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Chapter 5

Abstract

Pharmacogenomics is a key component of personalized medicine. It promises a safer
and more effective drug treatment by individualizing the choice of drug and dose based
on an individual’s genetic profile. In clinical practice, genetic biomarkers are being used
to categorize patients into predefined *-alleles to predict CYP450 enzyme activity and
adjust drug dosages accordingly. Yet, this approach has substantial limitations as it leaves
a large part of variability in drug response unexplained. Here, we present a proof-of-
concept approach and introduce a continuous scale (instead of categorical) assignments
to predict metabolic enzyme activity. We used the full CYP2D6 gene sequence as obtained
with long-read amplicon-based sequencing and Cytochrome P450 (CYP) 2D6-mediated
tamoxifen metabolism data from a prospective study of 561 patients with breast cancer
to train a neural network. The model explained 79% of the interindividual variability in
CYP2D6 activity compared to 54% with the conventional *-allele approach and assigned
accurate enzyme activities to known alleles (activity matched previously reported effects)
and predicted the activity of previously uncharacterized combinations of variants. The
results were replicated in an independent cohort of tamoxifen-treated patients (model
R*-adjusted = 0.66 vs *-allele R*-adjusted = 0.35) and a cohort of patients treated with the
CYP2D6 substrate venlafaxine (model R*-adjusted = 0.64 vs *-allele R?-adjusted = 0.55).
Moreover, human embryonic kidney cells were used to confirm the effect of five variants
in in vitro functional assays measuring the metabolism of the CYP2D6 substrate bufuralol.
These results demonstrated the advantage of a continuous scale and a completely phased
genotype for prediction of CYP2D6 enzyme activity and could potentially enable more

accurate prediction of individual drug response.
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Introduction

In personalised medicine, pharmacogenomics (PGx) is a crucial component that ensures
the safety and efficacy of drug treatments based on patients genetic profile [1,2]. The
cytochrome P450 (CYP) isoenzyme 2D6, encoded by the polymorphic CYP2D6 [3], is
involved in the metabolism of 25-30% of commonly prescribed drugs [4]. Genetic variants
in the CYP2D6 gene, such as SNVs (single nucleotide variants), CNVs (copy-number
variants) and structural rearrangements [3,5,6], may lead to differential activity of the
enzyme Cytochrome P450 (CYP) 2D6 and thereby to altered drug response [7,8].

To translate CYP2D6 variants into clinically actionable guidelines, they are assigned
to standard haplotypes and predicted phenotypes. Haplotype assignment is performed
based on *-allele nomenclature, catalogued by the Pharmacogene Variation Consortium
(PharmVar), where each *-allele describes a predefined combination of variants [9,10].
Subsequently, the gene activity score (GAS) system assigns a score to each allele, with 0
for no activity, 0.5 for decreased, 1 for normal and 2 for increased activity [11]. Predicted
phenotypes are assigned based on the combination of the two inferred allele activities
and are summarized into 4 different CYP2D6 metabolizer categories [10,12]: poor
metabolizer (PM), intermediate metabolizer (IM), normal metabolizer (NM) and ultra-
rapid metabolizer (UM). However, 6 to 22-fold unexplained intra-category variability in
enzyme activity and considerable overlap in activity between phenotypes remains [13].
Moreover, a recent study of twins has shown that although 91% of CYP2D6 metabolism
is hereditary, GAS-based inferred phenotypes only explain 39% of variability in CYP2D6
enzyme activity [14]. Similar trends in missing heritability have been shown for other
genes involved in CYP450-mediated drug metabolism [15,16]. This is partly due to rare
genetic variants that are not catalogued in the current *-allele nomenclature [17]. A major
limitation of the current methodology is the loss of a considerable amount of information
in the categorization. Therefore, as has been suggested previously, a continuous phenotype
prediction rather than a categorical model is likely to improve the prediction of CYP2D6
enzyme activity [8,18]. A convolutional neural network is highly suitable for this type
of phenotype prediction from genetic data [19,20]. Although previous approaches of
deep learning in pharmacogenomics were aimed at automated *-allele assignment or to
predicting the residual activity of conventional *-alleles [21,22], we propose a strategy to
predict CYP2D6 enzyme function on a continuous scale using full gene sequencing data

and a neural network, omitting *-alleles completely.
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Results

Conventional categorical phenotype predictions

To study the explained variability of conventional phenotype assignment, we included 561
subjects of European ancestry from the prospective CYPTAM study, which investigated
the relationship between CYP2D6 genotype and outcome of breast cancer treatment with
tamoxifen (Supplementary Figure S5.1) [23]. The metabolism of tamoxifen is complex and
involves multiple other enzymes (Supplementary Figure S5.2). Nonetheless, the conversion
from desmetyltamoxifen to endoxifen is dominated by CYP2D6 [24,25]. Therefore we
inferred CYP2D6 enzyme activity by using the ratio between the metabolites endoxifen
and desmethyltamoxifen (Metabolic ratio (MR)) [26]. The influence of common variants
in other enzymes (CYP3A4, CYP3A5, CYP2C19, and SULT1A1) has been investigated
but did not have a profound effect on this conversion [27,28].

To fully resolve the CYP2D6 paternal and maternal alleles, we applied long-read
sequencing using germline DNA [5], which yielded comparable predicted phenotype results
to orthogonal testing (Kappa-coefficient: 0.95 p=3.5x10"'%) (Supplementary Figure S5.3
and Supplementary Table S5.1). Classification of patients into conventional metabolizer
categories resulted in 54.4% (R?=0.54) explained variability in CYP2D6 enzyme activity
(Figure 5.1A, Table 5.1).

Table 5.1: Regression results explaining CYP2D6 enzyme activity using different methods

All predicted phenotypes are based on PacBio long-read sequencing data. Consensus guidelines were used
to assign the conventional four phenotype categories and gene activity scores. A neural network trained
on CYPTAM data was used for the prediction of a continuous phenotype. Per-allele contributions from the
neural network were added together (similar to the gene activity score) to predict the effect of a continuous
gene activity score per allele using an additive model. For CYPTAM-BRUT, patients with unknown inhibitor
use were excluded from this analysis (n=16). All values are the adjusted R? based on linear regression, with
a p-value cut-off of 0.05 for significance.

CYPTAM-BRUT  CYPTAM-BRUT

CYPTAM no inhibitors inhibitors Venlafaxine

(n=561) (n=127) (n=24) (n=69)
Categorical phenotype 0.5443, 0.3483, 0.07752, 0.5461,

p=2.78x10" p=4.517x10"?  p=0.1009 p=8.09x10"2
Conventional gene activity 0.6659, 0.492, 0.1583, 0.6354,
scores p=1.07x10"% p=2.52x10"%° p=0.0308 p=1.54x10"¢
Continuous phenotyping 0.7885, 0.6618, 0.1633, 0.6385,
prediction p=6.14x10""" p=1.99x103' p=0.0286 p=1.15x10"¢
Gene activity scores predicted 0.7278, 0.6012, 0.1929, 0.6064,
(predicted allele activitiesinan ~ p=2.59x107%° p=6.15x10?" p=0.0183 p=2.028x10"*

additive model)
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Figure 5.1: CYP2D6 activity based on conventional CYP2D6 metabolizer categories, gene-activity
scores, and diplotypes

Explained variability of CYP2D6 activity in the CYPTAM-cohort, based on (A) conventional phenotype
categories and (B) gene activity scores (n=561). (C) Tange in enzyme activity within common (>5%
occurrence) diplotypes. Metabolic ratio (In(Endoxifen (nM)/Desmethyltamoxifen (nM)) serves as proxy
for CYP2D6 enzyme activity. Gene activity scores and phenotype predictions are based on *-allele
nomenclature and Dutch Pharmacogenetic Working Group translations using PacBio long-read sequencing
data. R% R?%adjusted based on linear regression. (A): Violin plots display observation density, lines represent
the median and inter quartile range. (B and C): black lines represent median, grey area represents 95%
confidence interval. PM: Poor Metabolizer, IM: intermediate metabolizer, NM: normal metabolizer, UM:
ultra-rapid metabolizer.
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Although the GAS system performed better than the 4 metabolizer categories
(R?=0.66), a considerable amount of variability in enzyme activity within each predicted
phenotype category remained unexplained (Figure 5.1B, Table 5.1). Stratifying the
phenotype categories into diplotypes showed that CYP2D6 activity varied substantially
within identical diplotypes (Figure 5.1C). This suggested that a large proportion of the
variability in enzyme activity within metabolizer phenotypes is already introduced when
assigning haplotypes, with individuals carrying the same diplotype displaying phenotypes

ranging from normal metabolizers to poor metabolizers.

A continuous scale improves phenotype predictions

To increase the explained variability in CYP2D6 enzyme activity, we developed and trained
aneural network consisting of two parts (Supplementary Figure S5.4). The first part assigns
contribution scores to individual alleles and variants and the second part combines paternal
and maternal allelic scores into a predicted MR. Both parts were trained simultaneously on
data generated from the CYPTAM-cohort. By including all observed variants independent
of predefined haplotypes, the explained variability increased to 79% (R*-adjusted = 0.79
(Figure 5.2A, Table 5.1)). Inter-individual variability is reflected by the range of observed
MR in individuals with the same genetic make-up based on the 77 variants which are
considered by the neural network (equal predicted MR). Additionally, there was large
overlap in the predicted MR between individuals from the conventional IM and NM
categories. The error rate (Jobserved MR - predicted MR|) was consistent over the range
of the measured phenotype, with the exception of several subjects (n=16 (2.9%) outside of
confidence interval) with a lower observed CYP2D6 activity than predicted (Figure 5.2A).

Allele contribution scores generated in the first part of the model were scaled to
be comparable to the conventional GAS system (ranging 0-2). Allele contribution scores
predicted by the model showed a deviation from the conventional GAS assignments for
multiple *-alleles (Figure 5.2B).

For example, the *2A allele has a conventional GAS of 1.0 representing a fully active
allele. However, the predicted allele contributions ranged from 0.60 to 0.90, accounting for
variants which are not included in the reference *2A haplotype. Similarly, the predicted
average contribution for *41 is 0.34 (95% CI (confidence interval): 0.33-0.36), whereas
the conventional assignment for the *41 allele is 0.5 [9]. The same holds for the relatively
rare *59 allele, currently regarded as decreased activity assuming a GAS of 0.5 whereas we
predicted the activity to be 0.20 (95% CI: 0.19-0.22). The use of allele contribution scores
on a continuous scale in an additive model improved the prediction of enzyme activity

to 73% (Figure 5.2C). There are studies underway that aim to investigate the effect of
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Figure 5.2: Neural network predictions for the CYPTAM cohort

(A) The model predicts the metabolic ratio (In(Endoxifen (nM)/Desmethyltamoxifen (nM)) as a proxy
for CYP2D6 enzyme activity on a continuous scale, with a consistent error rate over the entire range
(n=561). Colouring is based on conventional *-allele assignments and metabolizer categories and shows
a continuous transition from one category to the next, with overlap between the IM and NM groups. (B)
Explained variability in enzyme activity using an additive model for the predicted allele contributions
(n=561), such that predicted gene activity score = predicted contribution allele 1 + predicted contribution
allele 2. (C) Predicted contributions per allele grouped in conventional *-allele assignments. (D) Comparison
of the neural network predicted gene activity score in an additive model with the neural network predicted
metabolic ratio. Where the predicted gene activity score additive = predicted contribution allele 1 +
predicted contribution allele 2, the predicted metabolic ratio is the final outcome of the neural network and
the colours represent the activity of the most active allele. R%: adjusted R? based on linear regression. Rmse:
root mean square deviation. (A) and (B): blacklines represent median, grey area represents 95% confidence
interval MR: Metabolic Ratio (of In(Endoxifen(nM)/ desmethyltamoxifen(nM))), PM: poor metabolizer, IM:
intermediate metabolizer, NM: normal metabolizer, UM: ultra-rapid metabolizer.
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specific alleles on a continuous scale [29]. However, simply applying an additive model to
individual allele contribution scores may be an oversimplification of human physiology.
The second part of the neural network can accommodate non-additive combinations and
therefore identify more complex relations between 2 alleles. Indeed, when the sum of allele
contributions remains the same, a higher overall activity was observed when one of the
alleles was fully active and one was fully inactive compared to two alleles with decreased
activity (Figure 5.2D), which is in concordance with previous reports on IM phenotype
variability [30].

Increased explained variability in independent samples and CYP2D6 substrates

To validate the model, 167 subjects of European ancestry receiving tamoxifen who partici-
pated in the CYPTAM-BRUT study [31] were sequenced using long reads and analysed
with our neural network (Supplementary Figure S5.1 and Supplementary Table S5.1). In
this cohort, patients were divided into two groups based on the use of CYP2D6 inhibitors
that could influence the measured metabolic ratio of tamoxifen. Conventional phenotype
predictions explained only 34.8% (R*-adjusted = 0.35 of the variability in CYP2D6 enzyme
activity (Figure 5.3A and Table 5.1) in subjects without concomitant CYP2D6-inhibiting
drugs (n=127). Neural network-based phenotype prediction on a continuous scale resulted
in an almost doubling of the explained variability (R*-adjusted = 0.66) (Figure 5.3B and
Table 5.1). These numbers were lower than those in the CYPTAM-cohort, most likely due
to a lower sample size and lower density of observations in the extremes of the enzyme
activity (PM and UM). For subjects using concomitant CYP2D6 inhibitors (n=24), 7.8%
and 16.3% of the CYP2D6 activity could be explained by conventional and continuous
phenotype prediction, respectively (Table 5.1). Moreover, there was substantial overlap
between subjects with a negative deviation from the predicted enzyme activity in the
CYPTAM-cohort and patients from the CYPTAM-BRUT cohort receiving concomitant

treatment with a CYP2D6 inhibitor. This observation suggests that the concomitant use

Figure 5.3: Conventional and continuous predictions in replication cohorts

The explained variability of CYP2D6 enzyme activity for CYPTAM-BRUT (tamoxifen metabolism, n=167)
based on (A) conventional phenotype categories and (B) on a neural network trained with data from
the CYPTAM cohort. The influence of CYP2D6 inhibiting drugs on the overall enzyme activity shows
overlap with CYPTAM samples with a negative deviation from the predicted enzyme activity. Error
rates per CYP2D6 inhibiting drug give an indication of inhibitor potency (B, n=24 total). The explained
variability of CYP2D6 enzyme activity for venlafaxine cohort (venlafaxine metabolism, n=69) based on
(C) conventional phenotype categories and (D) on a neural network trained with data from the CYPTAM
cohort. R%: R?-adjusted based on linear regression. In (B): black lines represent median, grey area represents
95% confidence interval. In (A) and (C) Violin plots display observation density, lines represent the median
and inter quartile range. PM: poor metabolizer, IM: intermediate metabolizer, NM: normal metabolizer, UM:
ultra-rapid metabolizer.
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of CYP2D6 inhibitors may explain the overestimated enzyme activity for several subjects
in the CYPTAM-cohort. Stratifying the error between the predicted and observed enzyme
activity per CYP2D6-inhibiting drug provides an estimate of the potency of the inhibitor
(Figure 5.3B).

CYP2D6 enzyme activity is substrate specific and the effect on metabolism of a given
variant varies per drug [32,33]. To assess substrate specificity of the neural network, we
tested the performance on patients treated with a different CYP2D6 specific substrate, the
antidepressant venlafaxine [34] (Supplementary Figure S5.1, Supplementary Table S5.1 and
Table 5.1). In venlafaxine-treated patients of European ancestry, the explained variability
of CYP2D6 activity increased from 54.6% (R*-adjusted = 0.55) for conventional phenotype
prediction to 63.9% (R*-adjusted = 0.64) for phenotype predictions on a continuous scale
(Figure 5.3C and Figure 5.3D). Although the explained variability improves with the

continuous prediction compared to conventional categorization, the increase was limited.

In vitro validation of predicted variant contributions

We also queried the trained neural network to assess the contribution of individual variants
to overall enzyme activity (Supplementary Data File S5.1). These contributions showed
a wide range of effects in a pattern indicative of a continuous scale as opposed to an on/
off effect (Figure 5.4A). To confirm the contributions predicted by the model, 4 variants
and the *2 allele were expressed in HEK293 (human embryonic kidney) cells, which are
completely devoid of any other metabolic enzymes [35,36], and incubated with bufuralol
(Supplementary Table S5.2). The direction of our predictions (decrease or increase) was
in concordance with the in vitro results, with accuracy increasing as the variant frequency
increases. The predicted activity for *2 closely matched the observed activity in HEK293
cells (Figure 5.4B). For CYP2D6*2 it is known that the normal activity of the allele is
generally caused by the presence of an enhancer mutation causing an increase in expression
which is almost in full linkage disequilibrium with the *2A allele [37,38]. This enhancer
mutation is generally not included in in vitro experimental setups, leading to ower activity
compared to wildtype. The presence of the enhancer mutation was not included in our
neural network model, but was present in the population [39]. Nonetheless, in this study
we observed decreased CYP2D6*2A activity in vivo, suggesting that *2A activity might be
substrate-dependent. This decreased activity for CYP2D6*2A in tamoxifen metabolism
has been observed previously [33].

For the gain of function variant Phel20Ile, the difference between the in vitro
experiment and the neural network prediction was 8-fold, which might be explained by

both the low allele frequency in the training cohort (n=3) and the substrate specificity of
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Figure 5.4: Contributions of individual variants

(A) Predicted contributions per variant included in the training of the neural network, with the absence
of the variant set to 0.0 and a gene deletion set to -1.0 (n=78 variants). (B) In vitro validation of variants in
HEK cells using bufuralol metabolism. Rate of bufuralol metabolism was normalized using the metabolic
rate of the cells transfected with CYP2D6*1 cDNA as reference point of 1.0. Similar to the neural network
contributions results were further scaled to have the absence of a variant (normal activity) set to 0.0 and the
full absence of metabolism to -1.0. Incubations were performed in quadruplicate.
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this variant. As the Phe120Ile variant is known to affect CYP2D6 substrates differently,
this difference might be explained by the fact that the model was trained on tamoxifen
metabolism whereas the in vitro experiment was performed using bufuralol as a proxy for
enzyme activity [33,40,41]. The Phe120Ile amino substitution has previously been seen in
CYP2D6*49 where the allele has lower activity due to the presence of the Pro34Ser mutation
and in CYP2D6*53 where the Phel20Ile mutation is accompanied by an Alal22Ser [9].
These alleles were not present in our study population, as none of the subjects carried the
other mutations in combination with the Phel20Ile mutation [33]. These results indicate
that the model was able to detect the biological effect of variants with improved accuracy

as the number of observations increased.

Discussion

The role of Cytochrome P450 enzymes in the metabolism of commonly prescribed drugs
has provided a basis for developing a series of molecular and genotyping assays to predict
patient drug responses. To date, genotyping and phenotype predictions for clinical PGx
utilize a categorical approach where predefined genomic variants are screened to infer
patient haplotypes according to the *-nomenclature and thereby the associated phenotype
category [10]. However, in current clinical PGx, rare variants (minor allele frequency
<1%) are often excluded and haplotype phasing is inferred rather than resolved. Our
proof-of-concept study, based on allele-specific genotyping and continuous phenotype
predictions powered by a neural network model that predicts tamoxifen metabolism,
showed improvements in decreasing the missing heritability in CYP2D6-mediated
metabolism. In the CYPTAM-cohort, we observed a 25% increase in explained variability
compared to the conventional approach. Notably, our model achieved improvements of
31% and 11% in independent tamoxifen (CYPTAM-BRUT) and venlafaxine replication
cohorts respectively in predicting patient drug metabolic rates and thereby potentially
the drug response. Our model is agnostic to the sequencing technology used and could
be applied to data obtained with alternative genotyping methods. However, it should be
kept in mind that haplotype phasing might be less reliable with other sequencing methods.
Moreover, problems might arise with the use of short-read sequencing due to the very
similar structures of the flanking pseudogenes CYP2D7 and CYP2D8 as well as deletion

and duplication variants of these genes.

The inhibition of tamoxifen metabolism by the use of concomitant CYP2D6 inhibitors
could be estimated in the CYPTAM-BRUT cohort. Our results confirm that paroxetine

has the strongest impact on enzyme function [42]. Guidelines on GAS adjustments based
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on inhibitor use are available for CYP2D6 [43]. However, these GAS adjustments are not
yet standard clinical practice. Moreover, inhibitor use might change over time whereas
genetic make-up will not, making it of importance to be able predict enzyme activity based
solely on genetics. In our study, subjects receiving concomitant treatment with a CYP2D6
inhibitor were outliers in the enzyme activity prediction graphs and the strength of each
inhibitor matched the error between observed and predicted enzyme activity. These findings
indicate that the model was learning the role of genetic information and it is expected that
the contribution of other potential confounding variables to the overall model is minimal.
In drug response management, it is critical to detect the role of concomitants in drug safety
and efficacy. Thus, our results pave the way for reliable deconvolution of the expected
drug metabolic rate and the impact of concomitants to better inform treatment strategy.
Although the increase in explained variability in the CYPTAM-BRUT cohort was similar
to that in the CYPTAM cohort, the R? of both the conventional model and the continuous
model was lower in the CYPTAM-BRUT cohort compared to the CYPTAM cohort. This
difference can be explained by the sample size as well as the density of patients in the
extremes of the metabolic groups (PM and UM), leading to a higher variability and lower
representation of the entire metabolic categories.

In the venlafaxine cohort, the gain in explained variability was limited (55% to 64%)
compared to the other two cohorts. Both substrate specificity [32,33] as well as the limited
sample size (n=69) in the venlafaxine cohort may contribute to this limited increase in
explained variability. In addition, due to the limited sample size, the majority of samples
were from intermediate and normal metabolizers, limiting the genetic diversity and thereby
affecting the overall R%. Moreover, venlafaxine is not solely metabolized by CYP2D6.
Indeed, it has recently been shown that CYP2C19 has a significant contribution to the
venlafaxine metabolism (p<0.001 for the majority of metabolizer groups) [44]. In this study
we used the metabolic ratio between endoxifen and desmethyltamoxifen as a proxy for
enzyme activity. Although the metabolic conversion of endoxifen to desmethyltamoxifen
is CYP2D6-specific, other enzymes are involved in the metabolism of tamoxifen, thereby
influencing the concentration of the metabolites used in our model as well [23,24,27,28].
Moreover, substrate specific effects might result in limitations regarding the generalizability
of the model for all CYP2D6 substrates. Therefore, this ratio might not reflect the activity of
CYP2D6 for other substrates. Nonetheless, the model still outperformed the current clinical
standard as an increase in explained variability was also observed for the CYP2D6 substrate
venlafaxine. To explore the full capability of the proposed neural network approach, large
cohorts with CYP2D6-specific substrates are needed. In future studies, collecting real-world
evidence from larger cohorts can facilitate our understanding of substrate specificity and

the role of CYP2D6 in the metabolism of wider range of drugs.
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Markedly, the contribution of individual alleles to the overall enzyme activity did not fully
align with the additive model that is currently used for phenotype assignment. The model
that adds the two individual allele contribution scores resulted in a lower explained variability
than the combination of the two alleles in the neural network (R*0f 0.73 and 0.79 respectively
for the CYPTAM cohort). This finding can either be explained by a genetic component (for
example up-regulation of CYP2D6 expression or non-CYP2D6 variants) or by a non-linear
relation between CYP2D6 enzyme activity and the metabolic ratio. There is, however, no
indication to assume a non-linear relation in CYP2D6 enzyme activity and tamoxifen
metabolism [45,46]. Additionally, we observed variable activity between alleles which have
been assigned the same *-haplotype. This interindividual variability in allele activity can be
associated with exclusion of variants outside of the best matching *-haplotype. The overall
activity of star-alleles deviated from defined categorical assignments and was suggestive of
a more continuous nature. Rare and not yet catalogued variants might be responsible for
this deviation as they are not included in *-haplotype definitions [17].

Our data show that, for a subset of variants and alleles, the predicted variant and
allele contributions are in line with those in in vitro experiments. Nonetheless, the predicted
activity based on the neural network and the in vitro data did not always align completely.
A potential explanation for this is the role of substrate specificity. Different CYP2D6
substrates are affected by CYP2D6 variants to a different degree. For example, the impact
of variants affecting the protein binding site might also be dependent on the size of the
drug that is being metabolised, if the size of the binding site is decreased, smaller molecules
might be less affected that larger molecules [47]. Another potential explanation may be
that both in vitro predictions and neural network predictions are not perfect reflections
of an in vivo situation.

It has been shown that in-vitro results can give a reliable indication of the in vivo
effect of a specific variant [35,36]. Both the neural network predictions, which are in
silico predictions based on in vivo data, and the in vitro results showed the same impact
(decreased, normal, or increased activity) of the investigated variants. These results indicate
that the neural network-based prediction can be valuable in evaluating the potential

deleteriousness of SNPs in a similar way as in vitro experiments.

Multiple tools have been developed to predict PGx phenotypes from sequencing data, of
which stargazer and Hubble are the most prominent [21,48,49]. Stargazer aims at assigning
star-haplotypes and thereby phenotype categories based on catalogued genetic markers
whereas Hubble has been trained on in vitro *-allele activity to predict phenotypes on a
continuous scale. Our approach completely omits *-alleles and predicts in vivo phenotypes

on a continuous scale, making it a unifying model from sequence to phenotype.
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This study focused on the role of genetic variants within CYP2D6 locus on variable
drug response for tamoxifen and venlafaxine. However, besides CYP2D6 genetics,
additional genetic factors can also regulate CYP2D6 expression and thereby influence
response to these drugs [50-52]. The eQTLs (expression quantitative trait loci) described
by the GTEx (genotype-tissue expression) project could be a valuable resource to assess the
impact of various genetic variants in gene expression in different tissues [53]. Moreover,
recent studies have shown that several transcription factors (such as TSPYLs and HNF4«)
can influence the expression of CYP enzymes [51,54]. However, limited samples of liver
tissue in the GTEx database, where known PGx genes including CYP2D6 are predominantly
expressed, did not allow us to investigate the potential impact of variants found in our study.
Notably, additional metabolic enzymes might also be involved in the drug metabolism. For
tamoxifen, CYP2C19, CYP3A4, CYP3A5 and SULTIAI can also play a role in several steps
of the metabolic pathway. However, previous studies suggest that the role of these enzymes
in tamoxifen metabolism may be limited [27,28,55]. Further studies on larger cohorts,
where data on observed drug phenotypes as well as the genetic makeup of all responsible
enzymes and potential transcription factors is available, may shed light on the role of other
genetic variants in the metabolism of tamoxifen and venlafaxine. Last, the approach in this
study is focussed on the PGx of the pharmacokinetic marker CYP2D6. Nonetheless, PGx
of pharmacodynamic targets can also play a role in variability in drug response [2,56,57].
This field is currently less well understood due to the difficulties associated with phenotype
definitions. For pharmacokinetics, this is simpler as the effect can be measured by drug
concentrations. Nonetheless, potential impact of pharmacodynamics in the field of PGx

should not be neglected and warrants further research.

Our study suggests that, for the gene and drugs included, the proposed strategy is capable of
improving patient phenotype predictions by using a continuous scale for this prediction as
well as offering insights on genetic variants the underlie variable drug response. However,
several limitations do exist. First, this study focused on the role of variants within the
CYP2D6 locus and did not account for variants outside of this locus that can potentially
influence variability in drug response, as discussed above. Moreover, drug response is not
only influenced by genetic factors. Multiple additional factors such as substrate specificity,
lifestyle, concomitant drug use, comorbidities, and epigenetics are known to play a role
in patient treatment response [16,27,28,58,59]. Unfortunately, our study was limited in
regards to the ability to include these factors due to the sample size and lack of data on
co-medication and comorbidities. Additionally, our sample size precluded characterization
of all rare variants. Last, the frequency of (pharmaco)genetic variants is known to vary
between different ethnicities [60,61]. However, our study included only individuals of

European ancestry and therefore did not include any variants which might be specific
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to other ethnicities. In the future, larger cohorts of varied ethnicity with more extensive
clinical data as well as a more comprehensive genetic makeup of the pharmacogenes
could improve drug response prediction models even further, although it is unlikely that
all environmental factors can be accounted for. Last, our study was a proof-of-concept
for CYP2D6 and tamoxifen and venlafaxine, studies applying the same approach to other
gene-drug combinations should be conducted to confirm the value of a neural network-

based approach for PGx.

Materials and methods

Study design
The aim of this study was to develop a model to predict CYP2D6 enzyme activity on a

continuous scale and compare this approach to the conventional categorical methods.
Genetic markers in the CYP2D6 locus were used as the predictors. For the outcome, the
metabolic ratio of CYP2D6 substrates was used as a proxy for enzyme activity. Existing
cohorts were included based on availability, therefore sample size calculations were not
performed. A cohort of 608 individuals was used for the development of the model, and
two independent cohorts of 225 and 78 individuals were used for replication. The CYPTAM
protocol was approved by the Institutional Review board of the Leiden University Medical
Center (LUMC). The CYPTAM-BRUT protocol was approved by the Institutional Review
board of the Leuven University medical center. Venlafaxine samples were collected in
routine clinical care at Catharina Hospital, Eindhoven, the Netherlands. The medical ethics
committee of the Catharina Hospital provided a waiver for consent as samples and data
for study purposes were already available, according to the code of conduct for responsible

use of human tissue and medical research (fedora.org).

Study cohorts

The data used in this study originated from one main cohort and two independent cohorts
of European ancestry. The main study cohort, the CYPTAM-cohort, consisted of 608
subjects for whom DNA material was available (The Netherlands National Trial Register:
NTR1509) [23]. In short, the multicenter prospective CYPTAM study recruited subjects
receiving tamoxifen as an adjuvant breast cancer therapy to investigate the association
between CYP2D6 genotype, endoxifen serum concentration and clinical outcomes. The
first replication cohort, the CYPTAM-BRUT cohort, consisted of 225 subjects recruited

in a study investigating the association between CYP2D6 genotype and endoxifen serum
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concentration on response rate to tamoxifen in postmenopausal women (Clinicaltrials.gov:
NCT00965939) [31]. The second replication cohort, the venlafaxine cohort, consisted of 78
Dutch subjects taking venlafaxine. Samples were collected as part of routine patient care
at the Catharina Hospital, Eindhoven, the Netherlands. DNA samples and accompanying
data were de-identified before transfer to the LUMC for analysis.

Drug metabolite measurements

For both the CYPTAM and CYPTAM-BRUT cohort, steady state through concentrations
of tamoxifen and metabolites were measured with a validated high performance liquid
chromatography-tandem mass spectrometry upon study inclusion. All measurements
were performed at the LUMC department of Clinical Pharmacy and Toxicology. In total 4
compounds were measured: tamoxifen, 4-hydroxytamoxifen, O-desmethyltamoxifen and
endoxifen. A total of 0.2 ml of each serum sample was mixed with 0.5 ml of 0.1 M ZnSO,
and 0.2 ml of the internal standard working solution 4-D5-IS. After mixing for 3 min on
a vortex mixer, the mix was centrifuged at 13,000 rpm for 5 min at room temperature. A
volume of 20 yul supernatant was injected into the HPLC instrument. Chromatographic
analysis was performed using a Waters Micromass Quattro micro API Tandem MS equipped
with a Dionex P680A DGP-6HPLC pump, Dionex Ultimate 3000 autosampler and a
Diones Thermostated Column Compartment. Separation of the analytes from potentially
interfering serum components was achieved using a Waters X-bridge Column (3.5 pm, 4.6
x 50 mm) with a Spark HySphere C18 HD pre-column (7 pm) in a Phenomenex holder. The
mobile phase consisted of 25% solution A (0.1% formic acid + 2 mM ammonium acetate in
H,0) and 75% of solution B (0.1% formic acid + 2 mM ammonium acetate in methanol)
and was delivered at a flow rate of 0.4 ml/min. Concentrations were normalized to nM and
metabolic ratios calculated to reflect the rate of conversion from one metabolite to the next.

For the venlafaxine cohort, plasma concentrations of venlafaxine and its metabolite
O-desmethylvenlafaxine were determined as part of routine clinical care. Concentrations
were determined with a validated ultra-performance liquid chromatography-tandem mass
spectrometry method. Clozapine-D4 dissolved in acetonitrile was used as internal standard
in a concentration of 0.1 mg/L. To 100 pl of each plasma sample, a volume of 300 ul of
internal standard solution was added and vortex-mixed for 30 seconds. After centrifugation
for 10 min at 10,900 rpm, a volume of 200 ul of the supernatant was mixed with 200 pl of
a 5 mM ammoniumacetate solution and 10 pl of this mix was injected on the UPLC-MS/
MS. Chromatographic analysis was performed using a Waters Acquity UPLC with a BEH
C18(2.1x 100 mm, 1.7 pm) column at 40°C. The mobile phased consisted of 90% solution
A (5 mM ammoniumacetate + 0.05% formic acid) and 10% solution B (acetonitril 100%)
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and was delivered at a flowrate of 0.35 ml/min. Concentrations were normalized to nM.

All samples were analysed at the Catharina hospital department of Clinical Pharmacy.

DNA sample processing

Germline DNA isolation from blood was performed previously for the main studies and
for routine clinical use. Remaining DNA samples were collected and transferred to the
LUMC for sequencing. All samples were sequenced with Pacific Bioscience’s (PacBio)
SMRT-sequencing technique using full length CYP2D6 amplicons [62]. PacBio sequencing
enables the identification of all variants in the locus, including those in difficult and
repetitive regions in addition to obtaining fully phased paternal and maternal alleles [5]. To
obtain CYP2D6 amplicons, three separate two-step PCR reactions were executed, one for
full length amplicons and two for Copy Number Variants (CNV) using a similar protocol
to Buermans et al. [5]. The current protocol differed in regards to the scale at which the
analysis was performed which required larger sets of barcode primers. Additionally, the
two replication cohorts were sequenced using the PacBio Sequel platform as opposed to
the RSII platform which was used for the study by Buermans et al. and the training cohort.
All primers used were based on previous research [63,64] and ordered from Integrated
DNA Technologies (IDT) [65] (Supplementary Table S5.3).

The CYP2D6 specific primers were designed to generate a 6.6 kB fragment covering
the entire CYP2D6 locus including upstream and downstream regions [63,64]. Target
regions were amplified using the Takara LA Taq DNA polymerase kit [66]. A 10yl reaction
volume contained 50-100 ng DNA, 1x PCR buffer with MgCL, 0.4mM dNTPs, 0.4 uM of
both of the full length CYP2D6 primers and 0.4 U Takara La taq. PCR cycle parameters
were 3 min at 95°C, followed by 30 cycles of 10 sec 98°C and 15 min 68°C, finished with 15
min at 68°C. Subsequently, amplicon barcoding was performed using M13-tailed primers.
These barcode primers were introduced in a second PCR with identical conditions to the
first, using 1 ul of the first PCR product and 5 cycles of amplification.

CYP2D6 gene deletions were identified with a duplex PCR. The primer set consisted
of CYP2D6-deletion specific primers and an internal control (IC) [63,64]. Target regions
were amplified using the KAPA long range hotstart kit from kapa biosystems (REF:
KK3502) [67]. The 10 pl reaction volume contained 50-100 ng DNA, 0.5x PCR buffer, 1.7
mM MgCL, 0.3 mM dNTPs, 0.5 uM of CYP2D6-deletion specific primers, 0.375 uM of
IC primers and 0.025 U Kapa Hotstart polymerase. Cycle parameters were 3 min at 95°C,
followed by 30 cycles of 15 sec 95°C and 10 min 68°C.

CYP2D6 gene duplication and CYP2D6/CYP2D7 fusion gene conformations were
identified using a triplex PCR protocol. The primer set contained the CYP2D6 full length
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primers, CYP2D6 duplication primers and CYP2D6/CYP2D7 fusion gene primers. The
10 pl reaction volume contained 50-100 ng DNA, 0.5x PCR buffer, 1.7 mM MgCl,, 0.3
mM dNTPs, 0.5 ul DMSO, 0.5 pl of the CYP2D6 full length forward primer and 0.75 ul
of the reverse primer, 0.375 pl of both CYP2D6-duplication specific primers, 0.5 pl of the
CYP2D6 fusion gene primer and 0.025 U Kapa Hotstart polymerase. PCR conditions were
identical to the duplex PCR.

Presence of CN'Vs and fusion genes was assessed on a 0.7% agarose gel with ethidium
bromide staining, set at 100 mV with a 55 min run time. CNV and fusion gene positive
samples, identified as additional fragments besides a full length or IC fragment, were
selected for the subsequent barcoding PCR. For the selected samples of both the duplex
and triplex PCR, barcoding was done with M13-tailed primers. Identical conditions to
the first PCR were used with 1 ul of PCR product from the first PCR and 5 cycles of
amplification.

Barcoded amplicons were equimolar pooled into a full-length pool and a CNV and
fusion genes pool. For the CYPTAM-cohort, one pool of full-length samples per 96-well
plate was made and one pool for all CNVs and fusion genes. For CYPTAM-BRUT and
the venlafaxine-cohort, one pool with all full-length samples and one pool for all CNV
and fusion gene samples of both cohorts was made. All pools were concentrated with
Ampure XP beads (Agencourt). For the full-length fragment, additional size-selection
was performed using BluePippin (Sage Science) to remove all fragments shorter than 5kB
prior to pooling with the CNV and fusion gene amplicons. SMRTbell library preparation
was performed on 500 ng purified and size-selected PCR pool following the procedure &
checklist - Amplicon template preparation and sequencing (PN 100-801-600 Version 04,
Pacific Biosciences) and using SMRTbell template Prep Kit 1.0-SPv3 [62]. The final SMRT
library was sequenced on the PacBio RSII for the CYPTAM-cohort and on the PacBio Sequel
for the replication cohorts. For RSII, libraries were sequenced using sequencing primer V2
and P6-C4 chemistry with a movie time of 6hr, with a maximum of 96 samples per SMRT
cell [62]. For Sequel, libraries were sequenced using sequencing primer V3, sequencing
kit 3.0 and binding kit 3.0 on a 1M v3 LR SMRT cell with a movie time of 20 hr, with a
maximum of 288 samples per SMRT cell [68]. Deletions, duplications and hybrids were
analysed on a separate SMRT cell for all cohorts.

Data preprocessing

The full pipeline for downstream processing is available at DOI: 10.5281/zenodo.4787186.
All downstream processing was run on a high-performance computing cluster running

the sun grid engine. Raw sequences were demultiplexed using LIMA followed by the CCS
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tool to generate CCS sequences. The subsequent haplotype phasing was performed using a
custom pipeline which utilizes the CCS sequences to identify molecules originating from
the same allele. Subreads of the CCS sequences were used to generate high quality phased
allelic sequences per allele per individual using subreads of all molecules belonging to
the same allele. Allelic sequences showing signs of disjoint sequences or chimeras were
flagged. Per subject all phased allelic sequences were saved and plotted based on genomic
distance.

Phased sequences were aligned to the CYP2D6 sequence from GRCh38 and variants
were called. A semi-global alignment was performed using biopython pairwise2, alignments
were polished to ensure consistent indel positioning. Pharmacogenomic haplotype
assignments were made based on PharmGKB translation tables [12]. For all haplotypes, the
*-allele with a perfect match based on all variants observed was assigned, where the number
of variants is decisive in the case of multiple perfect matches. When no perfect match is
found the *1 haplotype was assigned. All identified variants were run through VEP (variant
effect predictor) to determine their potential impact on protein function [69]. Variants
were flagged as known’ for variants in *-allele nomenclature, ‘novel’ for variants not in
*-allele nomenclature, ‘in polymer region’ for variants located in homo-polymer regions.

The phased alleles were separated from chimeras and disjoint sequences by manual
curation based on genomic distance plots and the presence of chimeras and disjoint
flags. A cut-off of at least 10 molecules per allele and 10 passes per molecule was used to
determine the reliability of the sequences. In the presence of gene deletion, the second
allele was annotated as ‘deletion’ A duplication, determined based on the number of
molecules observed per allele, was annotated as ‘duplicated. Subjects identified as carrying
a CYP2D6/2D7 fusion gene were annotated as ‘hybrid’. Selected alleles were linked to
the clinical data based on subject specific barcodes, resulting in one datafile per cohort

containing clinical data, selected alleles and haplotype calls.

Prediction models

For further analysis, samples were selected based on the presence of full length CYP2D6
sequences, the absence of CYP2D6/CYP2D7 conversions and fusion genes, and on the
presences of clinical data regarding drug metabolism (n=561 for CYPTAM, n=167 for
CYPTAM-BRUT, n=69 for venlafaxine). For each cohort the clinical datasets containing
metabolite blood concentrations were merged with the sequencing data containing the

assigned haplotypes.
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Conventional method

For the CYPTAM-cohort, haplotype and phenotype assignments based on PacBio
sequencing data were compared to calls from the Roche Amplichip which were determined
previously. To assess explained variability based on conventional phenotyping, the same
methods were applied to all three cohorts. For the CYPTAM-BRUT cohort data on
concomitant use of CYP2D6 inhibiting drugs was available, based on which the cohort
was split into ‘non-inhibitor users, ‘inhibitor users’ and ‘unknown inhibitor use’

For all cohorts the same methods were applied. Haplotype calls were translated
into Gene Activity Scores (GASs) and predicted phenotype categories based on the CPIC
and DPWG consensus [8,70,71]. A GAS of 0.0 was assigned to non-active alleles, 0.5 to
decreased activity, 1.0 to normal activity and 2.0 to increased activity alleles. Subsequently
the scores per allele were combined into the overall GAS by adding them together,
followed by a translation into phenotype categories. Based on the consensus paper of the
Dutch Pharmacogenetics Working Group (DPWG) and the Clinical Pharmacogenetics
Implementation Consortium) one of 4 clinically implemented phenotype categories was
assigned: poor metabolizer (PM, GAS = 0.0), intermediate metabolizer (IM, GAS = 0.5-1.0),
normal metabolizer (NM, GAS = 1.5-2.5) or ultra-rapid metabolizer (GAS = 3.0) [8].

As a proxy for CYP2D6 enzyme activity, the metabolic ratio of the most CYP2D6-
specific conversion of either tamoxifen or venlafaxine metabolism was used. Although the
metabolism of tamoxifen (desmetyltamoxifen to endoxifen) is dominated by CYP2D6, other
enzymes play a minor role in the tamoxifen metabolism and therefore in the metabolite
concentrations (Supplementary Figure S5.2) [27,28]. For the CYPTAM and the CYPTAM-
BRUT cohorts, the log of the metabolic ratio of the conversion from desmethyltamoxifen
to endoxifen ((In(Endoxifen (nM)/ Desmethyltamoxifen (nM))) was used as a proxy for
CYP2D6 enzyme activity [26,71]. Log transformation was performed to normalize the
data. There are no indications to assume non-linear kinetics of endoxifen formation by
CYP2D6 [45], in fact the kinetics of all other metabolites are linear [46]. Additionally, the
metabolic ratio as used in this study was shown to stay consistent with dose increase for all
phenotypes [30,72], making it a suitable proxy for enzyme activity. Last, it is expected that
intra-individual variability of CYP2D6 enzyme activity is limited, making one measurement
at steady state a suitable approach [73-75].

For the venlafaxine cohort, the log of the metabolic ratio for the conversion from
venlafaxine to desmethylvenlafaxine (In(O-desmethylvenlafaxine (nM) /venlafaxine (nM)))

was used.
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Neural network

From the selected alleles per individual, a dataset was generated indicating the presence
(1) or absence (0) of every variant observed in the entire cohort (including deletions and
duplications). From these variants a selection is made, variants were excluded if they adhere
to the following rules: located in homopolymer regions or not in *-allele nomenclature and
synonymous, intronic, located upstream or downstream. These were excluded to prevent
confounding from irrelevant variants in the development of the neural network. Variants
were included if they were part of the *-allele nomenclature or if they were additionally
nonsynonymous, frameshifts or splice sites variants.

The neural network was build using Keras (https://github.com/keras-team/
keras, version 2.2.4) with the TensorFlow (https://github.com/tensorflow/tensorflow,
version 1.12.0) backend. It uses the selected variants (Supplementary Data File S5.1)
per allele as predictors (n=78) and the measured metabolic ratio (In(Endoxifen (nM)/
Desmethyltamoxifen (nM))) as a surrogate for CYP2D6 enzyme activity and the outcome
variable of the model. The model was comprised of 2 parts (Supplementary Figure S5.3).
The first consisted of two interpreters, one per allele. These interpreters use all selected
variants per allele as input data and combine them into an allele contribution. The second
part was the combiner model which combined the two allele contributions to predict the
metabolic ratio. The model was trained with the data from the CYPTAM-cohort and
both parts were trained simultaneously. 10-fold cross validation with 100 cycles both
with and without internal hold-out was performed and showed no signs of overfitting
(Supplementary Figure S5.5). Shap (Shapley Additive explanation)-values were extracted
and normalized to define allele contributions. 0.0 was assigned to a gene deletion and 1.0
to a fully wildtype allele. Variant contributions were normalized accordingly, resulting in
the sum of variant contributions per allele corresponding to the allele contribution.

For both replication cohorts, the same variants as which were used during the
training were included in the selection. For the venlafaxine cohort, the predicted metabolic
ratio is translated with a linear transformation into the metabolic ratio for venlafaxine (In

(O-desmethylvenlafaxine (nM) /venlafaxine (nM))).

In vitro validation

To confirm the contribution of individual variants as predicted by the neural network, four
high impact variants and the *2 allele were tested in vitro. Variants were selected based on
the following criteria: the predicted contribution had to be 0.2 or <-0.2, without linkage
disequilibrium with a known causal variant and potentially causal (for example missense

or frameshift); both gain of function and loss of function variants were included. Variants
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selected were: g.42130667C>T, g.4212761C>G, g.42127611C>T and g.42129180A>T as well
as the *2 allele. Site mutagenesis was performed on pCMV4 CYP2D6*1 plasmid [76] with
QuikChange II Site-Directed Mutagenesis Kit (Agilent). Plasmid cDNA encoding variants
with the following amino acid exchanges were created: Arg330Pro (g.42127631C>G),
Gly42Glu (g.42130667C>T) and Phe120Ile (g.42129180A>T). The Asp337Asn exchange
was performed using pPCMV4 CYP2D6*2 as template. Mutagenesis primers and selected
variants are listed in Supplementary Table S5.4. Variants were expressed in HEK293 cells
grown in DMEM 6046 (Sigma) containing 1 g glucose/l, 10% fetal bovine serum, and
penicillin/streptomycin (100 IU/ml, 100 mg/ml) to a confluence of 60-70%. pCMV4
vectors containing the variants were transfected using Viromer Red (Lipokalyx) according
to manufacturer’s protocol. Cells were harvested after 24-48 hours incubation were stored
at -80°C. Cell pellets were resuspended in 0.1 M sodium phosphate buffer followed by
sonication for 20 x 1 sec and were centrifuged at 800 x g. Incubations were performed
with 800 x g supernatant corresponding to 25-125 g of protein, 0.1 M sodium phosphate
buffer, 50 uM bufuralol (racemate), and 1 mM NADPH in a total volume of 150 pl
reactions were linear for at least 5 hours and were terminated by addition of 14 pl of 70%
perchloric acid. After centrifuging the supernatant was analysed by high performance liquid
chromatography as previously described [77]. The amount of CYP2D6 apoprotein of the
different allelic variants were determined using sodium dodecyl sulfate polyacrylamide
gel electrophoresis and Western blot analysis. Residual CYP2D6 activity was assessed and
normalized with the average activity of the *-allele set at 1.0 to allow for comparison with

the neural network predictions.

Statistical analysis

To compare amplichip and PacBio based haplotype calls, cohen’s kappa was used, with a
significance cut-off of p<0.05. The amount of explained variability in CYP2D6 enzyme
activity for all phenotype predictions was assessed using linear regression, assuming a linear
relation between predicted phenotypes and observed metabolic ratio. For the conventional
approach, two different models were assessed, the first based on the clinical phenotype
categories (PM, IM, NM, UM), the second based on overall GAS. For the neural network
approach, the explained variability for all cohorts was assessed using linear regression with
the predicted metabolic ratio as predictor and the observed metabolic ratio as outcome.
Explained variability was expressed as R*-adjusted, using a p<0.05 cutoff for significance.
The error rate of the model was expressed as the rmse (root-mean-square error). All
statistics were performed using R version 4.0.2. The haplotyping pipeline and neural

network were developed using Python 2.
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Supplementary Figure S5.1: Flowchart of study cohorts
Samples were selected based on availability of remaining DNA. Samples were excluded if patients no
longer wanted to be part of the main study or were double included (total: n=6 in CYPTAM). All samples
were sequenced for CYP2D6 with PacBio SMRT sequencing. For neural network training and predictions
only samples with full length CYP2D6 sequences available and with clinical phenotype data were included.
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Supplementary Figure S5.2: Metabolic pathway of tamoxifen
Tamoxifen is first metabolized into desmethyltamoxifen and 4-hydroxytamoxifen, followed by a conversion
of these metabolites into endoxifen. The path through desmethyltamoxifen is the predominant pathway,
responsible for the majority of the endoxifen formation. CYP2D6 plays a key role in all metabolic conversions
to endoxifen. Depicted is the core metabolism of tamoxifen into its most active metabolite endoxifen.

150

SULT1A1

Endoxifen

No sequencing
results:
n=9



Towards predicting CYP2D6-mediated drug response

® CYP2D6/2D7 fusion genes / gene conversions

[ o | . )
N I ¢
=) ? g
N
< S B
e =
c 4 L: e ! ° .
(&) |
= [Te} o
o N 3 o
g | — | °
3 ° - . .
sl & -
0|
N «”
I
o o
z|S|
0.0 |0.25/ 05| 0.75|1.0 |1.25| 1.5 | 2.0 | 3.0 | n.a.

PM IM NM UM

PacBio

Supplementary Figure S5.3: Concordance Amplichip- and PacBio-based phenotype predictions

For all CYPTAM individuals phenotype predictions were made, based on Amplichip genotyping and
PacBio SMRT-sequencing genotype calling, according to Gene Activity Scores (GAS) and the Dutch
Pharmacogenetics Working Group and Clinical implementation consortiums consensus guideline.
Concordance: Kappa-coefficient 0.94, p<0.0001.
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Supplementary Figure S5.4: Neural network design

The neural network model consists of two parts. The first part consists of two allele submodels which train
as one. These models produce a contribution score per allele. The second part, the combiner submodel,
combines the contribution scores into a predicted metabolic ratio. Variant contributions reflect the impact
of variants on enzyme function, the contribution scores are normalized to represent gene activity scores,
the predicted metabolic ratio serves as a proxy for CYP2D6 enzyme activity.
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Supplementary Figure S5.5: 10-fold crossvalidtion with internal hold-out
25% of the data was used for the validation set. No devation between training and validation loss was
observed up to 100 epochs. No signs of overfitting were observed.
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Supplementary Table S5.1: *-allele haplotype frequencies for all cohorts

All haplotypes are based on all variants observed in the CYP2D6 locus, including CYP2D6/2D7 conversions
and fusion genes. CYPTAM-cohort is the training cohort, CYPTAM-BRUT the first validation cohort with ta-
moxifen as the CYP2D6 substrate used, Venlafaxine is the second replication cohort with individuals using
the CYP2D6 substrate venlafaxine. Haplotype translations are based on the PharmGKB variant to haplotype

translations.

Haplotype CYPTAM CYPTAM-BRUT Venlafaxine

n % n % n %
*1 357 3238 78 30.7 33 2391
*108 3 0.27 1 0.39
*10A 1 0.39
*10B 1 0.39
*10D 18 1.6 3 1.2 2 1.45
*15 1 0.72
*17 2 0.18
*1B 15 13 2 0.79
*1D 2 0.18 1 0.72
*1E 6 0.53
*1xN 6 0.53 1 0.39
*2 4 0.36
*22 5 0.45
*27 1 0.39
*2A 181 16.1 51 20.1 24 17.39
*2AxN 1 0.09 1 0.39 2 1.45
*2D 2 0.79 1 0.72
*2M 1 0.09
*2xN 1 0.09
*31 1 0.09
*33 13 12 1 0.39 2 1.45
*34 1 0.39
*35A 59 53 18 7.1 8 5.80
*35AxN 2 0.18
*39 1 0.72
*3A 21 1.9 3 1.2 7 5.07
*41 92 8.2 24 9.4 16 11.59
*41xN 1 0.09
*4N 221 19.7 33 13.0 21 15.22
*4AxXN 2 0.18 2 0.79 1 0.72
*4B 1 0.72
*4D 5 0.45 8 3.1 4 29
*4H 1 0.09
*4) 1 0.39
*5 45 4.0 9 35 8 5.80
*59 6 0.54
*6A
*6B 15 1.3 4 1.6 2 1.45
*7 1 0.39
*9 36 3.2 7 2.8 3 217
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Supplementary Table S5.2: Bufuralol incubation results
Site mutagenesis on HEK cells was performed on pCMV4 CYP2D6*1 plasmid with QuikChange Il Site-Direc-
ted Mutagenesis Kit (Agilent). The D337N exchange was performed using pCMV4 CYP2D6*2 as template.
HEK cells were incubated with bufuralol for 5 hours, upon which the metabolism rate was assessed by
measuring bufuralol and metabolites. Results are normalised to the average activity of *1, which is set at

1.0.
Genotype September 2019 December 2019 January 2020 Average
*1 0.927845  1.072155  0.952799  1.047201 1.027143 0972857 1
*2 0.780427 0.806543 0.520376  0.474208 0.455362 0.607383
*2+D337N 0.438914  0.66233 0 0 0.018975 0.224044
R330P 0 0 0 0 0.007519  0.047079  0,0091
G42E 0 0 0 0 0.009874  0.001144  0.001836
F1201 3439576 4910881 5878972 5374999 3.100804 2.457602  4.193805

Supplementary Table S5.3: Primer sequences for three separate PCR reactions
Full-length PCR: yielding one full length CYP2D6 sequence. Duplex PCR (*5): yielding an internal control
fragment for all samples and a deletion fragment if a CYP2D6 deletion is present. Triplex PCR: Yielding a full-
length fragment as well as a duplication fragment in the presence of a CYP2D6 duplication and/or a hybrid
fragment in the presence of a CYP2D6/CYP2D7 fusion gene.

Name

Primer sequence (5'-3’)

Full-length PCR
Fragment A Forward
Fragment A Reverse

ATGGCAGCTGCCATACAATCCACCTG
CGACTGAGCCCTGGGAGGTAGGTAG

Duplex PCR (¥5)
Fragment *5-forward
Fragment *5-reverse
IC-forward

IC-reverse

CTCCAGCCTCCACCAGTCCAG
CAGGCATGAGCTAAGGCACCCAGAC
GCATGCACAGCTCAGCACTGC
GCCACCCTGATGTCTCAGTTTCG

Triplex PCR

Fragment A Forward
Fragment A Reverse
Fragment B - Forward
Fragment B - Reverse
Fragment H - Forward

ATGGCAGCTGCCATACAATCCACCTG
CGACTGAGCCCTGGGAGGTAGGTAG
CCATGGAAGCCCAGGACTGAGC
CGGCAGTGGTCAGCTAATGAC
TCCGACCAGGCCTTTCTACCAC

IC: Internal control.
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