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Chapter 6

Preference-based and

Dynamic Vehicle Fleet

Maintenance Scheduling

Optimization

The first version of the multi-objective vehicle fleet maintenance scheduling optimiza-

tion problem has been formulated and solved by the proposed algorithms in the previ-

ous chapter. To make the problem more practical, rigorous and clear, after discussing

with the DM from Honda Research Institute Europe GmbH, the problem is upgraded

from the following aspects:

• There exists a lot of uncertainty when the predicted RUL of each component

is used as its due date, because no matter how accurate the predictive model

is, it is still possible that the component will break on other dates: before the

due date or later. Therefore, instead of only using the predicted RUL, predicted

RUL probability distribution should be used as the foundation to assign the

maintenance time in scheduling optimization.

• The expected number of failures is adopted as an objective to reduce the chances

that the vehicles are broken on the road.

• The teams in workshops don’t need to be specified, each workshop can be treated

as one team.
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6.1. Preference-base MOEAs for MOVFMSO

• The demand satisfaction is removed from objectives. It is not necessary to

consider it for a more general problem.

To implement these changes, the MOVFMSO problem is reformulated in this sec-

tion. Naturally, the corresponding MOEAs need to be modified to solve the newly

formulated problem. These are all described in Section 6.1. Besides, AP-DI-MOEA

(Automatic Preference based DI-MOEA) is also adopted in Section 6.1 to find solu-

tions with a more fine-grained resolution in the automatically generated preference

region.

To model the complete process of the vehicle fleet maintenance scheduling opti-

mization, a VFMSO simulator is developed in Section 6.2. The VFMSO simulator

starts from simulating driving tasks and available workshops for a vehicle fleet. The

RULs of components are predicted when the vehicles execute the distributed driving

tasks. Afterwards, the proposed MOEAs are applied to optimize the maintenance

schedule, and the workshops can maintain the vehicles based on the optimal schedule.

The process is running in a rolling-horizon fashion and a new maintenance schedule

is generated periodically based on the newly predicted RULs. To do this, a fourth

objective is added into the optimization, which is to minimize the changes between

the new schedule and the previous schedule. Thus, the optimization algorithms are

extended to dynamic MOEAs.

6.1 Preference-base MOEAs for MOVFMSO

This section starts with the new formulation of the multi-objective vehicle fleet main-

tenance scheduling optimization problem in Section 6.1.1. The tailored algorithm to

solve the new optimization problem is described in Section 6.1.2. The performance of

MOEAs and preference-based MOEAs on the problem are reported in Section 6.1.3.

Lastly, Section 6.1.4 concludes the work and outlines directions for future work.

6.1.1 Problem Formulation

For a vehicle fleet running the driving tasks, the components of vehicles are getting

damaged and should be maintained regularly. Some separate workshops are available

for the maintenance of the car fleet, and the repair time and maintenance cost are

known for each component in each workshop. Besides the time and cost for repairing

the car component, a fixed set-up cost and set-up time are considered for each visit of a
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car to a workshop, which correspond to the cost and time required for the preparation

of the maintenance operation.

The updated VFMSO problem addressed in this section is defined as follows:

1. There are n cars C = {C1, C2, · · · , Cn} and m workshops W = {W1,W2,

· · · ,Wm}.

2. Each car Ci comprises li components to be maintained for i = 1, · · · , n.

3. For each component Oij (j = 1, · · · , li), i.e., the jth component of car Ci, there

is a set of workshops capable of repairing it. The set of workshops is represented

by Wij which is a subset of W .

4. The processing time for maintaining component Oij in workshop Wk is prede-

fined and denoted by pijk.

5. The cost for maintaining component Oij in workshop Wk is predefined and de-

noted by qijk.

6. The set-up time of car Ci in workshop Wk is predefined and denoted by xik.

7. The set-up cost of car Ci in workshop Wk is predefined and denoted by yik.

8. The previous repair time of component Oij is recorded and denoted by Lij .

The constraint in this problem is that the maintenance periods of different oper-

ations for the same car should not overlap. It is obviously wrong if two overlapping

maintenance operations of a car are assigned to different workshops because one car

cannot be in two different workshops at the same time. If two overlapping maintenance

operations of a car are assigned to the same workshop, it is not correct either because

these two maintenance operations should be grouped together as one operation in this

case.

Three objectives are taken into consideration, which are the total workload, total

cost and expected number of failures. In a multi-objective optimization problem, the

objectives typically are conflicting, i.e., achieving the optimal value for one objective

requires some compromise on other objectives. In this problem, the fact that faster

maintenance usually is more expensive leads to the conflict between the first two objec-

tives. The expected number of failures counts the times when the vehicles are broken

on the road. Here, the expected value is used because the actual value is unknown

at the time of the optimization due to uncertainties in the predictions. When the

expected number of failures is large, less maintenance tasks are performed, therefore,

the workload and cost can drop.
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6.1. Preference-base MOEAs for MOVFMSO

Let Tk denote the sum of the times spent for all operations that are processed in

workshop Wk; Mi the sum of all costs spent for all maintenance operations of car Ci;

Fij the number of failures of component Oij . Three objectives can be defined as:

Minimize the total workload: f1 =

m∑
k=1

Tk (6.1)

Minimize the total cost: f2 =

n∑
i=1

Mi (6.2)

Minimize the expected number of failures:

f3 =

n∑
i=1

li∑
j=1

E(Fij). (6.3)

6.1.2 Customized Algorithm

First the execution window is defined for each component based on its predicted RUL

probability distribution which is assumed to be a normal distribution. The execution

window suggests that the maintenance of the component can only start at a time

spot inside the window. The mean (µ) and standard deviation (σ) of the predicted

RUL probability distribution determine the interval of the execution window, which

is defined as: [µ− 2×σ, µ+2×σ]. The interval is chosen relatively long because 95%

of the values are within two standard deviations of the mean, therefore, maintenance

before or after the interval hardly makes sense.

After the determination of the execution window, the maintenance of several com-

ponents can be combined to one visit if their execution windows overlap. Especially,

by grouping the maintenance of multiple components into one maintenance opera-

tion, the set-up cost and set-up time are charged only once for the complete group of

components. This part is the same as described in Section 5.2.3.

Within the execution window of a component, an arbitrary time can be chosen as

the starting time for maintaining the component. However, the maintenance time of

each component should be as close as possible to its real due date to save its useful

time and avoid a car breakdown on the road. Therefore, Monte Carlo simulation

is used to simulate the “real” due dates for each component. To be specific, 1000

samples of the due date are generated in the execution window of each component

according to its predicted RUL probability distribution. Figure 6.1 shows an example

of the execution window evolved from the predicted RUL probability distribution of a

component. After 1000 sampled due dates are generated in the execution window, the
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scheduled maintenance date of the component is compared with these samples one by

one, and each comparison can lead to three situations. Let us use dvij to denote the

vth due date sample of component Oij ; and Dij the scheduled maintenance date of

component Oij . Three possibilities after the comparison are:

Figure 6.1: Execution window of a component.

Case 1 Dij < dvij

The scheduled maintenance date is earlier than the sample (or the “real” due date)

means that the component will be maintained before it is broken. In this case, its

useful life between the maintenance date and the due date will be wasted. Therefore,

a corresponding penalty cost is imposed to reflect the waste. To calculate the penalty

cost, a linear penalty function is suggested based on the following assumptions:

• if a component is maintained when it is new or the previous maintenance has

just completed, the penalty cost would be the full cost of maintaining it, which

is c+ s: the maintenance cost of the component and the set-up cost of the car;

• if a component is maintained at exactly its due date, the penalty cost would be

0.

Assume dvij is “Sampled Due date” in Figure 6.1, and Dij is “Maintenance date

a”, in this case, Dij is earlier than dvij . The penalty cost of “Maintenance date a” for

“Sampled Due date” would be the vertical dotted line above “Maintenance date a”.

Case 2 Dij > dvij

The scheduled maintenance date is later than the sample means that the maintenance

date is too late and the defect occurs on the use. Still, dvij is “Sampled Due date”
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in Figure 6.1, but the scheduled maintenance date Dij is “Maintenance date b”. In

this case, Dij is later than dvij , and the vehicle will break down on the road. In the

algorithm, the number of failures will be increased by one.

Case 3 Dij = dvij

The ideal situation is that the maintenance date is scheduled on the due date. The

component can be maintained exactly at the date that the component is broken. In

this case, there is no penalty or failure.

The averages of the penalty costs and the number of failures from 1000 due date sam-

ples will be used as the penalty cost and expected number of failures for the scheduled

maintenance date of the component. For each operation (the single-component oper-

ation or group operation), its cost consists of three parts: the set-up cost of the car,

the maintenance costs and the penalty costs of all components of the operation. The

penalty cost of components is a part of the total cost, and the expected number of

failures of components is the third objective to be minimized in the multi-objective

optimization.

In Section 5.2.3, the implementation of tailored evolutionary algorithm for the

first formulation of the MOVFMSO problem has been introduced, including how to

represent an individual or solution in the population, how to take these chromosomes

into a process of evolution, how to create variations of solutions in each iteration,

etc. The algorithm can still be used on the updated problem. Next, AP-DI-MOEA

(described in Section 4.2.2) is conducted on the updated MOVFMSO problems to

demonstrate the performance.

6.1.3 Experimental Results

The performance of MOEAs and the preference-based MOEAs are compared on the

VFMSO problems. The two variants of AP-DI-MOEA: AP-DI-1 and AP-DI-2, have

been conducted on two instances with different sizes. On every problem, each algo-

rithm runs 30 times with different seeds, while the same 30 different seeds are used for

all algorithms. All the experiments are performed with a population size of 100. The

budget of 1200000 evaluations has been used and 600000 of them are for the initial

Pareto front; after that, the preference region is updated after every 50000 evaluations.

Figure 6.2 shows Pareto front approximations of a problem with 20 cars and 3

workshops (V1), and each car contains 13 components: one engine, four springs, four
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brakes and four tires [109]. It can be observed that AP-DI-1 and AP-DI-2 can zoom

in the entire Pareto front and find solutions in the preference region, at the same time,

both AP-DI-1 and AP-DI-2 converge better than their corresponding DI-1 and DI-2.

A similar conclusion can be drawn from Pareto fronts approximations of the problem

with 30 cars and 5 workshops (V2) in Figure 6.3.

(a) DI-1 & AP-DI-1. (b) DI-2 & AP-DI-2.

Figure 6.2: Pareto front approximation on VFMSO problems with 20 cars and 3 workshops.

(a) DI-1 & AP-DI-1. (b) DI-2 & AP-DI-2.

Figure 6.3: Pareto front approximation on VFMSO problems with 30 cars and 5 workshops.

In Figure 6.4, the Pareto front approximations from DI-MOEA, AP-DI-MOEA

and NSGA-III on V1 (left) and V2 (right) are put together. The behaviours of DI-1,

DI-2 and NSGA-III are similar on V1, so are the behaviours of AP-DI-1 and AP-DI-2

on this problem. While DI-2 and AP-DI-2 converge better than DI-1 and AP-DI-1 on

V2 problems. The behaviour of NSGA-III is between that of DI-1 and DI-2.

Table 6.1 gives the space and dominance relation of knee points from DI-MOEA
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(a) V1. (b) V2.

Figure 6.4: Pareto front approximation on VFMSO problems by DI-MOEA, AP-DI-MOEA
and NSGA-III.

and solutions from AP-DI-MOEA on these two VFMSO problems. For both problems,

only few knee points from DI-MOEA are in the preference regions of AP-DI-MOEA,

and the main reason is that the Pareto front of AP-DI-MOEA converges better than

that of DI-MOEA, in some cases, the Pareto front of DI-MOEA cannot even reach

the corresponding preference region. More importantly, it can be observed that most

knee points from DI-MOEA, no matter whether in the preference region or outside

of the preference region, are dominated by the solutions from AP-DI-MOEA. This

phenomenon is even more obvious for the application problem with bigger size and

run with the same budget as the smaller one: for V2, 90% of knee points from DI-

MOEA are dominated by the solutions from AP-DI-MOEA.

Table 6.1: Space and dominance relation of knee point from DI-MOEA and AP solutions
on V1 and V2.

Problem V1 V2

Algorithm
DI-1/ DI-2/ DI-1/ DI-2/

AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2
In Incomparable 0 0 0 0

preference Dominated 9 7 9 6
region Dominating 0 0 0 0
Outside Incomparable 4 9 3 3
p-region Dominated 17 14 18 21

Table 6.2 gives the space and dominance relation of knee points from NSGA-III

and AP solutions. For both problems, again, most knee points from NSGA-III are

not in the preference regions of AP-DI-MOEA. Some knee points from NSGA-III are

dominated by AP solutions and most of them are incomparable with AP solutions.
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Table 6.2: Space and dominance relation of knee point from NSGA-III and AP solutions
on V1 and V2.

Problem V1 V2

Algorithm
NSGA-III/ NSGA-III/ NSGA-III/ NSGA-III/
AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2

In Incomparable 0 0 0 1
preference Dominated 0 1 3 2
region Dominating 0 0 1 1
Outside Incomparable 23 24 21 18
p-region Dominated 7 5 5 8

6.1.4 Conclusion

The multi-objective vehicle fleet maintenance scheduling optimization problems were

updated after further discussion with the decision makers. In the new optimization

problem, the maintenance time of each component was based on the predicted dis-

tribution of its remaining useful time. A new objective, i.e., the expected number of

failures, was adopted to reduce the risk of car breakdown on the road.

The proposed MOEAs and preference-based MOEAs have been conducted on the

updated MOVFMSO problems. The experimental results of AP-DI-MOEA on two ap-

plication problem instances of different scales showed that AP-DI-MOEA can generate

preference regions automatically and it (in both cases) found clearly better and more

concentrated solution sets in the preference region than DI-MOEA. For completeness,

it was also tested against NSGA-III and a better approximation in the preference

region was observed by AP-DI-MOEA.

In the application of maintenance scheduling, it will also be important to integrate

robustness and uncertainty in the problem definition. It is desirable to generate sched-

ules that are robust within a reasonable range of disruptions and uncertainties such

as machine breakdowns and processing time variability.

6.2 Dynamic MOEAs for MOVFMSO

Up to this point, the real-world application problem, i.e., the vehicle fleet maintenance

scheduling optimization, has been formulated; the tailored multi-objective evolution-

ary algorithms have been developed; the basic MOEAs have been extended to the

preference based MOEAs for the VFMSO problems. So far these proposed algorithms

are used to solve the static problems. However, in the real-world scenario, after a

maintenance schedule is released for execution, continuously updating the schedule

is required due to the change of vehicle conditions and the ensuing changes in the
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RUL predictions. The optimization of the maintenance schedule is an ongoing process

running in a rolling-horizon fashion and it is therefore desirable to generate robust

schedules.

According to the literature in robust scheduling methodologies, robustness is mainly

grouped into quality robustness and solution robustness [57]. The quality robustness

refers to the insensitivity of the scheduling performance such as makespan and total

tardiness in the presence of uncertainty. The property that the start and the comple-

tion of each activity should be as close as possible to its previous schedule is known as

the solution robustness and it is usually considered as a stability measurement of the

schedule. When the proposed static algorithm is extended to a dynamic algorithm, a

fourth objective is involved in the algorithm, which is the stability, i.e., the solution

robustness.

To model the complete process of maintaining the vehicle fleet by way of scheduling

optimization, a simulator is developed to observe the performance of dynamic MOEAs.

The VFMSO simulator starts from simulating driving tasks and available workshops

for a vehicle fleet, at the same time, in the simulator, the RUL of components can

be predicted and used as the input information to optimize the maintenance schedule

for the vehicle fleet. During the running of the simulator, the optimization process is

running in a rolling-horizon fashion and the maintenance schedule is updated period-

ically. Accordingly, the optimization algorithm becomes a dynamic algorithm and a

fourth objective is added into the dynamic MOEA, which is to minimize the changes

between the new schedule and the previous schedule.

This section first introduces dynamic optimization for the VFMSO problems in

Section 6.2.1. The RUL prediction is described in Section 6.2.2. Section 6.2.3 discusses

the details of the simulator and Section 6.2.4 shows the experimental results. Finally,

Section 6.2.5 briefly summarises the study, and proposes possible directions for future

work.

6.2.1 Dynamic Optimization

By applying the proposed MOEA and preference-based MOEA, namely DI-MOEA and

AP-DI-MOEA, after achieving a PF approximation, the knee point is picked as the

final optimal schedule to be deployed in workshops. In the real-world application, the

maintenance schedule needs to be updated periodically. To generate a new schedule

for the next stage, the current schedule used for the vehicle fleet and workshops is

also needed. Various disruptions may occur while running a maintenance schedule, for
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example, the car is broken before its scheduled maintenance time, or new repairing

tasks in workshops lead to the delay of the scheduled activities. In the face of various

disruptions, adjustments in the schedule have to be made and this is also the reason

that the maintenance schedule is updated periodically. A new schedule with the new

arrangement of the maintenance activities is generated from the new condition of

the vehicle fleet and workshops. However, the changes on the current schedule lead

to additional costs such as the cost of reallocation of tools and equipment, the cost

of reordering of raw materials, and etc. To reduce these costs, when updating the

maintenance schedule, one important point is to maximize the similarity between the

new schedule and the previous one to increase stability. For this purpose, the stability

criterion is employed as one more objective in the dynamic algorithm. Let dij = 1 if the

maintenance time or workshop of component Oij in the previous optimal maintenance

schedule is different with the assigned maintenance time or workshop of component Oij

in the currently optimized schedule, otherwise dij = 0. The stability of the schedule

can be maximized by minimizing the difference in schedule.

Minimize the schedule difference: f4 =

n∑
i=1

li∑
j=1

dij . (6.4)

The number of components which are assigned to different maintenance times or

workshops from that in the current running schedule is minimized in the dynamic algo-

rithm. Furthermore, since the stability of maintenance activities in the near future is

more important than that of maintenance activities in the distant future, when calcu-

lating the stability objective, different weights are given to the components which are

scheduled to be maintained within one week, within one month and beyond one month.

The dynamic algorithm makes it possible that the maintenance schedule is optimized

under different operational environments including dynamic and changing conditions.

Most importantly, the dynamic algorithm updates the maintenance schedule based on

the latest damage of components because the underlying predicted RUL of each com-

ponent is based on the latest damage. In this way, the maintenance schedule becomes

more accurate.

6.2.2 Remaining Useful Lifetime Prediction

Knowing the RUL is essential to establish an optimal maintenance schedule, and the

RUL prediction provides the system residual life from its current condition and the past

operation profile [106]. Commonly, approaches used in prognostics and predicting RUL
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are classified into three types: physics-based approaches, data-driven approaches, and

hybrid approaches [35]. In this work, the physics-based models are used to estimate

the degradation and failures of four essential components of a vehicle, namely engine,

brake pads, helical springs, and tires. The fatigue and wear mechanisms are established

for these components.

Degradation of Helical Springs

Helical spring is the most common type of spring used in passenger cars. One of the

the main mechanisms that reduces the lifetime of a helical spring is fatigue and it is

often analyzed using the S-N curve which describes the relation between cyclic stress

amplitude and number of cycles to failure. Figure 6.5 shows a typical S-N curve.

The vertical axis shows the stress amplitude, whereas the horizontal axis indicates the

corresponding number of cycles to failure at a given stress amplitude. A stress S is

calculated from force F by the equation: S = K 8×F×Dcoil

π×d3
wire

, where Dcoil and dwire

are the diameter of the mean coil and the wire, respectively. C = Dcoil

dwire
is the spring

index. K = 1+ 0.5
C is the so-called Wahl factor. According to the Paris-Erdogan’s and

Palmgren-Miner laws [97], the damage percentage of a spring can be formulated as:

ds =
∑p

i=1
ni

Ni
× 100%, where ds is the total percentage of life consumed, p is the total

number of the considered stress sources, ni and Ni are the number of cycles with a

stress amplitude and the corresponding number of cycles to failure at this stress with

i = 1, 2, ..., p from p sources. ni

Ni
is the fractional damage received from the ith source.

When ds ≥ 100%, the spring’s lifetime ends and a spring failure occurs.

Degradation of Brake Pads

A wear-out failure arises as a result of cumulative damage related to loads applied over

an extended time. In the process of braking, due to friction between the surfaces of the

friction couple, the zones of contacts are damaged after each braking event, resulting in

worn-out material. The volume of the worn-out material of the ith braking event can

be represented as: △Vbi = Cbrake×Fi×△di, where Cbrake is a constant and presents

the brake pad quality, Fi and △di are the friction force and the relative displacement

between the brake pad and the brake rotor of ith braking event, respectively. If Vb0

is the maximum volume which the brake pad can reduce before a failure might occur,

damage percentage of the brake pad (db) can be estimated by db =
∑n

i=1
△Vbi

Vb0
×100%.

The brake force is converted from the brake torque by dividing torque by the length

of the level arm. For the values of parameters in the physical models, such as Dcoil,
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Figure 6.5: A typical S-N curve.

dwire, Cbrake, Ctire, Cengine (please refer to [109]).

Degradation of Tires

The wear mechanism is also applied to tires because tires’ surfaces are in contact with

the road surface and friction results in worn-out material of the tires. Two horizontal

components of the force that cause the tire worn-out are Fx and Fy. The vertical force

component Fz is only considered for pressure (overinflation, underinflation) damage

of the tires. Similarly, a volume reduction of the tire due to worn-out material is

formulated as: △Vti = Ctire × (|Fx| + |Fy|) × △di, where Ctire is a constant and

represents the tire quality. △di is the relative displacement between the tire surface

and the road surface and it is simply the car travel distance. Again, the damage

percentage of the tire (dt) can be computed by: dt =
∑n

i=1
△Vti

Vt0
× 100%, where Vt0 is

the maximum volume which the tire can reduce before a failure might occur.

Degradation of Car Engine

A rough model is established to estimate the consumption lifetime of the car engine

from the travel distance and the engine rotation speed. The equation is dei = Cengine×
△di × Ri, where Cengine is a constant and represents the engine quality. Here △di
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and Ri are the car travel interval, and the engine rotation speed corresponding to

this travel interval, respectively. The consumed lifetime percentage of the engine is

de =
∑n

i=1 dei × 100%. The engine needs to be maintained if the dei sum up to 1.

RUL Calculation

It is assumed that the physical models are accurate, therefore, the real damage on

components up to now can be diagnosed. The RUL is predicted by extrapolating the

future damage from the distribution of the damage so far. The RUL of a component

can be calculated based on a damage percentage. If the RUL is estimated by a unit of

week, the total damage percentage after the wth week is calculated by: D =
∑w

i=1 Di,

where Di is the sum damage percentage of the ith week. Thus, the RUL after week

w can be estimated by: RUL = 100%−D
D/w , here, 100% means that, at the beginning,

the component is absolutely new. A Gaussian distribution is fitted to the distribution

of the weekly damage percentage and the resulting standard deviation σ is used to

calculate the lower and upper bound of the standard deviation confidence interval of

RUL as following: RUL = 100%−D
D/w+σ and RUL+ = 100%−D

D/w−σ .

6.2.3 VFMSO Simulator

A simulator has been developed to implement and evaluate the complete process of

vehicle fleet maintenance scheduling optimization. In the VFMSO simulator, Car-

Maker1 is adopted to simulate driving scenarios for a taxi fleet in New York City.

The origin and destination coordinates from Green Taxi Company in January 2015

downloaded from NYC Open Data2 are converted into taxi routes using Google API

and are used as the driving tasks. In the CarMaker simulation, extra loads are added

to all passenger seats of the car. For each passenger seat a load between 0 and 100

kg is randomly chosen with an equal probability. 4000 trips have been simulated with

CarMaker. In the VFMSO simulator, each car is assigned to 40 random trips per

day on average, and the maximum number of trips each car can execute per day is

50. These trips are randomly selected from the 4000 simulated trips. The sensor data

of forces, brake torque and engine rotation speed yielded by CarMaker are used to

estimate the damage percentage and the RUL of springs, tires, brake pads and engine

1CarMaker simulation is developed by IPG Automotive for testing driving scenarios of passenger
cars and light-duty vehicles. It provides models for vehicles, roads, drivers and traffic for all simu-
lation tasks in realistic driving scenarios. https://ipg-automotive.com/products-services/simulation-
software/carmaker/#driver

2https://data.cityofnewyork.us/Transportation/2015-Green-Taxi-Trip-Data/gi8d-wdg5/data
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by the physical models as described in Section 6.2.2.

Some parameters can be pre-defined to determine the vehicle fleet maintenance

scheduling optimization problem before running the simulator: the size of the vehicle

fleet, including the number of cars and the number of workshops; the costs and times of

maintaining cars/components in workshops; the range of days of running the simulator;

the frequency of generating a new maintenance schedule. After running the simulator

for the defined period, the following items can be reported by the simulator.

• The number of defects: when a defect occurs, i.e., a component is broken before

the scheduled maintenance date, the number of defects increases by one.

• The total cost: besides the set-up cost and maintenance cost, the waste of com-

ponent lifetime has also been transferred to a cost, and has been included in

the total cost by the simulator, this cost is called “too-early maintenance cost”.

Unlike the penalty cost in the optimization algorithm, the “too-early mainte-

nance cost” in the simulator is the actual value because it is assumed that the

physical models are 100% accurate and the due dates of the components calcu-

lated by them are used as the ground truth. When a component is maintained

based on the maintenance schedule, the simulator can calculate its current dam-

age percentage by the corresponding physical model and the remaining damage

percentage is converted to a cost to reflect the waste of the useful lifetime. The

“too-early maintenance cost” is calculated by the formula: remaining damage

percentage × maintenance cost of the component. Obviously, no “too-early

maintenance cost” arises for components which break before maintenance.

• The total maintenance time: the simulator records all the days that the vehicles

cannot work, either the reason is a scheduled maintenance activity or a defect.

• The number of changed schedules: every time when the maintenance schedule

is updated, the number of components which have a different maintenance date

or workshop is recorded.

• The number of unsatisfied trips: when a car cannot execute its tasks, e.g., it is

being maintained in a workshop, the assigned tasks for this car will be distributed

to other available cars, but the maximum number of tasks a car can execute each

day is 50. The tasks which cannot be satisfied are counted as unsatisfied trips.

• The number of scheduled maintenance activities: when a maintenance activity

is executed based on the maintenance schedule, the number of scheduled main-

tenance activities increases by one.
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These items are the final results after running the simulator for a pre-defined

number of simulated days. It can be seen that, on the one hand, the simulator can

show the results from different perspectives, which include not only the accumulated

optimization objective values over the period of running it, but also the results that

cannot be known by the optimization algorithm, such as the number of defects, the

number of unsatisfied trips. On the other hand, these results are used for the final

evaluation which is based on the “real” results and not on the raw optimization results.

The raw optimization results cannot be used as actual results due to the reason that

the optimizer does not have full knowledge of the future.

Figure 6.6: Daily workflow of the simulator.

Figure 6.6 shows the workflow of the simulator. The flow is executed on a daily

basis. At the beginning of each day, vehicles in workshops are checked and sent back

to work when their maintenance is done, meaning the damage of these components
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is set to zero. Next, the damage of each component is investigated and vehicles

are sent to workshops when defects occur, which means the damage percentage of

a component reaches 100%. In the case of a defect, the car is sent to a random

workshop. Afterwards, the maintenance schedule is checked and the vehicles are sent

to the assigned workshops if they are assigned to be maintained on that day. Hereafter,

the driving trips of that day are assigned to the available cars and the damages of

components are updated. Lastly, when it is the day to generate a new maintenance

schedule, the RUL distributions of components are predicted, and the maintenance

schedule is optimized. In the case of generating the first maintenance schedule, only

three objectives are employed. Later on, the stability of the schedule is involved in the

optimization procedure as an extra objective. After obtaining the PF approximation

from each optimization, the knee point on the PF is picked and deployed as the new

schedule to replace the current schedule to maintain the vehicle fleet.

6.2.4 Experiments

To show and observe the impact of different maintenance strategies clearly, the simu-

lator runs under the scenarios with the following combinations of parameters:

• the simulation time: 700 days,

• the size of the vehicle fleet: 20 cars with 2 workshops, 20 cars with 5 workshops,

• the frequency of updating schedule: weekly, monthly,

• the computing budget of optimization: 100000, 500000,

• the optimization algorithm: basic MOEA, preference based MOEA, dynamic

basic MOEA, dynamic preference based MOEA.

The results of the prediction-based optimization algorithms are also compared

with fixed-interval maintenance scheduling. To set the fixed-interval maintenance,

firstly the simulator is run without the maintenance schedule. In this case, each

component breaks until its due date or its damage reaches 100%, then it is maintained

and sent back to perform the driving tasks again. The average mileages are obtained

for 13 components to be maintained, which include engine, 4 brake pads (front left,

front right, rail left and rail right respectively), 4 tires and 4 springs. They are used

as the condition for the maintenance in the fixed-interval maintenance scheduling

approach, i.e., if a component reaches its corresponding average mileage, it is sent for

maintenance.
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Tables 6.3 - 6.5 show the results from the simulator. In these tables, the first column

shows which algorithm has been applied in the maintenance period (700 days in the

experiments). To optimize the maintenance schedule, four different optimization algo-

rithms have been applied and compared. Basic and preference-based algorithms only

take into account three objectives: cost, time and the number of failures. Dynamic ba-

sic and dynamic preference-based algorithms involve the fourth objective (the stability

of the schedule). It means that basic and preference based algorithms handle multi-

objective optimization problems, and dynamic basic and dynamic preference based

algorithms deal with many-objective optimization problems [84]. Many-objective op-

timization focuses on solving optimization problems with four or more objectives and

it forms a special and important case of multi-objective optimization problems. Solv-

ing many-objective optimization problem is more challenging for MOEAs due to the

high computational cost resulting from increased evaluation of the number of points

required for the PF approximation.

The other columns in these tables give the final results according to the simulation.

These results include the number of failures (#defects), the total cost (cost), the total

maintenance time (time), the number of changed schedules (#ch-sch), the number

of unsatisfied trips (#un-trips) and the number of scheduled maintenance activities

(#sch-act). Since the maintenance schedule is based on the average mileage and is not

updated for the fixed-interval maintenance, the number of changed schedules is not

applicable in this case. The parameter setting for each scenario has also been given in

the table, for example, “schedule-update: monthly; #evaluations: 100000” refers to

the scenario when the maintenance schedule is updated monthly and the computing

budget of the optimization algorithm is 100000. All experimental data are the average

results from five runs, in each run a different seed for the simulation is used.

Table 6.3 shows the experimental results from two different scales of the problem:

one is 20 cars and 2 workshops; another is 20 cars and 5 workshops. When there are

more workshops, the maintenance time can get reduced because there is less chance

for vehicles to wait for their maintenance. This results in a decrease of the number

of unsatisfied trips because the waiting time in workshops is now used to execute

trips. Accordingly, the number of maintenance jobs (both the number of scheduled

maintenance activities and the number of defects) increases. So does the maintenance

cost. When comparing the results from these two problems, it can be seen that the

data match this logic.

When comparing the results of dynamic algorithms with four objectives and their

corresponding algorithms without the fourth objective, it can be seen that dynamic

164



Chapter 6. Preference-based and Dynamic Vehicle Fleet Maintenance
Scheduling Optimization

algorithms can always reduce the number of changed schedules, but this also means

they have to sacrifice the other objectives to some extent. In some industrial scenar-

ios, the stability objective plays a critical role. For example, in the case of aircraft

maintenance, some maintenance activities are conducted during the intervals between

takeoffs and landings, the change on the maintenance schedule may make an impact on

the schedule of this flight and also might disrupt other flights, a rescheduling typically

causes significant communication costs.

Next, with more computing budget for the optimization algorithms (i.e., the num-

ber of objective function evaluations is 500000.), it can be seen that the overall results

after running the simulator get improved for three objective optimization (i.e., for

basic and preference based algorithms.). The results here refer to the objectives that

the algorithms optimize. However, for the dynamic algorithm, the results with more

computing budget are sometimes mutually dominated with the results from using a

smaller computing budget. For example, the number of defects can be reduced with

the larger computing budget, but the total maintenance cost cannot get improved by

more computing budget. This is led by the complexity of many-objective optimization.

When determining the schedule to be deployed from the PF, the knee point is chosen.

However, in four dimensional space, a small variation can lead to a big impact on

the final result, especially on the accumulated results of multiple optimizations. With

monthly schedule updates, the optimization algorithm is executed 22 times during one

simulation run of 700 days.

When the schedule is updated more often, i.e., weekly, a reduction of the defect

number is observed. Apparently, updating the maintenance schedule more frequently

can promote the accuracy of it because the predicted RUL is more accurate. At the

same time, an improvement of the total cost can be seen. The reason for the reduction

of the total cost also comes from the accuracy of the schedule and the resulting decrease

of the penalty cost which arises when the vehicle is maintained before it is broken,

i.e., the cost for too-early maintenance. When updating the maintenance schedule

more often, the maintenance time can not always get improved because the number of

maintenance tasks does not always get decreased, the maintenance tasks may increase

due to the accuracy of the schedule and the resulting increase on the number driving

tasks which have been executed.

When comparing the preference based algorithm and basic algorithm, for both

three objective and four objective optimization, it can be seen that the results of the

preference based algorithm are usually better than its corresponding basic algorithm

for the scenario of five workshops. However, if there are only two workshops, the
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waiting of vehicles for their maintenance results in a performance degradation of the

preference based algorithms. The similar working tasks of the vehicles lead to the

phenomenon that the scheduled maintenance times for some vehicles are close, and

this leads to that the workshops run out of capacity sometimes but become idle at

other times. Therefore, a good solution would be to offer more workshops for the fleet,

at the same time, these workshops can also work for other tasks besides for the fleet.

Lastly, when comparing with the fixed-interval maintenance, there are more de-

fects, maintenance time and unsatisfied trips for the fixed-interval maintenance. Since

most maintenance tasks are caused by defects, the too-early maintenance cost drops

dramatically and this leads to the decrease of the total cost.

Table 6.3: Optimization results of different maintenance scenarios over 5 runs.

20 cars & 2 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act
Fixed-interval 226 474965 6269 NA 212450 52

schedule-update: monthly; #evaluations: 100000;
Basic 46 680666 4282 4509 121000 148
Preference 50 690871 4179 4630 112150 150
Dynamic basic 73 676149 5510 4023 175800 154
Dynamic preference 66 688934 4732 3729 137200 159

schedule-update: monthly; #evaluations: 500000;
Basic 39 675374 3936 4553 101750 150
Preference 40 677331 3903 4526 101950 145
Dynamic basic 68 717046 5262 3777 161300 157
Dynamic preference 42 690131 4669 3240 140750 150

schedule-update: weekly; #evaluations: 100000;
Basic 32 624078 4565 22884 126200 166
Preference 35 646117 4103 23016 109700 168
Dynamic basic 67 633854 5758 19660 185450 150
Dynamic preference 50 628228 4626 18049 140200 161

20 cars & 5 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act
Fixed-interval 330 747104 2996 NA 72750 92

schedule-update: monthly; #evaluations: 100000;
Basic 68 785777 1852 4877 27950 192
Preference 67 748044 1837 5012 25750 184
Dynamic basic 137 849203 2942 4466 62700 218
Dynamic preference 93 789592 2331 4247 42000 217

schedule-update: monthly; #evaluations: 500000;
Basic 55 756278 1725 4901 24850 182
Preference 50 718176 1649 4924 22550 177
Dynamic basic 125 831775 2754 4442 56950 223
Dynamic preference 91 797258 2130 4014 34750 210

schedule-update: weekly; #evaluations: 100000;
Basic 60 695181 1995 23973 35550 206
Preference 56 690720 1951 23982 31250 205
Dynamic basic 114 768697 3122 21715 77950 217
Dynamic preference 91 721193 2296 20397 44100 227
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Besides the parameters which change the experimental environment, the variables

in the optimization algorithm can also be adjusted to emphasize some aspects of the

results. To reduce the number of failures of vehicles, the interval of the execution

window is switched from [µ−2×σ, µ+2×σ] to [µ−3×σ, µ+σ]. Table 6.4 shows the

results of 20 vehicles and 5 workshops. After shifting the execution window forward,

the dramatic drop of the number of defects is achieved and the descent rate reaches

83.21% on average. Simultaneously, this activates the rise of the maintenance cost.

Table 6.4: Adjust execution window to reduce the number of defects.

20 cars & 5 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act

schedule-update: monthly; #evaluations: 100000;
Basic 7 886747 1872 4787 22050 227
Preference 10 840907 1834 4767 21450 223
Dynamic basic 28 1152867 3276 4143 63925 303
Dynamic preference 20 1032917 2399 4102 34350 285

schedule-update: monthly; #evaluations: 500000;
Basic 5 823662 1599 4826 15050 201
Preference 5 822518 1534 4804 12850 190
Dynamic basic 27 1133032 3618 3960 79100 292
Dynamic preference 22 979069 2339 3686 34950 258

schedule-update: weekly; #evaluations: 100000;
Basic 4 823683 1945 23496 25750 248
Preference 4 805841 1815 23472 22100 225
Dynamic basic 22 1070067 3092 20856 62450 287
Dynamic preference 15 864731 2313 19701 42350 231

It is worth noting that the problems with 20 vehicles and 13 components for each

vehicle are already large scale scheduling optimization problems in terms of the domain

of flexible job shop scheduling optimization. Moreover, the MOVFMSO problem is

more complex than FJSS because the MOVFMSO problem needs to assign not only

the workshops and maintenance times (sequences) for the maintenance activities, but

also the combination of components for each activity. To investigate how scalable the

proposed approach is, the questions asked are whether the algorithms can be applied to

even larger fleet and whether consistent results can be achieved when the fleet becomes

significantly larger. To this end, the fleet size has been increased to 50 vehicles and 15

workshops are available, the components to be maintained retain the same. Table 6.5

shows the simulator results and it can be observed that these results are consistent

with the results presented earlier.

From the experimental results, some major insights on how to design schedules

with respect to the objectives can be concluded as follows.

• Providing additional workshops can help reduce the overall maintenance time.
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Table 6.5: Increase Problem Size.

50 cars & 15 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act
Fixed-interval 864 1878632 7118 NA 162850 209

schedule-update: monthly; #evaluations: 100000;
Basic 45 2429887 5440 11933 63600 697
Preference 43 2395079 5104 12171 54600 669
Dynamic basic 109 2887019 7571 11598 127200 812
Dynamic preference 71 2751571 6481 11302 89300 792

schedule-update: monthly; #evaluations: 500000;
Basic 35 2320261 5016 12036 63600 635
Preference 32 2254907 4551 12176 42950 626
Dynamic basic 105 2990837 8454 11210 164700 853
Dynamic preference 70 2677516 6392 10971 87850 753

schedule-update: weekly; #evaluations: 100000;
Basic 24 2149010 5267 58736 70350 659
Preference 26 2141242 5047 58929 69100 643
Dynamic basic 102 2750433 6908 56272 107500 782
Dynamic preference 61 2418850 5819 55485 83400 706

• Moving the execution window to the left (earlier time) or updating the schedule

more often can both be used to reduce the number of defects.

• Without introducing stability as an additional objective, schedule tends to be

disrupted by dynamic updates.

• Both the use of the preference based algorithms and increasing the computing

budget have a positive impact on the overall quality. However, the best way

to improve the overall quality of the final results is to increase the number or

capacity of workshops in combination with the preference based algorithms.

• Comparing the fixed-interval maintenance vs. prediction-based scheduling opti-

mization, it can be concluded that fixed-interval maintenance leads to an unsat-

isfactory performance in terms of number of defects, whereas prediction-based

scheduling optimization finds a balanced trade-off satisfying all objectives to high

extents. Therefore, the extra computational effort required to make predictions

and perform optimizations is well justified.

• The results on the large-scale benchmark problem with 50 vehicles indicate that

the proposed algorithms can also handle larger problems and the main conclu-

sions, as summarized in the previous points, remain the same.
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6.2.5 Summary and Outlook

Since optimization algorithms are required to regularly update maintenance schedule

in a dynamic environment, the proposed multi-objective evolutionary algorithms are

extended to dynamic many-objective evolutionary algorithms that take stability as

the fourth objective to aim for the robustness of maintenance schedule. The vehicle

fleet maintenance scheduling optimization simulator has been developed, which can

be used as a scalable benchmark for optimizing vehicle fleet maintenance schedules in

an industrially relevant setting. The simulator and benchmark problems have been

inspired by the instances faced by a taxi company with up to 50 cars. The proposed

MOEAs can be compared and tested easily in the simulator in a rolling-horizon fashion.

Parameters and algorithms can be adjusted to imitate various scenarios. Therefore,

although the implementation of the approach is demonstrated in the example of taxi

fleets, the proposed approach can be adapted to different industrial applications, for

example, the maintenance of trucks, vessels, aircraft, etc.

The size of problems in the experiments is up to 50 vehicles and 13 components for

each vehicle. Still, one might imagine the problems of even larger scale, and finding

out the limit of the fleet size that the algorithm can handle would be an interesting

future research. However, for this, high performance computing environments and

parallel computing might be required, especially when it comes to statistical studies.

In this work, to maintain clarity of presentation the dynamically changing element is

so-far restricted, but in the future work additional dynamic elements and uncertainties

should be considered. For example, the uncertainty on the maintenance duration could

be modeled, as in [52], the presence of cost uncertainty in [31], etc.

169



6.2. Dynamic MOEAs for MOVFMSO

170


