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2.1. NORMALIZATION STRATEGIES FOR IMAGING MASS CYTOMETRY DATA

2.1.1. ABSTRACT
Imaging Mass Cytometry (IMC) allows the detection of multiple antigens (approximately
40 markers) combined with spatial information, making it a unique tool for the evaluation
of complex biological systems. Due to its widespread availability and retained tissue
morphology, formalin-fixed, paraffin-embedded (FFPE) tissues are often a material of
choice for IMC studies. However, antibody performance and signal to noise ratios can differ
considerably between FFPE tissues as a consequence of variations in tissue processing,
including fixation. In contrast to batch effects caused by differences in the immunodetection
procedure, variations in tissue processing are difficult to control. We investigated the effect
of immunodetection-related signal intensity fluctuations on IMC analysis and phenotype
identification, in a cohort of twelve colorectal cancer tissues. Furthermore, we explored
different normalisation strategies and propose a workflow to normalise IMC data by semi-
automated background removal, using publicly available tools. This workflow can be
directly applied to previously acquired datasets and considerably improves the quality of
IMC data, thereby supporting the analysis and comparison of multiple samples.

2.1.2. INTRODUCTION
Mass cytometry has advanced as an important technology for the characterisation of
cellular contextures in health and disease [1–6]. A major advantage of mass cytometry is
its ability to simultaneously interrogate over 40 markers. The high-level of multiplexing
is made possible via the use of antibodies conjugated to heavy metal isotopes rather than
fluorescent tags [7]. Cells are labelled with these and led into a CyTOF (Cytometry by
time-of-flight) instrument, where heavy metal abundance is measured, per cell, by time-
of-flight mass spectrometry [8]. Technological advancements in the field have made it
possible to image tissue sections as opposed to single cells, allowing for the incorporation
of spatial information [9]. Imaging Mass Cytometry (IMC) allows the analysis of, among
others, archival tissue samples in the form of formalin-fixed paraffin-embedded (FFPE) or
snap-frozen (FF) tissue. Tissue sections are labelled with metal-conjugated antibodies and
ablated in small portions (typically 1µm2 = 1 pixel). The ablated tissue is then analysed
with the CyTOF instrument. The pixel data is processed into an image, thereby allowing
the visualization of phenotypes and incorporation of spatial information in subsequent
analyses. IMC users have already contributed with a number of studies aimed at optimising
the use of this technology, including: a strategy to address signal spill-over during heavy
metal detection [10] as well as methodologies to aid the implementation of large antibody
panels for FFPE [11] or snap-frozen [12] tissues. Schulz and colleagues demonstrated the
potential of combining protein and RNA in situ detection with IMC [13]. Furthermore,
IMC has been used to comprehensively study tissue architectures and cellular composition
of breast cancers [14] and pancreatic tissues affected by type 1 diabetes [15, 16], among
other applications. The increasingly widespread application of IMC for the characterisation
of tissues is accompanied by the need to develop analytical tools that can handle large
and complex datasets where, for instance, signal to noise ratio fluctuates across samples.
The general pipeline for IMC analysis involves the creation of cell segmentation masks
with ilastik [17] and CellProfiler [18], after which the resulting image-stacks and masks
are processed by dedicated software packages like HistoCAT [19] or ImaCytE [20].
The majority of current IMC studies make use of FFPE tissues, due to their widespread
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2. PREPROCESSING OF HIGHLY MULTIPLEXED CELLULAR IMAGES

availability in tissue archives and good morphology after fixation. For the interpretation
of immunohistochemistry data on FFPE tissues, it has long been recognised that antibody
performance and signal detection can vary considerably between specimens. This can be
explained by the use of different fixation times, size of tissue during fixation, dehydration
of the tissue after fixation, the age of the FFPE tissue block or how long the tissue slides
have been stored before immunodetection [21–24]. Moreover, particularly impactful and
difficult to control, is the ischemia period that concerns the time between the collection
of a tissue and its fixation. Ischemia can cause a number of artefacts due to autolysis,
protein degradation, or the drying of the outer layer of the tissue [22–26]. Therefore, the
comparison of intensities of antibody signal between different FFPE tissues is not general
practice in the evaluation of immunohistochemistry results. In this work we investigated
three methods for the processing of IMC data. We first analysed an IMC dataset without
preprocessing and compared this to two normalisation strategies: background identification
to correct for variations in signal intensity and background between tissues, using manual
thresholding or a semi-automated method. Both approaches were followed by per-pixel
binarization of marker intensity to overcome differences in immunodetection intensity
between tissues. After comparing the three approaches we propose a workflow for the
analysis of tissues that makes use of publicly available tools to generate processed IMC data.
Importantly, we implemented a normalisation strategy that overcomes immunodetection
intensity variations across samples and considerably improves the quality of IMC data.

2.1.3. METHODOLOGY
2.1.3.1. TISSUE MATERIAL
FFPE blocks from 12 colorectal cancers were obtained from the department of Pathology
of the Leiden University Medical Centre (Leiden, The Netherlands). Samples were
anonymised and handled according to the medical ethical guidelines described in the
Code of Conduct for Proper Secondary Use of Human Tissue of the Dutch Federation of
Biomedical Scientific Societies. Colorectal cancer tissues were cut into 4 µm sections and
placed on silane-coated glass slides (VWR, Radnor, PA, USA).

2.1.3.2. IMAGING MASS CYTOMETRY IMMUNODETECTION AND ACQUISITION
Antibodies employed in this study were conjugated to purified lanthanide metals using
the Maxpar antibody labelling kit and protocol (Fluidigm, San Francisco, CA, USA).
Antibodies were eluted in 50 µl antibody stabilizer solution (Candor Bioscience, Wangen im
Allgäu, Germany) supplemented with 0,05 % sodium azide and 50 µl W-buffer (Fluidigm).
After conjugation, all antibodies were tested by IHC on 4 µm tonsil tissue to confirm
that the labelling process did not affect antibody performance. IMC immunodetection
was performed following the methodology published previously by our lab [11] using the
antibodies and conditions described in supplementary table 1. Tissue sections were ablated
within a week after immunodetection by using the Hyperion mass cytometry imaging
system (Fluidigm). The Hyperion was autotuned using a 3-element tuning slide (Fluidigm)
as described in the Hyperion imaging system user guide. In addition to the successful
tuning requirements of the Hyperion imaging system, a minimum detection of 1500 mean
duals of 175Lu was required, to control for variations in the plasma-line positioning. Four
1000x1000 µm regions of interest per sample were selected based on haematoxylin and
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2.1. NORMALIZATION STRATEGIES FOR IMAGING MASS CYTOMETRY DATA

eosin (H&E) stains on consecutive slides and ablated at 200 Hz. Data was exported as
MCD files and txt files and visualised using the Fluidigm MCD viewer. For downstream
analysis, the MCD files were transformed to either 32-bit multi-tiff or single-marker tiff
images in the MCD viewer.

2.1.3.3. CREATION OF SINGLE CELL MASKS
For each sample, one tiff image was exported from the MCD viewer, combining the
keratin and vimentin expression as well as DNA detection. ilastik [17] (v1.3.3) was used
to create masks for nuclei (based on the DNA signal), cytoplasm/membrane (based on
keratin and vimentin expression) and background (based on the absence of signal in the
DNA, keratin and vimentin image). ilastik’s random forest classifier was trained using
manually assigned pixels that underwent Gaussian smoothing (ilastik feature settings: 0.3,
0.7 and 1.0 sigma for colour/intensity, edge and texture). Training was performed on
12 images (one representative image per sample) after which the classifier was applied
to all images in the dataset and data was exported as probability maps indicating the
likelihood of each pixel corresponding to nucleus, cytoplasm/membrane or background.
In CellProfiler [18] (v2.2.0) the probability maps were used to create single cell masks
for all samples. All masks were compared to the original IMC images to validate the cell
segmentation procedure.

2.1.3.4. BACKGROUND IDENTIFICATION AND BINARIZATION
To address variations in immunodetection signal intensity between samples, two normali-
sation approaches were applied: 1) manual background identification in MCD viewer or 2)
semi-automated background identification in ilastik, both followed by binarization of pixel
values.

• Manual background identification was done using the MCD viewer by inspecting
each marker and setting a minimum intensity/mean duals threshold to remove
background noise. The threshold was identified by visual inspection, based on the
user’s knowledge of the expected immunodetection pattern and corresponding IHCs
of the protein in question. After setting a threshold for each marker, the data was
saved as txt files containing all previously defined thresholds. This process was
repeated for all images. Together with the multi-tiff images and the cell segmentation
masks, the threshold txt files were loaded into ImaCytE. In ImaCytE, the thresholds
were applied to the images and pixel intensity values were binarized (i.e., all pixels
below the threshold were set to 0 and all pixels above threshold were set to 1).
Normalised cell intensities were then defined as the frequency of positive pixels, per
cell.

• Semi-automated background identification was done on single marker tiff images,
exported from MCD viewer. The images corresponding to a single marker across
the entire cohort were loaded into ilastik and a small amount (i.e., approximately
1 % ) of pixels were assigned to either ‘signal’ or ‘background’ in 12 images
(one representative image per sample). To facilitate pixel annotation, outliers were
removed from the images through saturation of all pixels with values lower than
the 1st and higher than the 99th percentile using MATLAB. Then, after Gaussian

2

21
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smoothing (ilastik feature settings: 0.7, 1.0 and 1.6 sigma for colour/intensity,
edge and texture), the random forest classifier automatically classified signal and
background pixels. After training on at least 12 images (1 for each sample), the
classifier was applied to all images in the dataset and the data was exported as binary
expression maps with the ‘background’ pixels set to 0 and the ‘signal’ pixels set to 1.
This approach was repeated for each marker. A folder was created for each image
containing the binary expression maps of all markers and the previously created
cell segmentation masks. These were loaded into ImaCytE and for each marker the
relative frequency of positive pixels in a cell was visualised on the cell mask.

2.1.3.5. SINGLE CELL CLUSTERING AND PHENOTYPE CALLING
Single cell data was obtained by processing cell segmentation masks with their corre-
sponding pixel intensity files in ImaCytE, for the generation of FCS files. For the analyses
without preprocessing or with manual background identification, multi-tiff images and
their corresponding cell segmentation masks were employed. For the analysis with semi-
automated background identification, segmentation masks were loaded together with binary
expression maps of each marker. Single-cell FCS files containing mean pixel values per
cell (for the non-normalised dataset) or relative frequency of positive pixels per cell (for
the normalised dataset) were then exported from ImaCytE and analysed by t-SNE [27]
(t-distributed stochastic neighbor embedding) in Cytosplore [28]. Cells forming visual
neighbourhoods in the t-SNE embedding were grouped using Mean-shift clustering and
exported as separate FCS files. The resulting subsets were imported back in ImaCytE
for visualisation of subsets in the segmentation masks and localisation was compared to
original MCD images to validate the obtained clusters.

2.1.4. RESULTS
2.1.4.1. VARIATION IN SIGNAL TO NOISE RATIO BETWEEN FFPE SAMPLES IN-

FLUENCES UNSUPERVISED IMAGE ANALYSIS
Immunodetection in FFPE tissues is complicated by variations in antigen availability
and accessibility across samples due to tissue processing and fixation procedures. To
understand its implications to the quality of IMC data, we analysed 48 images generated
from 12 colorectal cancer samples. FFPE tissues were labelled with a 30 antibody panel
and four regions of interest (ROI) of 1 mm2 were ablated, per tumour, by the Hyperion
imaging mass cytometer. CD45 and CD4 were excluded from further analysis due to
poor signal detection. Further visual inspection of the images using the MCD viewer
showed that large differences exist in immunodetection intensity of the same antigen
between tissues, which cannot always be explained by biological variation (Figure 2.1a).
To determine the impact of these fluctuations on downstream analyses, the added-value
of two normalisation approaches was investigated in comparison to the IMC analysis
pipeline without preprocessing (Figure 2.1b). In short, cell masks were created using ilastik
and CellProfiler and were loaded into ImaCytE combined with the raw or normalised
images in order to define relative marker expression per cell. FCS files were produced,
and clustering of cells was performed by t-SNE to identify cell subsets, using Cytosplore.
Next, the phenotypes were projected back onto the cell masks in ImaCytE for visualisation
and spatial analysis. First, we visualised immunodetection signal intensities, without
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2.1. NORMALIZATION STRATEGIES FOR IMAGING MASS CYTOMETRY DATA

Figure 2.1: (a) CD163 expression patterns in three samples. A signal range of 3-20 mean dual
counts was set for all images in the MCD viewer, but differences in signal intensity and background are
observed between images. (b) Workflow for IMC FFPE imaging and data analysis, including the three
tested data processing approaches where either no preprocessing, manual background identification
and binarization or semi-automated background identification and binarization were performed.

normalisation, per antibody, on all cell mask overlays where antibody signal was displayed
as mean pixel intensity (Figure 2.2a and Figure 2.2b, lower panel). Where differences were
observed, the original IMC images were inspected, showing that fluctuations in intensity on
the cell masks generally corresponded to variations in signal to noise ratios. This resulted in
either overestimation (Figure 2.2a) or underestimation (Figure 2.2b) of cells positive for a
marker with variable signal to noise ratios between samples. Furthermore, alongside small
differences in marker expression due to, for instance, signal spillover from neighbouring
cells, high variability in signal intensity between samples could potentially result in similar
immune cell subsets being assigned to distinct immune cell populations when using
automated clustering approaches. To test this, a t-SNE embedding was computed using the
single cell marker expression data extracted from 48 images

The embedding contained 393727 cells and was visualised in a two-dimensional scat-
terplot with sample IDs and expression of each marker shown by colour coding. It was
observed that cells with a similar marker profile were scattered throughout the t-SNE em-
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2. PREPROCESSING OF HIGHLY MULTIPLEXED CELLULAR IMAGES

Figure 2.2: (a) Comparison between original MCD image and cell expression after mask overlay.
Variation between images occurs due to differences in background as seen for CD45RO between
sample 1 and 2 and (b) variation in signal intensity as observed for CD8 between sample 3 and 4.
Signal in the cell mask ranged from 0 – 10 mean duals. (c) comparison of CD45RO and (d) CD8
immunodetection in two thresholded MCD images and the mask overlay after manual thresholding
and pixel binarization. Signal intensity ranges between 0 and 1 due to the visualisation as relative
frequency of positive pixels per cell.

bedding rather than clustering together (Figure 2.2a, Figure 2.3a, Figure 2.4). Furthermore,
cells also tended to group according to their sample of origin. These observations led to
the hypothesis that the intensity range and signal to noise variation between samples can
overshadow cell type differences and similarities. Finally, cells positive for FOXP3, CD20
or CD103, markers with a low signal to noise ratio, did not form groups in the t-SNE
analysis (Figure 2.4).

2.1.4.2. MANUAL BACKGROUND IDENTIFICATION AND BINARIZATION NORMALISES
IMC INTER-SAMPLE VARIATION FOR AUTOMATED DOWNSTREAM ANAL-
YSIS

A methodology was devised to test whether the observed immunodetection variation could
be overcome by normalising the IMC data, while minimising data loss, for downstream
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Figure 2.3: (a) t-SNE analysis embedding of single cell data extracted from all 48 images without
preprocessing. Each dot marks a cell and is coloured by sample of origin.To determine the effect of
data normalisation, t-SNE analysis embeddings were generated for the same dataset after (b) manual
background identification and binarization and after (c) semi-automated identification and binarization.

analysis. This approach utilised a user-defined minimum signal threshold for each marker
followed by pixel binarization of the dataset. To confirm whether this approach was
sufficient for reliable downstream analysis, we visualised the percentage of positive pixels
on the cell masks. Indeed, setting a minimum signal threshold overcame the variation
between samples (Figure 2.2c, d), compared to images obtained without preprocessing
of the data (Figure 2.2a, b). However, for markers with a low signal to noise ratio, it was
observed that implementing a threshold not only filtered out the background but also signal
corresponding to cells expressing the marker of interest (Figure 2.5a-c) . To further assess
the effect of thresholding and binarization on downstream analysis, t-SNE embedding,
as described in the previous section, was performed on the single cell data obtained
after manual background identification and binarization (Figure 2.3b, Figure 2.4). In
contrast to the t-SNE embedding of data without preprocessing, cells with a similar marker
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Figure 2.4: t-SNE analysis on single cells extracted from dataset without preprocessing and the
dataset generated with manual background identification and binarization.
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Figure 2.5: (a-c) CD3 expression in a representative image with a pixel threshold of 0, 1 or 2,9. (d) pixel
data plotted in a histogram displaying the relation between pixel intensity (x-axis) and frequency (y-axis).
(e) Mean CD3 positive pixels per cell with a cut off threshold at 1. All pixels below threshold were set to
0 and above threshold at 1 and used to determine the mean intensity per cell. (f-i) histograms of CD3
expression with different threshold between 2 and 5

profile clustered together (as observed for CD8, Figure 2.4). Furthermore, the distinction
between positive and negative cells for a specific marker was clearer (as observed for
CD163, Figure 2.4). (Figure 2.3b, Figure 2.4). Sample specific clustering was largely
resolved but some sample-related bias remained (Figure 2.6b). Further inspection of the
t-SNE embedding showed that the cells in those clusters were keratin-positive (a marker
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Figure 2.6: (a) t-SNE embedding of single cell data extracted from dataset without pre-processing.
Each colour represents a different sample and cells cluster together by phenotype. Sample-specific
clustering is encircled. (b) t-SNE embedding of single cell data extracted from dataset generated
with manual background identification and binarization. Each colour represents a different sample
and sample specific clustering is encircled. (c and d) Keratin, Ki67, CD15 and HLA-DR expression
overlay on the t-SNE from data without pre-processing (c) and data that underwent manual background
identification and binarization (d).
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for epithelial cells) with varying combinations of HLA-DR, Ki67 and CD15 expression,
markers that are often differentially expressed between cancer cells, which could, in part,
explain the sample-specific clustering of the tumour cells (Figure 2.6c, d). In line with the
observations made during visual inspection, low numbers of cells positive for dim markers
were observed (for instance CD20, FOXP3, Figure 2.4), albeit higher than the number
of positive cells observed in t-SNE of the dataset without normalisation (Figure 2.3a,
b and Figure 2.4). Thus, manual background identification and binarization of pixel
intensity largely resolved sample-specific clustering and allowed for comparison between
samples, but did not resolve the presence of false negatives. Although manual background
identification was found to overcome some of the challenges of analysing FFPE IMC
data, its major disadvantages are that it is time consuming and subject to errors as it
requires vast knowledge of the expected immunodetection patterns of each marker and high
inter-user variability is inevitable. Furthermore, while background identification through
thresholding removes background noise, a portion of specific signal can be lost, particularly
when the signal to noise ratio is low, resulting in false negatives. Therefore, we set out to
investigate if an automated and unbiased approach could replace manual thresholding. We
first visualised the pixel data in histograms for each marker to assess if pixel intensity was
bimodally distributed in order to set an automatic threshold between negative and positive
pixels. However, no bimodal distribution but a negative correlation between number of
pixels and signal intensity was observed, possibly in part due to detector noise of the
mass cytometer (Figure 2.5d). We then investigated whether grouping pixel intensities per
cell after applying cell masks onto the images allowed the definition of a threshold that
separated positive and negative signals for a given marker. Initially, we set the threshold
value at 1 mean duals and regarded all cells above this value as positive for a marker. Then,
we visualised the data on cell level by plotting the percentage of positive pixels within a
cell (Figure 2.4e). Also, at cell level, no clear bimodal distribution was observed. Similarly,
cut-off threshold values between 2 and 5 resulted in similar distributions (Figure 2.5f-i).
Moreover, a threshold of 2,9 mean duals was comparable to the cut-off chosen during
manual thresholding but this could not be deduced from the cell-based value distribution
(Figure 2.5c, g). Thus, an automated approach to determine a precise cut-off value could
not be established. Furthermore, setting a single-value threshold, as was also observed
with manual thresholding, causes a trade-off between the removal of background and
low intensity true signal and does not overcome case-specific background signal as was
observed for some images and markers (e.g. CD45RO, Figure 2.2a).

2.1.4.3. SEMI-AUTOMATED BACKGROUND IDENTIFICATION LIMITS LOSS OF DATA
AND NORMALISES THE IMAGES FOR DOWNSTREAM ANALYSIS OF IMC
DATA

To correct for both technical noise and sample-specific background signal, a semi-automated
background identification approach based on ilastik’s pixel classification algorithm was
employed. First, outliers were removed by saturating all pixels below the 1st and above
the 99th percentile. This slightly improved the signal to noise compared to raw images,
due to the removal of the brightest pixels, but variation in signal intensities between sam-
ples remained (Figure 2.7) as well as background noise (Figure 2.8). Thus, percentile
normalisation alone was not sufficient to normalise the data. Next, pixels corresponding to
either ‘background’ or ‘signal’ were labelled for each marker and used to train a random

2

29



2. PREPROCESSING OF HIGHLY MULTIPLEXED CELLULAR IMAGES

Figure 2.7: CD163 expression pattern in the three samples after saturation of pixels below the 1st and
above the 99tth percentile.

forest classifier in ilastik. After training on 12 images per marker (or 1 image per sample)
the algorithm was applied to all images in the dataset, to create binary signal masks for

Figure 2.8: Representative images of CD3, CD103, HLA-DR and Keratin signal without preprocessing,
percentile normalisation, manual background removal or semi-automated background removal, both
followed by pixel binarization
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each marker. Of note, the algorithm takes into account pixel intensity but also patterns
of neighbouring pixels, which could aid the identification of background without losing
true signal. Comparison of the images without preprocessing, after percentile normalisa-
tion, manual background identification or the semi-automated background identification,
showed that the latter approach could be successfully applied to retain true signal while
removing a substantial amount of background noise (Figure 2.8). To further confirm the
validity of this approach, a t-SNE embedding was computed from the single cell data
extracted from the binary signal masks (Figure 2.3c, Figure 2.9). Inspection of sample
and marker overlays on the t-SNE embedding, using colour-coding, showed cells grouped
by the percentage of positive pixels for each marker rather than per sample, similar to
the manual thresholding (Figure 2.3b). Furthermore, the signal to noise ratio was higher
and cells that were positive for low intensity markers, such as FOXP3 and CD103, were
identified by the semi-automated background removal in contrast to manual thresholding
(Figure 2.4, Figure 2.9).

2.1.4.4. BACKGROUND REMOVAL AND BINARIZATION COMBINED WITH THE PRO-
POSED DOWNSTREAM ANALYSIS PIPELINE ALLOWS PHENOTYPING OF THE
TUMOUR IMMUNE MICROENVIRONMENT

To demonstrate the added value of performing background identification and binarization of
pixel intensity for the definition of immunophenotypes, clusters of cells with a comparable
marker profile were identified, by applying Gaussian mean shift clustering on the t-SNE
embedding, computed in the previous section. Next, clusters were mapped back onto the
segmentation masks in ImaCytE. A proliferating and non-proliferating tumour cluster was
identified through the expression of keratin and distinguished by Ki-67 (Figure 2.10a).
Five myeloid clusters were identified by their CD68 expression and differentiated by
CD204, CD163 and HLA-DR expression. Furthermore, five lymphoid-cell clusters could
be identified where two clusters were CD8 positive, thus, corresponding to cytotoxic T
cells. Of note, one of these clusters also showed a positive signal for keratin indicating
that these cells were located directly adjacent to epithelial cancer cells. Three clusters
were CD8 negative and considered to be mostly composed of CD4 T cells. One of the
clusters corresponded to regulatory T cells (FOXP3+) and the other two clusters were
differentiated by Ki-67 expression. The tumour, myeloid and lymphoid clusters were each
mapped back onto the images and compared to the original MCD images in the MCD
viewer (Figure 2.10b). Indeed, the number and location of positive cells for each phenotype
was comparable between the images overlaid with phenotype masks and the original MCD
images. Thus, semi-automated background identification using ilastik combined with
binarization is applicable to normalise IMC datasets derived from archival samples and
allows for the identification and localisation of biologically relevant phenotypes.

2.1.5. DISCUSSION
With the rise of mass cytometry for the characterisation of cellular contextures in health
and disease, IMC has surfaced as a valuable tool to investigate immunophenotypes while
preserving spatial information. IMC allows the simultaneous investigation of over 40
markers thereby generating complex datasets that require analysis tools that combine deep
immunophenotyping data with spatial localisation and neighbourhood analysis. However,
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Figure 2.9: t-SNE analysis on single cells extracted from the dataset generated through semi-
automated background identification and binarization. Data is shown in a range of 0 (blue) to 1
(red).

before data interpretation, non-biological variation of signal intensities between tissues
should be dealt with. Technical noise is consistent in each image and will therefore not
influence downstream analysis as long as the signal to noise ratio is high, and can be
addressed by optimising the wet-lab procedures and performing the immunodetection of
tissues in a single experiment. However, sample-specific background, related to tissue
processing procedures, is impossible to address during the immunodetection procedures.
FFPE tissue is often the tissue of choice for IMC due to its accessibility and good mor-
phology. Differences in ischemia time, tissue fixation procedures and age of the samples
affects immunodetection and tissue-related background, prompting the need to normalise
the data before analysis. Furthermore, and in contrast to single cell technologies, spatial
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Figure 2.10: (a) Lymphoid, myeloid and tumour (tum) clusters identified in the t-SNE analysis from
Figure 2.3c . (b) the clusters were mapped back onto a representative image and compared to their
corresponding cell types in the MCD files. The images contain the following markers: for tumour keratin
(white), Ki67 (green) and DNA (red), for myeloid cells CD68 (red) and CD163 (green) and for lymphoid
cells CD3 (red), CD8 (green) and FOXP3 (blue). To improve visibility a lower threshold of 1 mean dual
counts was set.

technologies, making use of tissue sections, require that cells are cut at different planes
which influences the prevalence and intensity of a marker of interest. In light of this,
it is preferable to classify cells into positive and negative categories for a given marker
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rather than relying excessively on intensity differences across cells for the identification of
phenotypes.

Due to tissue-specific variations in signal intensities, direct phenotyping of IMC data,
without normalisation, can lead to cells clustering per sample rather than phenotypes as
the variation in overall signal intensity overshadows the differences between cell types.
Furthermore, the signal range of the more abundant structural markers (e.g. keratin,
vimentin) is much wider compared to scarcer, but important targets of investigation (e.g.
co-receptors on T cells). This difference influences downstream computational methods
such as clustering or dimensionality reduction algorithms and hinders the detection of
specific cell subsets.

In this work, we enable the analysis of large IMC datasets and improve the detection of
cells expressing lowly abundant proteins by removing background noise and binarizing
each sample’s pixel values. Binarizing was done by assigning the value of 1 to all pixels
determined to be positive for a given marker and the value of 0 to all other pixels. More
specifically, we tested two different normalisation approaches. First, a manual method
was utilised where a minimum threshold corresponding to signal was set for each marker
in all images. All pixels below threshold were set to 0 and all pixels above were set to
1. Then, marker expression per cell was defined as the percentage of positive pixels per
cell. This approach indeed partially overcame variation between tissues and allowed for
t-SNE-guided phenotype identification. However, manual thresholding is labour intensive
and relies on vast knowledge of the expected immunodetection patterns for each antibody,
leading to potentially biased results. In general, thresholding is a trade-off between the
removal of background and loss of true signal and therefore can result in the frequent
designation of false negatives. An automated approach could overcome these challenges
but large variations between samples and markers make fully automated unsupervised
methods infeasible and the lack of labelled datasets is prohibitive for supervised machine
learning approaches. Therefore, we propose a, semi-automated, methodology using ilastik
where we first annotate representative pixels either as actual signal or background noise
and then a random forest classifier is run to categorise the whole dataset, based on these
categories. This approach is faster, less subjective and results in data comparable to manual
thresholding. Furthermore, loss of true signal is less frequently observed, and dim markers
are more clearly represented after semi-automated background identification and pixel
intensity binarization. A drawback of signal binarization is the potential loss of information
on biologically relevant, signal intensity variations for a given marker. However, it is
currently challenging to distinguish between biological and technical causes for signal
intensity variations in in situ imaging approaches that utilise FFPE tissue. Thus, to limit
the loss of biologically relevant information, we chose to binarize the data at pixel level
which still allows the evaluation of differences in number of positive pixels per cell. Finally,
accurate cell segmentation remains an important challenge to address in molecular imaging.
Current methodologies, like the ones employed here, are not flawless, particularly in areas
where cells are densely packed. Therefore, we have performed cell segmentation on raw
images and upstream of normalisation approaches in order to allow their comparison
independently of segmentation.

In recent years, great advancements have been made in the analysis and interpretation of
single cell (mass cytometry) data and a number of developed tools have also proven useful
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for the analysis of IMC datasets. However, it is essential that such knowledge is combined
with the accumulated experience in the immunohistochemistry and imaging fields to best
address immunodetection variation amongst samples and to deal with technical artefacts.
The here described normalisation methodology enables the comparative analysis of datasets
generated from different tissues and it supports the identification of less abundant cellular
subsets. Furthermore, the methodology does not require adaptation in immunodetection
procedure and can, thus, be directly applied on available datasets. In sum, this work has
the potential to directly aid research groups in their analysis and interpretation of Imaging
Mass Cytometry data.

Finally, we would like to declare no conflict of interest and data is available upon
request.
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2.1.7. SUPPLEMENTARY INFORMATION

Table 2.1: Imaging Mass Cytometry antibody panel. Antibodies with a * had prediluted stock solutions.
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2. PREPROCESSING OF HIGHLY MULTIPLEXED CELLULAR IMAGES

2.2.1. INTRODUCTION
Identification of the different microglia types was based on the amount of expressed
proteins over the segmented area (Figure 2.11a). Hence, accurate segmentation of the
whole microglia cell area is of paramount importance for our method. Solutions currently
available for microglia cell segmentation (Abdolhoseini et al. [29], Inform [30]) typically
fall short of capturing the whole microglia area (Figure 2.11b). These are focused on
either capturing the skeleton of the cells, without properly identifying the cell boundaries
(Figure 2.11c), or segmenting the microglia’s soma excluding their processes, which in the
acquired 2D images are typically detached from the soma ((Figure 2.11d). As a result, a
novel segmentation algorithm for this type of data was developed.

2.2.2. METHODOLOGY
Identification of the entire cytoplasmic area of microglia cells is error-prone, especially
in regions close to Aβ -plaques, where microglia cells are densely packed. This problem
was tackled by starting with the identification of the microglia’s soma. This part the
of the microglia cells should overlap with its nucleus and shows high intensity values,
making it easily discernible. Segmentation of microglia nuclei and somas was performed
using a customized level-set-based cell segmentation method [31]. The main algorithm
parameters are the weight for the energy terms minimizing the perimeter (ν) and the area
(µ), which are empirically selected for each segmentation task. Larger parameter values
correspond to smoother segmentation results. For the microglia nucleus segmentation, the
DNA component image was used as input, and level-set parameters were set to ν=2 and
µ=3. Similarly, for the microglia soma segmentation the summation of the intensity values
of the membrane (TMEM, PRY12, FTL, Iba) component images was utilized as input and
level-set parameters were set to ν=2 and µ=3. In both cases, level-sets were initialized
with regions obtained using the Otsu thresholding method [32] which is robust to intensity
variation between images originating from the white and grey matter. Additionally, somas
and nuclei with a total area smaller than 50 and 30 pixels, respectively, were removed.

For the extension of the obtained segmentation to the whole cytoplasmic area, the
approach previously described for soma was repeated with less strong regularization (v=2,
µ=2). The result of this step was a finer segmentation capturing microglia areas that
are less bright than the soma. Connected components overlapping with the previously
identified somas were regarded as microglia cells, whereas not overlapping components
were considered as possible detached processes. At this step, in case a blood vessel was
identified in an image, the Li thresholding method [33] was chosen over Otsu for the
initialization of the level-sets algorithm, as it is less sensitive to the high intensity pixels
representing the vessel. Vessels were defined as components larger than 4000 pixels, after
Otsu thresholding of the autofluorescent component image.

For correct identification of microglia cells in the proximity of Aβ -plaques, the water-
shed segmentation was applied specifically to those cells whose cytoplasmic area is shared
among multiple microglia somas [34]. Aβ -plaque identification was performed employing
a semi-supervised approach using Ilastik [35].

Finally, branches identified within a 10 pixel radius from the region corresponding to
each identified microglia soma were identified as detached processes and assigned to the
microglia cell.

2

38
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2.2.3. RESULTS
A sample resulting segmentation of entire microglial cells is illustrated in Figure 2.11e.
For the evaluation of our algorithm, 186 cells were manually segmented, in 7 images from
different subjects and regions. Our proposed segmentation framework outperformed the
available segmentation solutions correctly capturing 153 cells (Inform: 12 cells, Abdolho-
seini et al., 2019: 49 cells compare Figure 2.11g), with false positive 33 cells (Figure 2.11h)
and false negatives 40 cells (Figure 2.11i). Among the correctly identified cells, median
Dice’s similarity index [36] of 0.8 was achieved (Figure 2.11f).

Figure 2.11: (a) Example of multispectral immunofluorescence data extracted from the grey matter of
an AD-patient. The segmentation mask derived: manually by the specialist (b), using the GliaTrace
toolbox (c), automatically from the “Inform” image acquisition software (d) and from our proposed
segmentation pipeline (e). (f) Dice’s coefficient for each of the 156 cells segmented by our method.
Number of correctly identified (g), missing (h) and falsely identified cells (i).
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