

Multi-objective evolutionary algorithms for optimal scheduling

Wang, Y.

Citation

Wang, Y. (2022, January 19). *Multi-objective evolutionary algorithms for optimal scheduling*. Retrieved from https://hdl.handle.net/1887/3250350

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3250350

Note: To cite this publication please use the final published version (if applicable).

Curriculum Vitae

Yali Wang was born in Baiyin, China. She received her BSc of Computer Science at Wuhan University, China in 1997. After that, she worked first as a software engineer and then as a configuration management officer in H3C Technologies Co., Limited, Beijing, China. In 2015, she came to the Netherlands and completed her MSc at Leiden Institute of Advanced Computer Science (LIACS), Leiden University in 2017. Right after, she worked as a PhD at the same university under the supervision of Michael Emmerich and Thomas Bäck. Her research interests include multi-objective optimization, evolutionary algorithm, scheduling optimization, prediction-based optimization, preference based multi-objective optimization and dynamic optimization. Curriculum Vitae

Acronyms

AP-DI-MOEA

Automatic Preference based Diversity Indicator-based Multi-objective Evolutionary Algorithm

\mathbf{DF}

Desirability Function

DI-MOEA

Diversity Indicator-based Multi-objective Evolutionary Algorithm

$\mathbf{D}\mathbf{M}$

Decision Maker

DRS

Dominance Resistant Solution

$\mathbf{E}\mathbf{A}$

Evolutionary Algorithm

EAF

Empirical Attainment Function

\mathbf{EMO}

Evolutionary Multi-objective Optimization

EMOA

Evolutionary Multi-objective Optimization Algorithm

\mathbf{EP}

Evolutionary Programming

\mathbf{ES}

Evolution Strategy

FJSP

Flexible Job shop Scheduling Problem

\mathbf{GA}

Genetic Algorithm

\mathbf{GD}

Generational Distance

\mathbf{GI}

Gap Indicator

\mathbf{GP}

Genetic Programming

HV

Hypervolume

IBEA

Indicator-based Evolutionary Algorithm

IGD

Inverted Generational Distance

JSP

Job shop Scheduling Problem

MIP-EGO

Mixed integer, Parallel - Efficient Global Optimization

MOEA

Multi-objective Evolutionary Algorithm

MOFJSP

Multi-objective Flexible Job shop Scheduling Problem

MOO

Multi-Objective Optimization

MOP

Multi-objective Optimization Problem

MOVFMSO

Multi-objective Vehicle Fleet Maintenance Scheduling Optimization

\mathbf{NE}

Number of Evaluations

NSGA-II

Non-dominated Sorting Genetic Algorithm II

NSGA-III

Non-dominated Sorting Genetic Algorithm III

\mathbf{PF}

Pareto Front

ROI

Region of Interest

\mathbf{RUL}

Remaining Useful Lifetime

SMS-EMOA

 $\mathcal S\text{-}\mathrm{Metric}$ Selection Evolutionary Multi-Objective Algorithm

VFMSO

Vehicle Fleet Maintenance Scheduling Optimization