1 = aσ(1), L′

1 =σ(1), ..., Am = aσ(m),

L′
m =σ(m))

]∣∣∣L∗
0 = l∗, YK = 1, M = m

)
.

Next, let B0 = (L′
0, A0) and Bi = (L′

i, A′
i), i = 1, 2, ..., M . Let bi = (li, ai) for

i = 0, ..., M . We have

Pr
(

B0 = b0, , ..., BM = bM

∣∣∣∣∣
∨
σ

[
(B0, ..., BM ) = (bσ(0), ..., bσ(M))

]
, L∗

0, YK = 1, M, M > 0
)

= Pr(B0 = b0, ..., BM = bM |L∗
0, YK = 1, M > 0)

Pr
(∨

σ

[
B0 = bσ(0), ..., BM = aσ(M)

]∣∣∣L∗
0, YK = 1, M, M > 0

)
∝ Pr(B0 = b0, ..., BM = bM |L∗

0, YK = 1, M > 0)∑
σ Pr

(
B0 = bσ(0), ..., BM = aσ(M)

∣∣∣L∗
0, YK = 1, M, M > 0

)
=

∏M
i=0 Pr(Bi = bi|L∗

0, YK = 1, M, M > 0)∑
σ

∏M
i=0 Pr(Bi = bσ(i)|L∗

0, YK = 1, M, M > 0)
(by mutual independence of M2∗)

= Pr(B0 = b0|L∗
0, YK = 1)∏M

i=1 Pr(B0 = bi|L∗
0, YK = 0)∑

σ Pr(B0 = bσ(0)|L∗
0, YK = 1)∏M

i=1 Pr(B0 = bσ(i)|L∗
0, YK = 0)

(by M2∗)

= Pr(YK = 1|B0 = b0, L∗
0)∏M

i=1[1 − Pr(YK = 1|B0 = bi, L∗
0)]∑

σ Pr(YK = 1|B0 = bσ(0), L∗
0)∏M

i=1[1 − Pr(YK = 1|B0 = bσ(i), L∗
0)]
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=

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

×
∏M

i=1[1 − Pr(YK = 1|L0 = (L∗
0, li), A0 = ai)]∑

σ

Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

×
∏M

i=1[1 − Pr(YK = 1|L0 = (L∗
0, lσ(i)), A0 = aσ(i))]

=

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

1 − Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

×
M∏

i=0
[1 − Pr(YK = 1|L0 = (L∗

0, li), A0 = ai)]

∑
σ

Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

1 − Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

×
M∏

i=0
[1 − Pr(YK = 1|L0 = (L∗

0, lσ(i)), A0 = aσ(i))]

=

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

1 − Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)∑

σ

Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

1 − Pr(YK = 1|L0 = (L∗
0, lσ(0)), A0 = aσ(0))

∝

Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

1 − Pr(YK = 1|L0 = (L∗
0, l0), A0 = a0)

M∑
i=0

Pr(YK = 1|L0 = (L∗
0, li), A0 = ai)

1 − Pr(YK = 1|L0 = (L∗
0, li), A0 = ai)

=

expit
{
α +∑p

j=1 fj(a0, L∗
0, l0)βj

}
1 − expit

{
α +∑p

j=1 fj(a0, L∗
0, l0)βj

}
M∑

i=0

expit
{
α +∑p

j=1 fj(ai, L∗
0, li)βj

}
1 − expit

{
α +∑p

j=1 fj(ai, L∗
0, li)βj

}
=

exp
[∑p

j=1 fj(a0, L∗
0, l0)βj

]∑M
i=0 exp

[∑p
j=1 fj(ai, L∗

0, li)βj
]

=
(

M∑
i=0

exp
[ p∑

j=1

[
fj(ai, L∗

0, li) − fj(a0, L∗
0, l0)

]
βj

])−1

=
(

1 +
M∑

i=1
exp

[ p∑
j=1

[
fj(ai, L∗

0, li) − fj(a0, L∗
0, l0)

]
βj

])−1

.
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Thus,

E
[∑m

i=1 Xi,jg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣L∗
0 = l∗, YK = 1, M = m

]

∝
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]
× exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
× 1

1 +∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]βk

}
× h(a0, ..., aM , l0, ..., lM )

∝
∑

l0,...,lm

∑
a0,...,am

h(a0, ..., aM , l0, ..., lM )

×
m∑

i=1
[fk(ai, l∗, li) − fk(a0, l∗, l0)]

×
exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]β̃k

}
× 1

1 +∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li) − fk(a0, l∗, l0)]βk

}
∝

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
m∑

u=1

m∑
i=1

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1[fk(ai, l∗, li) − fk(au, l∗, lu)]β̃k

}
1 +∑m

i=1 exp
{∑p

k=1[fk(ai, l∗, li) − fk(au, l∗, lu)]β̃k

}
× 1

1 +∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li) − fk(au, l∗, lu)]βk

}
=

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
m∑

u=1

m∑
i=1

[fk(ai, l∗, li) − fk(au, l∗, lu)]
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}
×

exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
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=
∑

{(l0,a0),...,(lm,aM )}
h(a0, ..., aM , l0, ..., lM )

×
[ ∑

u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
+

∑
u,i∈{1,...,m}:i<u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}]
=

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
[ ∑

u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
−

∑
u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
exp

{∑p
k=1 fk(au, l∗, lu)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(ai, l∗, li)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}]
=

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
∑

u,i∈{1,...,m}:i>u

[fk(ai, l∗, li) − fk(au, l∗, lu)]

×
[

exp
{∑p

k=1 fk(ai, l∗, li)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(au, l∗, lu)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}
−

exp
{∑p

k=1 fk(au, l∗, lu)β̃k

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)β̃k

} exp
{∑p

k=1 fk(ai, l∗, li)βk

}∑m
i=0 exp

{∑p
k=1 fk(ai, l∗, li)βk

}],

which is clearly zero when β̃ = β. If follows that

∂

∂β̃k

f(β̃) = E
[∑M

i=1 Xi,kg(Xi, β̃)
1 +∑m

i=1 g(Xi, β̃)

∣∣∣∣∣YK = 1, M > 0
]

= 0
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for all k = 1, ..., p if and only if β̃ = β.
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Optimal sugroups

In a recent publication, VanderWeele et al. (2019) considered the task of
finding a treatment subgroup that maximizes the mean potential outcome. They
showed that the task can sometimes be considerably simplified by deriving
optimal treatment assignment rules of a simple form: assign treatment in a greedy
fashion to all individuals with the next largest benefit (i.e., the difference in
potential outcome means given covariates) or the next highest benefit–cost ratio
(with cost being a positive function of baseline covariates) until the resource or
cost constraint, respectively, is exceeded. As they state in their supplementary
material, the optimality of the rules relies critically on the assumption that there
are no ties between individuals. Although tied treatment effects or benefit–cost
ratios may occur with many covariates, they are perhaps more realistic when few
and only discrete baseline variables are considered to define treatment rules.

Consider for example the setting of Table 11.1 and suppose that the total
cost may not exceed 130. According to the rule of VanderWeele et al. (2019),
individuals in the first stratum should be assigned treatment. Because the

Table 11.1: Characteristics of hypothetical population of size 100 with baseline
covariates forming five strata.

Stratum
1 2 3 4 5

Number of individuals 25 20 10 15 30
Conditional mean potential outcome

– under no treatment −5 4 0 −5 −5
– under treatment 15 20 20 5 −15

Cost of treatment per individual 4 4 5 10 10
Benefit–cost ratio 5 4 4 1 −1

If those and only those in stratum 1 are treated, the total cost is 25×4 = 100 and
the mean potential outcome is (25×15+20×4+10×0+15×−5+30×−5)/(25+
20 + 10 + 15 + 30) = 230/100 = 2.3. If those and only those patients in strata 2
and 3 are treated, the total cost is 20 × 4 + 10 × 5 = 130 and the mean potential
outcome is (25×−5+20×20+10×20+15×−5+30×−5)/(25+20+10+15+30) =
250/100 = 2.5. If patients in stratum 1 are treated with probability 1, patients in
strata 2 and 3 with probability 3/13, and the rest with probability 0, the expected
total cost is 25×4+(3/13)×20×4+(3/13)×10×5 = 130 and the mean potential
outcome is (25 × 15 + (3/13) × 20 × 20 + (10/13) × 20 × 4 + (3/13) × 10 × 20 +
(10/13) × 10 × 0 + 15 × −5 + 30 × −5)/(25 + 20 + 10 + 15 + 30) = 350/100 = 3.5.
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presented rules assign treatment to either all or no individuals in any given
stratum, no more individuals can be selected without violating the cost constraint.
This rule yields a mean potential outcome of 2.3. However, because of ties, a
better rule that likewise selects either all or no individuals of a stratum, does
exist: assign treatment to strata 2 and 3 (with a mean potential outcome of 2.5).
Thus, in the presence of ties, the optimal rule need not be greedy (see also the
literature on the classic knapsack problem; e.g., Korte and Vygen, 2008).

We note that a better rule may be obtained by augmenting our data with a
sequence of independent, possibly unfair, coin tosses. As shown in the eAppendix
(but see also Luedtke and van der Laan, 2016), maximizing the mean potential
outcome across rules of this kind is achieved in the cost-constrained setting
by treating those with a benefit–cost ratio strictly greater than some positive
constant and a random selection of those with a benefit–cost ratio that equals
that constant. For our example, this means treating all members of stratum 1
as well as those members of strata 2 and 3 whose independent coin toss, with
probability 3/13 of showing heads, results in heads (mean potential outcome:
3.5).

It seems unlikely that these treatment rules would be implemented via biased
coin tosses in real-world settings. If resources are made available in a single batch,
one could calculate the amount of resources that would need to be allocated to
the “always-treat” portion of the population, reserve this portion of resources
for always-treat individuals, and then allocate the remainder to the “sometimes-
treat” portion of the population on a first-come, first-serve basis until that portion
of resources runs out. Bias could however be introduced by doing this, for
example, when sometimes-treat individuals who visit the clinic more frequently
are systematically less (or more) likely to benefit from treatment. However,
there may be ways to account for this (e.g., by including frequency of visits
as a covariate).

Finally, we add that with multiple treatment levels and cost constraints,
mean potential outcomes need not be optimized by the greedy approach of
assigning to subjects the treatment level with the highest benefit–cost ratio
above or at treatment level-specific thresholds (to satisfy cost constraints), even
if the observed data are augmented with a sequence of independent coin tosses
(Supplementary Material). Regardless of the form the rule should take, however,
we encourage researchers to follow VanderWeele et al. (2019) in taking a more
formal approach to “precision medicine” with clearly specified objectives, so that
the optimal rule form may be derived and estimation strategies be evaluated.
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Supplementary Material

In what follows, we denote by I the indicator function and by Y a the
counterfactual or potential outcome that would be realised if, possibly contrary
to fact, A were set to a. Superscripts are reserved for assigned treatment levels
rather than powers. For example, Y I(S) is the counterfactual outcome Y 1 if
statement S is true and is Y 0 otherwise. We consider treatment assignment
rules that map the vector X of covariate vector L and an error term ε to the
value of 0 or 1. We generally require that ε be independent of (Y 1 − Y 0, L)
and uniformly distributed between 0 and 1, so that for fixed p ∈ [0, 1], I(ε < p)
takes the Bernoulli distribution with parameter p and, as such, behaves like an
independent (unfair) coin toss.

Lemma 11.1. Let X be the support of X := (L, ε) and suppose that (Y 1 −
Y 0) ⊥⊥ ε|L. If X0 ⊆ X1 ⊆ X such that (L, ε) ∈ X1 ⇒ E[Y 1 − Y 0|L] >
0, then E

[
Y I(X∈X1)] ≥ E

[
Y I(X∈X0)]. Also, for all X ′ ⊆ X , we have

E[Y I(X∈X ′ ∧E[Y 1−Y 0|L]>0)] ≥ E
[
Y I(X∈X ′)].

Proof. Define X0 and X1 as indicated above, so that

E
[
Y I(X∈X1)]

= E
[
Y I(X∈X0 ∨ X∈X1\X0)]

= E[Y 0] + E[(Y 1 − Y 0)I(X ∈ X0 ∨ X ∈ X1\X0)]
= E[Y 0] + E[(Y 1 − Y 0)I(X ∈ X0)] + E[(Y 1 − Y 0)I(X ∈ X1\X0)]
= E

[
Y I(X∈X0)]+ E[(Y 1 − Y 0)I(X ∈ X1\X0)].

If Pr(X ∈ X1\X0) > 0, then

E[(Y 1 − Y 0)I(X ∈ X1\X0)]
= E[Y 1 − Y 0|X ∈ X1\X0] Pr(X ∈ X1\X0)
= E

{
E[Y 1 − Y 0|L, ε]

∣∣X ∈ X1\X0
}

Pr(X ∈ X1\X0)
= E

{
E[Y 1 − Y 0|L]

∣∣X ∈ X1\X0
}

Pr(X ∈ X1\X0),

which is strictly positive, because the inner expectation is strictly positive on (any
subset of) X1. Also, if Pr(X ∈ X1\X0) = 0, then E[(Y 1 − Y 0)I(X ∈ X1\X0)] = 0.
In either case, E

[
Y I(X∈X1)] ≥ E

[
Y I(X∈X0)].

As for the last statement, fix some X ′ ⊆ X , let X ′′ =
{
X ⊆ X : E[Y 1−Y 0|L] >

0
}

and observe

E
[
Y I(X∈X ′ ∧E[Y 1−Y 0|L]>0)]
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= E
[
Y 1−I(X∈X \X ′ ∨ X∈X \X ′′)]

= E[Y 1] + E[(Y 0 − Y 1)I(X ∈ X \X ′ ∨ X ∈ X \X ′′)]
= E[Y 1] + E[(Y 0 − Y 1)I(X ∈ X \X ′ ∨ X ∈ (X \X ′′)\(X \X ′))]
= E[Y 1] + E[(Y 0 − Y 1)I(X ∈ X \X ′)] + E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)]
= E

[
Y X∈X ′]+ E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)]

with E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)] = 0 if Pr(X ∈ X ′\X ′′) = 0 and, if Pr(X ∈
X ′\X ′′) > 0,

E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)]
= E[Y 0 − Y 1|X ∈ X ′\X ′′] Pr(X ∈ X ′\X ′′)
= E

{
− E[Y 1 − Y 0|L, ε]

∣∣X ∈ X ′\X ′′}Pr(X ∈ X ′\X ′′)
= E

{
− E[Y 1 − Y 0|L]

∣∣X ∈ X ′\X ′′}Pr(X ∈ X ′\X ′′).

Because the inner expectation is strictly negative on (any subset of) X \X ′′,
we have E[(Y 0 − Y 1)I(X ∈ X ′\X ′′)] > 0 if Pr(X ∈ X ′\X ′′) > 0. Hence,
E
[
Y I(X∈X ′ ∧E[Y 1−Y 0|L]>0)] ≥ E

[
Y X∈X ′], as desired.

Lemma 11.2. Let X be the support of X := (L, ε) and let Cost be a
deterministic, positive function of L such that E[Cost(L)] ∈ R. For some
positive real τ ≤ E[Cost(L)], define G to be the set of all deterministic functions
g : X → {0, 1} such that E[Cost(L)g(X)] = τ . Suppose that ε ⊥⊥ (Y 1 − Y 0, L),
that ε ∼ Uniform[0, 1] and that E[Y 1 − Y 0|L] is defined almost surely. Let
h(L) = E

[
Y a − Y 0|L

]
/Cost(L) and define g∗ such that

g∗((L, ε)) =


1 if h(L) > k,

1 if h(L) = k ∧ ε < p,

0 if h(L) < k

for all (L, ε) ∈ X , and let k = −∞ denote that h(L) > k is necessarily true.
Then, there exist k ∈ R ∪ {−∞} and p ∈ [0, 1] such that g∗ ∈ G.

Proof. If τ = E[Cost(L)], then letting k = −∞ and p = 0 gives the result. So
assume that τ < E[Cost(L)].

Now, let
f : k 7→ E

[
Cost(L)I(h(L) ≥ k)

]
and K = {k ∈ R : f(k) < τ}.
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Note that f is upper semi-continuous (which can be seen to hold because f is
left continuous with right limits and monotonically non-increasing). Since upper
semi-continuity of f implies {x ∈ R : f(x) < y} is open for every y ∈ R, we see
that R\K is closed.

To see that R\K is nonempty, note that, by the dominated convergence
theorem, limk→−∞ f(k) = E[Cost(L)] > τ . Hence, there exists k0 > −∞
such that f(k0) ≥ τ , which in turn implies that R\K is non-empty. Moreover,
limk→∞ f(k) = 0 < τ , and so there exists a k1 such that f(k1) < τ . Hence, R\K
is bounded above.

Since R\K is closed, non-empty, and bounded above, we see that k :=
supR\K belongs to R\K, which implies that f(k) ≥ τ . The proof is complete
if we can show that there exists a p ∈ [0, 1] such that τ = E[Cost(L)g∗((L, ε))],
where we note that g∗ depends on the choice of p. To see that this is the case,
first note that

E[Cost(L)g∗((L, ε))] = E
[
Cost(L)I(h(L) > k)

]
+ pE

[
Cost(L)I(h(L) = k)

]
= (1 − p)E

[
Cost(L)I(h(L) > k)

]
+ pf(k)

= (1 − p) lim
k′↓k

f(k′) + pf(k).

Now, for any k′ ≥ k, it holds that k′ ∈ K, implying that f(k′) < τ . Hence,
limk′↓k f(k′) ≤ τ . Combining this fact with the fact that f(k) ≥ τ , we see that
there exists a p ∈ [0, 1] such that (1−p) limk′↓k f(k′)+pf(k) = τ . This completes
the proof.

Remark. The constraint τ ≤ E[Cost(L)] in Lemma 11.2 is weaker than, and so
may me replaced with, τ ≤ E

[
Cost(L)I

(
E[Y 1 − Y 0|L] > 0

)]
.

Theorem 11.1. Consider some positive real τ . In the setting of Lemma 11.2,
except with G defined to be the set of all deterministic functions g : X → {0, 1}
such that E[Cost(L)g(X)] ≤ τ , (i) there exist k ∈ (0, ∞) and p ∈ [0, 1] such that
g∗ ∈ G and (ii)

g∗ ∈ arg max
g∈G

E
[
Y g(X)].

Proof. Since Y g(X) = Y 0 + (Y 1 − Y 0)g(X) by consistency, we have

E
[
Y g(X)] = E

[
Y 0 + (Y 1 − Y 0)g(X)

]
= E

[
Y 0]+ E

[
(Y 1 − Y 0)g(X)

]
= E

[
Y 0]+ E

{
E
[
(Y 1 − Y 0)g(X)

∣∣g(X)
]}
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= E
[
Y 0]+ E

[
Y 1 − Y 0∣∣g(X) = 1

]
E[g(X)]

= E
[
Y 0]+

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] E[Cost(L)g(X)].

Lemma 11.1 suggests choosing among all g ∈ G such that E[Cost(L)g(X)] =
min

{
τ,E

[
Cost(L)I

(
E[Y 1 − Y 0|L] > 0

)]}
. Let G′ be the set of all such g. Since

E
[
Y 0] and E[Cost(L)g(X)] are invariant under changes in g ∈ G′,

arg max
g∈G

E
[
Y g(X)] ⊇ arg max

g∈G′

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] .

Part (i) now follows from Lemma 11.2. In the remainder of this proof, we
show that (ii) holds also. It suffices to show that

g∗ ∈ arg max
g∈G′

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] .

To show that the above expression is true, consider first any non-empty X0, X1 ⊆
X such that E[Cost(L)I(X ∈ X0)] = E[Cost(L)I(X ∈ X1)] = τ ′ for some τ ′ ∈
R+. It holds that

τ ′ = E[Cost(L)I(X ∈ X0)]
= E[Cost(L)I(X ∈ X0 ∩ X1) + Cost(L)I(X ∈ X0\X1)]
= E[Cost(L)|X ∈ X0 ∩ X1] Pr(X ∈ X0 ∩ X1)

+ E[Cost(L)|X ∈ X0\X1] Pr(X ∈ X0\X1)

and, similarly,

τ ′ = E[Cost(L)|X ∈ X0 ∩ X1] Pr(X ∈ X0 ∩ X1)
+ E[Cost(L)|X ∈ X1\X0] Pr(X ∈ X1\X0),

so that E[Cost(L)|X ∈ X0\X1] Pr(X ∈ X0\X1) = E[Cost(L)|X ∈ X1\X0] Pr(X ∈
X1\X0). Therefore, there exist a ∈ R and b, c ∈ R+ ∪ {0} such that b + c ̸= 0 and
for all i ∈ {0, 1},

E
[
Y 1 − Y 0∣∣X ∈ Xi

]
E[Cost(L)|X ∈ Xi]

=

E
[
Y 1 − Y 0∣∣X ∈ Xi ∩ X1−i

]
Pr(X ∈ X1−i|X ∈ Xi)

+ E
[
Y 1 − Y 0∣∣X ∈ Xi\X1−i

]
Pr(X ̸∈ X1−i|X ∈ Xi)

E[Cost(L)|X ∈ Xi ∩ X1−i] Pr(X ∈ X1−i|X ∈ Xi)
+ E[Cost(L)|X ∈ Xi\X1−i] Pr(X ̸∈ X1−i|X ∈ Xi)
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=

E
[
Y 1 − Y 0∣∣X ∈ Xi ∩ X1−i

]
Pr(X ∈ X1−i ∩ Xi)

+ E
[
Y 1 − Y 0∣∣X ∈ Xi\X1−i

]
Pr(X ∈ Xi\X1−i)

E[Cost(L)|X ∈ Xi ∩ X1−i] Pr(X ∈ X1−i ∩ Xi)
+ E[Cost(L)|X ∈ Xi\X1−i] Pr(X ∈ Xi\X1−i)

=
a + E

[
Y 1 − Y 0|X ∈ Xi\X1−i

]
E[Cost(L)|X ∈ Xi\X1−i]−1b

c + b
.

This readily shows that

E
[
Y 1 − Y 0∣∣X ∈ X0

]
E[Cost(L)|X ∈ X0] >

E
[
Y 1 − Y 0∣∣X ∈ X1

]
E[Cost(L)|X ∈ X1]

⇐⇒
E
[
Y 1 − Y 0∣∣X ∈ X0\X1

]
E[Cost(L)|X ∈ X0\X1] >

E
[
Y 1 − Y 0∣∣X ∈ X1\X0

]
E[Cost(L)|X ∈ X1\X0]

(11.1)

for any non-empty X0, X1 ⊆ X such that E[Cost(L)I(X ∈ X0)] =
E[Cost(L)I(X ∈ X1)] = τ ′ for some τ ′ ∈ R+.

Let X0 = {X ∈ X : g∗(X) = 1}. Suppose, by way of contradiction, that there
exists X1 such that E[Cost(L)I(X ∈ X0)] = E[Cost(L)I(X ∈ X1)] and

E
[
Y 1 − Y 0∣∣X ∈ X0

]
E[Cost(L)|X ∈ X0] <

E
[
Y 1 − Y 0∣∣X ∈ X1

]
E[Cost(L)|X ∈ X1] ,

so that, by (11.1),

E
[
Y 1 − Y 0∣∣X ∈ X0\X1

]
E[Cost(L)|X ∈ X0\X1] <

E
[
Y 1 − Y 0∣∣X ∈ X1\X0

]
E[Cost(L)|X ∈ X1\X0] . (11.2)

Sets X0\X1 and X1\X0 are disjoint and E[Cost(L)I(X ∈ X0\X1)] =
E[Cost(L)I(X ∈ X1\X0)]. In addition, for all non-empty subsets X ′

0 ⊆ X0\X1
and X ′

1 ⊆ X1\X0, we have, by construction of X0 and disjointedness, that

inf
{E[Y 1 − Y 0|L

]
Cost(L) : X ∈ X ′

0

}
≥ sup

{E[Y 1 − Y 0|L
]

Cost(L) : X ∈ X ′
1

}
. (11.3)

Let f(L) = E
[
Y 1 − Y 0|L

]
and g(L) = Cost(L), so that h(L) = f(L)/g(L), and

observe that

E[f(L)|X ∈ X ′
0]

E[g(L)|X ∈ X ′
0] = E

[
f(L)
g(L)

g(L)
E[g(L)|X ∈ X ′

0]

∣∣∣∣X ∈ X ′
0

]
≥ E

[
inf
{

f(L)
g(L) : X ∈ X ′

0

}
g(L)

E[g(L)|X ∈ X ′
0]

∣∣∣∣X ∈ X ′
0

]
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= inf
{

f(L)
g(L) : X ∈ X ′

0

}
E
[

g(L)
E[g(L)|X ∈ X ′

0]

∣∣∣∣X ∈ X ′
0

]
= inf

{
h(L) : X ∈ X ′

0

}
. (11.4)

Similarly, we have

E[f(L)|X ∈ X ′
1]

E[g(L)|X ∈ X ′
1] ≤ sup

{
h(L) : X ∈ X ′

1

}
. (11.5)

Taken together, (11.3), (11.4) and (11.5) imply

E
{
E
[
Y 1 − Y 0∣∣L]|X ∈ X ′

0
}

E[Cost(L)|X ∈ X ′
0] ≥

E
{
E
[
Y 1 − Y 0∣∣L]|X ∈ X ′

1
}

E[Cost(L)|X ∈ X ′
1] ,

which, by assumption that (Y 1 − Y 0, L) ⊥⊥ ε (and, in turn, (Y 1 − Y 0) ⊥⊥ ε|L by
weak union), implies

E
[
Y 1 − Y 0∣∣X ∈ X ′

0
]

E[Cost(L)|X ∈ X ′
0] ≥

E
[
Y 1 − Y 0∣∣X ∈ X ′

1
]

E[Cost(L)|X ∈ X ′
1] .

In particular, this implies

E
[
Y 1 − Y 0∣∣X ∈ X0\X1

]
E[Cost(L)|X ∈ X0\X1] ≥

E
[
Y 1 − Y 0∣∣X ∈ X1\X0

]
E[Cost(L)|X ∈ X1\X0] .

However, in view of (11.2), this poses a contradiction. Hence, for all g ∈ G′, we
have

E
[
Y 1 − Y 0∣∣g∗(X) = 1

]
E[Cost(L)|g∗(X) = 1] ≥

E
[
Y 1 − Y 0∣∣g(X) = 1

]
E[Cost(L)|g(X) = 1] ,

so that g∗ ∈ arg max
g∈G

E
[
Y g(X)], as desired.

The counterexample to the following proposition suggests that the a greedy
approach need not optimize mean potential outcomes with multiple treatment
levels and cost or resource constraints.

Proposition. Let A be a finite set that includes 0 and denote by X the support of
X := (L, ε). For a ∈ A\{0}, let Costa be a deterministic, positive function of L
such that E[Costa(L)] ∈ R. Let I denote the indicator function and define G to be
the set of all deterministic functions g : X → A such that E

[
Costa(L)I(g(X) =

a)
]

= τa for all a ∈ A\{0} and some positive reals τa ≤ E[Costa(L)]. Suppose
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(Y 1 − Y 0) ⊥⊥ ε
∣∣L, E[Y 1 − Y 0|L] ∈ R and ε|L ∼ Uniform[0, 1]. Let ha(L) =

E
[
Y a − Y 0|L

]
/Costa(L) for all a ∈ A\{0} and define g∗ such that

g∗((L, ε)) =

 min
{

arg max
a∈A\{0}:P(a,L)

ha(L)
}

if P(a, L) for some a ∈ A\{0},

0 otherwise

for all (L, ε) ∈ X and where P(a, L) is true if and only if ha(L) > ka ∨ [ha(L) =
ka ∧ ε < p]. Then, (i) there exist ka ∈ R ∪ {−∞} and pa ∈ [0, 1] for a ∈ A\{0}
such that g∗ ∈ G and (ii)

g∗ ∈ arg max
g∈G

E
[
Y g(X)].

Counterexample. Let A = {0, 1, 2} and suppose L is binary with Pr(L = 1) =
1/2. Suppose also that Costa(L) = 1 and that τa = 1/4 for all a ∈ A\{0}.
Suppose further that

E
[
Y a|L

]
=



0 if a = 0,
5 if a = 1 ∧ L = 0,
4 if a = 1 ∧ L = 1,
4 if a = 2 ∧ L = 0,
1 if a = 2 ∧ L = 1,

so that ha(L) =


5 if a = 1 ∧ L = 0,
4 if a = 1 ∧ L = 1,
4 if a = 2 ∧ L = 0,
1 if a = 2 ∧ L = 1.

Suppose now that g∗ ∈ G. Then, k1 = 5, k2 = 1 and p1 = p2 = 1/2. Indeed,
if k1 > 5, then P(1, L) is false for all L and, so, E[g∗(X) = 1] = 0 ̸= τ1. If
k1 < 5, then P(1, L) is true for all L and E[g∗(X) = 1] = E[g∗(X) = 1|L =
0]/2 +E[g∗(X) = 1|L = 1]/2 = 1 ̸= τ1. If k1 = 5, then P(1, L) is true if and only
if L = 0 and ε < p, so E[g∗(X) = 1] = Pr(L = 0, ε < p) = Pr(L = 0) Pr(ε < p) =
p/2 and p/2 = τ1 = 1/4 if and only if p = 1/2. Similar arguments establish that
k2 = 1 and p2 = 1/2 if g∗ ∈ G.

Hence,

E
[
Y g∗(X)] = E

[
Y 0 + (Y 1 − Y 0)I(g∗(X) = 1) + (Y 2 − Y 0)I(g∗(X) = 2)

]
= E

[
Y 0]+ E

[
Y 1 − Y 0∣∣g∗(X) = 1

]
τ1 + E

[
Y 2 − Y 0∣∣g∗(X) = 2

]
τ2

= E
[
Y 1 − Y 0∣∣L = 0, ε < 1/2

]
τ1 + E

[
Y 2 − Y 0∣∣L = 1, ε < 1/2

]
τ2
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= E
[
Y 1 − Y 0∣∣L = 0

]
τ1 + E

[
Y 2 − Y 0∣∣L = 1

]
τ2

= 5/4 + 1/4 = 1.5.

Now, define g̃ : X → A such that

g̃((L, ε)) =


1 if L = 1 ∧ ε < 1/2,
2 if L = 0 ∧ ε < 1/2,
0 otherwise,

so that E[g̃(X) = 1] = τ1 and E[g̃(X) = 2] = τ2. But

E
[
Y g̃(X)] = E

[
Y 0]+ E

[
Y 1 − Y 0∣∣g̃(X) = 1

]
τ1 + E

[
Y 2 − Y 0∣∣g̃(X) = 2

]
τ2

= E
[
Y 1 − Y 0∣∣L = 1

]
τ1 + E

[
Y 2 − Y 0∣∣L = 0

]
τ2

= 4/4 + 4/4 = 2.

Hence, E
[
Y g̃(X)] > E

[
Y g∗(X)] and g̃ ∈ G and, so, g∗ ̸∈ arg max

g∈G
E
[
Y g(X)].
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Summary and general discussion

Epidemiology is a broad field of study with methods and concepts connecting all
subfields (Lau et al., 2020). This thesis describes a study of epidemiological
methods for answering questions about cause and effect in the presence of
methodological obstacles, such as confounding, missing data or measurement
error. In this chapter, a summary of our main findings is presented, along with
a general discussion of this thesis in the light of the existing literature, with
suggestions for future research.

12.1 Summary of findings

Methods for answering causal questions can be studied with the aim of learning
about its workings, its performance under certain conditions. At a more
meta-level, we can study how methods are being disseminated or implemented.
Likewise, we can study, on the one hand, how and when a methodological obstacle
may be overcome, and, on the other, how it is handled in applied research. In
chapter 2, we questioned some of the current practice of how research at this
meta-level is conducted, particularly where it concerns the initial phases of a
systematic literature review. The standard approach of ignoring the text body in
searching or screening articles might fail to retrieve all or a representative sample
of the relevant literature, potentially leading to a false impression about the topic
of enquiry. We found that for a number of methodological topics, a large portion
of articles with a topic mention somewhere in the text did not contain a reference
to the topic in text fields other than the body. The results do not conclusively
show that ignoring text bodies does indeed lead to a false impression, but it
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should raise suspicion. Researchers might wish to consider including these text
fields in their search and screening strategy.

In primary research, epidemiologists are often faced with multiple
methodological obstacles simultaneously. There are concerns, however, that
combinations of methods designed for different methodological obstacles have
worse performance than might be expected from how they perform in isolation.
In chapters 3 and 4, we critically reflected on a previous simulation study by
Mitra and Reiter (2016), in which they compare two approaches to implementing
propensity score matching after multiply imputing missing data. We found
that the standard multiple imputation approach of carrying out analysis within
multiply imputed datasets before pooling the results is generally to be preferred
over their proposed approach of first pooling propensity scores across multiply
imputed datasets before carrying out matching (or any other propensity score
method) based on these pooled scores. Our results are in stark contrast to the
results of Mitra and Reiter (2016) and we argued that this is largely due to their
use of a misspecified imputation model that ignores the outcome variable.

Propensity score estimation is typically done by fitting a logistic regression.
However, standard regression modelling software by default discards all
incomplete records and does not offer propensity score estimates for subjects with
missing data. Machine learning techniques such as classification and regression
trees (CART) are appealing in part because some implementations allow for
incomplete records to be incorporated in the tree fitting and provide propensity
score estimates for all subjects. An important question to be answered is whether
and when CART handles the missing data in a desirable way. In chapter
5, we argued that the automatic handling of missing data by CART is by no
means a one-fits-all solution to the problem of missing covariate data for causal
inferences based on propensity score methods. In a number of simulation studies,
we actually found CART to be outperformed by standard, alternative methods to
account for missing data. Different CART implementations handle missing data
differently. In judging whether a given implementation is appropriate for the
task at hand, some understanding of the ‘black-box nature’ of machine learning
algorithms is therefore desirable.

In chapter 6, we considered missing outcome rather than missing covariate
data. The chapter gives no new results but emphasises and illustrates that
when baseline exchangeability is achieved through propensity score matching,
bias might nonetheless result from restricting downstream analysis to the subset
of individuals who have not dropped out of the study by the administrative study
end. This equally applies to controlled trials with baseline randomisation, where
exchangeability, achieved at baseline by design, is not guaranteed to uphold in
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the set of complete records that may be used for the analysis. Regression and
inverse probability of censoring weighting were discussed as possible solutions.

Researchers can sometimes have a considerable influence over the extent of
missingness. In studies on the effects of time-varying exposures, information
of post-baseline covariates may help mitigate time-dependent confounding, but
obtaining a record of the values that these variables take at each of potentially
many time points can be costly and time-consuming. Reducing the frequency of
measurements may enhance study feasibility, but it may also compromise study
validity. In chapter 7, we illustrated by way of simulation the impact of choices
regarding the frequency of measuring time-varying covariates. To handle missing
values, we implemented the last-observation-carried-forward procedure (LOCF)
under the implicit (and wrong) assumption that the participant characteristics
remained constant in periods of no measurement. As expected, in our simulations,
fixed-interval measurement resulted in bias consistent with residual confounding.
We additionally showed that bias might arise in settings where decisions to
measure are driven by observed values of the time-varying exposure, such as
in the studies of Ali et al. (2016) and Souverein et al. (2016).

When variables take values that are different from what these values appear
or are assumed to be, such as may be the case when we implement LOCF, we
say that the variables are subject to measurement error. When the variables are
categorical, we speak of misclassification, a special type of measurement error. In
chapter 8, we focused on joint exposure-outcome misclassification and developed
a method for this issue in the presence of confounding. Simulation studies showed
favourable large sample performance. However, further research is needed to
study the sensitivity of the proposed method and that of alternatives to violations
of their assumptions.

Concerns about violations of assumptions are common in observational
research on causal effects. In efforts to lessen these concerns, it has been suggested
that so-called negative control variables are used (Lipsitch et al., 2010). Negative
controls are variables that are known (or at least believed) to be causally unrelated
to one or more of the variables of interest. The key idea is that observing
an association that contradicts the belief in a causal null relation might alert
the analyst to violations of assumptions. Negative controls have potential in
bias detection as well as partial or complete bias correction in epidemiological
research. In chapter 9, we sought to complement efforts to increase the more
routine use of negative controls with a discussion about a selection of caveats.
We argued that negative controls may lack both specificity and sensitivity to
detect unmeasured confounding. We also reviewed existing methods to adjust
for unmeasured confounding based on negative controls and examined the impact
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of assumption violations. Given the potentially large impact, it may sometimes
be desirable to replace strong conditions for exact identification with weaker,
easily verifiable conditions, even when these imply at most partial identification.
Future research in this area may broaden the applicability of negative controls
and in turn make them better suited for routine use in epidemiological practice.
At present, however, the applicability of negative controls should be carefully
judged on a case-by-case basis.

Case-control designs are an important tool in causal inference. In chapter 10,
we argued that to facilitate understanding, it is useful to consider every case-
control study as being nested within a cohort study. The case-control study then
effectively becomes a cohort study with missingness governed by the control-
sampling scheme. In the chapter, we gave an overview of how observational data
obtained with case-control designs can be used to identify a number of causal
estimands and, in doing so, recast historical case-control concepts, assumptions
and principles in a modern and formal framework.

Finally, in chapter 11, we turned to precision medicine and considered the
task of finding the optimal subgroup for treatment under certain cost or resource
constraints. In practice, it is not uncommon for treatment assignment decisions
to be based of prognostic scores. However, this approach does not guarantee
optimal results (VanderWeele et al., 2019). As an alternative, one may attempt
to evaluate all possible subgroups one by one, and choose the rule with the ‘best’
results. However, this is not feasible when there are many, potentially infinitely
many subgroups to consider. VanderWeele et al. (2019) showed that the task
can sometimes be considerably simplified by deriving treatment assignment rules
that (1) guarantee optimality under some conditions and (2) take a simple form:
assign treatment in a greedy fashion to all individuals with the next largest benefit
(i.e., the largest difference in potential outcome means given covariates) or the
next highest benefit–cost ratio (with cost being a positive function of baseline
covariates) until the resource or cost constraint, respectively, is exceeded. The
optimality of the rules however relies critically on the assumption that there are
no tied conditional treatment effects or benefit-cost ratios between individuals.
We extended their work by deriving rules that likewise have a simple form
and which guarantee optimality under the same conditions, except that there
need be no constraint on the presence of ties. An important insight that this
chapter is meant provide is that in order to obtain some sense of optimally
from allocating treatment, a contrast between counterfactual outcomes under
different treatment options should be considered. Prognostic scores alone are
not (generally) sufficient. The methodological obstacles that we encounter in
causal inference, including confounding, missing data and measurement error,
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are therefore relevant in precision medicine too.

12.2 General discussion

The methodological aspects of causal inference form a broad topic and we
addressed a variety of subtopics in this thesis. Apart from confounding, missing
data, and measurement error, the reader may nonetheless recognise a number of
recurrent features.

For example, Monte Carlo simulation was used in a number of chapters
(e.g., chapters 3-8). This is a useful tool for obtaining empirical results (i.e.,
approximations) about the performance of statistical methods in certain scenarios
as opposed to more general, analytic results (Morris et al., 2019). They are
particularly appealing when the latter are difficult to obtain, or when the interest
lies with illustrating a problem or method. However, they also have limitations.
They provide at most approximations of statistical properties. Also, only a
limited, finite number of scenarios can be considered and there is often the concern
that the results generalise poorly to other scenarios.

Much of this thesis is built on the potential or counterfactual outcomes
framework. In this work, like much of the literature, the terms ‘potential
outcomes’ and ‘counterfactual outcomes’ are used interchangeably. Where they
are considered distinct, generally the potential and counterfactual versions of
a variable under the same hypothetical situation are still regarded as having
the same values. However, variables are labeled as potential or counterfactual
depending on whether they are seen as primitive or constructed from a collection
of functions and background variables, respectively (Pearl, 2010). In some parts
of this thesis (e.g. chapter 5), we explicitly took a constructivist approach,
while in others (e.g., chapter 10), we did not. The adjective ‘potential’ further
connotes a prospective view; either one of multiple versions of the outcome might
become real-world before the choice among the corresponding mutually exclusive
actions is made. By contrast, ‘counterfactual’ connotes a retrospective view; the
choice among mutually exclusive actions is made and all but one version of the
outcome is contrary-to-fact.

The notion of ‘counterfactual thinking’ is not used merely in epidemiology
and has found its way in many branches of science, including physics (Robins
et al., 2015). Its uptake and popularity in epidemiology, however, have given
rise to much dispute among academics (Vandenbroucke et al., 2016; Krieger and
Davey Smith, 2016; Broadbent et al., 2016; VanderWeele, 2016; VanderWeele
et al., 2016; Schwartz et al., 2016; Daniel et al., 2016; Robins and Weissman, 2016;
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Blakely et al., 2016). A central point of critique is that counterfactual thinking
would delimit the meaning of causality by equating “causal claims with precise
predictions about contrary-to-fact scenarios” (Vandenbroucke et al., 2016). A
contrasting view is that the counterfactual framework considers a subset—not
necessarily the entire set—of causal claims, namely those that can be phrased as
statements about the consequences of hypothetical—possibly contrary-to-fact—
actions (VanderWeele et al., 2016). Sometimes, the framework might admit non-
actions (e.g., states) as potential causes but only when it is understood what
actions are implied. The focus on this subset of causal claims is meant to guide
decisions in the real world based on predictions of their consequences.

It should be noted that even after restricting to this subset of causal questions,
some ambiguity about what the actions (interventions) and corresponding
counterfactuals mean often remains. This issue relates to another point of debate:
the well-definedness of interventions and counterfactuals. It is important to note
that well-definedness of interventions is not the same as the interventions being
elaborate. Telling a patient to follow a poorly detailed drug prescription or
exercise programme, and advising social distancing against the spread of COVID-
19 during a given press conference may well represent reasonably well-defined
(point) interventions. They are not made less well-defined by the patient being
unsure of how to interpret the drug prescription or exercise programme, or by
the residents of a country not acting on the social distancing advise in a uniform
way. Well-definedness of interventions relates to the lack of ambiguity of what
the interventions mean, not about how they should be acted on. The requirement
that interventions and counterfactuals are sufficiently well-defined, as noted in the
introduction of this thesis, is that there is no ambiguity about the interventions or
that the counterfactuals are invariant to the choice among the possible variations.
Striving for well-definedness only serves to eliminate vagueness about the meaning
of a causal effect.

Other critique relates to the assumptions that can be readily made explicit
with counterfactual parlance (Schwartz et al., 2016), and the tools that are
typically associated with or embedded in the counterfactual framework, such
as directed acyclic graphs (DAGs) or single-world intervention graphs (sWIGs)
(Richardson and Robins, 2013) with which some assumptions can be graphically
encoded. However, that the assumption of, say, ‘no interference’ for a joint
intervention on multiple individuals (i.e., ‘one individual’s treatment does not
affect another’s outcome’) is often made (albeit often implicitly) or can be
articulated with relative ease, does not mean that the counterfactual framework
permits only causal inference under this assumption (Robins and Weissman,
2016). The development of a language rich enough to articulate a wider variety
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of causal questions and assumptions is an advance with positive effects on clarity
of thought and ease of communication. The assumptions that are made explicit
and least ambiguously articulated are inevitably often the ones that receive the
most scrutiny and criticism. As Pearl et al. (2014) notes, “he who seeks licensing
assumptions risks suspicions of attempting to endorse those assumptions. ...
The more explicit the assumption, the more criticism it invites”. Methodological
decisions (e.g., about which variables to ‘adjust’ for, or about the use of complete
case analysis versus multiple imputation for missing data) often rely on structural
assumptions about the data. There are often concerns that the DAGs encoding
data structures are too simplistic. Robins (1999) argues that although the real
world may well be more complex than is sometimes implied by a simple graph, “if
we do not learn how to reason correctly in simple causal Gedankenexperiments ...,
we have no chance of success in realistic situations.” Uncertainty about whether
certain (identifiability) assumptions are met does not justify that potential
assumption violations are ignored or rigour abandoned.

Like ‘counterfactuals’, ‘missing data’ and ‘measurement error’ are terms whose
meaning is not always clear. For example, it is easy to conflate a given variable
being inaccessible to the researcher (often encoded with ‘NA’) with the variable
being accessible yet taking the value ‘missing’ or ‘NA’. For example, in an attempt
to address confounding, one might wish to capture all information upon which
a general practitioner (GP) bases his treatment decisions. The GP might fail to
take a patient’s blood pressure, but this does not mean that the corresponding
variable is truly missing. The GP cannot base decisions on what he did not
observe and, so, the researcher might still have access to all variables that have
informed the GP’s decision making. Similar comments apply to the notion of
measurement error. Measurement error is a relative notion: in one context,
systolic blood pressure plus some random term might be considered measurement
error; in others, it is exactly what the researcher set out to measure.

Future perspectives

Epidemiology continues to face both opportunities and challenges. The potential
access to big data provides opportunities (e.g., for artificial intelligence and
machine learning), but with increased use of data that are not collected for non-
research purposes it is likely that methodological obstacles such as confounding,
missing data and measurement error are becoming more prevalent or more severe.
It is sometimes claimed that data collected for research purposes do not reflect
daily practice. It is important to recognise, however, that, conversely, evidence
that originates from daily practice does not necessarily provide valid evidence for
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daily practice. In the presence of difficult challenges, it is tempting to change
one’s inferential goals so that they become easier to achieve. However, this may
leave the question that is of actual interest unanswered. If the interest is with a
causal estimand, researchers should be explicit about this (Hernán, 2018).

Along with committing to a causal estimand, use of a causal roadmap may
help avoid conflation of different parts of causal inference (Petersen and Van der
Laan, 2014; Ahern, 2018). We believe that a distinction between identification
and estimation is particularly useful as it means that the purely statistical issues
of the latter can be put aside when concentrating on the former. At each step of
the roadmap, there are areas for future methodological research.

For example, regarding missing data, emphasis is often placed on the
classification of missingness as either being ‘completely at random’ (MCAR),
‘at random’ (MAR), or ‘not at random’ (NMAR), or on the recoverability of
the entire joint distribution of a collection of variables. However, specific causal
estimands might be identifiable even if the entire joint distribution cannot be
recovered. For example, in case-control studies, the topic of chapter 11, certain
causal effects may actually be identifiable from the observed data distribution
while absolute risks are typically not.

When estimands are not identifiable, it may be possible to obtain partial
identification bounds, which may preclude the estimand from taking, say, the
null value of no causal effect. Partial identification is an interesting area for
future research in part because it may inform sensitivity analyses.

Finally, rather than concentrating on methodological obstacles in isolation,
we believe there may be value in considering multiple problems together (Van
Smeden et al., 2021). After all, in applied research, epidemiologists often face
multiple problems simultaneously and how they are best handled together is
rarely obvious.
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Epidemiologie, letterlijk vertaald vanuit het Grieks als de studie (logos) van
wat zich boven (epi) het volk (demos) begeeft, is wetenschappelijk onderzoek
dat wordt gekenmerkt door vragen over het vóórkomen van gezondheids-
of ziektetoestanden. Er wordt onderscheid gemaakt tussen theoretische en
toegepaste epidemiologie. Waar de eerste tak zich richt op methoden om
eerdergenoemde vragen te beantwoorden, staan bij de tweede tak juist de
antwoorden op deze vragen centraal.

Een onderverdeling kan ook worden gemaakt op basis van of de interesse
ligt bij causaliteit, of specifiek bij zogenoemde wat-alsvragen. Daarbij staat
centraal de mate waarin de gevolgen van hypothetische, mogelijk contrafactische,
handelingen van elkaar verschillen. In epidemiologisch onderzoek staan de
handelingen bijvoorbeeld voor verschillende behandelopties en slaan de gevolgen
op een aspect van gezondheid of welzijn. Kennis over de gevolgen van
verschillende behandelopties is nuttig bij het zoeken naar die optie die het ‘beste’
is, dat wil zeggen de optie met de gevolgen die het meest gunstig worden geacht.

In veel gevallen ligt dit soort kennis echter niet voor het oprapen. We
kunnen immers niet in de toekomst kijken, laat staan dat we de toekomsten
die voortvloeien uit verschillende, elkaar-uitsluitende opties met elkaar kunnen
vergelijken om vervolgens de beste optie te kiezen. In deze gevallen keert men
zich daarom vaak tot bronnen van vergelijkingsmateriaal en constateert men wat
er reeds gebeurde in gevallen waarbij een bepaalde optie was gekozen en wat er
gebeurde in gevallen waarbij een andere optie was gekozen. Hoe vertalen deze
constateringen zich naar situaties waar nog een keuze moet worden gemaakt? Bij
de vertaalslag komen een aantal obstakels kijken.
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In dit proefschrift wordt verslag gedaan van studies over epidemiologische
methoden voor het beantwoorden van wat-alsvragen in aanwezigheid van
methodologische obstakels, zoals zogenoemde verstoring (‘confounding’),
ontbrekende gegevens, en meetfouten. Hieronder volgt een samenvatting van
de voornaamste bevindingen. Enige voorkennis over epidemiologische methoden
wordt verondersteld.

In het merendeel van de studies uit dit proefschrift werd onderzocht hoe
methoden presteren in bepaalde situaties, ‘hoe goed ze werken’. Onderzoek naar
methoden kan echter ook gaan over hoe en wanneer deze in de praktijk worden
ingezet. In hoofdstuk 2 werpen we een kritische blik op hoe onderzoek op
dit metaniveau in de praktijk wordt uitgevoerd. We stellen dat het negeren
van de hoofdtekst bij het zoeken naar en screenen van artikelen (een standaard
aanpak in systematisch literatuuronderzoek) mogelijk niet volstaat om alle of
een representatieve steekproef van de relevante literatuur te verzamelen, hetgeen
mogelijk leidt tot een vertekend beeld van het onderzoeksonderwerp. Voor een
aantal methodologische onderwerpen vonden we dat in veel van de artikelen
waarin het onderwerp ergens werd genoemd, geen verwijzing werd gegeven naar
het onderwerp in tekstvelden anders dan de hoofdtekst. Onderzoekers zouden
mogelijk willen overwegen om ook de hoofdtekst mee te nemen in de eerste fasen
van systematisch literatuur onderzoek.

Epidemiologen hebben vaak om te gaan met meerdere obstakels. Methoden
voor de verschillende obstakels kunnen soms eenvoudig worden gecombineerd.
Echter, hoe goed de combinaties werken wijkt mogelijk af van hoe de methoden
werken voor elk van de obstakels apart. In hoofdstukken 3 en 4 reflecteren
we op een eerder uitgevoerde simulatiestudie waarin twee combinaties van een
methode voor ontbrekende gegevens, meervoudige imputatie, en een methode
voor verstoring, ‘propensity score matching’, werden vergeleken. Kenmerkend
voor meervoudige imputatie is dat er meerdere complete datasets worden
gevormd. Een methode als propensity score matching kan op elk van de datasets
afzonderlijk worden uitgevoerd. Een eerste stap, het schatten van zogenoemde
propensity scores, zou dan voor elke dataset en elk onderzoekspersoon een
geschatte propensity score opleveren. Volgens de standaard meervoudige-
imputatie-aanpak (optie 1) wordt voor ieder behandeld (of blootgestelde) persoon
vervolgens gezocht naar een onbehandelde persoon uit dezelfde gëımputeerde
dataset met een soortgelijke schatting van de propensity score (‘matchen’, of
koppelen). Een alternatief (optie 2) is om te matchen op basis van het gemiddelde
van de propensity scores van een individu, genomen over alle gëımputeerde
datasets. Beide opties leiden tot een verzameling van koppels en uiteindelijk
een effectschatting voor elk van de gëımputeerde datasets. De laatste stap is het

322



Chapter 13

middelen van de effectschattingen. We concludeerden dat optie 1 in het algemeen
te verkiezen is boven optie 2. Deze conclusie staat in schril contrast met die van de
eerder uitgevoerde simulatiestudie. Dit werd deels verklaard door het gebruik in
de eerdere studie van een ongeschikt imputatiemodel waarin de uitkomstvariabele
wordt genegeerd.

Het is gangbaar propensity scores te schatten door middel van een logistische
regressie. Standaard software laat echter alle individuën met ontbrekende
gegevens buiten beschouwing. Machine learningtechnieken zoals ‘classification
and regression trees’ (CART) zijn aantrekkelijk deels omdat sommige varianten
alle individuën in een dataset, zo ook die met ontbrekende gegevens, meenemen.
Een belangrijke vraag is echter of en wanneer CART dat doet op een wenselijke
manier. In hoofdstuk 5 beargumenteerden we dat het automatisch meenemen
van ontbrekende gegevens geen universele oplossing is voor het probleem van
ontbrekende gegevens bij causaal onderzoek op basis van propensity scores. In een
aantal simulatiestudies was CART ondergeschikt aan standaard alternatieven.
Verschillende CART-varianten gaan anders om met ontbrekende gegevens. Om
te bepalen welke aanpak geschikt is in een bepaalde setting achten we het
daarom wenselijk om de ‘black box’ van machine learningalgoritmes enigszins
te doorgronden.

In hoofdstuk 6 staan ontbrekende waarden van de uitkomstvariabele
centraal. Het hoofdstuk beschrijft geen nieuwe resultaten maar illustreert dat
de zogenoemde ‘uitwisselbaarheid’ tussen behandelgroepen aan het begin van
een waarnemingsperiode (bijvoorbeeld verkregen door propensity score matching)
kan worden gecompromitteerd door te conditioneren op het geobserveerd hebben
van uitkomstwaarden. Dit geldt evenzo voor gerandomiseerd onderzoek waar
uitwisselbaarheid aan het begin van de waarnemingsperiode door randomisatie
wordt verkregen. Regressieanalyse en inversekansweging worden in het hoofdstuk
genoemd als mogelijke oplossingen.

Onderzoekers hebben soms behoorlijke invloed op de mate waarin gegevens
ontbreken. In studies naar de effecten van tijdsafhankelijke blootstellingen
kan informatie over ‘post-baseline’ variabelen nuttig zijn om te corrigeren voor
tijdsafhankelijke verstoring. Echter, het verzamelen van voldoende gedetailleerde
informatie kan kostbaar en tijdrovend zijn. Het beperken van de meetfrequentie
kan de uitvoerbaarheid van een studie ten goede komen, maar tegelijkertijd
kan het de validiteit van het onderzoek in gedrang brengen. In hoofdstuk 7
worden simulatiestudies beschreven die de impact van keuzes ten aanzien van
meetfrequenties van tijdsafhankelijke variabelen illustreren. Hierbij werd het
last-observation-carried-forwardprincipe (LOCF) gebruikt onder de impliciete (en
verkeerde) aanname dat patiëntkarakteristieken onveranderd bleven in periods
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waarin niet gemeten werd. Zoals in eerder onderzoek al is laten zien gingen
meetstrategiën met constante intervallen tussen meetmomenten gepaard met
systematische verschillen tussen effectschattingen en de effecten die geschat
werden. Dit hoofdstuk illustreert daarnaast dat systematische verschillen ook
ontstaan wanneer meetmomenten worden geselecteerd op basis van eerder-
geobserveerde gegevens.

Wanneer de eigenlijke waarden van variabelen anders zijn dan wat wordt
geregistreerd of aangenomen (zoals bijvoorbeeld door LOCF), dan wordt er
gesproken van meetfouten. Wanneer het categorische variabelen betreft wordt
ook de term misclassificatie gebruikt. In hoofdstuk 8 ligt de focus op
gezamenlijke blootstellings- en uitkomstmisclassificatie en wordt een nieuwe
methode beschreven om voor zowel deze vorm van meetfouten alsook voor
confounding te corrigeren. Simulatiestudies brachten gunstige eigenschappen
voor grote steekproeven aan het licht. Verder onderzoek is echter nodig om
in kaart te brengen hoe goed de methode presteert wanneer aannames worden
geschonden.

Zorgen over schendingen van aannames zijn veelvoorkomend in observationeel
onderzoek naar oorzakelijkheid. Om de zorgen te verminderen is voorgesteld
om gebruik te van zogenoemde negative controls, variabelen waarvan bekend
is (of wordt aangenomen) dat ze geen oorzakelijk verband hebben met de
primaire blootstelling of uitkomstvariabele. Het onderliggende idee is dat een
waargenomen associatie die tegenstrijdig is met deze negative controlaanname
een indicatie is voor een aannameschending. In hoofdstuk 9 vullen we
aanmoedigingen voor routinematig gebruik van negative controls aan met een
beschouwing van limitaties. We beargumenteren dat negative controls soms
verkeerde signalen geeft over de aan- of afwezigheid van verstoring. Het hoofdstuk
geeft ook een beschouwing van bestaande negative controlemethoden voor
correctie van verstoring en illustreert ook de gevoeligheid van deze methoden voor
aannameschendingen. Gezien de mogelijk sterke impact van aannameschendingen
achten we het soms wenselijk om de sterke aannames voor exacte identificatie
van causale effecten te vervangen met zwakkere en makkelijker te verifiëren
aannames, zelfs wanneer deze slechts gedeeltelijke identificatie garanderen.
Verder onderzoek hiernaar kan mogelijk het nut van negative controls als
standaard methode in epidemiologisch onderzoek verder motiveren. Vooralsnog
zal de geschiktheid van negative controls zorgvuldig per geval moeten worden
beoordeeld en terughoudendheid worden betracht.

Patiënt-controleonderzoek vormt een belangrijk gereedschap voor onderzoek
naar causaliteit. In hoofdstuk 10 wordt een patiënt-controlestudie conceptueel
voorgesteld als een cohortstudie met ontbrekende gegevens, waarbij het ontbreken
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van gegevens wordt bepaald door de controleselectieprocedure. Vanuit dit
perspectief geeft het hoofdstuk een overzicht van hoe bepaalde causale effecten
kunnen worden gëıdentificeerd met patiëntcontroleonderzoek. Hierbij worden
traditionele concepten, aannames en principes geplaatst in een modern en formeel
raamwerk.

Tot slot richten we ons in hoofdstuk 11 op persoonsgerichte (in plaats
van groepsgerichte) gezondheidszorg en specifiek tot de taak om zo optimaal
mogelijk een mogelijk beperkte hoeveelheid behandelingen te verdelen over een
groep patiënten. In de praktijk is het niet ongebruikelijk om behandelkeuzes te
baseren op prognostische scores. Deze aanpak is echter niet altijd optimaal. Als
alternatief kan men een voor een alle mogelijke behandelstrategieën afgaan om
vervolgens de ‘beste’ te kiezen. Praktisch gezien is dit echter niet uitvoerbaar
wanneer er veel (mogelijk oneindig veel) strategieën te bedenken zijn. In
eerder theoretisch onderzoek werd aangetoond dat de taak soms aanzienlijk
kan worden vereenvoudigd door algemene behandelregels af te leiden die (1)
een zekere optimaliteit garanderen onder bepaalde aannames en (2) een heel
simpele vorm aannemen: wijs behandeling toe aan de individuen met het
grootste behandelvoordeel (dat wil zeggen, het grootste verschil in gemiddelde
contrafactische uitkomsten gegeven baseline patiëntkarakteristieken tussen wel
en niet behandelen) of de hoogste voordeel-kostenquotiënt (waarbij de kosten
als positieve functie van de baseline patiëntkarakteristieken worden gezien) en
aan een zo’n groot mogelijk deel van alle patiënten zodat een vooropgestelde
grens op het aantal behandelingen dan wel de totale kosten niet wordt
overschreden. De optimaliteit van de regels berust op de aanname dat patiënten
met verschillende baseline karakteristieken verschillende behandelvoordelen
of voordeel-kostenquotiënten hebben. In het hoofdstuk wordt een simpele
aanpassing van de regels voorgesteld die er voor zorgt dat de optimaliteit
gewaarborgd blijft zelfs wanneer de aanname wordt geschonden. Een belangrijk
inzicht dat het hoofdstuk geeft is dat om een zekere optimaliteit te verkrijgen
antwoorden op wat-alsvragen soms nodig zijn. Prognostische scores zijn op
zichzelf niet voldoende. De methodologische obstakels in onderzoek naar
causaliteit, zoals verstoring, ontbrekende gegevens en meetfouten, zijn daarom
ook relevant in de persoonsgerichte gezondheidszorg.
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