Insights into the mechanism of electrocatalytic CO2 reduction and concomitant catalyst degradation pathways
Raaijman, S.J.

Citation

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3250500

Note: To cite this publication please use the final published version (if applicable).
Insights into the mechanism of electrocatalytic CO$_2$ reduction and concomitant catalyst degradation pathways

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van de rector magnificus prof.dr.ir. H. Bijl,
voorzitter van het college voor promoties,
ter verdedigen op 19 januari, 2022
klokke 10:00 uur

doort

Stefan Johannes Raaijman
Dit proefschrift is goedgekeurd door de
promotor: prof.dr. M.T.M. Koper
copromotor: prof.dr. G. Mul

Overige commissieleden:
Prof.dr. H.S. Overkleeft, voorzitter
Prof.dr. S.A. Bonnet, secretaris
Dr. R.V. Mom
Dr. B.S. Yeo, National University of Singapore
Prof.dr. B. Roldán Cuenya, Fritz Haber Institute

Financial support was provided by the Dutch Research Council (NWO), the Netherlands Organisation for applied scientific research (TNO) and Shell Global Solutions B.V.

ISBN 978-94-6423-593-7
Contents

1 **Introduction**
1.1 Outline introduction 2
1.2 The mechanism of CO\textsubscript{2} reduction to multiple-carbon products 4
1.3 (Metallic) catalyst stability during CO\textsubscript{2} reduction 6
1.4 Outline of this thesis 8
References ... 11

2 **High-pressure CORR on Ag**
2.1 Introduction 14
2.2 Experimental 15
2.3 Results and discussion 15
2.4 Conclusions 19
References ... 21

3 **CO effect on cathodic corrosion of Au**
3.1 Introduction 28
3.2 Methods ... 29
 3.2.1 Electrodes, electrolytes, and electrochemical Cells 29
 3.2.2 Cathodic corrosion studies 30
 3.2.3 Microscopic analysis of cathodic corrosion 31
3.3 Results and discussion 34
 3.3.1 Voltammetric characterization of cathodic corrosion 34
 3.3.2 Morphological characterization of cathodic corrosion 37
 3.3.3 Enhanced corrosion at stepped surfaces 41
 3.3.4 On the location, shapes, and origin of nanocrystallites 45
 3.3.5 Effect of carbon monoxide on cathodic corrosion of Au 48
3.4 Discussion and conclusions 53
References ... 57

4 **Reproducible Voltammetry of Copper Single Crystals**
4.1 Introduction 64
4.2 Experimental 65
 4.2.1 Chemicals, electrochemistry and cells 65
 4.2.2 Instruments and Software 66
 4.2.3 Normalization of literature CVs 66
4.3 Results and discussion 67
 4.3.1 Literature comparison 67
 4.3.2 Properties of induction annealed crystals 75
 4.3.3 Cu(poly): induction annealing vs electropolishing 81
Supporting information for Chapter 4

C.1 Copper cleaning and characterization

- C.1.1 Cu(100) characterization
 - Page 159
- C.1.2 Cu(111) and Cu(poly) characterization
 - Page 162
- C.1.3 Cu(110) characterization
 - Page 164

C.2 Mechanically polished single crystals cleaning procedure

- Page 165

C.3 Procedure for recovery of defective cut single crystals

- Page 166

C.4 EASA determination from OH adsorption for Cu(poly) electrodes

- Page 167

C.5 Single crystal CV peak deconvolution

- C.5.1 Deconvolution of a Cu(111) CV
 - Page 177
- C.5.2 Deconvolution of a Cu(100) CV
 - Page 178
- C.5.3 Deconvolution of a Cu(110) CV
 - Page 179

C.6 Preparing clean Cu(poly) with wide site distribution

- Page 180

References

- Page 181

Supporting information for Chapter 5

D.1 Blank reproducibility spherical single crystal

- Page 185

D.2 Anisotropy of halide-induced roughening

- Page 185

D.3 CV evolution after CO2RR in 0.1 M KHCO3

- Page 187

D.4 CV evolution for CORR in 10 M NaOH

- Page 187

D.5 Electrode deactivation during CO2RR

- Page 188

D.6 Hypothetical morphology-change driven area reduction mechanisms

- Page 189

D.7 EDX study of electrode fouling

- Page 190

References

- Page 191

Curriculum Vitae

- Page 193

List of Publications

- Page 195

Acknowledgements

- Page 197