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Introduction

Pharmacogenomics (PGx) is widely recognised as an important aspect in personalized 
medicine [1,2]. By analysing and interpreting one’s genetic profile dose and drug adjust­
ments can be made. In this way, one can strive to improve the safety and efficacy of drug 
treatments. Nonetheless, not all genetic variability in drug response can be explained with 
current PGx [3,4]. We hypothesized that this missing heritability can be explained by several 
factors. Firstly, rare and novel variants which are unaccounted for in routine PGx panels 
might play a role. Secondly, the complexity of pharmacogenes can result in an inability to 
unravel the genetic make-up of these genes. Thirdly, haplotype phasing is generally not 
taken into account in PGx. Fourthly, all genetic variants are currently summarized into 
one of four metabolic categories: poor metabolizers (PM), intermediate metabolizers 
(IM), normal metabolizers (NM) (previously EM) and ultra-rapid metabolizers (UM). 
However, enzyme activity is not a matter of ‘on’ or ‘off ’, but is more of a continuous scale. 
Finally, the effect of a genetic variant on drug metabolism shows substrate specific effects. 
This substrate specificity can result in erroneous extrapolation of variant effects to the 
entire range of substrates. The development of novel technologies to determine one’s 
genetic make-up is evolving rapidly, thereby providing opportunities for the field of PGx 
to address these issues [5-7]. This thesis explores these different factors and the role they 
play in the missing heritability. 

Variant interpretation 

Clinical PGx often focusses on single nucleotide variant (SNV)-panels or a selection of 
variants extracted from sequencing data. In chapter 3, we have investigated the feasibility 
of extracting such a PGx profile from existing diagnostic whole exome sequencing (WES) 
data [8]. For this study, a panel of clinically relevant variants was used. By extracting 
PGx variants from WES data, a clinically relevant profile similar to that obtained with 
panel testing can be generated. For 8 out of 11 genes, a clinically relevant PGx profile was 
generated, for CYP2D6 copy number variants (CNVs) could not be determined and for 
CYP3A5 and CYP2C19 there was a lack of coverage on the intronic variants. While this 
approach does lead to a clinically relevant PGx profile, it also raises several concerns. Most 
importantly, regarding the selection of the best variants to include in a PGx panel. PGx 
variants can roughly be divided into three groups: common variants with high impact in 
well-known pharmacogenes, rare and common variants with a medium to low impact in 
genes associated with drug response and finally, rare (minor allele frequency (MAF) <1%) 
or novel variants in any genes associated with drug response (Figure 8.1). 
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The variants included in our repurposing study belonged to the first group, all were 
deemed clinically relevant and common. Unfortunately, due to the inherent limitations 
of WES data, we were unable to identify the selected intronic variants. For example, the 
variant rs12248560 (NC_000010.11:g.94761900C>T) which defines the CYP2C19*17 allele 
is located upstream of CYP2C19 and therefore not included in most exome sequencing 
panels. However, this variant occurs in approximately 20% of the European population 
and results in an increased metabolic capacity of CYP2C19, making it an important PGx 
variant. Given the high impact and frequency of this variant, it was decided not to report 
the CYP2C19 phenotypes using the *2 and *3 variants. Phenotype assignment without the 
*17 variant could give the illusion that all relevant variants were taken into account. The 
same approach was used for CYP3A5 and CYP2D6, for which not all variants could be 
reported. While we have decided not to report the predicted phenotypes, other laboratories 
might determine CYP2C19 phenotypes without the *17 variant. Currently, there is no 
standardization of a minimally required variant panel, every laboratory can have their own 
selection of variants for which they test. This leads to discrepancies in phenotypes based 
on the test that is used or the laboratory that executed the genotyping [9]. The College of 
American Pathologists (CAP) has developed recommendations for a minimal required 
variant panel for CYP2C9, CYP2C19 and VKORC1 [10,11]. A recommendation for CYP2D6 

Figure 8.1: Types of pharmacogenomic variants
Three types of pharmacogenomic variants can be identifi ed. 1) Common variants with high impact. These 
are often used in routine pharmacogenomic testing and are considered the low-hanging fruit in pharma-
cogenomics. 2) Rare and common variants of medium to low clinical impact, these variants have a small or 
unknown eff ect or they are too rare to be of clinical importance in the general population. 3) Rare and novel 
variants for which the eff ect is yet unknown, these variants make up the largest group. 
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is currently in the making. Before these recommendations are widely implemented as a 
standardized panel, care should be taken that it is clear which variants have been tested to 
allow for more detailed interpretation of PGx result and to assess the potential need for 
retesting including more variants.

With sequencing, variants throughout the entire genome (or exome) can be 
identified. This will result in many variants of the second group, variants with a low 
to medium clinical impact. These variants are not of high clinical value for the general 
population but can be meaningful for an individual patient. For example the variant 
characteristic for CYP2D6*7 (NC_000022.11:g.42127856T>G) which has a frequency of 
<0.1% in the general population but does result in a non-functional allele for those who 
are carrier of this variant. To aid the use of these type of variants in clinical practice, tools 
have been developed to translate sequencing data into *-haplotypes and diplotypes [12-
17]. If whole genome/gene sequencing data is used there is no longer a need for variant 
selection, as all locus have sufficient coverage and all variants can be taken into account. 
However, these tools have several limitations. Firstly, if the tools incorporate all known 
*-haplotypes, they will need to be updated continuously to keep up with the guidelines 
and research. Secondly, the different tools do not always provide the same results when 
the same data is analysed [12,13]. Twesigomwe et al. [13] showed that Stargazer [17], 
Astrolab [15] and Aldy [14] were not always in agreement in regards to the haplotypes 
called. Compared to the golden standard (75 GeT-RM samples), stargazer was accurate 
in 89% of the diplotype assignments, Aldy in 88% and Astrolab in 72% [13]. This leads to 
questions regarding their reliability and generalizability. While these tools can be a valuable 
addition to the field of PGx, it is important to understand how the tools work and how to 
interpret the results prior to applying them.  

Variants belonging to the third group of variants, the rare and novel variants, are 
the most abundant in the general population. These rare variants are expected to be one 
of the major contributors to the missing heritability in PGx [18-20]. With the use of next 
generation sequencing, these variants can be detected. In our studies focussing on the 
clinical utility of sequencing (chapters 3 and 4) we did not include these rare variants as 
their clinical impact is currently often unclear. In chapter 5, where we focussed on the 
missing heritability of CYP2D6, we did detect rare variants as well. Out of the 216 variants 
identified, 155 (71.7%) had a MAF <1%. Of these 155, 35 were predicted to have an impact 
on enzyme function (slice site or missense variants) indicating the potential high impact 
of these rare variants. Unfortunately, the neural network approach used in this study is 
not able to accurately predict very low frequency variants (1 time occurrence). Due to 
their low frequency it is not feasible to obtain enough clinical samples to perform clinical 
studies focussing on the impact of rare variants. One solution to this problem is to study 
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clinical outliers [18]. In individuals with extreme phenotypes certain rare variants might 
be enriched. However, such an approach would probably identify mainly high impact 
rare variants and not the lower impact variants as their effect might be too subtle to cause 
extreme phenotypes. Another solution is the use of in silico prediction models. Well known 
in silico prediction tools such as SIFT, PolyPhen2 and MutPred are used in disease genetics 
to predict the impact of novel/rare variants [20,21]. However, disease genes have a higher 
sequence conservation due to the more strict evolutionary selection. These models are 
often based on a disease set and a healthy/neutral set [21]. Well known PGx variants are 
much more similar to neutral variants than they are to disease variants and are often part 
of the neural/healthy control set [21]. Therefore, as these tools cannot reliably be applied to 
pharmacogenes currently, the development of in silico variant effect predictors specifically 
targeted at PGx variants should be a priority.

Phasing and genetic complexity

Besides rare variants, structural variation, genetic complexity and haplotype phasing 
can also play an important role in PGx and contribute to the missing heritability. Long-
read sequencing has been shown capable of resolving complex genetic regions as well as 
haplotype phasing without the need for computational approaches or pedigree information 
[6,22-28]. With haplotype phasing variants are assigned to their allele of origin leading to 
more accurate haplotype characterisations. If there are sufficient heterozygous variants in 
a locus, the different sequencing reads can be aligned based on the absence or presence 
of these heterozygous variants. The longer the reads, the higher the chance that there are 
sufficient variants to allow phasing. Approaches for haplotype phasing can be roughly 
categorized in three types. Firstly, direct phasing through sequencing, as described above. 
In chapter 4, the ability of long read sequencing to phase a panel of pharmacogenes was 
investigated. Out of the 100 genes, 73 were fully phased into haploblocks. For the 15 genes 
that were deemed fully complex, nine were resolved in haploblocks. Secondly, phasing can 
be performed using pedigree information where it can be inferred if a variant is inherited 
from the father or the mother. Finally, computation phasing based on linkage disequilibrium 
(LD). If two variants are in high LD they often occur together, based on this information 
it can be inferred what variants are located on the same allele. In clinical practice this LD 
approach is most often used as techniques for direct phasing are often too expensive and 
pedigree information is generally not known. This is also the approach that is used by the 
*-allele calling tools, Stargazer, Aldy and Astrolab. However, as we have shown in chapter 3, 
LD based phasing can lead to erroneous phenotypes. For CYP2B6, it is generally assumed 
that the *4 (NC_000019.10:g.41009358A>G) and the *9 (NC_000019.10:g.41006936G>T) 
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variant are in high LD and that, if they both occur, they are located on the same allele [29]. 
By using child-parent trio phasing we were able to show that in 1.5% of the cases the variants 
are not located on the same allele but on opposing alleles. While in this case there was no 
difference in predicted phenotype, these results highlight a potential problem in clinical 
PGx. With 42 variants (the panel used in chapter 3), there are still many individuals that 
carry only one variant in each pharmacogene. When this number increases, the odds of 
having multiple variants in the same locus is increasing as well and with that the chance of 
inaccurate phasing. As more variants are being discovered and used in PGx, the haplotype 
assignments become more complex and phasing more important. 

In addition to haplotype phasing, long-read sequencing can also characterise variants 
in complex regions. The majority of pharmacogenes is at least partially complex (containing 
repetitive sections or showing high sequence homology) [30]. This complexity can lead to 
loss of function in the case of (partial) deletions and hybrid formations. Moreover, it can lead 
to an inability to detect SNVs if the region is too complex to characterize. While the costs 
for whole genome long-read sequencing are still very high, the costs for panel sequencing 
are substantially lower [31]. For short-read sequencing multiple panels for pharmacogenes 
have already been developed and shown valuable in clinical practice and in research 
[32,33]. For long-read sequencing such a panel is not yet available but would be a great 
opportunity for future developments. In chapter 4, the ability of long read sequencing to 
solve the complexities in such a panel was investigated. Besides haplotype phasing, long-read 
sequencing also resulted in accurate SNV calls even in complex genomic regions (recall and 
precision >98%). Moreover, the long-reads made it possible to discriminate between reads 
originating for highly similar genes, such as the CYP2D6 gene and the CYP2D7 pseudogene. 
When it is not clear if a specific sequencing read originates from the pharmacogene or from 
a neighbouring pseudogene, this might lead to incorrect phenotype assumptions. 

Phenotype categorization

Ultimately, the individual variants, structural complexity and inferred haplotypes phasing 
are used to predict the enzymatic capacity of the pharmacogenes and thereby predict drug 
response. The CPIC and DPWG PGx guidelines use of a four category system for the 
majority of pharmacogenes. Namely, the poor (PM), intermediate (IM), normal (NM) and 
ultra-rapid metabolizers (UM). However, enzyme activity is not categorical (no function, 
decreased, normal or increased), but more a continuous scale. This effect can also be seen 
in the wide spread of activity within one metabolic category. With individuals genetically 
characterized as NMs, displaying enzymes activities similar to that of UMs or even PMs 
[34,35].
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In chapter 7, we investigated the origin of variation in CYP2D6 phenotype within 
the scope of clinical PGx. In this study, two cohorts of patients treated with tamoxifen and 
one cohort of patients treated with venlafaxine were included [36-38]. As both tamoxifen 
and venlafaxine are primarily metabolised by CYP2D6, their rate of metabolism can 
serve as a proxy for CYP2D6 enzyme activity. Specifically we used the most CYP2D6 
specific metabolic step, for tamoxifen this was the metabolic ratio (MR) of ln(endoxifen/
desmethyltamoxifen) and for venlafaxine the MR ln(desmethylvenlafaxine/venlafaxine) 
was used. The variability within one category was highest in the groups with a predicted 
IM or NM phenotype. This is to be expected as these groups consist of a wide range of 
combinations of decreased and normal activity alleles. Most interestingly, it can be observed 
that, for tamoxifen metabolism, the combination of two decreased alleles (0.5+0.5) results 
in a lower metabolic capacity compared to the combination of an active and null-allele 
(1+0), despite the same overall gene activity score (1.0). One potential explanation for 
this is that not every decreased activity allele results in 50% residual activity. In fact, most 
alleles have been shown to have lower residual activity [39-41]. This in turn, results in a 
lower overall activity when two of these alleles are combined. Thoren et al. showed similar 
results with a higher activity in the individuals with one active allele compared to the 
combination of two decreased activity alleles. These results suggest that reclassification 
of allele combinations can help to decrease some of the variability. For example, assigning 
a IM status to the combination of 0.5+0.5 and NM status to the combination of 1+0 can 
already improve the explained variability. Nonetheless, a large amount of variability within 
one category is still unexplained, even when using the allele activity score combinations. 

In chapter 5 we have investigated a method for phenotype predictions on a continuous 
scale. In this study, the same three cohorts as in chapter 7 were used. To fully characterise 
the complex CYP2D6 locus, long-read, amplicon-based sequencing was used. To develop 
the model for haplotype independent phenotype prediction a neural network to predict 
the CYP2D6 enzyme activity (expressed as the MR) was trained based on 77 variants in 
the primary cohort of 561 individuals. This led to an increase in explained variability from 
54% with the conventional categorical model to 79% with the neural network predictive 
model. For the second tamoxifen cohort (CYPTAM-BRUT, n=167) the explained variability 
increased from 35% to 66%. The CYPTAM-BRUT cohort contained data regarding 
CYP2D6 inhibitor use. In the results, it was observed that the inhibitor users had a higher 
predicted MR compared to the observed MR, indicating the impact of inhibitor use. For 
the venlafaxine cohort (n=69) the explained variability increased from 55% to 64%, which 
is a smaller increase potentially caused by substrate specific effects. 

Simultaneous to the development of our model, McInnes et al. developed a similar 
model based on transfer learning [42]. This approach also showed a clear increase in 
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explained variability (R2=0.712, for predicting the metabolic activity of *-alleles). With 
transfer learning, a high level network is first developed and trained based on high level 
data. Then, the contribution of each node in this high level is transferred to a new model 
which is further refined using detailed data. In the CYP2D6 model from McInnes et al., 
the model is first trained on the *-haplotypes and their assigned activities. Then, clinical 
data is used to develop the refined prediction model within the existing *-haplotype model 
[42]. The benefit of transfer learning is that the sample size required is lower as the model 
is pretrained on known associations. The downside of this approach is that the assumption 
is made that the basis of the models is the same. In this case, that the *-haplotype activities 
are also accurate for the clinical data. 

Both the model we presented and the model from McInnes et al. use a continuous 
scale to predict the CYP2D6 enzyme activity. This seems to result in a clear increase in 
explained variability. The success of these models clearly highlights the role that phenotype 
summarisation plays in the missing heritability. However, a neural network model can only 
learn patterns it observes and is not able to predict the impact of novel variants it has not 
yet seen. For novel variants this would mean that they have to occur at least once in the 
training dataset for the model to be able to predict their effect. Moreover, if two variants are 
in complete LD, meaning they do not occur separately, the model cannot identify the causal 
variant. This means that large sample sizes are needed to predict the effect of rare variants. 

In addition to predicting the overall enzyme activity, our model was also capable of 
predicting individual allele activities on a continuous scale. These allele activity scores were 
combined in a neural network based combiner model to predict the final enzyme activity. 
Interestingly, when adding the two allele activity scores in the conventional way (allele 1 
+ allele 2) the explained variability was lower (73% for the main CYPTAM cohort) than 
when the combiner model was used (79%). By using the combined model, it was observed 
that when there was a combination of one inactive allele with one (partially) active allele 
the overall activity was higher than when there was a combination of two half function 
alleles, similar as was seen in chapter 6. However, this effect was seen for all combinations 
of allele activities (for example 0.6+0 >> 0.3+0.3). This suggests that there might be another 
mechanism at play which compensates an inactive allele but not a decreased activity allele. 

Substrate specificity

The current PGx phenotype predictions are gene oriented and assume the same effect 
of a variant on any of the substrates. However, not every substrate is effected equally 
by a particular variant, as was also observed in chapter 5 with regard to venlafaxine. 
Aberrations of expected effect on drug metabolism, can at least partially be explained 
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by this substrate specificity. In chapter 6, we further investigate this effect in CYP2D6 
by comparing results from in vitro experiments. We found that there are many studies 
investigating in vitro activity of CYP2D6 substrates. However, only a small number of 
studies compare multiple substrates and variants. Moreover, large differences between 
in vitro studies significantly complicates the ability to quantify the effect of each variant-
substrate combination [43-45]. Nonetheless, indications of substrate specific effects for 
several *-haplotype–drug combinations were identified, predominantly in CYP2D6*17. 
Here it was observed that the CYP2D6*17 activity was higher for debrisoquine than it 
was for dextromethorphan and bufuralol. Interestingly, CYP2D6*17 causes a decrease in 
the substrate access channel and debrisoquine is much smaller than the other substrates. 
This might indicate that debrisoquine is not affected by the decrease in size of the access 
channel due to its smaller size. 

While the effect of substrate specificity is widely known and increasingly better 
understood, it is not yet incorporated into the clinical guidelines. To enable this, a system 
to assess or predict the individual drug-variant interactions. As mentioned above, AI 
approaches can be valuable in variant effect prediction. A valuable future development can 
be the combination of a variant effect prediction model with drug characteristics such as 
molecule size. By combining these two aspects, substrate specific effects can potentially be 
predicted and incorporated in clinical practice. This does mean that the use of AI based 
prediction models first need to be accepted and standard in the field of PGx. Moreover, this 
application of AI will also require large sample sizes which are not always available in PGx. 

Future perspectives

Rare variants, genetic complexity, haplotype phasing, phenotype summarisation and 
substrate specificity all play a role in the missing heritability in pharmacogenomics. Most 
clearly, the combination of long-read sequencing with complete haplotype phasing and 
a continuous phenotype prediction models seems to decrease the missing heritability 
substantially. The results presented in this thesis show what the role of these different 
factors play in the missing heritability. However, beyond CYP2D6 there are many more 
pharmacogenes which suffer from missing heritability. Moreover, many additional (non)-
genetic factors can influence drug response. More research is needed to account for these 
additional factors and to explore the implications of our findings for other pharmacogenes. 

Due to its high complexity and involvement in the metabolism of many drugs, the CYP2D6 
gene is often the ‘proof-of-principle’ gene in pharmacogenomic studies. As was also the case 
in this thesis. However, there are many more genes that deserve attention. In particular the 
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CYP3A locus is of interest. This locus is characterized by many rare variants which are also 
predicted to play a significant role in enzyme activity [18]. The CYP3A locus consists of 
the CYP3A4, CYP3A5 and CYP3A7 genes. These genes share approximately 80% of their 
sequence [4]. This high sequence homology produces the same type of problems as what 
is seen for pseudogenes. Moreover, approximately 90% of the metabolism of the CYP3A4 
substrates erythromycin and midazolam is expected to be genetic [46], while only around 
10% of the activity of CYP3A4 can be explained by current clinical PGx [4]. 

Beyond shifting the focus to different genes, it is also important to address the impact 
of genetic variants influencing gene expression. This can either be intragenic, as is the 
case with CYP2D6*10 [47-49], but also extragenic, for example the hepatocyte nuclear 
factor HNF4α [50-52]. One main limitation of studying the expression pharmacogenes is 
the fact that the Cytochrome P450 enzymes are predominantly expressed in the liver. To 
obtain data regarding expression liver biopsies are needed to analyse protein content and 
mRNA content [53]. Recently, Achour et al. proposed a method to analyse mRNA from 
liver exosomes isolated from blood samples as a measurement for expression [53]. These 
exosomes are shredded by the liver and contain mRNA of the genes expressed in the liver, 
included Cytochrome P450 genes. They compared the mRNA inferred expression with 
liver protein levels from the same individuals. They showed a good correlation between 
inferred and true expression for the CYP-enzymes (R2=0.50–0.75). This method might 
be a useful tool to investigate CYP-expression without the need for invasive liver biopsies 
and should be explored further. 

Besides pharmacokinetic interactions, genetic variants in pharmacodynamic targets 
and in transporters can also lead to significant differences in drug response. However, these 
interactions are generally less understood. One clear reason for this is that pharmacokinetic 
interactions can be measured objectively by assessing drug levels. Pharmacodynamic 
interactions often rely on reported phenotypes, such as a lack of efficacy or adverse reactions 
which are generally more difficult to characterise and therefore more difficult to associate 
with genetic variants. The same holds true for genetic variation in drug transporters. 
Drug transport depends on the drug concentrations, which can be influenced by genetic 
variants in genes associated with drug pharmacokinetics. Moreover, the drug transporters 
themselves can also be affected by genetic variation which influences their capability to 
transport drugs across membranes. To date there are only a few transporters included in 
the Dutch PGx guidelines, namely the SLCO1B1 transporter related to statin toxicity and 
ABCG2 related to allopurinol. 

While genetic variants play an important role in the activity of pharmacogenomic proteins, 
there are many more factors which influence drug metabolism and enzyme activity 
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and cause a mismatch between the observed and predicted phenotypes. In the field of 
PGx, these non-genetic factors influencing enzyme activity are collectively known as 
phenoconversion. Two major types of phenoconversion are concomitant drug use (drug-
drug-gene interactions (DDGI)) and comorbidity related phenoconversion [54,55].

DDGIs were briefly discussed in chapter 5 in regards to the outliers seen in the 
individuals using CYP2D6 inhibitors in the CYPTAM-BRUT cohort. The complexity of 
these interactions makes them often overlooked in studies. Nonetheless, they are expected 
to play a significant role in the variability of drug metabolism. Many drugs are inhibitors or 
inducers for common metabolic enzymes [56]. A combination of PGx variants, inhibitors 
and a substrate can result in complex pharmacokinetics which is not easily explained by 
adjusting for only one of the factors. Recently, physiology based pharmacokinetic (PBPK) 
models have been to model DDGIs [57,58]. One of these PBPK models showed a good 
prediction of kinetics of CYP2C19 mediated metabolism under the influence of inhibitors. 
The accuracy of the models did, however, differ between the predicted phenotypes of 
CYP2C19 [57]. 

For disease related phenoconversion many factors can play a role. For example; 
inflammation, cancer, pregnancy and liver disease [50,55]. One recent example of 
phenoconversion due to comorbidities is the alteration of CYP-enzyme activity due to 
COVID-19 infection. In a patient with COVID-19 it was observed that their metabolism 
of clozapine significantly changed compared to the metabolism before the COVID 
infection. This lead to toxic concentrations of clozapine [59]. The role of inflammation 
on pharmacokinetics is well known but not yet well understood. More in vitro and in vivo 
research towards this mechanism is needed to eventually be able to include inflammation 
as one of the markers to predict the activity of drug metabolic enzymes.  

As the number of drug targets, drugs and genetic variants identified quickly increases, 
we are no longer able to process all this data into meaningful dosing guidelines without 
the use of AI. The main strength of machine learning is that the models are capable of 
detecting complex patterns in the data with which they are provided and trained on [60-
62]. The implications of AI rise beyond the prediction of the metabolic capacity of just one 
enzyme based on its genetic make-up, as we did in our study. The field of AI has advanced 
far enough to make it possible to incorporate many different factors. Models to recognise 
patterns on medical scans or to predict drug risks are available in many different medical 
disciplines [63-68]. Nonetheless, to enable the broad implementation of AI in PGx one 
large limitation needs to be resolved. AI models are data driven, meaning they process large 
amounts of data into (clinically) meaningful outcomes. Large sets of high quality data, which 
is represents the real world situation well, is needed to train these AI models. However, 
the field of PGx is suffering from a lack of detailed phenotype data. There is simply not 
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enough data available to study all (potential) gene-drug interactions with the help of AI 
pattern recognition. For pharmacokinetic interactions, drug and metabolite levels would 
be the most suitable type of data as it is least affected by other factors. Hospitals are the 
optimal location to collect the data required for future PGx studies. Many hospitals have 
laboratories that can perform therapeutic drug monitoring (TDM) to collect drug and 
metabolite levels as well as (pharmaco)genetic departments which can aid in the collection 
of genetic material and data. To address the lack of data in PGx, one option would be the 
routine collection of the above mentioned materials and data in biobanks. 

While pharmacokinetic outcomes are highly suitable to determine enzyme activity, 
the vast majority of data collected in PGx studies is related to therapy outcome and drug 
response. Most commonly in the form of reported efficacy and adverse drugs reactions 
(ADRs). However, these parameters are influenced by many more factors than just genetics. 
Moreover, they are often self-reported and therefore more subjective that TDM data. This 
makes it more difficult to generate (AI based) models predicting the drug response based 
on ADRs, as it is difficult to distinguish between a true ADRs caused by PGx variants and 
other complaints which are not gene or drug related. The amount of data that is required 
to find the true gene-drug relations based on this type of data is significantly larger than 
that need for TDM based associations. Nonetheless, the ultimate aim of PGx is to improve 
drug treatment outcomes, making the collection of data on drug response more valuable in 
clinical practice. Drug response outcomes in the form of ADRs are used by the PREPARE 
study from the ubiquitous pharmacogenomics consortium (U-PGx), one of the largest PGx 
implementation studies. The aim of this study is to assess the impact of the implementation 
of PGx on the occurrence of adverse drug responses. The recruitment of approximately 
7,000 subjects has just been completed and results are expected by the end of 2021 [69]. 
Given the large cohort size, AI models based on reported phenotypes could be developed 
using this data. These models could provide meaningful insight into the link between 
genetic variants and clinical outcomes instead of just the association between genetics and 
drug metabolism as we have done in this thesis. 

Ultimately, AI models are ready for implementation in a research setting and, in 
the near future, in clinical practice. The most important thing to keep in mind is that AI 
approaches are data driven and therefore, the usefulness and applicability of these models 
rely on the quality of the training data. 

As the examples above highlight once more, PGx and the prediction of drug response is 
complex. To predict the drug response for an individual and reduce missing heritability, 
many factors need to be taken into account: full genetic make-up of the genes involved, 
substrate specificity, drug-drug-gene interactions, inflammation and any other markers 
influencing the drug levels (e.g. kidney function, liver function). Incorporating all these 
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factors in a model goes beyond human capability. With the rapid development of AI and 
sequencing technologies, models that integrate all these factors and provide a physician 
with the best treatment option for each specific patient can be developed. With that, true 
personalized medicine using all patient characteristics becomes an achievable goal in the 
near future. 
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