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Chapter 5

Multi-objective Scheduling

Optimization

In previous chapters different MOEAs have been proposed for multi-objective op-

timization. However, the core issue of these algorithms is to solve the real-world

application problems, as is required to answer RQ5. The exact real-world problem

to be solved is the multi-objective vehicle fleet maintenance scheduling optimization

(MOVFMSO) problem. As the preparatory work for solving this real-world scheduling

optimization problem, in this chapter, first, study has been done on the benchmark

multi-objective scheduling optimization problems, i.e., the flexible job shop schedul-

ing problem (FJSP), and an MOEA has been proposed to solve the FJSP. Therefore,

RQ4 is answered. Following this, the real-world MOVFMSO problem is formulated,

its representation is defined and the problem specific genetic operators are developed.

Based on these works, the previously proposed MOEAs can be applied to solve the

MOVFMSO problem.

This chapter continues with Section 5.1, where the FJSP is introduced, the pro-

posed algorithm for solving the FJSP is described and tested. Thereafter, in Sec-

tion 5.2, the MOVFMSO application problem is established. To solve it, the problem

representation, i.e., an encoding of the problem in decision variables, is designed for

evolutionary computation. MOEAs have been devised, along with genetic operators.

In this chapter, only the basic MOEAs are applied on the MOVFMSO problems, the

preference-based MOEA and dynamic MOEA which is developed based on these static

algorithms for dynamic environments on the MOVFMSO problem will be introduced
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5.1. Tailored NSGA-III Instantiation for Flexible Job Shop Scheduling

in next chapter.

5.1 Tailored NSGA-III Instantiation for Flexible Job

Shop Scheduling

In this section, a customized multi-objective evolutionary algorithm is proposed for the

multi-objective flexible job shop scheduling problem (MOFJSP) with three objectives

(makespan, total workload, critical workload). Multiple initialization approaches have

been adopted to produce the first-generation population based on the definition of the

chromosome representation; at the same time, diverse genetic operators are applied

to guide the search towards offspring with a wide diversity; especially, an algorithm

configurator, i.e., the MIP-EGO configurator [110], is used to tune the parameter

configuration; furthermore, two levels of local search are employed to explore the

neighborhood for better solutions. In general, the proposed algorithm for the FJSP

can be combined with any standard MOEAs to solve the MOFJSP. In this work, it

has been combined with NSGA-III to solve some benchmark multi-objective FJSPs,

whereas an off-the-shelf implementation of NSGA-III is not capable of solving them.

The remainder of this section is structured as follows. The multi-objective FJSP

is first introduced in Section 5.1.1. Section 5.1.2 provides necessary background

knowledge. In Section 5.1.3, the algorithm strategies for the FJSP are developed,

and combined with NSGA-III, therefore, the tailored NSGA-III can solve the multi-

objective FJSPs. After that, Section 5.1.4 reports the experimental results. Finally,

Section 5.1.5 concludes the work and suggests future work directions.

5.1.1 Flexible Job Shop Scheduling

The job shop scheduling problem (JSP) is an important branch of production planning

problems. The classical JSP consists of a set of independent jobs to be processed on

multiple machines and each job contains a number of operations with a predetermined

order. It is assumed that each operation must be processed on a specific machine

with a specified processing time. The JSP is to determine a schedule of jobs, meaning

to sequence operations on the machines. The FJSP is an important extension of the

classical JSP due to the wide employment of multi-purpose machines in the real-world

job shop. The FJSP extends the JSP by assuming that each operation is allowed to be

processed on a machine out of a set of alternatives, rather than one specified machine.

Therefore, the FJSP is not only to find the best sequence of operations on a machine,

112



Chapter 5. Multi-objective Scheduling Optimization

but also to assign each operation to a machine out of a set of qualified machines. The

JSP is well known to be strongly NP-hard [48]. The FJSP is an even more complex

version of the JSP, so the FJSP is clearly also strongly NP-hard.

The MOFJSP addressed in this work is described as follows:

1. There are n jobs J = {J1, J2, · · · , Jn} andmmachinesM = {M1,M2, · · · ,Mm}1.

2. Each job Ji comprises li operations for i = 1, · · · , n, the jth operation of job Ji

is represented by Oij , and the operation sequence of job Ji is from Oi1 to Oili .

3. For each operation Oij , there is a set of machines capable of performing it, which

is represented by Mij and it is a subset of M .

4. The processing time of the operation Oij on machine Mk is predefined and

denoted by tijk.

At the same time, the following assumptions are made:

1. All machines are available at time 0 and assumed to be continuously available.

2. All jobs are released at time 0 and independent from each other.

3. Setting up times of machines and transportation times between operations are

negligible.

4. Environmental changes (such as machine breakdowns) are neglected.

5. A machine can only work on one operation at a time.

6. There are no precedence constraints among the operations of different jobs, and

the order of operations for each job cannot be modified.

7. An operation, once started, must run to completion.

8. No operation for a job can be started until the previous operation for that job

is completed.

The makespan, total workload and critical workload, which are commonly consid-

ered in the literature on FJSP (e.g., [16], [131]), are minimized and used as the three

objectives in our algorithm. Minimizing the makespan can facilitate the rapid response

1In this chapter and the next chapter, m is used to represent the number of machines or workshops
to be consistent with prior literature. The objectives have been given for each specific problem.
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to the market demand. The total workload represents the total working time of all

machines and the critical workload is the maximum workload among all machines.

Minimizing the total workload can reduce the use of machines; minimizing the critical

workload can balance the workload between machines. Let Ci denote the completion

time of job Ji, Wk the sum of processing time of all operations that are processed on

machine Mk. The three objectives can be defined as follows:

Makespan(Cmax) : f1 = max{Ci|i = 1, 2, · · · , n} (5.1)

Total workload(Wt) : f2 =

m∑
k=1

Wk (5.2)

Critical workload(Wmax) : f3 = max{Wk|k = 1, 2, · · · ,m}. (5.3)

An example of MOFJSP is shown in Table 5.1 as an illustration, where rows

correspond to operations and columns correspond to machines. In this example, there

are three machines: M1, M2 and M3. Each entry of the table denotes the processing

time of that operation on the corresponding machine, and the tag “− ” means that a

machine cannot execute the corresponding operation.

Table 5.1: Processing time of a FJSP instance.

Job Operation M1 M2 M3

J1

O11 3 - 2
O12 5 7 6
O13 - - 2

J2
O21 2 4 3
O22 2 - 1

J3
O31 4 2 2
O32 3 5 -

5.1.2 Background and Related Work

Algorithms for MOFJSP

The FJSP has been investigated extensively in the last three decades. According to

[15], EA is the most popular non-hybrid technique to solve the FJSP. Among all EAs

for FJSP, some are developed for the more challenging FJSP: the MOFJSP which we

formulated in Section 5.1.1, and [16], [113], [131] are very successful MOFJSP algo-

rithms and have obtained high-quality solutions. [113] proposed a multi-objective ge-

netic algorithm (MOGA) based on the immune and entropy principle. In this MOGA,
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the fitness was determined by the Pareto dominance relation and the diversity was

kept by the immune and entropy principle. In [16], a simple EA (SEA) was proposed,

which used domain heuristics to generate the initial population and balanced the ex-

ploration and exploitation by refining duplicate individuals with mutation operators.

A memetic algorithm (MA) was proposed in [131] and it incorporated a local search

into NSGA-II [29]. A hierarchical strategy was adopted in the local search to handle

objectives. In Section 5.1.4, these algorithms have been compared with the proposed

algorithm on the benchmark MOFJSPs.

Parameter Tuning

EA involves using multiple parameters, such as the crossover probability, mutation

probability, computational budget, as so on. The preset values of these parameters

affect the performance of the algorithm in different situations. The parameters are

usually set to values which are assumed to be good. For example, the mutation

probability normally is kept very low, otherwise the convergence is supposed to be

delayed unnecessarily. But the best way to identify the probability would be to do

a sensitivity analysis: carrying out multiple runs of the algorithms with different

mutation probabilities and comparing the outcomes. Although there are some self-

tuning techniques for adjusting these parameters on the go, the hyper-parameters in

EA can be optimized using the technique from machine learning.

The optimization of hyper-parameters and neural network architectures is a very

important topic in the field of machine learning due to the large number of design

choices for a network architecture and its parameters. Recently, algorithms have been

developed to accomplish this automatically since it is intractable to do it by hand.

The MIP-EGO [110] is one of these configurators that can automatically configure

convolutional neural network architectures and the resulting optimized neural networks

have been proven to be competitive with the state-of-the-art manually designed ones on

some popular classification tasks. Moreover, MIP-EGO allows for multiple candidate

points to be selected and evaluated in parallel, which can speed up the automatic

tuning procedure. In this work, several parameters are tuned with MIP-EGO to find

the best parameter setting for them.

NSGA-III

NSGA-III is a decomposition-based MOEA, it is an extension of the well-known

NSGA-II and eliminates the drawbacks of NSGA-II such as the lack of uniform di-
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versity among a set of non-dominated solutions. The basic framework of NSGA-III is

similar to the original NSGA-II, while it replaces the crowding distance operator with

a clustering operator based on a set of reference points. A widely-distributed set of

reference points can efficiently promote the population diversity during the search and

NSGA-III defines a set of reference points by Das and Dennis′s method [21].

In each iteration t, an offspring population Qt of size Npop is created from the

parent population Pt of size Npop using usual selection, crossover and mutation. Then

a combined population Rt = Pt ∪Qt is formed and classified into different layers (F1,

F2, and so on ), each layer consists of mutually non-dominated solutions. Thereafter,

starting from the first layer, points are put into a new population St. A whole pop-

ulation is obtained until the first time the size of St is equal to or larger than Npop.

Suppose the last layer included in St is the l-th layer, so far, members in St \ Fl are

points that have been chosen for Pt+1 and the next step is to choose the remaining

points from Fl to make a complete Pt+1. In general (when the size of St doesn’t equal

to Npop), Npop − |St \ Fl| solutions from Fl needs to be selected for Pt+1.

When selecting individuals from Fl, first, each member in St is associated with

a reference point by searching the shortest perpendicular distance from the member

to all reference lines created by joining the ideal point with reference points. Next, a

niching strategy is employed to choose points associated with the least reference points

in Pt+1 from Fl. The niche count for each reference point, defined as the number of

members in St \ Fl that are associated with the reference point, is computed. The

member in Fl associated with the reference point having the minimum niche count is

included in Pt+1. The niche count of that reference point is then increased by one and

the procedure is repeated to fill the remaining population slots of Pt+1.

NSGA-III is powerful to handle problems with non-linear characteristics as well as

having many objectives. Therefore, we decided to enhance NSGA-III in our algorithm

for the MOFJSP.

5.1.3 Proposed Algorithm

The proposed algorithm, Flexible Job shop Scheduling Problem Multi-Objective Evolu-

tionary Algorithm (FJSP-MOEA) can in principal be combined with any MOEA and

help MOEAs solve the MOFJSP, whereas the standard MOEAs cannot solve MOFJSP

solely. The algorithm follows the flow of a typical EA and generates improved solu-

tions by using local search. Details of the following components are given in the next

subsections.
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• Initialization: encode the individual and generate the initial population.

• Genetic operators: generate offspring by crossover and mutation operators.

• Local search: decode the individual and improve the solution with local search.

Initialization

1. Chromosome Encoding

The MOFJSP is a combination of assigning each operation to a machine and ordering

operations on the machines. In the algorithm, each chromosome (individual) repre-

sents a solution in the search space and the chromosome consists of two parts: the

operation sequence vector and the machine assignment vector. Let N denote the num-

ber of all operations of all jobs. The length of both vectors is equal toN . The operation

sequence vector decides the sequence of operations assigned to each machine. For any

two operations which are processed by the same machine, the one located in front

is processed earlier than the other one. The machine assignment vector assigns the

operations to machines, in other words, it determines which operation is processed by

which machine and the machine should be the one capable of processing the operation.

The format of representing an individual not only influences the implementation

of crossover and mutation operators, a proper representation can also avoid the pro-

duction of infeasible schedules and reduces the computational time. In the algorithm,

the chromosomal representation proposed by Zhang et al. in [134] is adopted and an

example is given in Table 5.2.

Table 5.2: An example of a chromosome representation.

Operation sequence 111 222 333 222 111 111 333
O11 O21 O31 O22 O12 O13 O32

Machine assignment 222 111 111 333 222 222 111
O11 O12 O13 O21 O22 O31 O32

M3 M1 M3 M3 M3 M2 M1

In Table 5.2, the first row shows the operation sequence vector which consists of

only job indexes. For each job, the first appearance of its index represents the first

operation of that job and the second appearance of the same index represents the

second operation of that job, and so on. The occurrence number of an index is equal

to the number of operations of the corresponding job. The second row explains the
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first row by giving the real operations. The third row is the machine assignment vector

which presents the selected machines for all operations. The operation sequence of the

machine assignment vector is fixed, which is from the first job to the last job and from

the first operation to the last operation for each job. The fourth row indicates the

fixed operation sequence of the machine assignment vector and the fifth row shows the

real machines of the operations. Each integer value in the machine assignment vector

is the index of the machine in the set of alternative machines of that operation. In

this example, O13 is assigned to M3 because M3 is the first (and only) machine in

the alternative machine set of O13 (Table 5.1). The alternative machine set of O22 is

{M1,M3}, the second machine in this set is M3, therefore, O22 is assigned to M3.

2. Initial Population

The algorithm starts by creating the initial population. The machine assignment

and operation sequence vectors are generated separately for each individual. In the

literature, a few approaches have been proposed for producing individuals, such as

global minimal workload in [67]; AssignmentRule1 and AssignmentRule2 in [82]. In

the proposed algorithm, several new methods are proposed, namely the Processing

Time Roulette Wheel (PRW) and Workload Roulette Wheel (WRW) for initialising

the machine assignment and the Most Remaining Machine Operations (MRMO) and

Most Remaining Machine Workload (MRMW) for initialising the operation sequence.

These new approaches have been used together with some commonly used dispatching

rules in initializing individuals for the purpose of enriching the initial population.

When generating a new individual, two initialization methods are randomly picked

from the following two lists; one for the machine assignment vector and one for the

operation sequence vector.

Initialization Methods for Machine Assignment

1. Random assignment (Random): an operation is assigned to an eligible machine

randomly.

2. Processing time Roulette Wheel (PRW): for each operation, the roulette wheel

selection is adopted to select a machine from its machine set based on the processing

times of these capable machines. The machine with the shorter processing time is

more likely to be selected.

3. Workload Roulette Wheel (WRW): for each operation, the roulette wheel selection

is used to select a machine from its machine set based on the current workloads
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plus the processing times of these capable machines. The machine with lower sum

of the workload and processing time is more likely to be selected.

PRW and WRW are proposed to assign the operation to the machine with less

processing time or accumulated workload, at the same time, maintaining the freedom

of exploring the entire search space.

Initialization Methods for Operation Sequence

1. Random permutation (Random): starting from a fixed sequence: all job indexes of

J1 (the number of J1 job indexes is the number of operations of J1), followed by all

job indexes of J2, and so on. Then the array with the fixed sequence is permuted

and a random order is generated.

2. Most Work Remaining (MWR): operations are placed one by one into the operation

sequence vector. Before selecting an operation, the remaining processing times of

all jobs are calculated respectively, the first optional operation of the job with the

longest remaining processing time is placed into the chromosome.

3. Most number of Operations Remaining (MOR): operations are placed one by one

into the operation sequence vector. Before selecting an operation, the number of

succeeding operations of all jobs is counted respectively, the first optional operation

of the job with the most remaining operations is placed into the chromosome.

4. Long Processing Time (LPT)[127]: operations are placed one by one into the op-

eration sequence vector, each time, the operation with maximal processing time is

selected without breaking the order of jobs.

5. Most Remaining Machine Operations (MRMO): operations are placed into the op-

eration sequence vector according to both the number of subsequent operations

on machines and the number of subsequent operations of jobs. MRMO is a hier-

archical method and takes the machine assignment into consideration. First, the

machine with the most subsequent operations is selected. After that, the optional

operations in the subsequent operations on that machine are found based on the

already placed operations. For example, if O11 → O12 → O21 are placed opera-

tions, the current optional operation can only be chosen from O13, O22, and O31.

In these optional operations, those which are assigned to the selected machine are

picked and the one that belongs to the job with the most subsequent operations is

placed into the chromosome. In this example, O31 will be chosen if it is assigned to

the selected machine because there are two subsequent operations for J3 and only
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one subsequent operation for J1 and J2. Note that it is possible that no operation

is available on that machine, in that case, the machine with the second biggest

number of subsequent operations will be selected, and so forth.

6. Most Remaining Machine Workload (MRMW): operations are placed into the oper-

ation sequence vector according to both the remaining processing times of machines

and the remaining processing times of jobs. MRMW is a hierarchical method sim-

ilar to MRMO. After finding the machine with the longest remaining process time

and the optional operations on that machine, the operation which belongs to the

job with the longest remaining process time is placed into the chromosome. Again,

if no operation is available on that machine, the machine with the second longest

remaining processing time will be selected, and so forth.

MRMO and MRMW are proposed to give priority to both the machine and the job

with the most number of remaining operations (MRMO) and the longest remaining

processing time (MRMW).

Crossover

Crossover is a matter of replacing some of the genes in one parent with the corre-

sponding genes of the other. Since the representation of chromosomes has two parts,

crossover operators applied to these two parts of chromosomes are implemented sep-

arately as well. Two new crossover operators, Precedence Preserving Two Points

Crossover (PPTP) and Uniform Preservative crossover (UPX), are proposed and

used together with several commonly adopted crossover operators. When executing

the crossover operation in the proposed algorithm, one crossover operator for machine

assignment and one operator for the operation sequence, are randomly chosen from

the following two lists to generate the offspring.

Crossover Operators for Machine Assignment

1. No crossover

2. One point crossover: a cutting point is picked randomly and genes after the cutting

point are swapped between two parents.

3. Two points crossover: two cutting points are picked randomly and genes between

the two points are swapped between two parents.

4. Job-based crossover (JX): it generates two children from two parents by the follow-

ing procedure:
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a A vector with the size of the jobs is generated, which consists of random values

0 and 1.

b For the job corresponding to value 0, the assigned machines of its operations

are preserved.

c For the job corresponding to value 1, the machines of its operations are

swapped between two parents.

5. Multi-point preservative crossover (MPX)[133]: MPX generates two children from

two parents by the following procedure:

a A vector with the size of all operations is generated, which consists of random

values 0 and 1.

b For the operations corresponding to value 0, their machines (genes) are pre-

served.

c For the operations corresponding to value 1, their machines (genes) are swapped

between the two parents.

Crossover Operators for Operation Sequence

1. No crossover

2. Precedence preserving one point crossover (PPOP) [102]: PPOP generates two

children from two parents by the following procedure:

a A cutting point is picked randomly, genes to the left are preserved and copied

from parent1 to child1 and from parent2 to child2.

b The remaining operations in parent1 are reallocated in the order they appear

in parent2.

c The remaining operations in parent2 are reallocated in the order they appear

in parent1.

An example of PPOP is shown in Figure 5.1 and the cutting point is between the

third and fourth operation. Red numbers in parent2 are the genes on the right

side of the cutting point in parent1 and they are copied to child1 with their own

sequence following the genes on the left side of the cutting point in parent1, and

vice versa.

3. Precedence Preserving Two Points Crossover (PPTP): PPTP generates two chil-

dren from two parents by the following procedure:
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Figure 5.1: The process of PPOP.

a Two cutting points are picked randomly, genes except for those between the

two points are preserved and copied from parent1 to child1 and from parent2

to child2.

b Operations between the two cutting points in parent1 are reallocated in the

order they appear in parent2.

c Operations between the two cutting points in parent2 are reallocated in the

order they appear in parent1.

4. Improved precedence operation crossover (IPOX)[132]: IPOX divides the job set

into two complementary and non-empty subsets randomly. The operations of one

job subset are preserved, while the operations of another job subset are copied from

another parent.

5. Uniform Preservative crossover (UPX): UPX generates two children from two par-

ents by the following procedure:

a A vector with the size of all operations is generated, which consists of random

values 0 and 1.

b For the operations corresponding to value 0, the genes are preserved and copied

from parent1 to child1 and from parent2 to child2.

c For the operations corresponding to value 1, the genes in parent1 are found in

parent2 and copied from parent2 with the sequence in parent2, and vice versa.

Mutation

The mutation operator flips the gene values at selected locations. By forcing the

algorithm to search areas other than the current area, the mutation operator is used

to maintain genetic diversity from one generation of a population to the next. In this

algorithm, insertion mutation and swap mutation (including one point swap and two

points swap) are proposed and used.
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Insertion Mutation Operator generates a new individual by the following pro-

cedure:

• Two random numbers i and j (1 ≤ i ≤ N , 1 ≤ j ≤ N) are selected.

• For the operation sequence vector, the operation on position j is inserted in front

of the operation on position i.

• For the machine assignment vector, a machine is randomly selected for both

the operations on i and on j respectively. If the processing time on the newly

selected machine is lower than that on the current machine, the current machine

is replaced by the new machine. If the processing time on the new machine is

longer than that on the old machine, there is only a 20% probability that the

new machine replaces the old machine.

Swap Mutation Operator generates a new individual by the following proce-

dure:

• One random number i (1 ≤ i ≤ N) is selected or two random numbers i and j

(1 ≤ i ≤ N , 1 ≤ j ≤ N) are selected.

• For the operation sequence vector, with only one swap point i, the operation

on the swap point is swapped with its neighbour; with two swap points, the

operations on position i and j are swapped.

• For the machine assignment vector, the machine on position i (and j) is replaced

with a new machine by the same rule used in the insertion mutation operator.

Decoding and Local Search

Decoding a chromosome is to convert an individual into a feasible schedule to calculate

the objective values which represents the relative superiority of a solution. In this

process, the operations are picked one by one from the operation sequence vector and

placed on the machines from the machine assignment vector to form the schedule.

When placing each operation to its machine, local search (in the sense of heuristic

rules to improve solution) is involved to refine an individual in order to obtain an

improved schedule in the proposed algorithm. Two levels of local search are applied

to allocate each operation to a time slot on its machine. We know that idle times

may exist between operations on each machine due to precedence constraints among

operations of each job, and two levels of local search utilize idle times in different

degrees.

123



5.1. Tailored NSGA-III Instantiation for Flexible Job Shop Scheduling

The First Level Local Search

Let Sij be the starting time of Oij and Cij the completion time of Oij , an example of

the first level local search is shown in Figure 5.2. Because Omn needs to be processed

after the completion of Omn−1, an idle time interval between the completion of Oab and

the starting of Omn appeared on machine Mk. Oij is assigned to Mk and we assume

that Omn is the last operation on Mk before handling Oij , therefore the starting time

of Oij is max{Cmn, Cij−1}, which in this example is Cmn and it is later than Cij−1,

thus, there is an opportunity that Oij can be processed earlier. When checking the

idle time on Mk, the idle time interval [Cab, Smn] is found available for Oij because

the idle time span [Cij−1, Smn], which is part of [Cab, Smn], is enough to process Oij

or longer than tijk.

Figure 5.2: First level local search Figure 5.3: Second level local search

Let Sd
k be the starting time of the dth idle time interval on Mk and Cd

k be the

completion time. Oij can be transferred to an earliest possible idle time interval of its

machine which satisfies the following equation:

max{Sd
k , Cij−1}+ tijk ≤ Cd

k , (Cij = 0, if j = 1). (5.4)

After using the idle time interval, the starting time of Oij is max{Sd
k , Cij−1} and

the idle interval is updated based on the starting and completion time of Oij : (1)

the idle time interval is removed; (2) the starting or completion time of the idle time

interval is modified; (3) the idle time interval is replaced by two new shorter idle time

intervals, like in the example of Figure 5.2.

After decoding a chromosome, the operation sequence vector of the chromosome is

updated according to new starting times of operations, and three objective values are
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calculated. The first level local search only finds for each operation the available idle

time interval on its assigned machine. After generating the corresponding schedule

with the first level search method, it is possible that there are still operations that

can be allocated to available idle time intervals to benefit the fitness value. To achieve

this, decoding the chromosome which has been updated with the first level local search

is performed with the second level local search, and again operations are moved to

available idle time intervals.

The Second Level Local Search

The second level local search not only checks the idle time intervals on the assigned

machine, but also the idle time intervals on alternative machines. An example of

making use of the idle time interval on another machine is shown in Figure 5.3. Let

Sijk be the starting time and Cijk be the completion time of Oij on Mk. In this

example, Oij is assigned to Mk in the initial chromosome, we assume that Oij can

also be performed by Me. Under the condition that the starting time of Oij on Mk

is later than the completion time of Oij−1, the idle time intervals on all alternative

machines which can process Oij are checked. An idle time interval on Me could be a

choice and Oij can be reallocated to Me. In this example, the processing time of Oij

on Me is even shorter then the processing time on Mk, therefore, this reallocation can

at least benefit the total workload.

In the second level local search, all available idle time intervals of an operation

are checked one by one until the first “really” available idle time interval is found

and then the operation is moved to that idle time interval. Any idle time interval

on an alternative machine which can satisfy Equation 5.4 is an available idle time

interval, while it must meet at least one of the following conditions to become a

“really” available idle time interval.

1. The processing time of the operation on the new machine is shorter than on

the initially assigned machine if the available idle time interval is on a different

machine;

2. The operation can be moved from the machine with the maximal makespan to

another machine.

3. The operation can be moved from the machine with the maximal workload to

another machine.

The total workload can be improved directly by the first condition; the motive of the
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second condition is to decrease the maximal makespan and the third condition can

benefit the critical workload.

After the reallocation of the operations with the second level local search, the

corresponding schedule is obtained and objective values are calculated. While, instead

of updating the chromosome immediately, the new objective values are compared with

the old objective values first, the chromosome can be updated only when at least one

objective is better than its old value. This is to make sure that the new schedule is at

least not worse than the old schedule (The new solution is not dominated by the old

solution). Another difference between the first and second level local search is that the

first level local search is performed on every evaluation, while the second level local

search is only performed with a 30% probability for each chromosome to avoid local

optima. Although these two local searches can be applied repeatedly to improve the

solution, to avoid that the algorithm is stuck in a local optima, they are employed

only once for each evaluation.

5.1.4 Experimental Results

The algorithms are tested on two sets of well-known FJSP benchmark instances: 4

Kacem instances (ka4x5, ka10x7, ka10x10, ka15x10) and 10 BRdata instances (Mk01-

Mk10). Table 5.3 gives the scale of these instances. The first column is the name of

each instance; the second column shows the size of the instance, in which n stands for

the number of jobs and m the number of machines; the third column represents the

number of operations; the fourth column lists the flexibility of each instance, which

means the average number of alternative machines for each operation in the problem.

All the experiments are performed with a population size of 100, each run of the

algorithm will stop based on a predefined number of evaluation, which is 10000 for

Kacem instances and 150000 for BRdata instances. For each problem instance, the

proposed algorithm is independently run 30 times. The resulting set is formed by all

non-dominated solutions from the union of 30 runs.

The crossover probability is set to 1 and two random crossover operators can be

chosen each time (one for operation sequence and one for machine assignment). For

Kacem instances, the mutation probabilities are set to 0.6. For BRdata instances,

which include larger-scale and more complex problems, the MIP-EGO configurator

[110] is adopted to tune both insertion and swap mutation probabilities (one point

swap mutation and two points swap mutation) to find the best parameter values for

each problem. The hypervolume of the solution set has been used in MIP-EGO as the
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Table 5.3: The scale of benchmark instances.

Instance n → m #Opr Flex.
ka4x5 4 → 5 12 5
ka10x7 10 → 7 29 7
ka10x10 10 → 10 30 10
ka15x10 15 → 10 56 10
Mk01 10 → 6 55 2
Mk02 10 → 6 58 3.5
Mk03 15 → 8 150 3
Mk04 15 → 8 90 2
Mk05 15 → 4 106 1.5
Mk06 10 → 15 150 3
Mk07 20 → 5 100 3
Mk08 20 → 10 225 1.5
Mk09 20 → 10 240 3
Mk10 20 → 15 240 3

objective value to tune three mutation probabilities. Although the true PFs for test

instances are unknown, [131] provides the reference set for Kacem and BRdata FJSP

instances, which is formed by gathering all non-dominated solutions found by all the

implemented algorithms in [131] and also non-dominated solutions from other state-

of-the-art MOFJSP algorithms. The reference point for calculating the hypervolume

value is determined by the largest value in this reference set. To be specific, each

objective function value of the reference point is: 1.1 × largest objective function

value of the respective dimension in the reference set. The origin point is used as the

ideal point. Other basic parameter settings of MIP-EGO are listed in Table 5.4. For

each mutation probability, we only consider a discretized number with only one digit

after the decimal point, therefore, the search space is ordinal or integer space, which

in MIP-EGO are handled in the same way.

Table 5.4: Settings for MIP-EGO.

Parameter value
maximal number of evaluations 200
surrogate model random forest
optimizer for infill criterion MIES
search space ordinal space

Table 5.5 shows the percentage of the evaluations which can achieve the largest

hypervolume value (or the best PF) by MIP-EGO (200 Evaluations). In each evalua-

tion, MIP-EGO assigns a specific parameter setting for our optimization algorithm. It
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can be observed for Mk05 and Mk08 that all the evaluations have obtained the largest

hypervolume value; it means that all parameter values of mutation probabilities in

MIP-EGO can achieve the best PF for these two problems. It can also be seen in

Table 5.3 that both problems have a low flexibility value. On the contrary, for Mk06,

Mk09 and Mk10, these problems have a large operation number and high flexibility.

It seems that they can be difficult to solve because only one best parameter setting for

mutation probabilities has been found among all evaluations. This also means that it

is highly likely better solution sets can be found with a higher budget.

Table 5.5: Probability of finding best configuration.

Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10
73% 60% 95% 1% 100% 0.5% 4.5% 100% 0.5% 0.5%

With the best parameter setting of the mutation probabilities for BRdata instances,

our experimental results are compared with the reference set in [131]. The proposed

algorithm can achieve the same Pareto optimal solutions as in the reference set for all

BRdata instances except for Mk06, Mk09 and Mk10. At the same time, for Mk06 and

Mk10, our algorithm can find new non-dominated solutions. Table 5.6 is the list of

new non-dominated solutions obtained by our algorithm, each row of an instance is a

solution with three objectives: makespan, total workload, and critical workload.

Table 5.6: Newly achieved non-dominated solutions.

Mk06 Mk10
61 427 53 218 1973 195
63 428 52 218 1991 194
63 435 51 219 1965 195
65 453 49 220 1984 191
66 451 49 225 1979 194
66 457 48 226 1954 196

226 1974 194
226 1979 192
228 1973 194
235 1938 199
236 1978 193

Another comparison is between our algorithm (FJSP-MOEA) and MOGA [113],

SEA [16] and MA1, MA2 [131]. In [131], there are several variants of the proposed

algorithm with different strategies in the local search. MA1 and MA2 are chosen as

compared algorithms because they perform equally good or superior to other variants
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on almost all problems. Table 5.7 displays the hypervolume value of the PF approx-

imation from all algorithms and the new reference set which is formed by combining

all solutions from the PF by all algorithms. The highest hypervolume value on each

problem in all algorithms has been highlighted in bold. It can be observed that FJSP-

MOEA and MA1, MA2 show the best and similar performance, and MOGA behaves

the best for three of the BRdata instances. The good performance of MOGA on three

problems is interesting. MOGA has an entropy-based mechanism to maintain decision

space diversity which might be beneficial for solving these problem instances. When

using one best parameter setting, the average hypervolume and standard deviation

from 30 runs on each problem are given in Table 5.8, the standard deviation of each

problem shows the stable behaviour of each run.

Table 5.7: Hypervolume from MOGA, SEA, MA1, MA2, FJSP-MOEA and the reference
set.

Problem MOGA SEA MA1 MA2 FJSP-MOEA Ref
Mk01 0.00426 0.00508 0.00512 0.00512 0.00512 0.00512
Mk02 0.01261 0.01206 0.01294 0.01294 0.01294 0.01294
Mk03 0.02460 0.02165 0.02165 0.02165 0.02165 0.02809
Mk04 0.06906 0.06820 0.06901 0.06901 0.06901 0.07274
Mk05 0.00626 0.00635 0.00655 0.00655 0.00655 0.00655
Mk06 0.05841 0.06173 0.06585 0.06692 0.06709 0.07065
Mk07 0.02244 0.02132 0.02269 0.02269 0.02269 0.02288
Mk08 0.00418 0.00356 0.00361 0.00361 0.00361 0.00428
Mk09 0.01547 0.01755 0.01788 0.01789 0.01785 0.01789
Mk10 0.01637 0.01778 0.02145 0.02196 0.02081 0.02249

Table 5.8: Average hypervolume and std with the best parameter setting.

Problem Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10
Ave-HV 0.0050 0.0122 0.0216 0.0672 0.0064 0.0598 0.0222 0.0036 0.0174 0.0186

Std 0 0.0003 0.0001 0.0004 0.0001 0.0019 0.0003 0 0.0002 0.0006

For Kacem instances and with fixed mutation probabilities, the obtained non-

dominated solutions by the proposed algorithm are the same as the PF in the reference

set. MA1 and MA2 also achieved the best PF for all Kacem instances, but the pro-

posed FJSP-MOEA uses far less computational resources. It uses only a population

size of 100 whereas the population size of MA algorithms is 300. FJSP-MOEA uses

only 10000 objective function evaluations, whereas MA uses 150000 evaluations. In

terms of computational resources the proposed FJSP-MOEA can therefore be used on
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smaller computer systems, entailing broader applicability, and possibly also in real-

time algorithm implementations such as dynamic optimization.

5.1.5 Conclusion

A novel multi-objective evolutionary algorithm for the multi-objective flexible job shop

scheduling problem (MOFJSP) is proposed. It uses multiple initialization approaches

to enrich the first generation population, and various crossover operators to create

better diversity for offspring. Moreover, to determine the optimal mutation probabili-

ties, the MIP-EGO configurator is adopted to automatically generate proper mutation

probabilities. Besides, the straightforward local search is employed with different lev-

els to aid more accurate convergence to the PF. The proposed customization approach

in principle can be combined with almost all MOEAs. In this work, it is incorporated

with one of the state-of-the-art MOEAs, namely NSGA-III, to solve the MOFJSP,

and the new algorithm can find all Pareto optimal solutions in literature for most

problems, and even new Pareto optimal solutions for the large scale instances.

The ability of the MIP-EGO configurator in finding the optimal mutation prob-

abilities is shown in this work. However, there is more potential in the automated

parameter configuration domain that can benefit EA. For example, to know the ef-

fects of different initialization approaches and crossover operators, we can optimize

the initialization and crossover configuration. Furthermore, other parameters of the

proposed algorithm, such as, population size, evaluation number, and so on, can also

be tuned automatically. However, so far the efficiency of the existing tuning frame-

work is limited when it comes to a larger number of parameters. It would therefore

be a good topic of future research to find more efficient implementations of these.

5.2 MOEAs for Vehicle Fleet Maintenance Schedul-

ing Optimization

Nowadays, companies, corporations, and organizations of all sorts rely on vehicle fleets

to deliver products and services. Typical examples of such vehicle fleets are taxi cab

fleets, public bus fleets, car rental fleets, delivery fleets, and so on. According to

the statistical data from the European Automobile Manufacturers Association, the

global vehicle fleet grows continuously, and the EU has a total fleet of 259.7 million
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passenger cars and 39.1 million commercial vehicles in 20172. The maintenance of fleet

vehicles plays a critical role in their efficient use. Fleet vehicles should be maintained

according to a schedule to ensure that they are safe for use; at the same time, a good

maintenance schedule can reduce related expenses, increase the efficiency of the assets,

ensure consistent service delivery, and even reduce its carbon footprint.

Due to various tasks the vehicles execute, damages to vehicles occur after varying

duration. To be more precise, the critical components of each car need to be main-

tained based on their respective damages from wear and tear. To decide when each

component should be maintained, the remaining useful lifetime (RUL) of each com-

ponent, which is the time remaining until the component no longer meets operational

requirements, can be predicted based on adequate predictive approaches or models

[35]. Other than the predicted RUL of components, to maintain a vehicle fleet, dif-

ferent maintenance resources are needed. For example, a vehicle component may take

several days to be repaired and the maintenance activity can be performed on one of

several optional workshops.

The goal of optimizing the maintenance schedule for a vehicle fleet is to ensure

that all maintenance tasks are performed on time, keeping the vehicle fleet in healthy

operating condition and under business requirements. This section continues in Sec-

tion 5.2.1 with the formulation of the vehicle fleet maintenance scheduling optimization

(VFMSO) problem. A literature review is provided in Section 5.2.2. The customized

multi-objective evolutionary algorithm for the VFMSO problem is described in Sec-

tion 5.2.3, Section 5.2.4 presents and discusses experiments and their results. Lastly,

Section 5.2.5 concludes the work and outlines directions for future work.

5.2.1 Problem Formulation

In the real world, the size of a vehicle fleet can be large and its distribution wide,

which makes it necessary to distribute the maintenance of a vehicle fleet in multiple

separate workshops. At the same time, each workshop has its own capacity and ability,

meaning that on the one hand, each workshop has its own team and each team can

work on only one car simultaneously; on the other hand, each workshop is limited

to the maintenance of the specific component(s) due to restrictions in the equipment

or skill level of the staff. These conditions form the primary constraints faced by

the vehicle fleet maintenance scheduling optimization. Moreover, the cost and time

which are needed to repair car components by different workshops are required. It

2https://www.acea.be/statistics/tag/category/size-distribution-of-vehicle-fleet retrieved on 17th
of December 2018.

131



5.2. MOEAs for Vehicle Fleet Maintenance Scheduling Optimization

is possible that the maintenance of the same component produces different costs and

workloads when the activity is performed in different workshops because, for example,

the distances between vehicles and the workshops are different. The set-up cost and

set-up time are fixed for each visit of a car to a workshop, which correspond to the cost

and time required for the preparation of the maintenance. In this work, the predicted

RULs of components are converted to the due dates to determine the maintenance

time of each component which is the estimate of the date when the component fails

in case no maintenance takes place before its due date.

The vehicle fleet maintenance scheduling optimization problem addressed in this

work is defined as follows:

1. There are n cars C = {C1, C2, · · · , Cn} andm workshopsW = {W1,W2, · · · ,Wm}.

2. Each car Ci comprises li components to be maintained for i = 1, · · · , n.

3. For each component Oij , i.e., the jth operation of car Ci, there is a set of

workshops capable of repairing it. The set of workshops is represented by Wij

which is a subset of W .

4. The processing time of the maintenance of the component Oij in workshop Wk

is predefined and denoted by pijk.

5. The maintenance cost of the maintenance of the component Oij in workshop Wk

is predefined and denoted by qijk.

6. The set-up time of car Ci in workshop Wk is predefined and denoted by Xik.

7. The set-up cost of car Ci in workshop Wk is predefined and denoted by Yik.

8. The number of teams in workshop Wk is predefined and denoted by Zk.

9. The due date and previous repair time of each component Oij are predefined

and denoted by Dij and Rij respectively.

10. All business requirements or vehicle demands are predefined. There are r vehicle

demands and the format of one demand is: Ni cars are required from day di1 to

day di2 for i = 1, · · · , r.

At the same time, the following assumptions are made:

1. All workshops and cars are available at time 0 and assumed to be continuously

available.

2. All the components are independent from each other.
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3. Times required for transport of cars from/to workshops are included in the main-

tenance time and cost of cars.

4. Environmental changes (such as car accidents) are not considered here.

5. There are no precedence constraints among the components of different cars.

Cars are maintained on a first-come-first-served basis.

6. An operation, once started, must run to completion.

7. No operation can start before completion of the previous operation.

A multi-objective scheduling optimization problem is considered in this work and

three objectives are assumed to be relevant for the vehicle fleet operator, which are

the total workload, total cost and demand satisfaction. The reason why demand

satisfaction is defined as objective is that it is treated as flexible and violable. Let Tk

denote the sum of the maintenance times spent on all operations that are processed in

workshop Wk; Mi the sum of all costs of all operations of car Ci; N
t
avail the number

of cars which are not in workshops on day t, N t
demand the number of cars required on

day t. Three objectives can be defined as:

Minimize the total workload : f1 =

m∑
k=1

Tk (5.5)

Minimize the total cost : f2 =

n∑
i=1

Mi (5.6)

Maximize the demand satisfaction : f3 =
∑
t

min{N t
avail −N t

demand, 0}. (5.7)

For illustration purposes, an example of parameters for a car is shown in Table 5.9,

where rows correspond to components of the car; columns correspond to the cost, pro-

cessing time, set-up time and set-up cost of the car in alternative workshops, also due

date and previous repair date. In this example, there are two workshops: W1 and W2.

The tag “− ” means that the workshop cannot repair the corresponding component,

therefore, workshop W1 cannot maintain O14 and workshop W2 cannot maintain O11.

Here, the predefined costs of components are the same at both workshops: e200, so

are the processing times, set-up costs and set-up times. Of course, times and costs

in different workshops can be different. The due date and previous repair time are

relative to day 0.
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Table 5.9: Parameters of car C1.

Comp
cost time date set-up cost set-up time

W1 W2 W1 W2 Due Pre W1 W2 W1 W2

O11 200 - 2 - 74 -61

100 1 100 1
O12 200 200 2 2 25 -6
O13 200 200 2 2 15 -50
O14 - 200 - 2 60 -1

5.2.2 Literature Review

In the early studies of predictive maintenance, also called condition-based mainte-

nance (CBM) [63], the condition monitoring, failure diagnostics, and prognostics al-

ways attracted more attention than planning the maintenance schedule based on the

information obtained from the condition monitoring, failure diagnostics and prognos-

tics. In [83], an onboard locomotive diagnostic system was invented to monitor the

transmitted onboard vehicle data, determine whether any of the monitored data is out

of a predetermined range, compare monitored data with historical data and calculate

trends, predict if any vehicle system(s) must be corrected to avoid vehicle failure and

when such system(s) are likely to fail. It was mentioned in [83] that the onboard

diagnostic systems are not helpful in optimizing locomotive maintenance scheduling

because they do not communicate with a rail carrier’s scheduling center.

Simultaneously, the prognostic information included in maintenance policies may

be given in different formats such as RUL, efficiency decrease, the probability of failure.

Prognostics and reliability information in [14] were the failure probabilities of the

components. The failure probabilities were analyzed to schedule maintenance with

minimum system risk using a genetic algorithm. The systematic risk was treated as

part of the cost of performing the maintenance schedule. System conflicts and resources

were also considered as constraints in this single-objective problem. [10] introduced

deterioration models to take into account the component degradation information

of a multi-component system. The optimal dates of maintenance operations can be

computed based on the model, and additional costs can be evaluated if the operations

are not executed at the optimal maintenance dates. Lastly, the optimal grouping of

individual maintenance actions was found to reduce the maintenance cost, and the

maintenance plan was updated dynamically at each inspection date.

Optimizing the maintenance schedule has been widely neglected in the study of

predictive maintenance, while it can be crucial for effective maintenance planning and

scheduling. As an essential branch of production planning problems and the basis
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of maintenance scheduling optimization, the flexible job shop scheduling problem has

been extensively studied in the literature (please refer to Section 5.1). According to

[15], most research papers have addressed classical FJSP in the last 25 years, while

only around 35% of papers considered different scenarios such as machine breakdown,

uncertain processing times, overlapping operations and so on. [81] considered FJSP-

PPF (process plan flexibility), where jobs can have alternative process plans. It was

assumed that the process plans are known in advance and that they are represented

by linear precedence relationships. Because only one of the alternative plans had to

be adopted for each job, the FJSP-PPF dealt with not only routing and sequencing

sub-problems, but also the process plan selection sub-problem. In this paper, a mixed-

integer linear programming model was developed for the FJSP-PPF and makespan was

adopted as the single performance measure.

In [32], a mathematical model and a genetic algorithm were proposed to handle the

feature of overlapping in operations. It was assumed that a lot which contains a batch

of identical items is transferred from one machine to the next only when all items in

the lot have completed their processing, therefore, sublots are transferred from one

machine to the next for processing without waiting for the entire lot to be processed

at the predecessor machine, meaning that starting a successor operation of job is not

necessary to finish of its predecessor completely.

Three features were considered in [129], which were (1) job priority; (2) parallel

operations: some operations can be processed simultaneously; (3) sequence flexibility:

the sequence of some operations can be exchanged. A mixed integer linear program-

ming formulation (MILP) model was established to formulate the problem and an

improved differential evolution algorithm was designed.

Because of unexpected events occurring in most of the real manufacturing systems,

there is a new type of scheduling problem known as the dynamic scheduling problem.

This type of problem considers random machine breakdowns, adding new machines,

new job arrival, job cancellation, changing processing time, rush order, rework or

quality problem, due date changing, etc. Corresponding works on the FJSP include

[1], [2], [42], [94].

Compared with the FJSP introduced in Section 5.1.1, the VFMSO problem has

some special properties: (1) flexible sequence: the sequence of the components is not

predefined, and the starting time of each component is mainly determined by its due

date. (2) multiple problem parameters: besides the processing time, other problem pa-

rameters like the maintenance cost, set-up time, set-up cost, repair teams, the demand

for cars at a specific time, also have an impact on the maintenance schedule.
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5.2.3 Customized Algorithm

A specialized evolutionary algorithm framework is defined and applied with MOEAs to

solve the multi-objective vehicle fleet maintenance scheduling optimization (MOVFMSO)

problem. In this part, the approach underlying the algorithm and the implementation

of genetic search, including chromosome encoding, chromosome decoding and genetic

operators, are described.

Components Grouping

When scheduling components, the idea of grouping several components of the same car

for one visit is employed in the proposed algorithm. By grouping the maintenance of

multiple components into one maintenance operation, the set-up cost and set-up time

apply only once for the complete group of components. However, the maintenance

cost could be indirectly penalized:

• with the reduction of the component useful life if the maintenance date is shifted

backward;

• with the increase of the risk of breaking down on the road if the maintenance

date is shifted forward.

Therefore, the maintenance of each component should not be shifted too far from

its due date. In the proposed algorithm, an interval or execution window of the starting

time is defined for each component, and the maintenance of the component can only

start at a time spot inside the corresponding interval. The interval of each component

consists of two parts and their respective lengths are defined as:

• Length of the interval before the due date: 0.3× (Due date - Previous repair

date);

• Length of the interval after the due date: 0.1× (Due date - Previous repair date).

The interval is chosen relatively long so that maintenance before or after the interval

hardly makes sense. With the interval, combining components can only be effective if

their intervals overlap, and the starting time of the group maintenance must lie within

the interval intersection.

Grouping components also means that not all the components can be maintained

exactly at their due dates. For the component that is maintained before or after its due

date, an extra cost is introduced to penalize either the reduction of the useful life when
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the maintenance is performed before the due date or the increase of component failure

probability when the maintenance is performed after the due date. Figure 5.4 gives

an example of the execution window and penalty function of a component. Two linear

penalty functions are proposed to calculate the penalty cost based on the following

assumptions.

• If a component is maintained at the same time as the previous repair time, the

penalty cost would be c+ s: the sum of its maintenance cost and the set-up cost

of the car;

• If a component is maintained at the end of the interval (the latest possible repair

time), the penalty cost would be 100 ∗ c (c: the maintenance cost of the compo-

nent). This penalty cost is the combination of all losses: the expense needed if

the defect occurs on the use (diagnostics, technical and logistics support, repair

or replacement of the failed component), the loss of reputation, and so on.

As can be seen, if the component Oij is maintained at tij (tij is in its interval), its

penalty cost is:

((c+ s)/(Dij −Rij))× (Dij − tij) if tij < Dij

0 if tij = Dij

((100× c)/((Dij −Rij)/10))× (tij −Dij) if tij > Dij .

When components are grouped together, the maintenance time of the group is the

sum of the processing times of all components in the group plus one set-up time; the

cost of the group is the combination of one set-up cost, the maintenance costs and the

penalty costs of all components in the group.

Chromosome Encoding

EAs typically start with a diverse set of feasible solutions (a population) and iteratively

replace the current population by a new population. A suitable encoding is required

for the problem. Based on the properties of the application problem, a three-vector

chromosome (Figure 5.5) is proposed to represent an individual, which includes:

• group structure vector: the group structures of vehicles one by one;

• starting time vector: the starting times of group operations;

• workshop assignment vector: the workshops of group operations.
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Figure 5.4: Execution window and penalty function of a component.

Figure 5.5: Three-vector chromosome.

Figure 5.6: Possible groups of a car with eight components.

1. Group structure vector Figure 5.6 represents the intervals of eight components

of a car. Component c1 can be grouped with c2 and/or c3 due to the overlap between

their execution windows. Other possible group structures can be deduced in the same

manner. However, the practical situation can be more complicated. For example, in

Figure 5.7, c1 can be grouped with c2; c1 can be grouped with c3 and c4; c1 can also

be grouped with c3 and c5. But c1 and c2 together cannot be grouped with other

components; c1, c3 and c4 together cannot be grouped with c5. The overlaps and

possible group structures of all components from one car are checked by the following
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Figure 5.7: Five component intervals of a car.

sweep line algorithm:

1. All components of one car are sorted as a list according to the left end of the

intervals.

2. Starting from the first component, all components are checked one by one. For

each component, only this component and the subsequent components in the

list are necessary in the check because the possible groups with the preceding

components have been found when checking those components.

3. A stack is utilized to store the intervals and their corresponding components.

The interval of the checked component is pushed onto the stack first. Look

at the next component, if there is an overlap between them, push the overlap

interval onto the stack; otherwise, pop off the topmost element from the stack,

return the only group possibility and end the checking process.

4. Compare the topmost interval on the stack with the interval of the next compo-

nent, if they overlap, push the overlap interval onto the stack; otherwise, pop off

the topmost element from the stack. Repeat this step until the interval stack is

empty or the last component has been checked.

All possible group numbers will be found after the above steps. Figure 5.8 shows

the alternative groups of components on Figure 5.6 (left table) and Figure 5.7 (right

table). Each component corresponds to a column and the numbers in its column

are all the possible group numbers the component can choose. Components which

have picked the same group number belong to the same group. Table 5.10 shows two

randomly generated group structure vectors of the car in Figure 5.6. The first example

“1 2 1 4 5 6 7 7” represents that c1 and c3 are in the same group; c7 and c8 are in

the same group; c2, c4, c5, c6 are in four different groups. It does not matter what

the group number is, the group number only tells us which components are in the

same group. For example, “3 4 5 5 7” could be a group structure vector of the car in

Figure 5.7.
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Figure 5.8: Alternative groups of components in Fig.5.6 and Fig.5.7.

Table 5.10: Examples of group structure.

Component 111 222 333 444 555 666 777 888
Example 1 1 2 1 4 5 6 7 7
Example 2 1 1 1 4 4 6 7 8

2. Starting time vector A starting time vector can be randomly generated based

on its group structure vector. Before picking the starting time for each group, the

interval intersection of each group is calculated and the starting time is randomly

picked from this intersection. Under the condition that a component is the sole member

of a group, its starting time can be selected from its entire maintenance interval.

3. Workshop assignment vector A workshop is considered as “several work-

shops” based on its capacity (the number of teams). By this way, the schedule of each

workshop team can be achieved from the solution. For example, consider that two

workshops have three and four repairing teams respectively. Then, group operations

can be randomly assigned to seven “workshops”, the former three and the latter four

represent corresponding teams in two workshops.

Genetic Operators

Based on the encoding, the corresponding genetic operators are designed, i.e., crossover

and mutation operators. Crossover operators are applied separately to the three parts

of the chromosomes.
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For the group structure vector, one point or multi-point crossover can be used as

crossover operator. Figure 5.9 is an example of one point crossover on the two group

structure vectors in Table 5.10. Two new vectors are generated, and they are always

valid because the group number of each component is from its own alternative group

numbers. Because the whole group structure vector consists of all car components,

one point crossover may not be efficient enough. Therefore, multi-point crossover can

be applied.

Figure 5.9: One point crossover.

The same cutting points are applied to the starting time vector when doing crossover.

However, the change on the group structure vector caused by the crossover can result

in the invalidity of the starting time vector because it is possible that the group mem-

bers and intersection have changed due to the new group structure. Therefore, when

performing the crossover on the starting time vector, the starting times of all group

operations are checked and a new starting time is generated randomly from the new

feasible intersection in the case that the starting time of a group is invalid.

A multi-point crossover can be applied to the workshop assignment vector as well.

Every component is assigned a workshop team randomly. In the proposed algorithm,

the workshop team of a group operation is decided by the first component in that

group in case different workshop teams are assigned to components in the same group.

The mutation operators applied to three parts of the chromosome are also imple-

mented separately. One or more gene values in the group structure vector can be

exchanged by another alternative value from the same column in Figure 5.8 in order

to generate a new individual. Again, the change applied to the group structure vector

can result in the invalidity of the starting time vector. Hence, the starting time is

checked for the corresponding groups after the mutation is done on the group struc-

ture vector; a valid starting time is generated randomly if it is invalid. Afterwards,

some gene values can be altered in the starting time vector and workshop assignment

vector to generate a new individual.
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Chromosome Decoding

Decoding the chromosome is to convert an individual into a feasible schedule to cal-

culate the objectives and constraints which represent the relative superiority of a

chromosome. The group structure, the starting time and the workshop team of the

operations can be obtained from each individual. Thereafter, the objective values

can be calculated. When converting an individual to a schedule, it is possible that

the processing times of two or more group operations assigned to the same workshop

team are overlapping since the starting time of each group operation is fixed in the

starting time vector. In this case, the principle of first-come-first-served is followed:

the starting time and processing time of the earlier started group are not changed;

the starting time of the later started group operation is not changed either; but the

processing time of the later group operation is increased because the later group op-

eration can be maintained only after the previous group operation is implemented.

In the algorithm, the workshop abilities (components a workshop can maintain) are

used as constraints to guarantee that a component will not be assigned to a workshop

which cannot maintain it.

5.2.4 Experimental Results

The proposed evolutionary algorithm framework has been combined with four MOEAs:

NSGA-III, SMS-EMOA, DI-MOEA (DI-1 and DI-2) to solve the real-world vehicle

fleet maintenance schedule optimization problem, and their performance is presented

in this section. Three application instances with different sizes are generated and their

parameters are listed in Table 5.11. For example, the problem P1 includes 30 cars, each

car consists of 4 components and 2 workshops are available; the two workshops have

3 and 4 repairing teams, and they can only maintain component o1, o2, o3 and o2, o3,

o4 respectively. In order to make the results straightforward and better comparable,

the processing time, cost as well as other variables are set to fixed values according to

Table 5.9; the due dates and previous repair dates are generated randomly in 100 days

(negative values are used for the previous repair dates); vehicle demands are randomly

generated for each problem in a way that the demand never exceeds the total number

of cars in the fleet.

All the experiments are performed with a population size of 100 and a budget of

500000 fitness evaluations. Both crossover and mutation probability are set to 1. For

each problem, 30 optimization trials are performed with each algorithm. 10 cutting

points are used in the multi-point crossover.
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Table 5.11: Problem parameters.

Problem #car #comp #ws ws #car ws #comp

P1 30 4 2
3 o1, o2, o3
4 o2, o3, o4

P2 40 4 2
3 o1, o2, o3
4 o2, o3, o4

P3 40 4 3
3 o1, o2, o3
4 o2, o3, o4
3 o1, o2, o3, o4

When analyzing the performance of different MOEAs, the empirical attainment

function (EAF) is used to visualize the attained parts of the objective space. The

50% attainment surface shows that half of all Pareto optimal solutions will weakly

dominate this surface and it is an estimator of what one would expect to achieve

in 50% of runs [18]. Besides the average performance, the aggregate Pareto front

approximation over 30 runs, i.e., the accumulated non-dominated solutions from 30

runs, has been used as another performance metric as well. Because extreme solutions

are not preferable for the application problems and only one solution will be chosen

to be deployed in workshops, the Pareto front approximation is zoomed in and the

50% attainment surface and the aggregate Pareto front approximation on the knee

regions are plotted. Since relatively loose vehicle demands are considered currently,

all the vehicle demands have been satisfied in all the solutions on the Pareto front

approximations obtained from all algorithms. Therefore, the two-dimension plot can

be shown to observe the results.

The performance of the algorithms has also been examined using the hypervolume

indicator. Table 5.12 shows the aggregate and median hypervolume across 30 runs

on three problems. For each instance, the upper row is the aggregate hypervolume,

the middle row is the median hypervolume and the lower row is the standard devia-

tion; the best hypervolume value has been highlighted in bold. When calculating the

hypervolume indicator, the reference point is used by the maximum extent of the pop-

ulation plus an offset. It can be observed that SMS-EMOA, DI-2 and DI-1 performs

best on P1, P2 and P3 respectively for the aggregate hypervolume; for the median

hypervolume, SMS-EMOA performs best on P1, P3 and DI-1 performs best on P2.

For P1, if all the components are maintained exactly at their due dates, the total

time and cost would be around 360 days and e 36000, and vehicle demands cannot

be guaranteed. Likewise, the total workload and cost would be around 480 days and

e 48000 for P2 and P3 when all the components are maintained exactly at their due
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Figure 5.10: The 50% attainment surface (upper row), aggregate Pareto front approx-
imation of each algorithm (middle row) and aggregate Pareto front approximation of all
algorithms (lower row) of three instances on cost(days) & time(e).

Table 5.12: The aggregate hypervolume (Agg-HV) and median hypervolume (M-HV).

Algorithms
DI-1 DI-2 NSGA-III SMS-EMOA

Problems

P1
Agg-HV 0.87983 0.91007 0.89932 0.91633
M-HV 0.82728 0.83160 0.82506 0.84137
std 0.0609 0.0506 0.0444 0.0563

P2
Agg-HV 0.89830 0.98095 0.93151 0.97677
M-HV 0.78950 0.77907 0.72469 0.72647
std 0.1649 0.1634 0.1259 0.1463

P3
Agg-HV 0.88581 0.88202 0.79875 0.87652
M-HV 0.47185 0.51326 0.43115 0.52816
std 0.2357 0.2244 0.2051 0.2424
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Figure 5.11: A schedule on the Pareto front approximation of DI-2 on P2.

dates. While, we can find many solutions with the workload less than 360 days and

cost less than e 36000 on the Pareto front approximations of all algorithms for P1.

The same applies analogously for P2 and P3. Besides that the workload and cost of

these solutions are already better than performing the operations on the due dates,

all the vehicle demands have been satisfied at the same time.

Figure 5.11 presents a schedule on the Pareto front approximation of DI-2 on P2,

the two objectives (cost and time) of this solution are e 45338 and 428 days, the

customer demands are totally satisfied. Each item is a group operation, the number

above is the car number and the number below is the component number. We can

see that some components are maintained individually and some components of a car

are grouped together for one workshop visit. There is no maintenance of component

c4 in workshop ws1 because this workshop has no ability to maintain component c4,

and the same for component c1 on ws2. It can also be observed that some operations

are overlapping to some extent. For example, the first item on Team4 of ws2 is

an operation of c3 on car 15, its maintenance starts from day 6 and ends on day 9

because the total processing time plus set-up time is three days. However, before the

completion of this task, car 11 (for the operation of c2 and c4) is sent to the same

team and has to wait for one day for maintenance. The reason why car 11 waits in
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the workshop instead of being sent to the workshop one day later is that the failure

probability of c2 or c4 would increase if this car is in use for one more day. There is no

penalty cost for the wait of the car in the workshop because it has been “punished”

by the increased processing time.

5.2.5 Conclusion

The real-world problem of vehicle fleet maintenance scheduling optimization is for-

mulated. The penalty function is defined in order to deal with uncertainties in the

due dates and to prevent too early or too late maintenance. A problem-specific

multi-objective evolutionary algorithm framework is designed based on the compo-

nent grouping strategy. State-of-the-art MOEAs are incorporated with the algorithm

framework to solve the application problem and their behavior is investigated. Al-

though DI-MOEA is used for the first time for a real-world application problem, its

performance is comparable with and for some instances even better than other pop-

ular MOEAs such as NSGA-III and SMS-EMOA. DI-MOEA, especially DI-1, is the

best both for the average performance and the aggregate Pareto front approximation.

For the hypervolume indicator, DI-MOEA and SMS-EMOA are the best on all three

instances. According to the observation of solutions, it has been found that most com-

ponents are maintained earlier than their due dates in the case that their maintenance

times are shifted, the reason is that the penalty costs are too expensive if they are

shifted forward. In order to increase the probability that the maintenance is shifted

forward, the corresponding parameter can be adjusted.

The proposed algorithm framework can work for the generic application in various

similar scenarios, for example, the aircraft maintenance, ship fleet maintenance, and so

on. The problem formulation and the parameters can be flexibly adjusted based on the

real application or by the decision maker. In the real-world applications, it is desirable

to generate schedules that are robust within a reasonable range of disruptions and

uncertainties such as machine breakdowns and processing time variability. Therefore,

dynamic elements will also be taken into account in the next step.
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