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Abstract

Pharmacogenomics is a key component of personalized medicine. It promises a safer 
and more effective drug treatment by individualizing the choice of drug and dose based 
on an individual’s genetic profile. In clinical practice, genetic biomarkers are being used 
to categorize patients into predefined *-alleles to predict CYP450 enzyme activity and 
adjust drug dosages accordingly. Yet, this approach has substantial limitations as it leaves 
a large part of variability in drug response unexplained. Here, we present a proof-of-
concept approach and introduce a continuous scale (instead of categorical) assignments 
to predict metabolic enzyme activity. We used the full CYP2D6 gene sequence as obtained 
with long-read amplicon-based sequencing and Cytochrome P450 (CYP) 2D6-mediated 
tamoxifen metabolism data from a prospective study of 561 patients with breast cancer 
to train a neural network. The model explained 79% of the interindividual variability in 
CYP2D6 activity compared to 54% with the conventional *-allele approach and assigned 
accurate enzyme activities to known alleles (activity matched previously reported effects) 
and predicted the activity of previously uncharacterized combinations of variants. The 
results were replicated in an independent cohort of tamoxifen-treated patients (model 
R2-adjusted = 0.66 vs *-allele R2-adjusted = 0.35) and a cohort of patients treated with the 
CYP2D6 substrate venlafaxine (model R2-adjusted = 0.64 vs *-allele R2-adjusted = 0.55). 
Moreover, human embryonic kidney cells were used to confirm the effect of five variants 
in in vitro functional assays measuring the metabolism of the CYP2D6 substrate bufuralol. 
These results demonstrated the advantage of a continuous scale and a completely phased 
genotype for prediction of CYP2D6 enzyme activity and could potentially enable more 
accurate prediction of individual drug response.
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Introduction

In personalised medicine, pharmacogenomics (PGx) is a crucial component that ensures 
the safety and efficacy of drug treatments based on patient’s genetic profile [1,2]. The 
cytochrome P450 (CYP) isoenzyme 2D6, encoded by the polymorphic CYP2D6 [3], is 
involved in the metabolism of 25–30% of commonly prescribed drugs [4]. Genetic variants 
in the CYP2D6 gene, such as SNVs (single nucleotide variants), CNVs (copy-number 
variants) and structural rearrangements [3,5,6], may lead to differential activity of the 
enzyme Cytochrome P450 (CYP) 2D6 and thereby to altered drug response [7,8]. 

To translate CYP2D6 variants into clinically actionable guidelines, they are assigned 
to standard haplotypes and predicted phenotypes. Haplotype assignment is performed 
based on *-allele nomenclature, catalogued by the Pharmacogene Variation Consortium 
(PharmVar), where each *-allele describes a predefined combination of variants [9,10]. 
Subsequently, the gene activity score (GAS) system assigns a score to each allele, with 0 
for no activity, 0.5 for decreased, 1 for normal and 2 for increased activity [11]. Predicted 
phenotypes are assigned based on the combination of the two inferred allele activities 
and are summarized into 4 different CYP2D6 metabolizer categories [10,12]: poor 
metabolizer (PM), intermediate metabolizer (IM), normal metabolizer (NM) and ultra-
rapid metabolizer (UM). However, 6 to 22-fold unexplained intra-category variability in 
enzyme activity and considerable overlap in activity between phenotypes remains [13]. 
Moreover, a recent study of twins has shown that although 91% of CYP2D6 metabolism 
is hereditary, GAS-based inferred phenotypes only explain 39% of variability in CYP2D6 
enzyme activity [14]. Similar trends in missing heritability have been shown for other 
genes involved in CYP450-mediated drug metabolism [15,16]. This is partly due to rare 
genetic variants that are not catalogued in the current *-allele nomenclature [17]. A major 
limitation of the current methodology is the loss of a considerable amount of information 
in the categorization. Therefore, as has been suggested previously, a continuous phenotype 
prediction rather than a categorical model is likely to improve the prediction of CYP2D6 
enzyme activity [8,18]. A convolutional neural network is highly suitable for this type 
of phenotype prediction from genetic data [19,20]. Although previous approaches of 
deep learning in pharmacogenomics were aimed at automated *-allele assignment or to 
predicting the residual activity of conventional *-alleles [21,22], we propose a strategy to 
predict CYP2D6 enzyme function on a continuous scale using full gene sequencing data 
and a neural network, omitting *-alleles completely.  
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Results

Conventional categorical phenotype predictions

 To study the explained variability of conventional phenotype assignment, we included 561 
subjects of European ancestry from the prospective CYPTAM study, which investigated 
the relationship between CYP2D6  genotype and outcome of breast cancer treatment with 
tamoxifen (Supplementary Figure S5.1) [23].    The metabolism of tamoxifen is complex and 
involves multiple other enzymes (Supplementary Figure S5.2). Nonetheless, the conversion 
from desmetyltamoxifen to endoxifen is dominated by CYP2D6 [24,25]. Therefore we 
inferred CYP2D6 enzyme activity by using the ratio between the metabolites endoxifen 
and desmethyltamoxifen (Metabolic ratio (MR)) [26].  The influence of common variants 
in other enzymes (CYP3A4, CYP3A5, CYP2C19, and SULT1A1) has been investigated 
but did not have a profound effect on this conversion [27,28].

To fully resolve the CYP2D6 paternal and maternal alleles, we applied long-read 
sequencing using germline DNA [5], which yielded comparable predicted phenotype results 
to orthogonal testing (Kappa-coefficient: 0.95 p=3.5x10-169) (Supplementary Figure S5.3 
and Supplementary Table S5.1). Classification of patients into conventional metabolizer 
categories resulted in 54.4% (R2=0.54) explained variability in CYP2D6 enzyme activity 
(Figure 5.1A, Table 5.1). 

Table 5.1: Regression results explaining CYP2D6 enzyme activity using diff erent methods
All predicted phenotypes are based on PacBio long-read sequencing data. Consensus guidelines were used 
to assign the conventional four phenotype categories and gene activity scores. A neural network trained 
on CYPTAM data was used for the prediction of a continuous phenotype. Per-allele contributions from the 
neural network were added together (similar to the gene activity score) to predict the eff ect of a continuous 
gene activity score per allele using an additive model. For CYPTAM-BRUT, patients with unknown inhibitor 
use were excluded from this analysis (n=16). All values are the adjusted R2 based on linear regression, with 
a p-value cut-off  of 0.05 for signifi cance.

CYPTAM 
(n=561)

CYPTAM-BRUT 
no inhibitors 
(n=127)

CYPTAM-BRUT 
inhibitors 
(n=24)

Venlafaxine
(n=69)

Categorical phenotype 0.5443, 
p=2.78x10-95

0.3483, 
p=4.517x10-12

0.07752,
p=0.1009

0.5461, 
p=8.09x10-12

Conventional gene activity 
scores 

0.6659, 
p=1.07x10-127

0.492, 
p=2.52x10-20

0.1583,
p=0.0308

0.6354, 
p=1.54x10-16 

Continuous phenotyping 
prediction

0.7885, 
p=6.14x10-191

0.6618, 
p=1.99x10-31

0.1633,
p=0.0286

0.6385, 
p=1.15x10-16

Gene activity scores predicted 
(predicted allele activities in an 
additive model)

0.7278, 
p=2.59x10-160

0.6012, 
p=6.15x10-27

0.1929, 
p=0.0183

0.6064, 
p=2.028x10-15
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Figure 5.1: CYP2D6 activity based on conventional CYP2D6 metabolizer categories, gene-activity 
scores, and diplotypes
Explained variability of CYP2D6 activity in the CYPTAM-cohort, based on (A) conventional phenotype 
categories and (B) gene activity scores (n=561). (C) Tange in enzyme activity within common (>5% 
occurrence) diplotypes. Metabolic ratio (ln(Endoxifen (nM)/Desmethyltamoxifen (nM)) serves as proxy 
for CYP2D6 enzyme activity. Gene activity scores and phenotype predictions are based on *-allele 
nomenclature and Dutch Pharmacogenetic Working Group translations using PacBio long-read sequencing 
data. R2: R2adjusted based on linear regression. (A): Violin plots display observation density, lines represent 
the median and inter quartile range. (B and C): black lines represent median, grey area represents 95% 
confi dence interval. PM: Poor Metabolizer, IM: intermediate metabolizer, NM: normal metabolizer, UM: 
ultra-rapid metabolizer.
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Although the GAS system performed better than the 4 metabolizer categories 
(R2=0.66), a considerable amount of variability in enzyme activity within each predicted 
phenotype category remained unexplained (Figure 5.1B, Table 5.1). Stratifying the 
phenotype categories into diplotypes showed that CYP2D6 activity varied substantially 
within identical diplotypes (Figure 5.1C). This suggested that a large proportion of the 
variability in enzyme activity within metabolizer phenotypes is already introduced when 
assigning haplotypes, with individuals carrying the same diplotype displaying phenotypes 
ranging from normal metabolizers to poor metabolizers. 

A continuous scale improves phenotype predictions

To increase the explained variability in CYP2D6 enzyme activity, we developed and trained 
a neural network consisting of two parts (Supplementary Figure S5.4). The first part assigns 
contribution scores to individual alleles and variants and the second part combines paternal 
and maternal allelic scores into a predicted MR. Both parts were trained simultaneously on 
data generated from the CYPTAM-cohort. By including all observed variants independent 
of predefined haplotypes, the explained variability increased to 79% (R2-adjusted = 0.79 
(Figure 5.2A, Table 5.1)). Inter-individual variability is reflected by the range of observed 
MR in individuals with the same genetic make-up based on the 77 variants which are 
considered by the neural network (equal predicted MR). Additionally, there was large 
overlap in the predicted MR between individuals from the conventional IM and NM 
categories. The error rate (|observed MR – predicted MR|) was consistent over the range 
of the measured phenotype, with the exception of several subjects (n=16 (2.9%) outside of 
confidence interval) with a lower observed CYP2D6 activity than predicted (Figure 5.2A).

Allele contribution scores generated in the first part of the model were scaled to 
be comparable to the conventional GAS system (ranging 0–2). Allele contribution scores 
predicted by the model showed a deviation from the conventional GAS assignments for 
multiple *-alleles (Figure 5.2B). 

For example, the *2A allele has a conventional GAS of 1.0 representing a fully active 
allele. However, the predicted allele contributions ranged from 0.60 to 0.90, accounting for 
variants which are not included in the reference *2A haplotype. Similarly, the predicted 
average contribution for *41 is 0.34 (95% CI (confidence interval): 0.33–0.36), whereas 
the conventional assignment for the *41 allele is 0.5 [9]. The same holds for the relatively 
rare *59 allele, currently regarded as decreased activity assuming a GAS of 0.5 whereas we 
predicted the activity to be 0.20 (95% CI: 0.19–0.22). The use of allele contribution scores 
on a continuous scale in an additive model improved the prediction of enzyme activity 
to 73% (Figure 5.2C). There are studies underway that aim to investigate the effect of 

Chapter_5_Maaike.indd   126 15-11-2021   08:21:33



Towards predicting CYP2D6-mediated drug response

127

5

Figure 5.2:  Neural network predictions for the CYPTAM cohort
(A) The model predicts the metabolic ratio (ln(Endoxifen (nM)/Desmethyltamoxifen (nM)) as a proxy 
for CYP2D6 enzyme activity on a continuous scale, with a consistent error rate over the entire range 
(n=561). Colouring is based on conventional *-allele assignments and metabolizer categories and shows 
a continuous transition from one category to the next, with overlap between the IM and NM groups. (B) 
Explained variability in enzyme activity using an additive model for the predicted allele contributions 
(n=561), such that predicted gene activity score = predicted contribution allele 1 + predicted contribution 
allele 2. (C) Predicted contributions per allele grouped in conventional *-allele assignments. (D) Comparison 
of the neural network predicted gene activity score in an additive model with the neural network predicted 
metabolic ratio. Where the predicted gene activity score additive = predicted contribution allele 1 + 
predicted contribution allele 2, the predicted metabolic ratio is the final outcome of the neural network and 
the colours represent the activity of the most active allele. R2: adjusted R2 based on linear regression. Rmse: 
root mean square deviation. (A) and (B): blacklines represent median, grey area represents 95% confidence 
interval MR: Metabolic Ratio (of ln(Endoxifen(nM)/ desmethyltamoxifen(nM))), PM: poor metabolizer, IM: 
intermediate metabolizer, NM: normal metabolizer, UM: ultra-rapid metabolizer.
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Figure 5.3:  Conventional and continuous predictions in replication cohorts
The explained variability of CYP2D6 enzyme activity for CYPTAM-BRUT (tamoxifen metabolism, n=167) 
based on (A) conventional phenotype categories and (B) on a neural network trained with data from 
the CYPTAM cohort. The influence of CYP2D6 inhibiting drugs on the overall enzyme activity shows 
overlap with CYPTAM samples with a negative deviation from the predicted enzyme activity. Error 
rates per CYP2D6 inhibiting drug give an indication of inhibitor potency (B, n=24 total). The explained 
variability of CYP2D6 enzyme activity for venlafaxine cohort (venlafaxine metabolism, n=69) based on 
(C) conventional phenotype categories and (D) on a neural network trained with data from the CYPTAM 
cohort. R2: R2-adjusted based on linear regression. In (B): black lines represent median, grey area represents 
95% confidence interval. In (A) and (C) Violin plots display observation density, lines represent the median 
and inter quartile range. PM: poor metabolizer, IM: intermediate metabolizer, NM: normal metabolizer, UM: 
ultra-rapid metabolizer.

specific alleles on a continuous scale [29]. However, simply applying an additive model to 
individual allele contribution scores may be an oversimplification of human physiology. 
The second part of the neural network can accommodate non-additive combinations and 
therefore identify more complex relations between 2 alleles. Indeed, when the sum of allele 
contributions remains the same, a higher overall activity was observed when one of the 
alleles was fully active and one was fully inactive compared to two alleles with decreased 
activity (Figure 5.2D), which is in concordance with previous reports on IM phenotype 
variability [30]. 

Increased explained variability in independent samples and CYP2D6 substrates

To validate the model, 167 subjects of European ancestry receiving tamoxifen who partici-
pated in the CYPTAM-BRUT study [31] were sequenced using long reads and analysed 
with our neural network (Supplementary Figure S5.1 and Supplementary Table S5.1). In 
this cohort, patients were divided into two groups based on the use of CYP2D6 inhibitors 
that could influence the measured metabolic ratio of tamoxifen. Conventional phenotype 
predictions explained only 34.8% (R2-adjusted = 0.35 of the variability in CYP2D6 enzyme 
activity (Figure 5.3A and Table 5.1) in subjects without concomitant CYP2D6-inhibiting 
drugs (n=127). Neural network-based phenotype prediction on a continuous scale resulted 
in an almost doubling of the explained variability (R2-adjusted = 0.66) (Figure 5.3B and 
Table 5.1). These numbers were lower than those in the CYPTAM-cohort, most likely due 
to a lower sample size and lower density of observations in the extremes of the enzyme 
activity (PM and UM). For subjects using concomitant CYP2D6 inhibitors (n=24), 7.8% 
and 16.3% of the CYP2D6 activity could be explained by conventional and continuous 
phenotype prediction, respectively (Table 5.1). Moreover, there was substantial overlap 
between subjects with a negative deviation from the predicted enzyme activity in the 
CYPTAM-cohort and patients from the CYPTAM-BRUT cohort receiving concomitant 
treatment with a CYP2D6 inhibitor. This observation suggests that the concomitant use 
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of CYP2D6 inhibitors may explain the overestimated enzyme activity for several subjects 
in the CYPTAM-cohort. Stratifying the error between the predicted and observed enzyme 
activity per CYP2D6-inhibiting drug provides an estimate of the potency of the inhibitor 
(Figure 5.3B). 

CYP2D6 enzyme activity is substrate specific and the effect on metabolism of a given 
variant varies per drug [32,33]. To assess substrate specificity of the neural network, we 
tested the performance on patients treated with a different CYP2D6 specific substrate, the 
antidepressant venlafaxine [34] (Supplementary Figure S5.1, Supplementary Table S5.1 and 
Table 5.1). In venlafaxine-treated patients of European ancestry, the explained variability 
of CYP2D6 activity increased from 54.6% (R2-adjusted = 0.55) for conventional phenotype 
prediction to 63.9% (R2-adjusted = 0.64) for phenotype predictions on a continuous scale 
(Figure 5.3C and Figure 5.3D). Although the explained variability improves with the 
continuous prediction compared to conventional categorization, the increase was limited. 

In vitro validation of predicted variant contributions

We also queried the trained neural network to assess the contribution of individual variants 
to overall enzyme activity (Supplementary Data File S5.1). These contributions showed 
a wide range of effects in a pattern indicative of a continuous scale as opposed to an on/
off effect (Figure 5.4A). To confirm the contributions predicted by the model, 4 variants 
and the *2 allele were expressed in HEK293 (human embryonic kidney) cells, which are 
completely devoid of any other metabolic enzymes [35,36], and incubated with bufuralol 
(Supplementary Table S5.2). The direction of our predictions (decrease or increase) was 
in concordance with the in vitro results, with accuracy increasing as the variant frequency 
increases. The predicted activity for *2 closely matched the observed activity in HEK293 
cells (Figure 5.4B). For CYP2D6*2 it is known that the normal activity of the allele is 
generally caused by the presence of an enhancer mutation causing an increase in expression 
which is almost in full linkage disequilibrium with the *2A allele [37,38]. This enhancer 
mutation is generally not included in in vitro experimental setups, leading to ower activity 
compared to wildtype. The presence of the enhancer mutation was not included in our 
neural network model, but was present in the population [39]. Nonetheless, in this study 
we observed decreased CYP2D6*2A activity in vivo, suggesting that *2A activity might be 
substrate-dependent. This decreased activity for CYP2D6*2A in tamoxifen metabolism 
has been observed previously [33].

For the gain of function variant Phe120Ile, the difference between the in vitro 
experiment and the neural network prediction was 8-fold, which might be explained by 
both the low allele frequency in the training cohort (n=3) and the substrate specificity of 
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Figure 5.4:  Contributions of individual variants
(A) Predicted contributions per variant included in the training of the neural network, with the absence 
of the variant set to 0.0 and a gene deletion set to -1.0 (n=78 variants). (B) In vitro validation of variants in 
HEK cells using bufuralol metabolism. Rate of bufuralol metabolism was normalized using the metabolic 
rate of the cells transfected with CYP2D6*1 cDNA as reference point of 1.0. Similar to the neural network 
contributions results were further scaled to have the absence of a variant (normal activity) set to 0.0 and the 
full absence of metabolism to -1.0. Incubations were performed in quadruplicate.
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this variant. As the Phe120Ile variant is known to affect CYP2D6 substrates differently, 
this difference might be explained by the fact that the model was trained on tamoxifen 
metabolism whereas the in vitro experiment was performed using bufuralol as a proxy for 
enzyme activity [33,40,41]. The Phe120Ile amino substitution has previously been seen in 
CYP2D6*49 where the allele has lower activity due to the presence of the Pro34Ser mutation 
and in CYP2D6*53 where the Phe120Ile mutation is accompanied by an Ala122Ser [9]. 
These alleles were not present in our study population, as none of the subjects carried the 
other mutations in combination with the Phe120Ile mutation [33]. These results indicate 
that the model was able to detect the biological effect of variants with improved accuracy 
as the number of observations increased.

Discussion

The role of Cytochrome P450 enzymes in the metabolism of commonly prescribed drugs 
has provided a basis for developing a series of molecular and genotyping assays to predict 
patient drug responses. To date, genotyping and phenotype predictions for clinical PGx 
utilize a categorical approach where predefined genomic variants are screened to infer 
patient haplotypes according to the *-nomenclature and thereby the associated phenotype 
category [10]. However, in current clinical PGx, rare variants (minor allele frequency 
<1%) are often excluded and haplotype phasing is inferred rather than resolved. Our 
proof-of-concept study, based on allele-specific genotyping and continuous phenotype 
predictions powered by a neural network model that predicts tamoxifen metabolism, 
showed improvements in decreasing the missing heritability in CYP2D6-mediated 
metabolism. In the CYPTAM-cohort, we observed a 25% increase in explained variability 
compared to the conventional approach. Notably, our model achieved improvements of 
31% and 11% in independent tamoxifen (CYPTAM-BRUT) and venlafaxine replication 
cohorts respectively in predicting patient drug metabolic rates and thereby potentially 
the drug response. Our model is agnostic to the sequencing technology used and could 
be applied to data obtained with alternative genotyping methods. However, it should be 
kept in mind that haplotype phasing might be less reliable with other sequencing methods. 
Moreover, problems might arise with the use of short-read sequencing due to the very 
similar structures of the flanking pseudogenes CYP2D7 and CYP2D8 as well as deletion 
and duplication variants of these genes.

The inhibition of tamoxifen metabolism by the use of concomitant CYP2D6 inhibitors 
could be estimated in the CYPTAM-BRUT cohort. Our results confirm that paroxetine 
has the strongest impact on enzyme function [42]. Guidelines on GAS adjustments based 
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on inhibitor use are available for CYP2D6 [43]. However, these GAS adjustments are not 
yet standard clinical practice. Moreover, inhibitor use might change over time whereas 
genetic make-up will not, making it of importance to be able predict enzyme activity based 
solely on genetics. In our study, subjects receiving concomitant treatment with a CYP2D6 
inhibitor were outliers in the enzyme activity prediction graphs and the strength of each 
inhibitor matched the error between observed and predicted enzyme activity. These findings 
indicate that the model was learning the role of genetic information and it is expected that 
the contribution of other potential confounding variables to the overall model is minimal. 
In drug response management, it is critical to detect the role of concomitants in drug safety 
and efficacy. Thus, our results pave the way for reliable deconvolution of the expected 
drug metabolic rate and the impact of concomitants to better inform treatment strategy. 
Although the increase in explained variability in the CYPTAM-BRUT cohort was similar 
to that in the CYPTAM cohort, the R2 of both the conventional model and the continuous 
model was lower in the CYPTAM-BRUT cohort compared to the CYPTAM cohort. This 
difference can be explained by the sample size as well as the density of patients in the 
extremes of the metabolic groups (PM and UM), leading to a higher variability and lower 
representation of the entire metabolic categories.

In the venlafaxine cohort, the gain in explained variability was limited (55% to 64%) 
compared to the other two cohorts. Both substrate specificity [32,33] as well as the limited 
sample size (n=69) in the venlafaxine cohort may contribute to this limited increase in 
explained variability. In addition, due to the limited sample size, the majority of samples 
were from intermediate and normal metabolizers, limiting the genetic diversity and thereby 
affecting the overall R2. Moreover, venlafaxine is not solely metabolized by CYP2D6. 
Indeed, it has recently been shown that CYP2C19 has a significant contribution to the 
venlafaxine metabolism (p<0.001 for the majority of metabolizer groups) [44]. In this study 
we used the metabolic ratio between endoxifen and desmethyltamoxifen as a proxy for 
enzyme activity. Although the metabolic conversion of endoxifen to desmethyltamoxifen 
is CYP2D6-specific, other enzymes are involved in the metabolism of tamoxifen, thereby 
influencing the concentration of the metabolites used in our model as well [23,24,27,28]. 
Moreover, substrate specific effects might result in limitations regarding the generalizability 
of the model for all CYP2D6 substrates. Therefore, this ratio might not reflect the activity of 
CYP2D6 for other substrates. Nonetheless, the model still outperformed the current clinical 
standard as an increase in explained variability was also observed for the CYP2D6 substrate 
venlafaxine. To explore the full capability of the proposed neural network approach, large 
cohorts with CYP2D6-specific substrates are needed. In future studies, collecting real-world 
evidence from larger cohorts can facilitate our understanding of substrate specificity and 
the role of CYP2D6 in the metabolism of wider range of drugs.
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Markedly, the contribution of individual alleles to the overall enzyme activity did not fully 
align with the additive model that is currently used for phenotype assignment. The model 
that adds the two individual allele contribution scores resulted in a lower explained variability 
than the combination of the two alleles in the neural network (R2 of 0.73 and 0.79 respectively 
for the CYPTAM cohort). This finding can either be explained by a genetic component (for 
example up-regulation of CYP2D6 expression or non-CYP2D6 variants) or by a non-linear 
relation between CYP2D6 enzyme activity and the metabolic ratio. There is, however, no 
indication to assume a non-linear relation in CYP2D6 enzyme activity and tamoxifen 
metabolism [45,46]. Additionally, we observed variable activity between alleles which have 
been assigned the same *-haplotype. This interindividual variability in allele activity can be 
associated with exclusion of variants outside of the best matching *-haplotype. The overall 
activity of star-alleles deviated from defined categorical assignments and was suggestive of 
a more continuous nature. Rare and not yet catalogued variants might be responsible for 
this deviation as they are not included in *-haplotype definitions [17]. 

Our data show that, for a subset of variants and alleles, the predicted variant and 
allele contributions are in line with those in in vitro experiments. Nonetheless, the predicted 
activity based on the neural network and the in vitro data did not always align completely. 
A potential explanation for this is the role of substrate specificity. Different CYP2D6 
substrates are affected by CYP2D6 variants to a different degree. For example, the impact 
of variants affecting the protein binding site might also be dependent on the size of the 
drug that is being metabolised, if the size of the binding site is decreased, smaller molecules 
might be less affected that larger molecules [47]. Another potential explanation may be 
that both in vitro predictions and neural network predictions are not perfect reflections 
of an in vivo situation. 

It has been shown that in-vitro results can give a reliable indication of the in vivo 
effect of a specific variant [35,36]. Both the neural network predictions, which are in 
silico predictions based on in vivo data, and the in vitro results showed the same impact 
(decreased, normal, or increased activity) of the investigated variants. These results indicate 
that the neural network-based prediction can be valuable in evaluating the potential 
deleteriousness of SNPs in a similar way as in vitro experiments.

Multiple tools have been developed to predict PGx phenotypes from sequencing data, of 
which stargazer and Hubble are the most prominent [21,48,49]. Stargazer aims at assigning 
star-haplotypes and thereby phenotype categories based on catalogued genetic markers 
whereas Hubble has been trained on in vitro *-allele activity to predict phenotypes on a 
continuous scale. Our approach completely omits *-alleles and predicts in vivo phenotypes 
on a continuous scale, making it a unifying model from sequence to phenotype. 

Chapter_5_Maaike.indd   134 15-11-2021   08:21:37



Towards predicting CYP2D6-mediated drug response

135

5

This study focused on the role of genetic variants within CYP2D6 locus on variable 
drug response for tamoxifen and venlafaxine. However, besides CYP2D6 genetics, 
additional genetic factors can also regulate CYP2D6 expression and thereby influence 
response to these drugs [50-52]. The eQTLs (expression quantitative trait loci) described 
by the GTEx (genotype-tissue expression) project could be a valuable resource to assess the 
impact of various genetic variants in gene expression in different tissues [53]. Moreover, 
recent studies have shown that several transcription factors (such as TSPYLs and HNF4α) 
can influence the expression of CYP enzymes [51,54]. However, limited samples of liver 
tissue in the GTEx database, where known PGx genes including CYP2D6 are predominantly 
expressed, did not allow us to investigate the potential impact of variants found in our study. 
Notably, additional metabolic enzymes might also be involved in the drug metabolism. For 
tamoxifen, CYP2C19, CYP3A4, CYP3A5 and SULT1A1 can also play a role in several steps 
of the metabolic pathway. However, previous studies suggest that the role of these enzymes 
in tamoxifen metabolism may be limited [27,28,55]. Further studies on larger cohorts, 
where data on observed drug phenotypes as well as the genetic makeup of all responsible 
enzymes and potential transcription factors is available, may shed light on the role of other 
genetic variants in the metabolism of tamoxifen and venlafaxine. Last, the approach in this 
study is focussed on the PGx of the pharmacokinetic marker CYP2D6. Nonetheless, PGx 
of pharmacodynamic targets can also play a role in variability in drug response [2,56,57]. 
This field is currently less well understood due to the difficulties associated with phenotype 
definitions. For pharmacokinetics, this is simpler as the effect can be measured by drug 
concentrations. Nonetheless, potential impact of pharmacodynamics in the field of PGx 
should not be neglected and warrants further research. 

Our study suggests that, for the gene and drugs included, the proposed strategy is capable of 
improving patient phenotype predictions by using a continuous scale for this prediction as 
well as offering insights on genetic variants the underlie variable drug response. However, 
several limitations do exist. First, this study focused on the role of variants within the 
CYP2D6 locus and did not account for variants outside of this locus that can potentially 
influence variability in drug response, as discussed above. Moreover, drug response is not 
only influenced by genetic factors. Multiple additional factors such as substrate specificity, 
lifestyle, concomitant drug use, comorbidities, and epigenetics are known to play a role 
in patient treatment response [16,27,28,58,59]. Unfortunately, our study was limited in 
regards to the ability to include these factors due to the sample size and lack of data on 
co-medication and comorbidities. Additionally, our sample size precluded characterization 
of all rare variants. Last, the frequency of (pharmaco)genetic variants is known to vary 
between different ethnicities [60,61]. However, our study included only individuals of 
European ancestry and therefore did not include any variants which might be specific 
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to other ethnicities. In the future, larger cohorts of varied ethnicity with more extensive 
clinical data as well as a more comprehensive genetic makeup of the pharmacogenes 
could improve drug response prediction models even further, although it is unlikely that 
all environmental factors can be accounted for. Last, our study was a proof-of-concept 
for CYP2D6 and tamoxifen and venlafaxine, studies applying the same approach to other 
gene-drug combinations should be conducted to confirm the value of a neural network-
based approach for PGx. 

Materials and methods 

Study design 

The aim of this study was to develop a model to predict CYP2D6 enzyme activity on a 
continuous scale and compare this approach to the conventional categorical methods. 
Genetic markers in the CYP2D6 locus were used as the predictors. For the outcome, the 
metabolic ratio of CYP2D6 substrates was used as a proxy for enzyme activity. Existing 
cohorts were included based on availability, therefore sample size calculations were not 
performed. A cohort of 608 individuals was used for the development of the model, and 
two independent cohorts of 225 and 78 individuals were used for replication. The CYPTAM 
protocol was approved by the Institutional Review board of the Leiden University Medical 
Center (LUMC). The CYPTAM-BRUT protocol was approved by the Institutional Review 
board of the Leuven University medical center. Venlafaxine samples were collected in 
routine clinical care at Catharina Hospital, Eindhoven, the Netherlands. The medical ethics 
committee of the Catharina Hospital provided a waiver for consent as samples and data 
for study purposes were already available, according to the code of conduct for responsible 
use of human tissue and medical research (fedora.org).

Study cohorts 

The data used in this study originated from one main cohort and two independent cohorts 
of European ancestry. The main study cohort, the CYPTAM-cohort, consisted of 608 
subjects for whom DNA material was available (The Netherlands National Trial Register: 
NTR1509) [23]. In short, the multicenter prospective CYPTAM study recruited subjects 
receiving tamoxifen as an adjuvant breast cancer therapy to investigate the association 
between CYP2D6 genotype, endoxifen serum concentration and clinical outcomes. The 
first replication cohort, the CYPTAM-BRUT cohort, consisted of 225 subjects recruited 
in a study investigating the association between CYP2D6 genotype and endoxifen serum 
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concentration on response rate to tamoxifen in postmenopausal women (Clinicaltrials.gov: 
NCT00965939) [31]. The second replication cohort, the venlafaxine cohort, consisted of 78 
Dutch subjects taking venlafaxine. Samples were collected as part of routine patient care 
at the Catharina Hospital, Eindhoven, the Netherlands. DNA samples and accompanying 
data were de-identified before transfer to the LUMC for analysis. 

Drug metabolite measurements

For both the CYPTAM and CYPTAM-BRUT cohort, steady state through concentrations 
of tamoxifen and metabolites were measured with a validated high performance liquid 
chromatography-tandem mass spectrometry upon study inclusion. All measurements 
were performed at the LUMC department of Clinical Pharmacy and Toxicology. In total 4 
compounds were measured: tamoxifen, 4-hydroxytamoxifen, O-desmethyltamoxifen and 
endoxifen. A total of 0.2 ml of each serum sample was mixed with 0.5 ml of 0.1 M ZnSO4 
and 0.2 ml of the internal standard working solution 4-D5-IS. After mixing for 3 min on 
a vortex mixer, the mix was centrifuged at 13,000 rpm for 5 min at room temperature. A 
volume of 20 µl supernatant was injected into the HPLC instrument. Chromatographic 
analysis was performed using a Waters Micromass Quattro micro API Tandem MS equipped 
with a Dionex P680A DGP-6HPLC pump, Dionex Ultimate 3000 autosampler and a 
Diones Thermostated Column Compartment. Separation of the analytes from potentially 
interfering serum components was achieved using a Waters X-bridge Column (3.5 µm, 4.6 
x 50 mm) with a Spark HySphere C18 HD pre-column (7 µm) in a Phenomenex holder. The 
mobile phase consisted of 25% solution A (0.1% formic acid + 2 mM ammonium acetate in 
H2O) and 75% of solution B (0.1% formic acid + 2 mM ammonium acetate in methanol) 
and was delivered at a flow rate of 0.4 ml/min. Concentrations were normalized to nM and 
metabolic ratios calculated to reflect the rate of conversion from one metabolite to the next. 

For the venlafaxine cohort, plasma concentrations of venlafaxine and its metabolite 
O-desmethylvenlafaxine were determined as part of routine clinical care. Concentrations 
were determined with a validated ultra-performance liquid chromatography-tandem mass 
spectrometry method. Clozapine-D4 dissolved in acetonitrile was used as internal standard 
in a concentration of 0.1 mg/L. To 100 µl of each plasma sample, a volume of 300 µl of 
internal standard solution was added and vortex-mixed for 30 seconds. After centrifugation 
for 10 min at 10,900 rpm, a volume of 200 ul of the supernatant was mixed with 200 µl of 
a 5 mM ammoniumacetate solution and 10 µl of this mix was injected on the UPLC-MS/
MS. Chromatographic analysis was performed using a Waters Acquity UPLC with a BEH 
C18 (2.1 x 100 mm, 1.7 µm) column at 40°C. The mobile phased consisted of 90% solution 
A (5 mM ammoniumacetate + 0.05% formic acid) and 10% solution B (acetonitril 100%) 

Chapter_5_Maaike.indd   137 15-11-2021   08:21:37



Chapter 5

138

and was delivered at a flowrate of 0.35 ml/min. Concentrations were normalized to nM. 
All samples were analysed at the Catharina hospital department of Clinical Pharmacy.

DNA sample processing

Germline DNA isolation from blood was performed previously for the main studies and 
for routine clinical use. Remaining DNA samples were collected and transferred to the 
LUMC for sequencing. All samples were sequenced with Pacific Bioscience’s (PacBio) 
SMRT-sequencing technique using full length CYP2D6 amplicons [62]. PacBio sequencing 
enables the identification of all variants in the locus, including those in difficult and 
repetitive regions in addition to obtaining fully phased paternal and maternal alleles [5]. To 
obtain CYP2D6 amplicons, three separate two-step PCR reactions were executed, one for 
full length amplicons and two for Copy Number Variants (CNV) using a similar protocol 
to Buermans et al. [5]. The current protocol differed in regards to the scale at which the 
analysis was performed which required larger sets of barcode primers. Additionally, the 
two replication cohorts were sequenced using the PacBio Sequel platform as opposed to 
the RSII platform which was used for the study by Buermans et al. and the training cohort. 
All primers used were based on previous research [63,64] and ordered from Integrated 
DNA Technologies (IDT) [65] (Supplementary Table S5.3).

The CYP2D6 specific primers were designed to generate a 6.6 kB fragment covering 
the entire CYP2D6 locus including upstream and downstream regions [63,64]. Target 
regions were amplified using the Takara LA Taq DNA polymerase kit [66]. A 10µl reaction 
volume contained 50–100 ng DNA, 1x PCR buffer with MgCl2, 0.4mM dNTPs, 0.4 µM of 
both of the full length CYP2D6 primers and 0.4 U Takara La taq. PCR cycle parameters 
were 3 min at 95°C, followed by 30 cycles of 10 sec 98°C and 15 min 68°C, finished with 15 
min at 68°C. Subsequently, amplicon barcoding was performed using M13-tailed primers. 
These barcode primers were introduced in a second PCR with identical conditions to the 
first, using 1 ul of the first PCR product and 5 cycles of amplification. 

CYP2D6 gene deletions were identified with a duplex PCR. The primer set consisted 
of CYP2D6-deletion specific primers and an internal control (IC) [63,64]. Target regions 
were amplified using the KAPA long range hotstart kit from kapa biosystems (REF: 
KK3502) [67]. The 10 µl reaction volume contained 50–100 ng DNA, 0.5x PCR buffer, 1.7 
mM MgCl2, 0.3 mM dNTPs, 0.5 uM of CYP2D6-deletion specific primers, 0.375 µM of 
IC primers and 0.025 U Kapa Hotstart polymerase. Cycle parameters were 3 min at 95°C, 
followed by 30 cycles of 15 sec 95°C and 10 min 68°C. 

CYP2D6 gene duplication and CYP2D6/CYP2D7 fusion gene conformations were 
identified using a triplex PCR protocol. The primer set contained the CYP2D6 full length 
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primers, CYP2D6 duplication primers and CYP2D6/CYP2D7 fusion gene primers. The 
10 µl reaction volume contained 50–100 ng DNA, 0.5x PCR buffer, 1.7 mM MgCl2, 0.3 
mM dNTPs, 0.5 µl DMSO, 0.5 µl of the CYP2D6 full length forward primer and 0.75 µl 
of the reverse primer, 0.375 µl of both CYP2D6-duplication specific primers, 0.5 µl of the 
CYP2D6 fusion gene primer and 0.025 U Kapa Hotstart polymerase. PCR conditions were 
identical to the duplex PCR. 

Presence of CNVs and fusion genes was assessed on a 0.7% agarose gel with ethidium 
bromide staining, set at 100 mV with a 55 min run time. CNV and fusion gene positive 
samples, identified as additional fragments besides a full length or IC fragment, were 
selected for the subsequent barcoding PCR. For the selected samples of both the duplex 
and triplex PCR, barcoding was done with M13-tailed primers. Identical conditions to 
the first PCR were used with 1 ul of PCR product from the first PCR and 5 cycles of  
amplification. 

Barcoded amplicons were equimolar pooled into a full-length pool and a CNV and 
fusion genes pool. For the CYPTAM-cohort, one pool of full-length samples per 96-well 
plate was made and one pool for all CNVs and fusion genes. For CYPTAM-BRUT and 
the venlafaxine-cohort, one pool with all full-length samples and one pool for all CNV 
and fusion gene samples of both cohorts was made. All pools were concentrated with 
Ampure XP beads (Agencourt). For the full-length fragment, additional size-selection 
was performed using BluePippin (Sage Science) to remove all fragments shorter than 5kB 
prior to pooling with the CNV and fusion gene amplicons. SMRTbell library preparation 
was performed on 500 ng purified and size-selected PCR pool following the procedure & 
checklist – Amplicon template preparation and sequencing (PN 100-801-600 Version 04, 
Pacific Biosciences) and using SMRTbell template Prep Kit 1.0-SPv3 [62]. The final SMRT 
library was sequenced on the PacBio RSII for the CYPTAM-cohort and on the PacBio Sequel 
for the replication cohorts. For RSII, libraries were sequenced using sequencing primer V2 
and P6-C4 chemistry with a movie time of 6hr, with a maximum of 96 samples per SMRT 
cell [62]. For Sequel, libraries were sequenced using sequencing primer V3, sequencing 
kit 3.0 and binding kit 3.0 on a 1M v3 LR SMRT cell with a movie time of 20 hr, with a 
maximum of 288 samples per SMRT cell [68]. Deletions, duplications and hybrids were 
analysed on a separate SMRT cell for all cohorts.

Data preprocessing

The full pipeline for downstream processing is available at DOI: 10.5281/zenodo.4787186. 
All downstream processing was run on a high-performance computing cluster running 
the sun grid engine. Raw sequences were demultiplexed using LIMA followed by the CCS 

Chapter_5_Maaike.indd   139 15-11-2021   08:21:38



Chapter 5

140

tool to generate CCS sequences. The subsequent haplotype phasing was performed using a 
custom pipeline which utilizes the CCS sequences to identify molecules originating from 
the same allele. Subreads of the CCS sequences were used to generate high quality phased 
allelic sequences per allele per individual using subreads of all molecules belonging to 
the same allele. Allelic sequences showing signs of disjoint sequences or chimeras were 
flagged. Per subject all phased allelic sequences were saved and plotted based on genomic  
distance. 

Phased sequences were aligned to the CYP2D6 sequence from GRCh38 and variants 
were called. A semi-global alignment was performed using biopython pairwise2, alignments 
were polished to ensure consistent indel positioning. Pharmacogenomic haplotype 
assignments were made based on PharmGKB translation tables [12]. For all haplotypes, the 
*-allele with a perfect match based on all variants observed was assigned, where the number 
of variants is decisive in the case of multiple perfect matches. When no perfect match is 
found the *1 haplotype was assigned. All identified variants were run through VEP (variant 
effect predictor) to determine their potential impact on protein function [69]. Variants 
were flagged as ‘known’ for variants in *-allele nomenclature, ‘novel’ for variants not in 
*-allele nomenclature, ‘in polymer region’ for variants located in homo-polymer regions. 

The phased alleles were separated from chimeras and disjoint sequences by manual 
curation based on genomic distance plots and the presence of chimeras and disjoint 
flags. A cut-off of at least 10 molecules per allele and 10 passes per molecule was used to 
determine the reliability of the sequences. In the presence of gene deletion, the second 
allele was annotated as ‘deletion’. A duplication, determined based on the number of 
molecules observed per allele, was annotated as ‘duplicated’. Subjects identified as carrying 
a CYP2D6/2D7 fusion gene were annotated as ‘hybrid’. Selected alleles were linked to 
the clinical data based on subject specific barcodes, resulting in one datafile per cohort 
containing clinical data, selected alleles and haplotype calls. 

Prediction models

For further analysis, samples were selected based on the presence of full length CYP2D6 
sequences, the absence of CYP2D6/CYP2D7 conversions and fusion genes, and on the 
presences of clinical data regarding drug metabolism (n=561 for CYPTAM, n=167 for 
CYPTAM-BRUT, n=69 for venlafaxine). For each cohort the clinical datasets containing 
metabolite blood concentrations were merged with the sequencing data containing the 
assigned haplotypes. 
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Conventional method

For the CYPTAM-cohort, haplotype and phenotype assignments based on PacBio 
sequencing data were compared to calls from the Roche Amplichip which were determined 
previously. To assess explained variability based on conventional phenotyping, the same 
methods were applied to all three cohorts. For the CYPTAM-BRUT cohort data on 
concomitant use of CYP2D6 inhibiting drugs was available, based on which the cohort 
was split into ‘non-inhibitor users’, ‘inhibitor users’ and ‘unknown inhibitor use’. 

For all cohorts the same methods were applied. Haplotype calls were translated 
into Gene Activity Scores (GASs) and predicted phenotype categories based on the CPIC 
and DPWG consensus [8,70,71]. A GAS of 0.0 was assigned to non-active alleles, 0.5 to 
decreased activity, 1.0 to normal activity and 2.0 to increased activity alleles. Subsequently 
the scores per allele were combined into the overall GAS by adding them together, 
followed by a translation into phenotype categories. Based on the consensus paper of the 
Dutch Pharmacogenetics Working Group (DPWG) and the Clinical Pharmacogenetics 
Implementation Consortium) one of 4 clinically implemented phenotype categories was 
assigned: poor metabolizer (PM, GAS = 0.0), intermediate metabolizer (IM, GAS = 0.5–1.0), 
normal metabolizer (NM, GAS = 1.5–2.5) or ultra-rapid metabolizer (GAS = 3.0) [8]. 

As a proxy for CYP2D6 enzyme activity, the metabolic ratio of the most CYP2D6-
specific conversion of either tamoxifen or venlafaxine metabolism was used. Although the 
metabolism of tamoxifen (desmetyltamoxifen to endoxifen) is dominated by CYP2D6, other 
enzymes play a minor role in the tamoxifen metabolism and therefore in the metabolite 
concentrations (Supplementary Figure S5.2) [27,28]. For the CYPTAM and the CYPTAM-
BRUT cohorts, the log of the metabolic ratio of the conversion from desmethyltamoxifen 
to endoxifen ((ln(Endoxifen (nM)/ Desmethyltamoxifen (nM))) was used as a proxy for 
CYP2D6 enzyme activity [26,71]. Log transformation was performed to normalize the 
data. There are no indications to assume non-linear kinetics of endoxifen formation by 
CYP2D6 [45], in fact the kinetics of all other metabolites are linear [46]. Additionally, the 
metabolic ratio as used in this study was shown to stay consistent with dose increase for all 
phenotypes [30,72], making it a suitable proxy for enzyme activity. Last, it is expected that 
intra-individual variability of CYP2D6 enzyme activity is limited, making one measurement 
at steady state a suitable approach [73-75].

For the venlafaxine cohort, the log of the metabolic ratio for the conversion from 
venlafaxine to desmethylvenlafaxine (ln(O-desmethylvenlafaxine (nM) /venlafaxine (nM))) 
was used. 
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Neural network

From the selected alleles per individual, a dataset was generated indicating the presence 
(1) or absence (0) of every variant observed in the entire cohort (including deletions and 
duplications). From these variants a selection is made, variants were excluded if they adhere 
to the following rules: located in homopolymer regions or not in *-allele nomenclature and 
synonymous, intronic, located upstream or downstream. These were excluded to prevent 
confounding from irrelevant variants in the development of the neural network. Variants 
were included if they were part of the *-allele nomenclature or if they were additionally 
nonsynonymous, frameshifts or splice sites variants. 

The neural network was build using Keras (https://github.com/keras-team/
keras, version 2.2.4) with the TensorFlow (https://github.com/tensorflow/tensorflow, 
version 1.12.0) backend. It uses the selected variants (Supplementary Data File S5.1) 
per allele as predictors (n=78) and the measured metabolic ratio (ln(Endoxifen (nM)/ 
Desmethyltamoxifen (nM))) as a surrogate for CYP2D6 enzyme activity and the outcome 
variable of the model. The model was comprised of 2 parts (Supplementary Figure S5.3). 
The first consisted of two interpreters, one per allele. These interpreters use all selected 
variants per allele as input data and combine them into an allele contribution. The second 
part was the combiner model which combined the two allele contributions to predict the 
metabolic ratio. The model was trained with the data from the CYPTAM-cohort and 
both parts were trained simultaneously. 10-fold cross validation with 100 cycles both 
with and without internal hold-out was performed and showed no signs of overfitting 
(Supplementary Figure S5.5). Shap (Shapley Additive explanation)-values were extracted 
and normalized to define allele contributions. 0.0 was assigned to a gene deletion and 1.0 
to a fully wildtype allele. Variant contributions were normalized accordingly, resulting in 
the sum of variant contributions per allele corresponding to the allele contribution. 

For both replication cohorts, the same variants as which were used during the 
training were included in the selection. For the venlafaxine cohort, the predicted metabolic 
ratio is translated with a linear transformation into the metabolic ratio for venlafaxine (ln 
(O-desmethylvenlafaxine (nM) /venlafaxine (nM))). 

In vitro validation

To confirm the contribution of individual variants as predicted by the neural network, four 
high impact variants and the *2 allele were tested in vitro. Variants were selected based on 
the following criteria: the predicted contribution had to be ≥0.2 or ≤-0.2, without linkage 
disequilibrium with a known causal variant and potentially causal (for example missense 
or frameshift); both gain of function and loss of function variants were included. Variants 
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selected were: g.42130667C>T, g.4212761C>G, g.42127611C>T and g.42129180A>T as well 
as the *2 allele. Site mutagenesis was performed on pCMV4 CYP2D6*1 plasmid [76] with 
QuikChange II Site-Directed Mutagenesis Kit (Agilent). Plasmid cDNA encoding variants 
with the following amino acid exchanges were created: Arg330Pro (g.42127631C>G), 
Gly42Glu (g.42130667C>T) and Phe120Ile (g.42129180A>T). The Asp337Asn exchange 
was performed using pCMV4 CYP2D6*2 as template. Mutagenesis primers and selected 
variants are listed in Supplementary Table S5.4. Variants were expressed in HEK293 cells 
grown in DMEM 6046 (Sigma) containing 1 g glucose/l, 10% fetal bovine serum, and 
penicillin/streptomycin (100 IU/ml, 100 mg/ml) to a confluence of 60–70%. pCMV4 
vectors containing the variants were transfected using Viromer Red (Lipokalyx) according 
to manufacturer’s protocol. Cells were harvested after 24–48 hours incubation were stored 
at -80°C. Cell pellets were resuspended in 0.1 M sodium phosphate buffer followed by 
sonication for 20 x 1 sec and were centrifuged at 800 x g. Incubations were performed 
with 800 x g supernatant corresponding to 25–125 µg of protein, 0.1 M sodium phosphate 
buffer, 50 µM bufuralol (racemate), and 1 mM NADPH in a total volume of 150 µl. 
reactions were linear for at least 5 hours and were terminated by addition of 14 µl of 70% 
perchloric acid. After centrifuging the supernatant was analysed by high performance liquid 
chromatography as previously described [77]. The amount of CYP2D6 apoprotein of the 
different allelic variants were determined using sodium dodecyl sulfate polyacrylamide 
gel electrophoresis and Western blot analysis. Residual CYP2D6 activity was assessed and 
normalized with the average activity of the *-allele set at 1.0 to allow for comparison with 
the neural network predictions. 

Statistical analysis

To compare amplichip and PacBio based haplotype calls, cohen’s kappa was used, with a 
significance cut-off of p<0.05. The amount of explained variability in CYP2D6 enzyme 
activity for all phenotype predictions was assessed using linear regression, assuming a linear 
relation between predicted phenotypes and observed metabolic ratio. For the conventional 
approach, two different models were assessed, the first based on the clinical phenotype 
categories (PM, IM, NM, UM), the second based on overall GAS. For the neural network 
approach, the explained variability for all cohorts was assessed using linear regression with 
the predicted metabolic ratio as predictor and the observed metabolic ratio as outcome. 
Explained variability was expressed as R2-adjusted, using a p<0.05 cutoff for significance. 
The error rate of the model was expressed as the rmse (root-mean-square error). All 
statistics were performed using R version 4.0.2. The haplotyping pipeline and neural 
network were developed using Python 2.
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Supplementary material

Supplementary Figure S5.1:  Flowchart of study cohorts
Samples were selected based on availability of remaining DNA. Samples were excluded if patients no 
longer wanted to be part of the main study or were double included (total: n=6 in CYPTAM). All samples 
were sequenced for CYP2D6 with PacBio SMRT sequencing. For neural network training and predictions 
only samples with full length CYP2D6 sequences available and with clinical phenotype data were included.
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Figure S1 Flowchart of Study cohorts. Samples were selected based on availability of remaining DNA. Samples were excluded 
if pa�ents no longer wanted to be part of the main study, or were double included (total: n=6 in CYPTAM). All samples were 
sequenced for CYP2D6 with PacBio SMRT sequencing. For neural network training and predic�ons only samples with full length 
CYP2D6 sequences available and with clinical phenotype data were included. 

Supplementary Figure S5.2:  Metabolic pathway of tamoxifen
Tamoxifen is first metabolized into desmethyltamoxifen and 4-hydroxytamoxifen, followed by a conversion 
of these metabolites into endoxifen. The path through desmethyltamoxifen is the predominant pathway, 
responsible for the majority of the endoxifen formation. CYP2D6 plays a key role in all metabolic conversions 
to endoxifen. Depicted is the core metabolism of tamoxifen into its most active metabolite endoxifen.
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Figure S2 Metabolic pathway of tamoxifen. Tamoxifen is first metabolized 
into desmethyltamoxifen and 4-hydroxytamoxifen, followed by a conversion 
of these metabolites into endoxifen. The path through desmethyltamoxifen 
is the predominant pathway, responsible for the majority of the endoxifen 
formation. CYP2D6 plays a key role in all metabolic conversions to 
endoxifen. Depicted is the core metabolism of tamoxifen into its most 
active metabolite endoxifen. 
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Supplementary Figure S5.3: Concordance Amplichip- and PacBio-based phenotype predictions
For all CYPTAM individuals phenotype predictions were made, based on Amplichip genotyping and 
PacBio SMRT-sequencing genotype calling, according to Gene Activity Scores (GAS) and the Dutch 
Pharmacogenetics Working Group and Clinical implementation consortiums consensus guideline. 
Concordance: Kappa-coeffi  cient 0.94, p<0.0001.
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Figure S3 Concordance Amplichip and PacBio based phenotype predictions. 
For all CYPTAM individuals phenotype predictions were made, based on Ampli-
chip genotyping and PacBio SMRT-sequencing genotype calling, according to 
Gene Activity Scores (GAS) and the Dutch Pharmacogenetics Working Group 
and Clinical pharmacogenomics implementation consortium’s consensus 
guidelines . Concordance was high: Kappa-coefficient: 0.94, p<0.0001
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Supplementary Figure S5.4:  Neural network design
The neural network model consists of two parts. The first part consists of two allele submodels which train 
as one. These models produce a contribution score per allele. The second part, the combiner submodel, 
combines the contribution scores into a predicted metabolic ratio. Variant contributions reflect the impact 
of variants on enzyme function, the contribution scores are normalized to represent gene activity scores, 
the predicted metabolic ratio serves as a proxy for CYP2D6 enzyme activity.

Figure S4 Neural Network design. The neural network model consists of two parts. 
First the allele submodels, one per allele, which train as one and result in contribu-
tion scores per allele. The second part, the combiner submodel, combines the 
contribution scores into a predicted Metabolic ratio. Variant contributions reflect the 
impact of variants on enzyme function, the contribution scores are normalized to 
represent gene activity scores, the predicted Metabolic ratio serves as a proxy for 
CYP2D6 enzyme activity. 
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Supplementary Figure S5.5:  10-fold crossvalidtion with internal hold-out
25% of the data was used for the validation set. No devation between training and validation loss was 
observed up to 100 epochs. No signs of overfitting were observed.Figure S6 10-fold crossvalidtion with internal hold-out. 25% of the data 

was used for the validation set. No devation between training and validation 
loss was observed  up to 100 epochs. No signs of overfitting were observed. 
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Supplementary Table S5.1:  *-allele haplotype frequencies for all cohorts
All haplotypes are based on all variants observed in the CYP2D6 locus, including CYP2D6/2D7 conversions 
and fusion genes. CYPTAM-cohort is the training cohort, CYPTAM-BRUT the first validation cohort with ta-
moxifen as the CYP2D6 substrate used, Venlafaxine is the second replication cohort with individuals using 
the CYP2D6 substrate venlafaxine. Haplotype translations are based on the PharmGKB variant to haplotype 
translations.

Haplotype CYPTAM CYPTAM-BRUT Venlafaxine

n % n % n %

*1 357 32.8 78 30.7 33 23.91
*108 3 0.27 1 0.39
*10A 1 0.39
*10B 1 0.39
*10D 18 1.6 3 1.2 2 1.45
*15 1 0.72
*17 2 0.18
*1B 15 1.3 2 0.79
*1D 2 0.18 1 0.72
*1E 6 0.53
*1xN 6 0.53 1 0.39
*2 4 0.36
*22 5 0.45
*27 1 0.39
*2A 181 16.1 51 20.1 24 17.39
*2AxN 1 0.09 1 0.39 2 1.45
*2D 2 0.79 1 0.72
*2M 1 0.09
*2xN 1 0.09
*31 1 0.09
*33 13 1.2 1 0.39 2 1.45
*34 1 0.39
*35A 59 5.3 18 7.1 8 5.80
*35AxN 2 0.18
*39 1 0.72
*3A 21 1.9 3 1.2 7 5.07
*41 92 8.2 24 9.4 16 11.59
*41xN 1 0.09
*4A 221 19.7 33 13.0 21 15.22
*4AxN 2 0.18 2 0.79 1 0.72
*4B 1 0.72
*4D 5 0.45 8 3.1 4 2.9
*4H 1 0.09
*4J 1 0.39
*5 45 4.0 9 3.5 8 5.80
*59 6 0.54
*6A
*6B 15 1.3 4 1.6 2 1.45
*7 1 0.39
*9 36 3.2 7 2.8 3 2.17
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Supplementary Table S5.2:  Bufuralol incubation results
Site mutagenesis on HEK cells was performed on pCMV4 CYP2D6*1 plasmid with QuikChange II Site-Direc-
ted Mutagenesis Kit (Agilent). The D337N exchange was performed using pCMV4 CYP2D6*2 as template. 
HEK cells were incubated with bufuralol for 5 hours, upon which the metabolism rate was assessed by 
measuring bufuralol and metabolites. Results are normalised to the average activity of *1, which is set at 
1.0.

Genotype  September 2019 December 2019 January 2020 Average

*1 0.927845 1.072155 0.952799 1.047201 1.027143 0.972857 1
*2 0.780427 0.806543 0.520376 0.474208 0.455362 0.607383
*2+D337N 0.438914 0.66233 0 0 0.018975 0.224044
R330P 0 0 0 0 0.007519 0.047079 0,0091
G42E 0 0 0 0 0.009874 0.001144 0.001836
F120I 3.439576 4.910881 5.878972 5.374999 3.100804 2.457602 4.193805

Supplementary Table S5.3:  Primer sequences for three separate PCR reactions
Full-length PCR: yielding one full length CYP2D6 sequence. Duplex PCR (*5): yielding an internal control 
fragment for all samples and a deletion fragment if a CYP2D6 deletion is present. Triplex PCR: Yielding a full-
length fragment as well as a duplication fragment in the presence of a CYP2D6 duplication and/or a hybrid 
fragment in the presence of a CYP2D6/CYP2D7 fusion gene. 

Name Primer sequence (5’–3’)

Full-length PCR
Fragment A Forward ATGGCAGCTGCCATACAATCCACCTG
Fragment A Reverse CGACTGAGCCCTGGGAGGTAGGTAG

Duplex PCR (*5)
Fragment *5-forward CTCCAGCCTCCACCAGTCCAG
Fragment *5-reverse CAGGCATGAGCTAAGGCACCCAGAC 
IC-forward GCATGCACAGCTCAGCACTGC
IC-reverse GCCACCCTGATGTCTCAGTTTCG

Triplex PCR
Fragment A Forward ATGGCAGCTGCCATACAATCCACCTG
Fragment A Reverse CGACTGAGCCCTGGGAGGTAGGTAG
Fragment B - Forward CCATGGAAGCCCAGGACTGAGC
Fragment B - Reverse CGGCAGTGGTCAGCTAATGAC
Fragment H - Forward TCCGACCAGGCCTTTCTACCAC

IC: Internal control.
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