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4. COHORT COMPARISON

4.1. ABSTRACT
Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue
and explore their spatial interactions, enabling deep understanding of tissue functionality.
To understand what causes or deteriorates a disease and identify related biomarkers, clinical
researchers regularly perform large-scale cohort studies, requiring the comparison of such
data at cellular level. In such studies, with little a-priori knowledge of what to expect in
the data, explorative data analysis is a necessity. Here, we present an interactive visual
analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our
workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail,
from simple abundance of contained cell types over complex co-localization patterns to
individual comparison of complete tissue images. As a result, the workflow enables the
identification of cohort-differentiating features, as well as outlier samples at any stage
of the workflow. During the development of the workflow, we continuously consulted
with domain experts. To show the effectiveness of the workflow, we conducted multiple
case studies with domain experts from different application areas and with different data
modalities.

4.2. INTRODUCTION
Omics-data describe biochemical properties, such as genomics, transcriptomics, pro-
teomics, or metabolomics of biological systems [1], such as cells. In recent years, high-
resolution spatial measurements of such systems have become available. State of the art
spatially-resolved omics modalities [2–6] enable the precise characterization of cellular
populations in tissue, enabling the discovery and identification of novel cell types[7] in
large cohorts of samples. Information about the cell type, in combination with the specific
location of each cell creates many heterogeneous multi-cellular patterns.

With the identification of these multi-cellular patterns, a crucial question arises; are
such patterns correlated with clinical information, such as survival rate? Current research
findings [8–10] support the clinical importance of analysing spatial multi-cellular inter-
actions. Hence, the development of workflows for the systematic comparison of cohorts
consisting of spatially-resolved omics-data with specific clinical characteristics is essential
for the understanding of tissue functionality.

In the majority of life-science studies, the comparison of cohorts of samples is based
on statistical comparison of predefined finite number of elements [11–14]. However,
traditional statistical approaches, based on prior knowledge pose the risk of missing
unexpected correlations and cannot capture the vast combinatorial space [15] of spatial
configurations for all different cell types. Moreover, they depend on high quality input
which often cannot be guaranteed with single-cell omics-data due to uncertainty in cell
segmentation and cell type identification. Comparative visualization [16] can provide
useful insights into the differentiating factors of two cohorts and enables the interactive,
data-driven exploration of the vast combinatorial space while simultaneously investigating
the biological relevance and plausibility of findings with regard to the preprocessing.

Here, we extended our previous work focused on the identification and exploration
of multi-cellular spatial interactions in single-cell omics-data [17] to enable interactive
comparison of cohorts of such data. The main goals are to identify the characteristics that
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differentiate a cohort, explore the cohorts’ heterogeneity and relate these characteristics
directly to the tissue. In some cases, just the comparison of the cell types abundance is
adequate to differentiate cohorts. In other cases, a detailed comparison of contained cells
and their specific neighborhoods, i.e. microenvironments is needed.

We propose an interactive, data-driven cohort comparison workflow. More specifically
the main contributions of this paper are:

1. A workflow for the comparison of cohorts of spatially-resolved single-cell omics-data,
specifically addressing the following tasks

T1 compare cohorts based on the abundance of different cell types,

T2 compare cohorts based on multi-cellular microenvironments,

T3 detect outliers within each cohort, and

T4 relate findings to their spatial position.

2. A protoype implementation of the described workflow

The remainder of this paper is structured as follows. We present related work in Sec-
tion 4.3, followed by a brief description of target users, input data and tasks in Section 4.4.
In Section 4.5, we describe the rationale behind our visual design and implementation in
our prototype. We present a set of case studies and user feedback in Section 4.6. Finally,
we discuss the limitations of our work and conclude in Section 4.7.

4.3. RELATED WORK
The visual analytics community spent considerable effort on approaches for the exploration
of cohorts of medical data combining spatial and non-spatial features. Preim et al. [18]
provide an overview of image-centric approaches [19–21] focused on the exploration
of large imaging cohorts and derived attributes. For the data analysis, these approaches
share linking of attribute views with image views to provide context, visual queries for
direct feedback, and interactive definition of groups of attributes. They typically deal with
traditional medical imaging databases, such as those acquired by computed tomography
(CT) or magnetic resonance imaging (MRI).

Dealing with microscopic images, Screenit [22] offers a system of linked views, similar
to our system, to explore the drug screening results of cell cultures at multiple levels of
detail. However, only recently, spatially-resolved omics-data [2–4] have become a standard
tool for the exploration of tissue structure at the cellular level. Consequently, only few visual
analysis tools exist that address the specific needs of such data. Facetto [23] is a scalable
framework that allows hierarchical cell type identification in large multiplexed images.
histoCAT [24] enables the identification of cell types and the significant pairwise spatial
interactions between them. CytoMAP [25] offers an extensive toolbox for the exploration
of tissue structure based on the analysis of spatial interactions. In our previous work on
ImaCytE [17], we propose an interactive exploratory pipeline for cell type identification and
neighborhood analysis in spatial single-cell data. Minerva [26] extends such exploration
concepts with storytelling tools, to support communication and sharing of results. All of
the above focus on the identification or exploration of cell types or significant multi-cellular
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interactions in a single cohort of spatial single-cell data. Here, we use some of the concepts
introduced in these works and extend them to introduce the first workflow for comparative
analysis of two cohorts of such data, based on the abundance of cell types, as well as
colocation patterns.

Based on a survey on existing comparative visualization tools [27], Gleicher et al.
define a taxonomy that divides comparative visualization into juxtaposition (side-by-side
placement), superposition (layering), and explicit encoding. A large body of work on
comparative visualization for individual images exist. For example, Blaas et al. [19]
combine superposition with explicit coding of the differences using complementary colors
for the comparands, which cancels out in regions without differences. We use the same
technique in some of our charts. Lindemann et al. [28], Maries et al. [29] and Ma et al. [30]
utilize juxtaposition in an interactive comparative visualization pipeline for one-to-one
comparison of segmentation results of brain imaging data. Juxtaposition for the comparison
of images is also utilized in our work.

Schmidt et al. [31] facilitate the comparison of images with small differences within
an ensemble. Raidou et al. [32] compare volume data and corresponding segmentations
of bladders to explore the results of longitudinal radiotherapy treatment studies. Both
works focus on all-to-all comparison of (3D) images in a single group, compared to the
between-cohort comparison presented in this work. Basole et al. [33] as well as Wagner
et al. [34] propose pipelines for the comparison of two cohorts. In their comparison
workflow they use the same visual enocdings in order to compare the cohorts as a whole
and simultaneously provide information for the intra-cohort heterogeneity, similar to the
visual encodings we utilize in our system. Both approaches are limited to non-spatial
healthcare data, though. Zhang et al. [35] present a visual analytics approach to compare
two cohorts of diffusion tensor images. While we took some inspiration from their work,
such as using complementary colors for the two cohorts that cancel each other out when
overlapping, ultimately, the solutions described in their work are specific to tensor data
and not easily transferrable to the spatial single-cell data described here.

4.4. ABSTRACTION

Recent developments in the spatially-resolved omics field manifest a wide variety of avail-
able modalities [3, 5, 36, 37]. These technologies measure transcriptomics or proteomics
information at sub-cellular resolution, resulting in high-resolution image data with tens
to thousands of values per pixel. Since researchers are interested in this information per
cell, rather than per pixel, these images are typically pre-processed by segmenting indi-
vidual cells and aggregating the values of the segmented pixels. Based on this aggregated
information and potentially further features like morphology, the function and type of the
segmented cells can be identified [24]. Both, cell segmentation [24, 38], as well as cell type
identification [17, 23–25] in this kind of data is an active research topic. Large variations
in cellular morphology and different quality of marker staining, among others, can lead to
a considerable amount of uncertainty in the result of these preprocessing steps, making the
validation, for example by referencing the actual images, during comparison imperative.
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4.4.1. TARGET USERS AND GOALS
Our proposed workflow is targeted at clinical researchers who want to analyze their own
data, for example to do an initial exploration of the data to form hypotheses. Typical
goals when doing comparative analysis of two cohorts of spatial single-cell data could
be the identification of cell types that are abundant in one cohort but not the other or
cell co-localization patterns that are correlated with one of the cohorts. Such correlations
or biomarkers [39] can be used for prognosis, monitoring or therapy of disease. While
scripting in python or R is becoming more common in the domain, all our collaborators
prefer visual exploration through GUI interfaces. Our proposed workflow is the first such
visual exploration system that supports the comparative analysis of two cohorts of spatial
single-cell data.

4.4.2. INPUT DATA
The overarching goal of our workflow is the comparison of two cohorts of spatially-resolved
omics data as briefly introduced above. A single cohort consists of a set of samples, i.e.,
segmented and classified images as described above. Depending on the goal of the study,
the samples consist of multiple images from a single subject or an arbitrary number of
samples from multiple subjects. Typically, the two cohorts describe different populations,
for instance, cancer patients who respond well to treatment in one cohort and those who
respond worse in the second. A typical cohort consists of tens to hundreds of images, each
consisting of thousands of segmented cells.

In a typical study, tens to hundreds of different cell types will be identified. The
granularity depends on the goal of the study, as well as the data modality. For example, the
Vectra imaging system [40] measures only a few different proteins (i.e. 4 in the case study
in Section 4.6.3). Assuming differentiation into only low and high abundance, this results
in an upper limit of 24 16 differentiable cell types. Other systems, such as Imaging Mass
Cytometry, allow the measurement of up to 40 proteins, such that the number of cell types
is limited rather by which types are of interest for the given study. A broad study would
capture in the order of a hundred different cell types.

For each sample, we store the segmentation mask including a cell type label, i.e. class,
for each segmented cell. Based on the cell segmentation mask, we derive the microenviron-
ment for each cell. The microenvironment consists of the cell types and their abundance
in the neighborhood of the given cell. We store the corresponding information per cell
as a list of all cells that are contained in the microenvironment. The microenvironment
of a cell varies according to the resolution of the modality and the type of sample. For
example, in a tumor crowded with compact cells we would consider cells belonging to the
microenvironment in a smaller distance, compared to brain tissue, where interacting cells
can be further apart. Therefore, the distance defining the microenvironment of a cell is
specified by the user. Typically, the microenvironment of a cell consists of no more than
some tens of cells.

4.4.3. IDENTIFIED TASKS
In the following, we describe a set of tasks that we have identified in close collaboration
with our domain expert partners from the pathology department at LUMC (co-authors of
this manuscript). In general, we compare the two cohorts, based on the contained samples.
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The first step of the workflow is comparing the cohorts according to the abundance of
different cell types per sample (T1). This allows a simple differentiation of the cohorts
based on the contained cells. In the second step, we further want to identify patterns in the
cells’ microenvironments that differentiate the cohorts. In T2, we compare cohorts based
on multi-cellular microenvironments. Throughout the process we support visual detection
of outliers within each cohort (T3), according to the abundance of contained cells and their
microenvironments, and relate any findings to their spatial position (T4).

In the following, we describe and abstract T1-T4 in more detail using Brehmer and
Munzners task typology [41]. For references to this typology, we use a mono-spaced
font.

T1 Cohort comparison based on the abundance of different cell types and combi-
nations thereof in cohort samples. The relative abundance of a cell type in the
samples forming a cohort and how much a specific subject deviates from the dis-
tribution within the cohort are important clinical biomarkers. As cell types can be
of different granularity, it should also be possible to compare the cohorts, based on
combinations of cell types. A trivial example is differentiating a cohort of cancer
patients and a cohort of healthy subjects by comparing the abundance of tumor
cells in the contained samples, where “tumor cells” can be a single cell type, or a
combination of cell types according to a more fine grained definition. In this task
T1, the user compares the two cohorts based on the abundance of different cell
types within samples forming the cohort discovering and locating the cell
type(s) that differentiate the two cohorts. The input for T1 is the abundance of each
cell type for each sample that we summarize as distributions over all samples in
one cohort. The output is a list of cell types that differentiate the two cohorts.

T2 Cohort comparison based on multi-cellular microenvironments. The goal of T2
is to compare the two cohorts according to the spatial co-localization patterns of
each sample, as the comparison only based on cell type abundance is not enough to
assess tissue functionality. Domain researchers hypothesize that tissue functionality
also depends on the cell’s interactions with other cells. While co-localization does
not automatically lead to such interactions, it is a pre-condition. We facilitate the
identification of such spatial features by breaking this task down into a high-level
comparison, based on how often any two cell types are spatially co-located (T2.a),
and a detail comparison where complex user-defined microenvironments can be
explored (T2.b). In task T2.a, the user discovers combinations of two cell types
that are most differentiating between the two cohorts. The input for this task is the
abundance of each combination of two cell types in a microenvironment within the
cohort sample. The output is a combination of two cell types to be used for further
exploration. In task T2.b, the user further explores and compares the
two cohorts based on more complex microenvironment compositions. Therefore, the
user produces these more complex microenvironments by combining different
cell types, typically starting with the combination found in T2.a. The input for T2.b
is the complete set of cell microenvironments, optionally filtered to those including
the combination of interest discovered in T2.a. The output is a set of detailed
microenvironments differentiating the two cohorts.
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T3 Outlier detection within each cohort. Detecting outliers within a cohort can pro-
vide additional important clinical information. For example subjects with different
stages of a disease in the same cohort might exhibit different cell profiles [42].
Therefore, T3 consists of identifying and locating outlying samples and
their corresponding features identified in T1 and T2. The input to this task is the
abundance of cells and their microenvironments, as identified in T1 and T2.
The output is a list of outlying samples.

T4 Relate findings to their spatial position. As described above, T1-T3 can be carried
out based on cell abundance and microenvironment descriptions per sample, without
consulting the actual imaging data. However, to verify individual findings we inspect
the cells and their neighborhoods in their tissue context. Therefore, T4 relates any
findings to their spatial position. The analyst locates the structure of interest in
their spatial location and identifies issues that were not apparent in the abstract
representation. The input to T4 are the segmented images and a structure of interest
found with T1-T3, the output is a verified or rejected finding from T1-T3.

4.5. WORKFLOW
We designed a workflow to support the four tasks, identified and described in Section 4.4.3
and implemented it in a multiple-linked-views system, shown in Figure 1. The system is
divided in three main blocks, where the left (Figure 1a) and right (Figure 1c) blocks support
T1 and T2, respectively by comparing the cohorts based on their cell type abundance and
spatial interactions. T4 relies on the inspection of tissue samples and supports T1-T3.

a b c

Figure 1: Screenshot of our integrated system including the view for the comparison based on the
cell abundance using raincloud plots (a), the tissue view, showing selected samples of the two cohorts
(b), and the multi-cellular microenvironment comparison view using a difference heatmap and raincloud
plots (c).
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Cohort A overlap

samples

ba

Cohort B

min abundance max

min max

Figure 2: Comparison of two cohorts based on a cell type abundance. (a) Individual raincloud
plots for two cohorts showing the distribution (cloud) of samples (rain drops) according to the abundance
of a contained cell type. (b) Superposition makes the difference visible by the large amount of color
and small light-gray overlap area in the area chart.

Therefore, we show the corresponding images between the views (Figure 1b) for T1 and
T2 to support the user in directly making the connection for structures identified in any of
the tasks to their spatial position. All views allow filtering the data to support visual outlier
detection (T3).

4.5.1. COMPARISON BASED ON CELL TYPE ABUNDANCE
In the first step, we are interested to compare two cohorts according to the abundance of
the different existing cell types in each of the contained samples (T1) and visually detect
possible outliers in each of the cohorts (T3). Therefore, we first compute the number of
cells of each type within each sample and then visualize the distribution of samples within
both cohorts according to this value by superposing two simplified versions of raincloud
plots [43]. This plot consists of a density (estimated using a kernel density estimate) plot
showing the distribution of samples (the cloud) above a one-dimensional scatterplot with
vertical lines as marks for the individual samples (rain-drops). This combination has
proven very effective for our goals in T1-T3. The superposition of the density plots has
shown to be very effective for the comparison of two distributions [44]. Both, the density
plot [45] and the one-dimensional scatterplot [46], support visual detection of outliers.
Furthermore, individual samples can be efficiently selected in the scatterplot for filtering.
Additionally, for easier comparison between samples of different sizes, we enable the user
to select whether the x-axis should represent the number of cells either as absolute values,
or relative to the number of cells in that sample. As our primary goal is the comparison
of the two cohorts, rather than the shape of individual plots, we want to emphasize the
differences, rather than the commonalities. Therefore, following the same principle as
Blaas et. al. [19], we use complementary colors for the two cohorts, i.e. blue and orange
and blend the PDFs additively to receive a neutral light-gray in the overlapping areas as
shown in Figure 2b.

The resulting raincloud plot allows the comparison of the composition of the two
cohorts, according to the abundance of a single cell type within the contained samples.
To allow the inspection of these distributions for all cell types, we use a small multiples
approach [47, Chapter 4] and show the raincloud plots for several cell types in the same
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view (Figure 3).
As indicated in Section 4.4.2, some studies can contain up to 100 different cell types.

Finding a specific type of interest or the types that are the most differentiating for the two
cohorts manually is not feasible in such a case. Therefore, we provide the possibility to sort
the plots according to how well the corresponding distributions of the two cohorts separate,
by default using the Silhouette metric [48], as it is invariant to the range of the input data.
For advanced users we provide a set of other metrics, such as Dunn’s index [49] which
is efficient for compact and well separated clusters. In addition, we provide filtering by
means of a textual search box (Figure 3a), based on the cell labels in the input data. Typing,
for example tumor in this box will bring plots with the term tumor in their provided label
to the top of the view (Figure 3b).

In some cases, the analyst might also be interested in aggregating the information
on several cell types. For example, when several different cancer cell sub-types were
identified in the original classification, but the analyst is only interested in how the cancer
cells are distributed as a whole. To that end, we enabled the user to combine cell types,
by gradually dragging and dropping the corresponding plots into a drop area on top of the
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Figure 3: Exploration using the raincloud plots. Searching for “tumor” reorders the raincloud plots
by placing the plots corresponding to cell types containing the term ‘tumor” in their label on top of the
list (b). Dragging a raincloud plot and dropping it in the drop area (b,c), creates a new raincloud plot
depicting the abundance of the cell types represented from the accumulated dropped raincloud plots.
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view (Figure 3b,c). The abundances of the dropped cell types are then aggregated as if they
were a single cell type and a new distribution is created on-the-fly.

All views in our system are linked and allow cross-selection. For example, selection
one or more lines in a raincloud plot filters the tissue view (Figure 1b) to show only the
corresponding samples, with the cell type corresponding to the raincloud plot emphasized
(T4). Further, these samples are also highlighted in the other raincloud plots, for example
to verify whether a sample that is an outlier for one cell type also shows different behavior
for other types (T3). To ensure that outliers in one cohort are not occluded by samples of
the other cohort, the user can select to fade out one of the cohorts (T3).

4.5.2. COMPARISON BASED ON CELLULAR MICROENVIRONMENTS
The comparison of the cohorts based on their spatial interactions patterns, as indicated in
task T2, is performed in two steps. The first step is to gain a global overview and compare
the cohorts based on pairwise co-occurrences of cell types (T2.a). In the second step, the
analyst can go into detail, explore and built specific, detailed microenvironments, consisting
of an arbitrary number of cell types, and compare the distribution of these microenviron-
ments among the two cohorts (T2.b). Throughout this process, we allow locating the
identified microenvironments with the actual tissue images (T4) and in the second step,
samples that are outliers in their cohort, according to the created microenvironment can be
identified (T3).

4.5.2.1. PAIRWISE OVERVIEW
Following ImaCytE [17], we define the microenvironment of a cell, based on a user-defined
distance as explained in Section 4.4.2.

We then compute the frequency for each cell type to occur in each other cell type’s
microenvironment throughout the cohort. For a detailed description we refer to our previous
work [17, Section 4.3].

The result of this process is a directed and weighted graph, where each node represents
a cell type and the link between two nodes defines the frequency of the target node
appearing in the microenvironment of the source node. In ImaCytE, we visualize this
frequency graph as a heatmap. Here, instead of showing the frequencies F , we compute
the signed differences D in frequency between the two cohorts CA and CB. Dt(CA,CB)
F(CA)−F(CB). We encode D using color based on the same heatmap layout, illustrated
in Figure 4. The vertical axis shows the cell type of interest and the horizontal axis the
cell types in the microenvironments. A large positive value indicates that the combination
exists predominantly in Cohort A, while a large negative value means the combination
predominantly exists in Cohort B. Based on this, we define a simple color map using
the same colors previously assigned to the two cohorts and map the maximum absolute
value max(|Dt |) to the color assigned to Cohort A (i.e. blue) and −max(|Dt |) to the color
assigned to Cohort B (i.e. orange). Using the same concept of blending between the two
colors, described in Section 4.5.1, the middle of this colormap, corresponding to Dt 0,
will be a neutral light-grey, indicating both cohorts exhibit similar abundance of the given
combination (compare Figure 4).

During one of the case studies (Section 4.6.1), it became clear that using the relative
frequencies, used in ImaCytE [17] and the required normalization biased the heatmap
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Figure 4: Overview of cell type co-localization patterns. The heatmap (a) explicitly encodes
differences in the abundance of pairwise combinations of cell types in the two cohorts. Clicking on one
of the combinations sets this combination in the detail view (b), showing the distribution of samples
according to the abundance of this combination.

towards differences in small cell populations. To counter this issue, we provide the option
to compute the heatmap using the separability metrics, also used for sorting the raincloud
plots (Section 4.5.1). As these metrics only provide information on how different the
cohorts are, we compute the mean abundance of the given cell type combination for all
samples in a cohort and use the sign of the two cohort’s difference in combination with the
separability metric.

The resulting heatmap effectively shows cell type combinations that differentiate the
two cohorts and for which cohort each combination is predominant. The analyst can now
further explore individual combinations by clicking the corresponding box in the heatmap.
Thereby, the corresponding combination is selected and highlighted in the tissue view (T3)
and the microenvironment combination tool (Section 4.5.2.2) is pre-populated with the
given combination (Figure 5a) for further analysis.

4.5.2.2. DETAIL MICROENVIRONMENTS
Starting with the overview of pairwise co-localization patterns, identified with the heatmap
visualization, the analyst can now in detail explore complex microenvironment structures,
based on any cell type combination and link those to individual samples along their position
in the distribution of the corresponding cohort.

In ImaCytE [17], we used a simple glyph to enable the visual exploration of all the
existing unique microenvironments in a sample. Here, the focus is on comparing two
cohorts with regard to specific microenvironments, that potentially have already been
identified as interesting in a previous analysis of the individual cohorts. Therefore, instead
of showing all the existing unique microenvironments, the user can compare the two
cohorts based on a specific pattern of spatial interactions. To enable the user to interactively
define such a pattern, we utilize an interactive visual query system [50], similar to the one
presented in Polaris [51] and further explained by Heer et al. [52]. The comparison of the
two cohorts then happens with the same raincloud plots introduced in Section 4.5.1 but
instead of the abundance of a single cell type the plot now displays the abundance of the
queried microenvironment.
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Figure 5: Interactive exploration in the detail view. (a) The abundance of the cells fulfilling the
cell type pattern in the Drop area is illustrated in the Selected raincloud plot. (b) The raincloud plots
are reordered in the Remaining area according to their differentiating ability, the user drags the first
raincloud plot and drops it in the Drop area. (c) The dropped raincloud plot replaces the previous one.
Also, the Drop area and the Remaining plots are updated for further exploration.

In practice, the analyst would typically start with a combination of two cell types picked
from the heatmap. This simple microenvironment is illustrated on top of the detail view
as illustrated in Figure 5a, where it is divided into the cell type of interest in the center of
the microenvironment (i.e., cell type A, green circle, Figure 5a) and the microenvironment
(i.e., cell type B, purple circle, Figure 5a). For the remainder of the paper we will denote
microenvironments as , where the circle(s) to the left of the vertical line represents
the center cells combined with or type and the circle(s) to the right the microenvironment
combined with and. I.e., a cell from either of the types left of the line must appear in the
center and all the types to the right must appear in the surrounding of this cell. Below
this (Selected, Figure 5a) we show the raincloud plot corresponding to the abundance
of all microenvironments with at least the selected combination of cell types. Finally,
further below (Remaining, Figure 5a) we depict the raincloud plots corresponding to the
combination of the defined microenvironment plus any of the remaining cell types (here
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, , , ). The example in Figure 5a starts with None (indicated as
). At first glance, it might seem surprising that the corresponding raincloud plot is different

from the initial plot above it. None, here means that no other additional cell type must exist
in the microenvironment, whereas the initial plot shows all microenvironments that at least
contain the given types. We denote this as . Below the None plot the remaining
combinations are shown with the resulting raincloud plots. As described in Section 4.5.1,
these plots can be ordered according to how strongly the corresponding microenvironment
separates the two cohorts. Figure 5b illustrates the example after reordering. With this
information the analyst can now continue exploring the microenvironments, for example
by dragging the plot corresponding to cell type B (yellow) to the drop area, creating ,
(Figure 5b). As the original plot already corresponded to the new microenvironment,
we can now simply replace the “Selected” plot with the dragged plot (Figure 5c). The
remaining raincloud plots ( , , ) are re-computed on-the-fly and
shown below. Following this procedure, the user can progressively explore all interesting
cell type combinations and evaluate their ability to discriminate the two cohorts and as
such their potential as biomarkers.

As described in Section 4.5.1, the raincloud plots make it easy to identify samples
that are outliers in their corresponding cohort (T3). Further, we provide the same linking
and brushing features for selecting samples, as described in Section 4.5.1, to link the
microenvironment patterns to the tissue view (T4).

4.5.3. TISSUE VIEW
In Section 4.4.2 we have described the importance of enabling the linking of any finding to
its spatial location (T4). Therefore, we provide the tissue view (Figure 6), which shows the
original segmented images and, linked to the other views, allows the inspection of selected
cell types or microenvironments in the corresponding samples and their spatial context.
The tissue view shows the images using color-coding for the different cell types. As we
only consider the labeled segmentations as input (Section 4.4.2), we use a categorical
colormap to assign a color to each label and thus cell type. We have chosen the qualitative
12 class Set 3 from colorbrewer [53] and have excluded blue and orange hues to avoid
interference with the cohort colors. Colors are initially assigned based on the order of the
cell type labels, but we allow the user to assign them manually by clicking on a cell type
label. As typical studies have more cell types than the available ten colors, they can assign
the same color to semantically grouped types. We then automatically adjust the saturation
of hues that were selected multiple times to enable differentiation. While not described
in detail in previous sections, this color scheme is used throughout the application to
represent the different cell types and allow for easy mental linking between views. We have
previously used a similar color scheme in ImaCytE [17]. To enable comparison between
the cohorts, we divide the tissue view into two parts, one for each cohort. The name and
color corresponding to the cohorts is shown on top of each view (Figure 6).

As described before, all views are linked. Therefore, the tissue view can be filtered
to only show samples selected in other views. Further, selecting cell types or microenvi-
ronments in other views highlights them in the images by fading non-selected structures
out, resulting in a light-grey for all unselected areas (Figure 6). Moreover, the tissue view
supports zooming and panning across tissue samples to further assist the exploration of the
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Cohort A

Cohort B

Filter

Filter

Figure 6: Tissue view, highlighting a spatial interaction fading out the non-selected tissue structures.
In the tissue samples of Cohort A, the spatial interactions form a compact structure, whereas the spatial
interaction of Cohort B tissue samples are distributed all over the samples.

(highlighted) tissue areas.

4.5.4. IMPLEMENTATION
As described in Section 4.4.1, our target users are clinical researchers with little program-
ming experience. Therefore, we implemented the described workflow in a stand-alone GUI
application. The application is implemented in MATLAB, as it allowed us to quickly build
a stand-alone prototype. Source code and binaries are available on GitHub [54].

4.6. VALIDATION
In order to show the effectiveness of our workflow, we conducted three case studies with
collaborators (P1-P3) at Leiden University Medical Center. P1 was also our main contact
during the development of the workflow. After conducting the case studies and collecting
feedback, we invited the collaborators to participate in the write up of the case-studies, and
hence they are all co-authors of this manuscript. All collaborators acquired their own data
with varying biological goals, using two different modalities as indicated in Table 4.1. For
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Table 4.1: Summary of the case study characteristics.

Samples in Cohort
Case Study Modality

1 2
Cell Types

P2 Sarcoma IMC [3] 13 7 12

P1 Tumor IMC [3] 19 28 60

P3 Alzheimer’s Vectra [40] 12 9 16

the case studies, we gave participants a hands-on introduction and answered any questions
regarding the tool. After that, we observed the participants performing their analysis
independently and reproduced their workflows for presentation in Sections. 4.6.1-4.6.3.
As described in Section 4.5, for all the case studies the segmentation masks and the cell
type identification had been performed as a pre-processing step by the participants. An
overview of the study parameters with regard to imaging modality, numbers of samples,
and numbers of included cell types is given in Table 4.1. As can be seen, the studies cover
three different application areas, contain data from two different modalities, between 20
and 47 samples, and between 12 and 60 cell types. Finally, we asked the participants, as
well as a fourth user of the software (P4, not a co-author of this manuscript), to fill out a
short questionnaire (available in the supplemental material) via google forms [55]. The
questionnaire consists of the ten standard System Usability Scale (SUS) statements [56],
an additional nine statements specific to our tool, answered on a 5-point Likert scale, and
five questions for open feedback. The individual plots presented in the case study have
been exported directly from our tool and laid out with adjusted labels and annotations for
the printout.

4.6.1. CASE STUDY I: SYNOVIAL SARCOMA (P2)
Synovial sarcoma is a rare form of cancer. During the immune response, T-cells infiltrate
the sarcomas. Previous work has shown that synovial sarcomas can have areas with
abundant T-cell infiltration (hot areas) and areas with very little T-cell infiltration (cold
areas), in the same tumor[57]. The goal of this case study was to explore differences in
the immune cell composition between these two types of areas. A total of 20 areas from
7 different tumors were imaged, of which 7 were cold (Cold Cohort, blue) and 13 were
hot (Hot Cohort, orange). The size of the samples varied, with the number of cells in
each image ranging from 2,678 to 23,774 cells. In the pre-processing step, cells were
segmented and 12 different cell types were identified, based on the original data. While
the number of cell types is relatively low, they cover a large range of available types, with
rather coarse specificity.

4.6.1.1. CELL TYPE ABUNDANCE
In the first step of the analysis the expert was mostly interested in identifying cell type(s)
that differentiate the cohorts, matching T1 of our task analysis. Given the large variation in
the number of cells per sample, he used the relative cell type abundance for comparison.
First, he wanted to explore the uniformity of each cohort. As indicated above, the samples
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were sorted into the two cohorts based on the infiltration of T-cells in the contained tumor
tissue. Consequently the T-cells should exist predominantly in the Hot Cohort. As a first
step, the expert wanted to verify this using the system. As there are two different types of
T-cells in the dataset (CD4 and CD8 T-cells ) he first queried for these two cell types
and created a combined raincloud plot by dragging the CD4 T-cell and CD8 T-cell plots
to the combined drop area (subsection 4.5.1). The resulting combined plot (Figure 7a)
confirmed that T-cells were largely non-existent in all seven samples of the Cold Cohort
(blue peak close to 0, Figure 7a) but more widely distributed in the Hot Cohort (even spread
of the orange distribution, Figure 7a). After navigating among the plots, he discovered
the raincloud plot for B-cells (Figure 7b). This plot caught the expert’s interest. Even
though most samples from both cohorts hardly contain any B-cells, there are a few samples
in the Hot Cohort that contain some B-cells, indicated by the orange lines to the right
of the plot in Figure 7b. Given the generally low values, approximately 3 percent, even
for the sample with the largest abundance, the expert decided to not further investigate
these samples at this point and proceeded with other cell types. Therefore, he ordered the
raincloud plots according to the Dunn’s index [49]. The first plot illustrating macrophages

showed a pattern similar to the T-cells (Figure 7c). Strikingly, there is an outlier (T3)
clearly visible in the plot (highlight in Figure 7c). The corresponding sample from the
Cold Cohort consists of over 16% macrophages, compared to no more than 5% for all
other samples of the same cohort. Selecting the corresponding line in the plot also revealed
that this sample has the highest abundance of T-cells in this cohort (though only at around
1% of cells in this sample).

At this point, the expert was curious whether the microenvironments of the macrophages
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Figure 7: Raincloud plots for combined CD4 and CD8 T-cells (a), B-cells (b), and macrophages
(c). An outlier for macrophages in the cold cohort is clearly visible in (c). Selecting it showed it also
contained slightly more T-cells than other samples in the cold cohort (a).
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Figure 8: Multi-cellular microenvironment cohort comparison. (a) A heatmap depicting the differ-
ence of the amount of pairwise spatial interaction between two cohorts normalized according to the
abundance of each cell type. (b) A heatmap depicting the Dunn index for the samples of each cohort
for each pairwise co-localization pattern. (c) The amount of B-cells having in their microenvironment
B-cells and CD4 T-cells, depicting that the occured differentiation in (a) was due to the two outlier
samples, which exist in a tertiary lymphoid structure, an interesting biological structure (d). The amount
of macrophages having in their microenvironment CD4 T-cells (e) and CD8 T-cells (f).
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and B-cells could provide further clues on differentiating factors between and within the
cohorts.

4.6.1.2. MICORENVIRONMENTS
The exploration of the differences between the two cohorts, with regard to the contained
microenvironments (T2) starts with the overview provided by the difference heatmap
(Figure 8a). The difference heatmap (Figure 8a) indicated that combinations of B-cells
and B-cells and B-cells and T-cells were more prevalent in the Hot Cohort
(highlighted orange boxes). With this information, the expert created the combined
mircoenvironment using the drag and drop interface. The corresponding raincloud
plot showed two clear outliers in the Hot Cohort showing a larger abundance of this
combination (Figure 8c). Using the linked tissue view, the expert could highlight the
microenvironments in the corresponding samples (Figure 8d). The expert observed that
the highlighted microenvironments were mostly present in so-called tertiary lymphoid
structures [57]. While not directly relevant for the cohort comparison, he noted the two
outlier samples for later detailed inspection in his standard workflow.

In the previous step, the expert had also identified macrophages for further explo-
ration. Curiously, the heatmap did not show any strong differences between the two cohorts
with regard to the microenvironments of this cell type. After the case study, we analyzed
the data and came to the conclusion that the normalization applied to create the heatmap
(subsubsection 4.5.2.1) strongly biased the heatmap in favor of small cell populations such
as the B-cells in this study (subsubsection 4.6.1.1). As a result, we added the option to
use the same cluster separation metrics used for sorting the raincloud plots according to
their power to separate the cohorts for the heatmap as described in subsubsection 4.5.2.1.
Figure 8b shows the heatmap using the Dunn’s index as an example. Here, the
microenvironment is more clearly visible, while the small values of the B-Cell microenvi-
ronments are suppressed. The expert selected the corresponding box from the heatmap and
examined the distribution of the samples for each cohort in the detail view. The blue area
around zero (Figure 8e) indicated the absence of microenvironment in the Cold Cohort,
verifying the heatmap findings. Then, the expert having already identified the correlation
among CD8 T-cells and macrophages navigated among the plots of the “Remaining” area
of the detail view and located the CD8 T-cell raincloud plot. The addition of CD8 T-cells in
the microenvironment of macrophages further differentiated the two cohorts, shown
by the restriction of the blue area to almost zero (Figure 8f). Even the strong outlier in the
Cold Cohort that contained the largest amount macrophages of all samples did not show
any significant co-localization of macrophages and T-cells. On the other hand, several
samples in the Hot Cohort showed significant amounts of both combinations. Therefore,
the expert concluded that both T-cell sub-types seems to better differentiate the hot and
cold tumor areas, than their one-to-one spatial interaction or even their abundances.

4.6.2. CASE STUDY II: TUMOR METASTASIS (P1)
In this case study, the expert wanted to explore the differences in the cellular microenvi-
ronments of tumors with different clinical characteristics. In particular, she had acquired
a data set, consisting of a total of 47 images taken from different tumor samples. Based
on other clinical parameters she divided the set in two cohorts. The first one contains
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19 images of non-metastatic tumors (Non-Metastatic Cohort, orange), the second 28 im-
ages of metastatic tumors (Metastatic Cohort, blue). She had segmented the images in a
pre-processing step and identified 60 different cell types, among a total of 393,727 cells.

4.6.2.1. CELL TYPE ABUNDANCE
First, the expert was interested to discover cell type(s) which exist predominantly in one of
the cohorts. Given the large amount of cell types, she ordered the raincloud plots according
to the Silhouette metric in descending order, to assist her exploration. The first few plots
consisted mostly of different subsets of T-cells, which had been defined in great detail in
the preprocessing step. All of the corresponding plots showed a similar pattern of very
small abundances for the Metastatic Cohort, indicated by a large blue peak to the left of the
plot and a varying, but generally larger abundance in the Non-Metastatic Cohort. Searching
for all cell types containing “T-cell” in their label showed a similar pattern for all of the
remaining types (Figure 9a). This pattern is not completely surprising, as T-cells are a
major factor in the immune response to cancer. For further exploration, in particular the
relation of the identified T-cells to cancer cells, the expert aggregated all T-cell subsets
using the drag and drop interface. The resulting raincloud plot (Figure 9b) confirmed that
the T-cells clearly differentiate the two cohorts. There were, however, three samples
from the Metastatic Cohort visible (blue lines, labeled A,B,C in Figure 9b) that showed a
somewhat increased abundance compared to the remaining samples in that cohort. Next,
the expert was interested, whether the increased amount of T-cells in the Non-Metastatic
Cohort would correlate to differences in contained tumor cells. The expert searched for
“tumor”, to bring up the raincloud plot, corresponding to Proliferating Tumor Cells .
However, as shown in Figure 9c, no clear separation between the two cohorts can be made,
based on these cells. Finally, selecting the three outliers samples (A,B,C) in the T-cell plot
did not show a specific differentiation with regard to the tumor cells.

4.6.2.2. MICORENVIRONMENTS
The last findings of subsubsection 4.6.2.1 intrigued the interest of the expert to further
explore whether the tumor cells are present in the same amounts also in the microen-
vironment of T-cells. She quickly combined T-cells and proliferating tumor cells to a
microenvironment to bring up the corresponding raincloud plot (Figure 9d) in the
detail view. The plot shows a clear differentiation among the two cohorts. In fact, this
combination differentiates the two cohorts even stronger than only the T-cells. Even for
the samples (Samples A,B,C) that showed increased abundance in T-cells, compared to
the rest of the Metastatic Cohort, there was only a very small abundance of the
microenvironment. This strongly indicates that tumor cells exist in the microenvironment
of T-cells in the Non-Metastatic Cohort, whereas in the Metastatic Cohort there is no
spatial interaction between tumor and T-cells regardless their abundance. This lead the
expert to hypothesize that the co-localization between the tumor and T-cells needs to be
taken into account in tumor analysis, rather than the abundance of T-cells alone.

4.6.3. CASE STUDY III: ALZHEIMER’S DISEASE (P3)
The accumulation of amyloid plaques in the brain is an important characteristic of
Alzheimer disease. These amyloid plaques are infiltrated by microglial cells, the resi-
dent immune cells of the brain. In this final case study, the expert wanted to verify the
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Figure 9: Raincloud plots for various T-cell subsets (a), the aggregated plot combined from those
subsets (b), and proliferating cancer cells (c). (d) shows the amount of the aggregated T-cells with
proliferating cancer cells in their microenvironment. Even though the samples A-C, of the Metastatic
Cohort, had a significant amount of T-cells and proliferating cancer cells (b,c) they did not spatially
interact (d).
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hypothesis that the microglia cells close to and potentially attacking amyloid plaques are
different from the microglia cells in healthy individuals.

The data used in this case study are somewhat different from the first two cases. The
number of samples is comparable. Here, each sample represents one subject, for a total
of 12 patients in the Alzheimer’s Cohort (orange) and 9 healthy subjects in the Control
Cohort (blue). However, each subject is described by up to 150 images, acquired with
the Vectra 3.0 [40] machinery. 16 different cell types were identified and segmented in
the pre-processing step. The identified cell types consist mostly of different subsets of
microglia cells and as a result, the segmentation of the images is rather sparse, containing
only in the order of 25 cells per image, plus the separately segmented amyloid plaques.
As such, the individual images were not as important in this study as in the previous
two and the data set only contained aggregated information of cell type abundance and
microenvironments for all images per subject.

4.6.3.1. DATA ANALYSIS
As the experts goal was to verify a specific hypothesis, the data analysis in this study was
much more targeted, compared to the rather explorative nature of the previous case studies.
First, he brought up the raincloud plots corresponding to two microglia subtypes with
contradictory patterns (Figure 10a,b). As can be seen in the plots Subtype 1 was prevalent
in the Control Cohort (blue), whereas Subtype 2 was mostly found in samples of the
Alzheimer’s Cohort (orange) but there was still some overlap between the samples from the
two cohorts. This differentiation was already an indicator to verify the original hypothesis
of the expert. Going back to the original data, the expert noted that the microglia Subtype 2
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Figure 10: Raincloud plots for microglia subtypes (a,b), and amoyloid plaques with microglia subtype
2 in their microenvironment (c).
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did not express two proteins that were expressed by Subtype 1 and hypothesized that these
proteins might be suppressed when in the vicinity of the amyloid plaques in Alzheimer’s
disease patients. Consequently, he brought up the raincloud plot of the corresponding
microenvironment (Figure 10c). Here, the distinction between the two cohorts is even
clearer, with only two samples from the Alzheimer’s Cohort in the range of the Control
Cohort. The distribution further indicates that Subtype 2 seems to co-localize with amyloid
plaques, supporting the generated hypothesis.

4.6.4. FEEDBACK
After the case studies, we collected feedback from the participants using a short question-
naire (available in the supplemental material) via google forms [55]. The questionnaire
consists of the ten standard System Usability Scale (SUS) statements [56] (Q1–Q10), an
additional nine statements specific to our tool (Q11–Q19), answered on a 5-point Likert
scale, and five questions for open feedback. After the case studies, a fourth collaborator
started working with the tool. After she got acquainted with it, we asked her to fill out the
same questionnaire.

The average SUS-score, based on all four questionnaires was 76.25 with a standard
deviation of 3.23 resulting in a good rating [58]. In the following we briefly summarize
the feedback of the custom block of the questionnaire (Q11–Q19), for the complete set of
responses we refer to the supplemental material. An overview of the responses is provided
in Table 4.2. The custom part of the questionnaire is divided into three blocks. The first
block (Q11–Q14) corresponds to the identified tasks (subsection 4.4.3). The second block
(Q15–Q18) targets the interaction with the raincloud-based views in the cell abundance and
microenvironment exploration. Finally, in the third block, we ask about general feedback.

With statements Q11–Q14 we queried whether T1–T4 (subsection 4.4.3) could be
carried out efficiently. (Q11; The tool allows me to efficiently compare two cohorts,
according to the abundance of contained cell types per sample relates to T1, Q12 to T2,
and so on). Generally, responses were clearly positive with strongly agree (++) or agree
(+) with the exception of a neutral ( ) response to Q11 and Q12, each. From the open
feedback (Q20: What functionality was missing to fully accomplish all goals?) we could
gather that participants would like to be able to “correct[ion] cell abundance” with regard
to the amount of cells from user-defined area. Further, “statistical testing of differences
found between cohorts” was requested, related to T1 and T2.

In Q15–Q18 we were interested whether the raincloud plots were helpful to compare
the distributions (Q15, T1-T2) and to find outliers (Q16, T3) as well as whether the drag
and drop interaction made it easy to combine cell types (Q17) and build microenvironments
(Q18). Q15–Q17 were overwhelmingly positive, with Q18 getting neutral responses by
majority. The different response to Q17 and Q18 is rather unclear to us, as the interaction
for combining cell types and building the detailed microenvironments is essentially the
same. Unfortunately, there is also no further feedback on this in the open part of the
questionnaire.

In the open feedback we can see that Participant 3 was missing “Within subject distri-
bution of cell types/clusters.” As described in Figure 4.6.3, we had aggregated the very
large amount of images in this study to a single dataset per subject. It might be interesting
to provide a hierarchical approach in the future, that allows drilling into these subjects.
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Table 4.2: Summary of participants’ answers to statements of our questionnaire on a 5-point Likert
scale from very positive (++) to negative (-). No very negative (–) responses were given.

Q 11 12 13 14 15 16 17 18 19

++
+

-

Participant 4 mentioned “the option to compare 3 cohorts” as a missing feature in the open
feedback. While we focus on the comparison between two cohorts this is a possible future
extension.

Finally, in the open feedback the “possibility to detect outliers (and directly identify
the subject” (T3) was specifically mentioned as a positive aspect. The link between
the abstract views and the actual images (T4) was highlighted by one participant: “The
rainbowplots are really cool, especially because you can go up and down to the images
again.” Particularly positive was a comment by Participant 1, that “with the tool I already
discovered a very nice thing in my existing data!”.

4.7. DISCUSSION AND CONCLUSION
We presented a workflow for the interactive visual comparison of two cohorts comprising
single-cell omics-data, based on the cell abundance and their cell microenvironments.

The presented case studies contained up to 47 samples and up to nearly 400.000 cells.
Our sorting and filtering options allow effective exploration of datasets of such sizes,
however, increasing numbers to hundreds of samples will pose new challenges. In the
Alzheimer’s disease case study we accommodated a much larger original dataset (3286
images) by aggregating the information per patient and imaged region to a single larger
image, resulting in the dataset described in Figure 4.6.3. Extending this to a hierarchical
approach, facilitating the exploration of such aggregated regions and then individual images
within a region might be a worthwhile extension.

At this point, our workflow is focused on two-dimensional images, as our partners
currently only acquire such data. However, image stacks or volumetric measurements are
becoming more readily available. Assuming a three-dimensional definition of microenvi-
ronments, the views based on abstract information, such as the raincloud plots and heatmap,
would readily adapt to such data. Extensions to the spatial view, for example by volume
rendering, would be necessary to inspect findings in the tissue context.

We have implemented the drag and drop interface to create simple center-neighborhood
microenvironments. Nevertheless, the approach would support more advanced microenvi-
ronments through more drop targets, intuitively. For example, the neighborhood could be
divided into multiple segments to allow a microenvrionment definition that has cell type A
to the left and cell type B to the right of the center cell. A more traditional user interface,
such as checkboxes, to assign cell types to each of those segments would be less flexible
and quickly require a large amount of additional user interface elements.
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Our workflow is designed to compare two clearly defined separate cohorts such as
control vs. disease. Extending it to support more cohorts, or including more continuous
features such as age or trial dose are open questions that certainly warrant future research.
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