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1
INTRODUCTION





A disease is defined as “any harmful deviation from the normal structural or functional
state of an organism”[1]. Organisms, though, are “republics of living elementary units
”[2].Therefore in 1839, Schwann stated that cells are the elementary parts of all tissue
parts [2] defining them as “the fundamental units of living organisms” [3], thereby reducing
the study of healthy and diseased tissue to the understanding of cellular functionality in the
tissue.

To study cellular function, information regarding cellular properties is essential, in-
cluding their molecular characteristics and position in the tissue. Hence, microscopic and
molecular imaging systems are utilized to acquire information about cellular properties (e.g.
protein abundance, RNA and DNA sequence) and simultaneously locate the position of the
cell in the tissue. Until recently, it was either impossible to measure whole gene sequences
or more than a couple of proteins at single-cell level [4]. Current ’spatial omics’ imaging
modalities can measure tens of proteins [4, 5] to the whole human transcriptome [6, 7]
at subcellular resolution. The detailed determination of the cellular properties at single
cell resolution empowered researchers to precisely characterise the type of the cells in
tissues and explore the spatial patterns they form. Both aspects are important towards the
understanding of a cell’s role in tissue functionality, and to understand what goes wrong in
diseased tissue.

The cell type’s heterogeneity provides information to the researchers about the complex
biology in tissue , but only the exact determination of the spatial interactions completes
the picture. For example, the presence of immune and cancer cells in a tissue sample
exhibits an immune response to an existing tumour. Yet, the position of immune cells in
relation to the tumour defines the current status of tumour as immune-excluded or immune-
inhaled: this distinction is essential in treatment selection and outcome prediction in cancer.
Especially now, with the current imaging modalities that offer much more information, the
determination of the exact type of the immune and cancer cell interactions enables a deeper
understanding of why tumours with similar status from different patients react differently
to treatment. The analysis of the spatial cell type configuration in tissue is flanked by
additional problems. The comparison of tissue samples originating from multiple subjects
is prone to batch effects, as the different tissue preservation and acquisition protocols vary
the range of acquired data among tissue samples. Also, the difficulty of boundary definition
for complex cellular structures often deteriorates the quality of any finding and demands
its “in situ” validation.

Most currently available methods [8, 9] are focused on the analysis of the data utilizing
statistical hypothesis testing, requesting from the experts to choose in advance the specific
patterns they want to test. This choice is further impeded by the novelty of the data, as the
experts do not have a clear view of the main characteristics of the data and the patterns
they can discover.A different approach which can incorporate gradually, in a data-driven
way, the expert’s prior knowledge and cognitive skills would be more efficient. Visualizing
the data, the expert can perceive its main characteristics in a more intelligible manner. In
particular, Visual Analytics [10] combining visualization with data analysis techniques
breaks down the identification of significant patterns to smaller tasks, where the expert can
mobilize prior expertise and cognition to make more informative decisions throughout the
identification process. Moreover, the expert can interactively, through the linked visual
interfaces, not only explore in a stepwise manner the data, but also easier locate any finding
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1. INTRODUCTION

in the tissue and validate its quality and significance.

1.1. SPATIAL OMICS DATA
Even though the need for systematic exploration of cell contexts has been consolidated for
years now [11, 12], the acquisition of images possible to capture in detail the molecular
cellular required for high-resolution cell classification was not feasible. Only recently
researchers managed to simultaneously identify multiple molecular properties, including
DNA sequence[13], RNA transcripts[14, 15] or proteins[4, 16] alongside their spatial loca-
tions at cellular level. For example, recent state of the art acquisition methods [17] could
measure simultaneously up to 10 proteins in each cell. With the methods presented in this
thesis, expression information for more than 40 proteins is measured, enabling researchers
to answer in much greater detail vital biological question, such as the identification of the
constituent cell types in a tissue sample.

Each biological property is measured by a specific method, providing the expert the
option to choose the one that is most suitable to answer a specific biological questions. Ex-
cept for the biological relevance, the choice of the method is also influenced by the cost, the
throughput speed and the characteristics of the tissue samples (e.g. part of the tissue, preser-
vation method). In this thesis, applications were mostly focused on studies related to the
immune system with Imaging Mass Cytometry [4]and multispectral immunofluorescence
imaging [18], two relatively novel methods to image protein expression.

Imaging Mass Cytometry Data. Imaging Mass Cytometry data acquisition method [4]
is a combination of mass cytometry [19], immunocytochemistry [20] (ICC) and immuno-
histochemistry [21] (IHC) techniques. More specifically, the acquisition starts with the
labeling of tissue samples with antibodies conjugated to heavy metals following established
IHC and ICC protocols. The selection of antibodies is crucial, as each of them binds to a
specific tissue protein. Then, a laser ablates spot by spot every 1µm2 of the tissue. The
ablated material is directed to a Mass Cytometer, where the amount of metals, and by
extension of proteins, are measured for each spot. Each spot represents a pixel in the
derived image. Up to now, more than 40 proteins can be measured simultaneously with
Imaging Mass Cytometry.

Multispectral immunofluorescence imaging Even though Imaging Mass Cytometry
offers unprecedented detail in the measurement of protein abundance, its throughput is
relatively low, limiting in practice the amount and size of tissue samples that can be
scanned. On the other hand, a typical cohort study contains some hundreds to thousands of
tissue samples. The Vectra imaging system based on multispectral immunofluorescence
(IF) technology [18] can capture up to 7 proteins simultaneously, enabling researchers to
conduct high throughput studies to the detriment of the amount of the measured proteins.
Also, Vectra derived images offer higher resolution, depicting in every pixel a region of
0.25µm2 of the tissue sample.

As output, both modalities provide a stack of images, where each pixel of the image
contains multiple scalar values at subcellular resolution. The development of our pipeline
was based on, but is not limited, to the analysis of this type of data. In principle, most
parts of our pipeline can be utilized for modalities that capture various properties (e.g.
tissue transcriptomics) given that they provide their cell defining characteristics at cellular
resolution.
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1.2. PREPROCESSING OF MULTIPLEXED IMAGES
The transformation of pixel values to reliable cellular data is an open challenge, as it entails
many and complex steps. Data normalization and cell segmentation are two of the most
significant.

Data Normalization. Tissue preservation and handling methods influence the signal-
to-noise ratio of the acquired images. A differentiation in the tissue fixation protocol or age
among two samples can vary the range of their acquired values. Hence, normalization of
the data and removal of noise during tissue acquisition are essential for the combination of
images in cohorts for downstream analysis. Most of the time, an offset is expressed in the
image values as an almost uniform disproportionate high value. A common procedure for
the normalization of these data is the manual subtraction of the offset from the pixel values
so as the expression pattern to match expert’s prior knowledge. However, such an approach
is prone to subjective observer errors and extremely time-consuming for large cohorts of
images. On the other hand, automatic approaches [22] reduce processing time and inter-
expert heterogeneity, but remove important biological variance as well. In Chapter 2.1, we
propose a hybrid method to deal with the previously mentioned shortcomings for Imaging
Mass Cytometry data.

Cell Segmentation. Cell segmentation is one of the most difficult problems in the
analysis of histopathological images. Many methods have been utilized spanning from
traditional unsupervised segmentation algorithms [23, 24], over fully-supervised deep
learning methods [25], to semi-supervised approaches [8]. Usually, the unsupervised
methods start with the nucleus segmentation followed by their dilation to identify the
cellular borders. The deep learning methods extract features from multiple dimensions
of the multiplexed images providing better accuracy, given that they are trained with a
large amount of annotated images. The semi-supervised approaches are based on weakly
annotated data and automated machine-learning methods [26], providing the best solution
for data derived from recent imaging modalities with minimum available annotated images.
However, these segmentation algorithms are developed for circular shaped cellular data
(Figure 1.1a). For complex cellular structures, such as microglia cells (Figure 1.1b) where
their branches have been detached from the cellular body during the image acquisition
procedure, specific algorithms are needed. Current approaches are either focused on the
identification of the cell’s skeleton [27] or nucleus [28]. In Chapter 2.2, we propose
an unsupervised method for the identification of microglia cells from high-dimensional
multiplexed images.

a b

Figure 1.1: Cellular structures. (a) A typical structure of a cell and (b) the structure of microglia cell,
with the inner circural part (soma) and the many branches (processes).
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1.3. VISUAL ANALYTICS
Given the novelty of the aforementioned spatial cell phenotyping modalities, the experts do
not always know in advance which patterns to expect in the data. The cellular composition
of captured spatial omics images is often unknown, as the cellular characteristics that
differentiate a patient and a healthy individual. When experts are neither aware of these
characteristics, such as their main trends or outliers, nor the patterns they want to identify,
experts should first perceive their data before starting affirming or rejecting a hypothesis.
Exploratory Data Analysis [29] can play a significant role towards this direction.

Quantitative metrics can often provide a decent, but fragmented picture of data’s char-
acteristics, especially for the high-dimensional (i.e. multiple measured cellular properties)
and spatial (i.e. cellular resolution) nature of such data. Anscombe’s Quartet [31] is a
typical example of the inability of quantitative metrics inability to provide the full spectrum
of data characteristics. It contains four different two-dimensional datasets (Figure 1.2) with
almost identical statistics; mean value for x and y, variance for x and y, correlation among
x and y, linear regression line and coefficient. Their visual representations (Figure 1.2),
though, illustrate four different datasets with discrete inherent characteristics, highlighting
the definition given from Pickover and Tewksbury [32] for visualization, as the “the art
and science of making the unseen workings of nature visible”.

Therefore, we integrate visualization techniques in the exploratory analysis of our
complex, novel data, as they are described in Chapters 3 and 4 to enable the expert “to
analyze data when they don’t know exactly what questions they need to ask in advance” [33].

Table 1.1: Anscombe’s quartet includes four datasets with identical statistics with 2 decimal points
accuracy.

I II III IV

Observation x y x y x y x y

1 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
2 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
3 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
4 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
5 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
6 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
7 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
8 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
9 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

10 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
11 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Summary Statistics

Mean 9 7.50 9 7.50 9 7.50 9 7.50
Variance 11 4.13 11 4.13 11 4.13 11 4.13

Correlation
X, Y 0.82 0.82 0.82 0.82

Linear
Regression y = 3.00 + 0.500x y = 3.00 + 0.500x y = 3.00 + 0.500x y = 3.00 + 0.500x
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Figure 1.2: Anscombe’s quartet visual representation in the x-y space shows a significant difference
from the above illustarted decriptive statistics. (Image Source: Wikipedia’s Lemma [30])

A significant factor of visualization efficiency is the expert that is performing the
specific exploratory task. The identification of the number of clusters and outliers in a two-
dimensional scatter plot is performed much more efficiently by a human than a computer.
This can exemplify the functioning of visualization; a visual representation is designed
to represent data in a way that can facilitate the expert to employ internal cognition and
memory usage (i.e. points that are close together form a cluster, points that deviate from
the group and are not close to another group are outliers) to gain a deeper understanding
of the data (i.e. clusters) [33]. A vital part of the whole visualization process plays the
interaction among the expert and computing system (Figure 1.3) throughout this cognitive
process. This feedback mechanism is taking place through the interactivity among humans
and computers, enabling the expert - on the fly - to explore multiple data attributes.

However, it is impossible for the expert to explore raw cellular properties values or the
total amount of spatial cellular combinations merely through interactive visualizations, due
to their large amount. To that end, the utilization of automated data analysis techniques
alongside interactive visualization systems is deemed necessary. The discipline that
studies such systems is called Visual Analytics [10, 34]. In addition to that, there are
numerous problems for which research questions can not be defined from the onset of
their analysis. Hence, for such ill-defined problems automated solutions fall short Visual
Analytics solutions can have substantial contribution by integrating analysis with hypothesis
generation [35]. The rationale behind Visual Analytics, as illustrated in Figure 1.3, is based
on the combination of the processing power of automated analysis techniques to deal with
large amounts of data with the human’s ability for analytical reasoning through interactive

1

7



1. INTRODUCTION

Computing system Human

Analytical Reasoning

Perception

Interaction

Information

Data Analytics

Visualization

Visual Aanlytics

Figure 1.3: Visual Analytics process. Starting from the creation of visualizations utilizing data
analytics methods, provides insights to the expert. The expert, through her/his analytical reasoning,
perceive the insights and interacts accordingly with the system to continue the data exploration.

visualizations. The role of the experts (i.e., humans) in such a system is pivotal, as they
interactively steer the data exploration [36].

Visual Analytics systems are being used in various scientific domains to facilitate
the analysis of large amounts of complex data. Besides the exploration of tissue images,
Visual Analytics is being used in Medicine for the exploration of public health data [37].
Moreover, Visual Analytics systems are being used for the exploration of the most efficient
stock trading algorithm [38], exploration of high resolution remote sensing imagery for the
support of precision agriculture [39] or the similarity exploration of texts [40].

Even though Visual Analytics is a valuable tool for the analysis of complex problems
in large information spaces, it does not come without restrictions. Modern applications
(e.g. more sensitive sensors, large scale scientific experiments) has resulted in the accumu-
lation of enormous amounts of data. Following the increase of available data, algorithms
have evolved to live up with the analysis requirements. Nonetheless, not all of these
algorithms are appropriate to serve the main Visual Analytics tasks, namely the illustration
of high-level abstractions synchronously with low-level details of the data [41]. Also,
the combination of heterogeneous types of data is another limiting factor for many Visual
Analytics applications. For scientific domains where multiple different data sources are
combined is challenging for Visual Analytics approaches to create effective solutions.
Furthermore, many restrictions are imposed from the involvement of the user in Visual
Analytics approaches; the necessity for users to supervise 24/7 applications which include
data streams and require their immediate response and supervision, or the required training
in order to handle properly Visual Analytics tool and interpret any findings or results.
Finally, a serious challenge which leads many times to the disuse of Visual Analytics
tools is their limited compatibility with existing systems that the users utilize in their daily
routine.

From the aforementioned restrictions and challenges it is evident that proper evaluation
of the Visual Analytics systems should be performed. According to Keim et al. [10],
Visual Analytics is both a science and a technique and thus should be evaluated based on
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effectiveness, efficiency and user satisfaction. In other words, a Visual Analytics system
should be evaluated based on its ability to enable users to fulfill the tasks that originally the
system has been developed for, given a finite amount of resources. The evaluation includes
the data, the tasks definition, the stakeholders and the Visual Analytics system itself. The
evaluation of the data should take into account the heterogeneity and suitability of the
data to answer the research questions. The defined tasks should be evaluated according to
their complexity. The evaluation of the stakeholders should not be limited to the users, but
also expanded to the the developers of the system. The evaluation of the Visual Analytics
systems should include the graphical representations, the suitability and efficacy of the
selected technologies. In general, through the evaluation process it is easier to deduct
conclusions about precise well-defined problems (e.g. the efficacy of a visual analytics
system to cluster the data from a two-dimensional scatter plot) than generic findings (e.g.
the amount of saved time if we use one technique in favor of one other). Çöltekin et al. [42]
in their research are trying to discover such generic conclusions recording and afterwards
analysing the movement of the user’s eyes. At the end of the day, proper evaluation of the
Visual Analytics systems can enable the comparison of existing approaches and eventually
lead to development of innovative methods and techniques.

1.4. CONTRIBUTION & OUTLINE
The main contribution of our work is the development of an end-to-end exploratory data
analysis methodology , (Figure 1.4) addressing the main challenges researchers face during
the analysis of highly multiplexed tissue images at cellular level, in close cooperation
with the clinical researchers from Leiden University Medical Centre (LUMC). A birds-eye
overview of our pipeline is described in our previous work [43]. More specifically, our
pipeline covers the preprocessing of the data (Figure 1.4a), including the removal of the
biological irrelevant intra-cohort heterogeneity and the segmentation of complex cellular
structures, preparing the data for the main task of the analysis, the exploration of spatial
cellular patterns. Then, we enable the researchers to visually explore the data, through
two interactive and data-driven Visual Analytics frameworks; ImaCytE [44] (Figure 1.4b),
for the identification of spatial cellular patterns in tissue samples and SpaCeCo [45]
(Figure 1.4c), for the comparison of distinct clinical cohorts of patients. In particular:

• A workflow focused on the normalization of cohorts of images derived from Imaging
Mass Cytometry which entails the semi-supervised classification of pixels, as either
actual signal or background and the assignment of a cell’s expression value, as the
fraction of actual signal pixels that belong to its segmented area.

• An automated algorithm for the segmentation of microglia, a complex cellular
structure with a main circular part and many branches, based on its nucleus and
membrane expression markers utilizing an advanced level-set-based approach [46].

• ImaCytE; A Visual Analytics framework, which was developed for the end-to-end,
in depth, analysis of individual images derived from Imaging Mass Cytometry, but
can be applied to any spatial omics modality offering cellular resolution. The main
novelty of our framework is not only the interactive identification of cohesive cell
types, but through motifs the stratification of the cell types into subgroups with
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Raw data

Preprocessing
Exploration Comparison

Clinical Biomarker

Spatial omics  analysis Pipeline

a b c

Figure 1.4: An end-to-end pipeline for the analysis of highly multiplexed tissue images at cellular
resolution, covering from (a) the preprocessing over (b) the exploration to (c) the comparison of the
data.

unique microenvironment characteristics and their inspection interactively in the
tissue.

• SpaCeCo; A Visual Analytics tool, for the comparison of cohorts with labelled
cellular images, based on both their cell types and the spatial patterns they form.
Moreover, the tool enables in every step of the comparison the identification of
outliers in each cohort and location of any finding in the tissue.

The dissertation continues with Chapter 2, which presents an overview of the prepro-
cessing part of our pipeline, including the data normalization and the segmentation of
complex cellular structures. Chapter 3 and 4 form the core part of our analysis pipeline and
explain in depth the concepts and functionality of our two Visual Analytics frameworks;
ImaCytE and SpaCeCo. Chapter 5 outlines a study in Alzheimer’s disease, where major
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parts of our pipeline have been utilized for discovery research. Finally, Chapter 6 summa-
rizes this work and reflects on the lessons learnt during this research and upon directions
for future work.
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