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Chapter 3

Diversity-based and

Cone-based Multi-objective

Evolutionary Algorithms

This chapter proposes an algorithm that will play an important role in solving multi-

objective optimization problems of this thesis. The first part of this chapter is ded-

icated to answering RQ1, which is to develop an MOEA and compare it with state-

of-the-art MOEAs. The proposed MOEA is called diversity indicator-based MOEA

(DI-MOEA). DI-MOEA introduces a new principle to use non-dominated sorting com-

bined with a set-based diversity indicator which can be efficiently computed, and it

can achieve a uniformly distributed PF approximation regardless of the shape of the

PF.

Followed by the introduction of several alternatives to Pareto dominance relation-

ship in the previous chapter, the second part of this chapter aims to improve the

performance of Pareto dominance by making use of its geometrical property, further-

more, propose an approach to promote the behavior of MOEAs in general (RQ2). The

proposed cone order increases solutions’ dominance area and the convergence speed

of MOEAs adopting it. Special emphasis is given to many-objective optimization due

to the degraded ability of Pareto dominance to establish a ranking when handling

many-objective problems.
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3.1. Diversity Indicator-based MOEAs

3.1 Diversity Indicator-based MOEAs

As mentioned before, indicator-based optimization has been a successful principle for

MOEA design. The idea is to guide the search for approximating the Pareto front by a

performance indicator. Ideally, the indicator captures both convergence to the Pareto

front and a high diversity, and it does not require a priori knowledge of the Pareto front

shape and location. It is, however, so far difficult to define indicators that scale well

in computation time for high dimensional objective spaces, and that distribute points

evenly on the Pareto front. Moreover, the behavior of commonly applied indicators

depends on additional information, such as reference points or sets. For example,

when the hypervolume indicator is used for performance comparison in indicator-

based MOEAs, it has been show that the distribution of points is biased towards the

knee point and the boundary if the reference point is not properly set [62]. Some

multi-indicator-based MOEAs have been created to overcome these issues by using

multiple quality indicators, such as [39], [40]. In this work, a diversity-indicator based

multi-objective evolutionary algorithm is proposed. It combines principles from Pareto

dominance-based approach and from indicator-based algorithms. Instead of requiring

the indicator to take into account diversity and Pareto dominance, it is proposed to

• use dominance rank as a primary selection indicator, in order to ensure conver-

gence to the Pareto front;

• use performance indicators that measure the diversity of a set of mutually non-

dominated solutions.

However, as opposed to Pareto dominance-based approaches such as SPEA2 and

NSGA-II that also maintain diversity, in DI-MOEA, the diversity of a set is measured

by a scalar value, such that convergence to a maximum diverse set can be achieved

and theoretically assessed.

Based on these principles, DI-MOEA therefore takes advantage of Pareto dominance-

based approaches, and excludes the complex structure and parameters in decomposition-

based and contemporary indicator-based approaches. Most importantly, experimental

results show that it can find well converged and evenly spaced Pareto front approxi-

mations without the involvement of any reference points and assumptions about the

location and shape of the Pareto front.

From here on, the adopted diversity indicator, i.e., the Euclidean distance based

geometric mean gap indicator is introduced in detail. The proposed algorithm is
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described and experimental results on benchmark problems are shown. Lastly, a con-

clusion of the work is given and some possible future work is indicated.

3.1.1 Diversity Indicators and Gap Contribution

There exist many indicators that assess the diversity of a distribution of points in

Rm. Among these, the Weitzman indicator and discrepancy measures have excellent

theoretical properties, but their computation is expensive. The Hausdorff distance

and related measures are indicators that would require the knowledge of the set on

which points should be distributed, which is typically not available in Pareto opti-

mization. The Solow-Polasky indicator has been suggested in the context of diversity

assessment due to its moderate computational effort and good theoretical properties

[105]. However, it is sensitive to the choice of the correlation strength parameter of an

exponential kernel function and it requires matrix inversion which might cause numer-

ical instability. The gap indicators (or the averages of distances to nearest neighbours)

have been suggested in [37]. They are very fast to compute and easy to implement

diversity indicators. In addition, they have certain favorable theoretical properties and

empirical results show that their maximization results in diversified, evenly spread ap-

proximation sets. These results were obtained for multimodal optimization [124] and

evolutionary level set approximation [74] for a wide range of test problems.

Let A define a set of points in Rm, D(x,A \ {x}) = mina∈A\{x}{d(x, a)} and d

denote the Euclidean distance, then the gap indicators (GI) are defined as follows:

GImin(A) = min
x∈A
{D(x,A \ {x})} Minimal gap

GIΣ(A) =
1

|A|
∑

x∈A D(x,A \ {x}) Arithmetic mean gap

GIΠ(A) = (
∏

x∈A D(x,A \ {x}))
1

|A| Geometric mean gap.

Note, thatGImin is the well known diversity indicator used in the max-min diversity

problem [50]. One can leave out the exponent in GIΠ and this yields the product

distance to the nearest neighbour (PDNN) indicator, considered by Wessing [124] in

the context of multimodal optimization. Wessing [124] pointed out that GIΠ obtains

the value of zero in case of duplicates in the set, a property that also holds for GImin.

Besides, it can only be used for comparing sets of equal size. Since we are using

the indicator contribution as a relative measure of performance of points, these two

properties do not cause problems.
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3.1. Diversity Indicator-based MOEAs

In indicator-based steady state selection [9] is to optimize a quality indicator QI

for a solution set. W.l.o.g. we assume the quality indicator is to be maximized. The

selection strategy is to add a non-dominated solution x to an approximation set A of

size µ and then retain the best subset S ⊂ P with |S| = µ of the new set P = A∪{x}.
This can be achieved by removing the point that contributes the least to the quality

indicator. The indicator contribution of a point p ∈ P is defined as:

∆QI(p, P )← QI(P )−QI(P \ {p}).

In DI-MOEA, the set-indicator contribution of the individual p ∈ P is defined as

the difference of the geometric mean gap indicator value of the set with the individual

p minus the indicator-value of the set without it. The computation of the minimal

contributor in case of the gap indicators can be solved by computing the solution to the

all point nearest neighbour problem (APNN). The straightforward implementation,

i. e. measuring distance between all pairs, requires a running time of O(n2). The

APNN problem can be solved by Vaidya’s algorithm [107] in optimal time O(n log n)

for a fixed dimensional space and any Minkowski metric, including the Euclidean

metric. The Euclidean distance is chosen as distance measure due to its rotational

invariance.

3.1.2 Algorithm

A hybrid selection scheme: the (µ + µ) generational selection operator and the (µ +

1) steady state selection operator, is utilized in DI-MOEA. The algorithm consists of

two components:

• The (µ+ µ) generational selection operator: When the population is layered to

multiple (more than one) dominance ranks, it indicates that the population has

not yet converged to the true Pareto front. In this case, the (µ+µ) generational

selection operator is used to explore the decision space for dominating solutions.

In this stage, a strict consideration of the diversity indicator is not yet the key

determinant factor. Rather the first priority should be to push the population

quickly to the Pareto front. Still, diversity is considered as a secondary ranking

criterion in order to bring the points in a good starting position for searching

for a uniformly distributed population. Overall, the selection operator is using

non-dominated sorting as a primary ranking criterion, then if more than µ so-

lutions are obtained by adding a layer, two alternative strategies are proposed
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Algorithm 1 DI-MOEA

1: P0 ← init(); //Initialize random population
2: popsize← |P0|;
3: (R1, ..., Rℓ0) ← Partition P0 into subsets of increasing dominance rank; //Non-

dominated sorting
4: for each i ∈ {1, . . . , ℓ0} do
5: calculate diversity indicator for all solutions based on the current front;
6: end for
7: t← 0;
8: while Stop criterion not satisfied() do
9: if ℓt > 1 || t == 0 then

10: // (µ + µ) selection operator
11: Qt ← Gen(Pt); // Generate offspring with the size of popsize by variation
12: Evaluate Qt;
13: Pt = Pt ∪Qt // Combine offspring and parents
14: (R1, ..., Rℓt) ← Partition P0 into subsets of increasing dominance rank;

//Non-dominated sorting
15: i← 0; Pt+1 ← ∅;
16: while |Pt+1| < popsize do
17: Pt+1 ← all solutions on i-th front Ri;
18: i← i+ 1;
19: end while
20: if |Pt+1| > popsize then
21: n← |Pt+1| − popsize
22: while n > 0 do
23: calculate diversity indicator for all solutions on the last front;
24: remove the least contributor solution based on rank and diversity;
25: n← n− 1;
26: end while
27: end if
28: else
29: // (µ + 1) selection operator
30: q ← Gen(Pt); // Generate only an offspring by variation
31: Pt ← Pt ∪ {q};
32: Rank Pt based on Pareto dominance rule; //Non-dominated sorting
33: for each front do
34: calculate set-indicator contribution for all solutions on the least ranked

front |Rℓt |, if |Rℓt | > 1;
35: end for
36: remove the least contributor to diversity-indicator on the least ranked front;
37: end if
38: end while
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3.1. Diversity Indicator-based MOEAs

to truncate: the crowding distance (variant 1 ) as in NSGA-II, and the diversity

indicator contribution (variant 2 ), where points are successively removed in a

greedy manner and the contributions are recomputed after each removal. Under

the condition that the µ selected solutions are mutually non-dominated after an

iteration, the algorithm switches to the (µ+ 1) steady state selection operator.

• The (µ+1) steady state selection operator: When the parent population consists

of only one non-dominated set, it is likely that the population has already reached

a region near the Pareto front. In this case, the indicator-based (µ + 1) steady

state selection operator is applied, as described in Section 3.1.1. It discards

the least contributor to the quality indicator, here, the diversity indicator. The

intent is to achieve a uniformly distributed set on the Pareto front, that is to

converge to a maximum of the diversity indicator. If there are more than one

dominance ranks in the resulting population, the algorithm switches back to a

(µ+ µ) generational selection operator.

Besides the hybrid selection scheme, another important design choice is the quality

indicator, to be specific, the Euclidean distance based geometric mean gap indicator is

used to guide the search towards the uniformly distributed Pareto front approximations

regardless of the shape of the Pareto front. The proposed algorithm is presented as

pseudo-code in Algorithm 1.

3.1.3 Experimental Results and Discussion

In this section, simulations are conducted to demonstrate the performance of the

proposed algorithm. Because two different diversity measures are employed in the (µ

+ µ) generational selection operator, two variants of DI-MOEA are involved in the

experiments: the crowding distance and the set-indicator contribution are chosen as

the second measure in the generational (µ + µ) selection operator in algorithm DI-1

and algorithm DI-2 respectively.

In the simulations1, the SBX operator with an index of 15 (30 in NSGA-III and

a differential evolution operator is used in MOEA/D.) and polynomial mutation with

an index 20 are used. The crossover and mutation probabilities are set to 1 and

1/L respectively and L is the number of variables. In NSGA-III, the number of

1All MOEAs in the thesis are implemented and tested based on the MOEA Framework (version 2.1,
available from http://www.moeaframework.org). The MOEA Framework is Java-based framework for
multi-objective optimization and it supports a number of MOEAs, test problems and search operators.
It is also easy to be extended to introduce new problems and algorithms.

32



Chapter 3. Diversity-based and Cone-based Multi-objective
Evolutionary Algorithms

subdivisions is 99 for bi-objective problems, and 12 for tri-objective problems. The

number of evaluation (NE) is chosen to be dependent on the complexity of the test

problem. 20000 NE is used for ZDT problems and 100000 NE for DTLZ problems.

The population size is 100 for all problems. Here we set the population size to be 100

because such number can be sufficient to represent the Pareto front of the adopted

benchmark problems and it is an intuitive number usually given by the decision maker.

However, for decomposition-based MOEAs, such as MOEA/D and NSGA-III, it is

better to consider the number of reference vectors when specifying the population size.

For example, the number of weight vectors in MOEA/D for three-objective problems

is 1 + 2+ 3+ 4+ ...+H (where H is an integer), which is the same as the population

size in MOEA/D. Thus, the population size of MOEA/D on three-objective problems

can be 91 or 105 (instead of 100).

Experiments on bi-objective problems

For bi-objective problems, algorithms are tested on ZDT1, ZDT2 and ZDT3 with 30

variables. Two new algorithms, DI-1 and DI-2, are compared with NSGA-II, SMS-

EMOA, NSGA-III and MOEA/D. Table 3.1 and Table 3.2 show the aggregate hy-

pervolume and aggregate IGD across 30 independent runs (with a different seed for

each run but same seeds for all algorithms). The aggregate value is the value obtained

when the Pareto solutions from all runs are combined into one. For each problem

in the two tables, the upper row denotes the aggregate hypervolume/IGD. (The best

value is highlighted in bold.) The lower row is the standard deviation (Std) of re-

sults from 30 runs. The Mann-Whitney U test is used to determine if the medians of

different algorithms for the same problem are significantly indifferent. In the tables,

algorithms whose median performance is indifferent to the algorithm with the best

aggregate performance are also highlighted. It can be observed that SMS-EMOA or

NSGA-III can achieve the best hypervolume and the best IGD on all three problems,

and the proposed DI-MOEA can obtain better hypervolume and IGD than NSGA-II

and MOEA/D. In some instances, DI-MOEA can even get better hypervolume and

IGD than NSGA-III or SMS-EMOA.

Experiments on tri-objective problems

For tri-objective problems, DTLZ1 with 7 variables, DTLZ2 with 12 variables and

DTLZ7 with 22 variables are tested. Both DI-1 and DI-2 behave very well, and

they are indifferent on the statistical significance of median performance of aggregate
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3.1. Diversity Indicator-based MOEAs

Table 3.1: The aggregate hypervolume (HV) on bi-objective problems.

HV
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std↘

ZDT1
0.66399 0.66602 0.66428 0.66029 0.66473 0.66491

4.8379e-04 7.2331e-05 3.9507e-04 0.0028 3.5973e-04 2.8447e-04

ZDT2
0.33002 0.33265 0.33266 0.32849 0.33073 0.33141

4.7756e-04 8.7207e-05 0.0086 0.0030 4.9232e-04 5.8483e-04

ZDT3
0.51600 0.51718 0.51720 0.51582 0.51623 0.51634

3.9954e-04 0.0013 0.0010 0.0011 4.1969e-04 2.7955e-04

Table 3.2: The aggregate IGD on bi-objective problems.

IGD
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std↘

ZDT1
0.00163 0.00039 0.00168 0.00385 0.00116 0.00106

2.6517e-04 1.9915e-05 8.2835e-04 0.0018 1.4110e-04 9.7026e-05

ZDT2
0.00202 0.00084 0.00051 0.00247 0.00159 0.00120

2.1844e-04 1.0340e-04 0.0088 0.0014 2.1557e-04 2.4062e-04

ZDT3
0.00092 0.00037 0.00054 0.00190 0.00087 0.00092

1.5809e-04 0.0100 0.0080 8.6720e-04 1.6713e-04 1.3157e-04

hypervolume and IGD. Statistical data averaging 10 runs per problem and algorithm

are shown on Table 3.3 and Table 3.4. DI-1 beats all the algorithms on the aggregate

hypervolume on all problems, and DI-2 also behaves better than other algorithms

except for SMS-EMOA on DTLZ1. For IGD, the new algorithms perform the best on

DTLZ1 and DTLZ2 problems. NSGA-II obtains the best IGD on DTLZ7, while IGD

values of DI-1 and DI-2 are only slightly higher than NSGA-II on DTLZ7, but better

than all other algorithms.

Table 3.3: The aggregate hypervolume (HV) on tri-objective problems.

HV
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘

DTLZ1
0.80605 0.80732 0.78400 0.80198 0.80806 0.80645
0.0062 1.8738e-04 0.0179 0.0015 0.0013 6.1716e-04

DTLZ2
0.44263 0.45269 0.41915 0.42907 0.45511 0.45489
0.0070 5.8698e-05 5.1471e-04 0.0031 0.0033 0.0014

DTLZ7
0.31064 0.24694 0.30624 0.30164 0.31227 0.31339
0.0034 0.0038 0.0328 0.0055 0.0051 0.0137

To easily observe the results of algorithms, the results on the tri-objective problems

are visualized. Figure 3.1 shows the Pareto front approximations of a typical run on

DTLZ1. It can be observed that the solutions of NSGA-II and MOEA/D are not

uniformly distributed, and there are several overlaps in the result of NSGA-III. While,

SMS-EMOA and DI-MOEA can obtain evenly spaced solutions on the linear Pareto

front.
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Table 3.4: The aggregate IGD on tri-objective problems.

IGD
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘

DTLZ1
0.02149 0.02074 0.04266 0.02779 0.01966 0.02381
0.0063 8.1450e-04 0.0159 0.0018 0.0017 0.0016

DTLZ2
0.02414 0.03415 0.05181 0.03902 0.01799 0.01909
0.0047 0.0014 2.1056e-04 0.0026 0.0019 0.0030

DTLZ7
0.01820 0.09182 0.02381 0.041367 0.01826 0.02191
0.0027 0.0020 0.2151 0.0867 0.0017 0.0944

Figure 3.2 shows the Pareto front approximations of a typical run on DTLZ2.

For NSGA-III, we observed the same phenomenon: some solutions are overlapping

or very close. The result of SMS-EMOA is distributed across the Pareto front with

emphasis on the boundary and knee regions of the Pareto front. The results of the two

DI-MOEA variants are uniformly distributed and evenly spaced on the Pareto front.

DI-MOEA also behaves well on the multimodal DTLZ7 problem, which has non-

linear disconnected Pareto front regions. Figure 3.3 shows the results under 200 pop-

ulation size and 500000 NE.

When running the DI-MOEA, it can be observed that the population evolves to-

wards the Pareto front at the initial stage (the first phase) using the generational

selection operator. After a short period where the two selection operators alternate

(the second phase), the steady state selection operator takes over and the population

converges to a set with maximum diversity (the third phase). When the number of

objectives becomes large, the third phase is more prominent than the previous two

phases because it is more likely for solutions to be mutually non-dominated for a large

objective number. In the runs conducted on tri-objective problems, the generational

selection operator was applied around 100-200 iterations before it switched to the

steady state selection operator for the first time. The intermittent alternating phase

took about 20-50 iterations, and in most of the running time, the algorithm used the

steady state selection operator and throughout this phase, only occasionally the algo-

rithm switched back to generational selection operator for at most a single iteration.

Overall, the first and the second phase took only a minor amount of the total running

time.

It is worth noting that we observed dominance resistant solutions (DRSs) [54]

occasionally on the linear Pareto front of DI-2 on DTLZ1 tri-objective problem; these

are points that have a large contribution to diversity, but dominate only a very narrow

region exclusively. It might be necessary to keep these “special solutions”, but on

the other side, they make the Pareto front approximation less evenly distributed. A
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Figure 3.1: Representative Pareto front approximations of DTLZ1.

strategy has been tested to eliminate DRSs. Before the calculation of the set-indicator

contribution for a front, each solution is checked by comparing with all other solutions:

the distances between two solutions in all dimensions are calculated, if the result of the

minimal distance divided by the maximal distance is too small, the current solution

will be removed from the front. Therefore, a shrinked front is created and the diversity
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Figure 3.2: Representative Pareto front approximations of DTLZ2.

indicator can be calculated only in the new front. The underlying idea of this strategy

is that for two solutions, if their distance is too close in one dimension and too large

in another dimension, keeping both of them will result in an uneven distribution.
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Figure 3.3: Representative Pareto front approximations of DTLZ7.

3.1.4 Conclusion and Further Work

The proposed DI-MOEA combines the advantage of Pareto dominance-based and

indicator-based methods. Moreover, the achieved Pareto front approximations are

excellent in both hypervolume indicator and IGD. In particular, the relative perfor-

mance of DI-MOEA even gets better with an increasing number of objectives. The
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set-indicator used in our algorithms is computationally simpler than the hypervolume

indicator and only depends linearly on the number of objectives, making it possess a

potential advantage on many-objective optimization problems. Most importantly, the

uniformly distributed, evenly spaced solution set can be achieved without the use of

decomposition sets and the estimation of the location and shape of the true Pareto

front.

In the current implementation of DI-MOEA, only a naive way of calculating the

Euclidean distance based geometric mean gap is implemented. Although the com-

putational time of the implemented algorithm is shorter than SMS-EMOA, it should

be further improved, e.g., by using Vaidya’s algorithm [107] and incremental updates

of contributions. Besides, DI-MOEA holds the promise of performing well in many-

objective optimization. To study this, its performance should be tested on many-

objective optimization benchmarks, paying special attention to effects that might

occur in high dimensional objective spaces, such as distance concentration and the

increasing number of non-dominated solutions.

3.2 Cone-based MOEAs

In this section, the edge-rotated cone order is first proposed for the purpose of building

an ordering which can guide the search towards the Pareto front better than the Pareto

order in MOEAs. Two different methods have been proposed to implement the edge-

rotated cone order. Afterwards, the edge-rotated cone order is integrated in MOEAs

by a proper approach which gives consideration to both convergence and diversity

in the evolutionary searching process. The integrated MOEAs are then tested on

multi-objective and many-objective optimization problems to compare with original

MOEAs. Moreover, the ability of the edge-rotated cone order on expressing preferences

in evolutionary multi-objective optimization is investigated.

3.2.1 Edge-rotated Cone Order

In an MOEA, if a solution can dominate more areas based on the adopted dominance

relation, the algorithm is capable of exploring more solutions and hence accelerating

convergence. To this end, the edge-rotated cone is devised by widening the angle of the

Pareto order cone and it allows a solution to dominate a larger area. Given a linearly

independent vector set {w1, w2, . . . , wm}, a cone can be generated in m-dimensional

space.
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Definition 3.1 (Generated m-dimensional cone). The cone generated by the vectors

w1, w2, . . . , wm is the set C = {z : z = λ1w1 + λ2w2 + · · ·+ λmwm,∀λ1, λ2, . . . ,

λm ≥ 0, λ ̸= 0}; w1, . . . , wm are linearly independent.

Figure 3.4 presents a two dimensional scenario of generating the standard Pareto

order cone and edge-rotated cones. The Pareto order cone is the cone constructed

by two half-lines aligned with two vectors, a⃗ and b⃗, which support an angle of 90◦.

Similarly, vectors L⃗1 and L⃗2 determine a cone with an angle of 150◦. Intuitively,

this cone can be formed by rotating the edges of the Pareto order cone towards the

opposite direction around the origin. Note that vectors L⃗3 and L⃗4 determine a cone

with an angle of 180◦ and the cone with an angle of 180◦ is a line. Any two vectors

between L⃗3 and L⃗4 (excluding at least one of L⃗3 and L⃗4) can construct a convex cone

(Definition 2.16), i.e., the space to the right of the corresponding lines and the lines

themselves.

Figure 3.4: Cones with different angles.

When applying this cone order by means of the Minkowski sum (Definition 2.13),

a solution can dominate more objective space. The left image of Figure 3.5 shows an

example of applying the Pareto order cone to illustrate Pareto dominance relation, i.e.,

P dominates the points in P ⊕R2
≻o and Q dominates the points in Q⊕R2

≻o. Here, ⊕
is the Minkowski sum; R2

≻o is equal to the cone constructed by a⃗ and b⃗ in Figure 3.4,

the origin is excluded. In other words the non-negative quadrant with origin excluded.

It can be seen that P and Q are mutually non-dominated in terms of Pareto

dominance relation because neither of them is in the dominating space of the other

point. However, when an edge-rotated cone (e.g., the cone constructed by L⃗1 and L⃗2

40



Chapter 3. Diversity-based and Cone-based Multi-objective
Evolutionary Algorithms

Figure 3.5: Pareto cone and edge-rotated cone orders.

in Figure 3.4) is adopted in the right image, the dominance relation between the point

P and Q has changed and now Q is dominated by P .

The edge-rotated cone can be interpreted as a constraint on trade-offs. In Fig-

ure 3.5, two points P = (p1, p2) and Q = (q1, q2) are Pareto incomparable in R2. The

trade-off, that is, the decrease in f2 per unit of increase of f1 is p2−q2
q1−p1

. It is easily

seen that in case p2−q2
q1−p1

≤ tan(α) (Here, α is the rotating angle on the edge of Pareto

cone.), the points P and Q become comparable in the edge-rotated cone order and if
p2−q2
q1−p1

> tan(α) the points P and Q stay incomparable in the edge-rotated cone order.

Similarly, if for the decrease in f1 per unit increase of f2 it holds that q1−p1

p2−q2
≤ tan(α),

then the points Q and P become comparable in the edge-rotated cone order and if
q1−p1

p2−q2
> tan(α), then they are still incomparable in the edge-rotated cone order. In

summary, if for two Pareto incomparable points one of the trade-offs is bounded by

tan(α), then the points are comparable in the edge-rotated cone order; in case, both

trade-offs are bigger than tan(α), the points are also incomparable with respect to the

edge-rotated cone order.

When using the edge-rotated cone order in MOEAs, since the concave cones do not

give rise to a strict partial order and the non-dominated points in the order generated

by acute cones can be dominated in the Pareto order, the adopted edge-rotated cones

are restricted to convex obtuse cones obtained by rotating each edge of the standard

Pareto cone towards the outside with an angle of maximal 45◦. For example, in the

case of a bi-objective problem, one edge of the cone can exist between a⃗ and L⃗3 and

another edge of the cone can exist between b⃗ and L⃗4. The approach of widening the

standard Pareto cone in m-dimensional space (m > 2) is the same. Each edge of the

standard Pareto order cone is rotated around the origin by an angle of maximal 45◦

towards the opposite direction of the identity line in the first cube’s orthant on the

plane consisting of the edge and the identity line. In m-dimensional space, the identity
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line in the first cube’s orthant is the line that passes through the origin and the point

(1, ..., 1).

It is worth noting that solutions that are dominating in the Pareto order are also

dominating in the edge-rotated cone order. Therefore, it is guaranteed that a minimal

element of the edge-rotated cone order is also a minimal element of the Pareto order,

and thus algorithms that converge to globally efficient points under the edge-rotated

cone order will also converge to globally Pareto efficient points.

Figure 3.6: Trade-off on Pareto front.

The edge-rotated cone gives rise to an extended dominance relation and it es-

tablishes an ordering among Pareto incomparable solutions (i.e., being Pareto non-

dominated to each other) in the sense that better Pareto incomparable solutions are

preferred. By using the edge-rotated cone, a solution, especially the solution which is

not in the knee region, has a higher chance to be dominated by other solutions. The

knee region is the region where the maximum trade-off of objective functions takes

place. For the Pareto front in Figure 3.6, the knee region is where the Pareto surface

bulges the most, i.e., the region near solution a. When comparing the knee point a

with another solution c, solution c has a better (i.e., lower) f2 value as compared to

solution a. However, this small improvement leads to a large deterioration in the other

objective f1. Due to the reason that in the absence of explicitly provided preferences,

all objectives are considered equally important, solution a, thus, is more preferable

than solution c. It has been argued in the literature that knee points are the most

interesting solutions and preferred solutions [12, 13, 20, 24]. In this sense, although

not all globally efficient points might be obtained by the edge-rotated cone orders, the

edge-rotated cone orders naturally filter out non-preferred solutions. In Figure 3.6,

when applying the edge-rotated cone, solutions in the knee region can survive, while
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solutions like b and c are on the flat Pareto surface and are more easily to be domi-

nated. The feature of the edge-rotated cone to eliminate solutions can be appreciated

as an advantage especially in the realm of many-objective optimization considering

the exponential increase in the number of non-dominated solutions necessary for ap-

proximating the entire Pareto front.

3.2.2 Implementation Methods

Two different methods have been proposed to implement the edge-rotated cone or-

der. The first one emphasises on its geometrical property and the second one inclines

towards its mathematical characteristic.

Method 1

Let us assume an edge-rotated cone constructed by L⃗1 and L⃗2 (Figure 3.4) is adopted

in the right image of Figure 3.7. The area dominated by P can be determined by two

lines: PA and PB. We can see that A is equal to P + (cos (−α), sin (−α)) and B is

equal to P +(sin (−α), cos (−α)), where α is the rotated angle of the edge with respect

to the standard Pareto order cone. In this example, α is π/6 (i.e., 30◦); the points A

and B are then P + (
√
3/2,−1/2) and P + (−1/2,

√
3/2) respectively.

Figure 3.7: Pareto cone and edge-rotated cone orders.

In order to determine whether P dominates Q, we choose a point C on the identity

line of the extension cone as a reference point which is known to be dominated by P .

For instance, take C to be P + (1, 1). To learn if another point Q is dominated by P

or not, we only need to compare its position relative to the reference point, i.e., if Q

and C are on the same side of line PA, and at the same time, both points are on the

same side of line PB, Q is dominated by P .
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Line PA can be defined by ax+ by + c = 0, where the parameters, a, b and c, can

be determined by two points on the line, i.e., P and A. To identify if two points, C

and Q, are on the same side of this line, we only need to substitute these two points

in ax + by + c, if the values of ax + by + c are both negative or positive, it can be

concluded that two points are on the same side of this line.

This comparison approach of identifying the dominance relationship between two

points with the edge-rotated cone can also be easily implemented in larger dimensional

space. When the number of objectives is m (m > 2), the space dominated by a point

(e.g., P ) is composed of m hyperplanes; each hyperplane is determined by m points

and these m points include P and other m − 1 points picked from (P1, . . . , Pi, . . . ,

Pm) successively. The point Pi (∈ Rm) is equal to P + oi; and the point oi locates the

new position of the ith edge of the cone together with the origin, the value of oi is the

ith column of the following (m×m) matrix.
cos (−α) sin (−α)√

m−1
· · · sin (−α)√

m−1
sin (−α)√

m−1
cos (−α) · · · sin (−α)√

m−1
...

...
. . .

...
sin (−α)√

m−1

sin (−α)√
m−1

· · · cos (−α)

 (3.1)

The equation of a hyperplane in the m-dimensional space is a1x1 + a2x2 + · · · +
aixi + · · · + amxm + am+1 = 0, where xi (i ∈ (1, . . . ,m)) is the ith objective value

and ai (i ∈ (1, . . . ,m + 1)) is the parameter. All parameters of the hyperplane (i.e.,

from a1 to am+1) can be calculated by the m points on the hyperplane. Again,

the point C (i.e., P + (1, . . . , 1)) can be used as the reference and if another point

Q is dominated by P , the two points Q and C would be on the same side of all

hyperplanes, meaning that if for each hyperplane, we put the two points in the equation

a1x1+a2x2+· · ·+aixi+· · ·+amxm+am+1, both results would be negative or positive.

Method 2

In this method, a criterion is derived by which one can determine whether a point

Q ∈ R2 is dominated by a point P ∈ R2 with respect to the edge-rotated cone order.

Let e1 :=

[
1

0

]
and e2 :=

[
0

1

]
be the edges of the two-dimensional standard Pareto

cone. Then the edges of the edge-rotated cone by a rotation angle α ( 0 ≤ α ≤ π
4 ) are

Ae1 and Ae2, where A =

[
cos(−α) sin(−α)√

2−1
sin(−α)√

2−1
cos(−α)

]
.
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A point Q lies in the edge-rotated cone region of P if and only if for some λ,

Q = P +λ1Ae1+λ2Ae2 such that λ1, λ2 ≥ 0, λ ̸= 0. This is equivalent to: for some λ,

A−1(Q− P ) = λ1e1 + λe2 such that λ1, λ2 ≥ 0, λ ̸= 0. In short, P dominates Q with

respect to the edge-rotated cone order if and only if the components of A−1(Q−P ) are

non-negative and at least one of them is strictly positive. Thus, once the inverse matrix

of A is computed (A−1 = c ·

[
cos(α) sin(α)

sin(α) cos(α)

]
, c := 1

(cos(α))2−(sin(α))2 ) , it can readily

be determined whether Q is in the dominating region of P . Moreover, in case the

components are non-zero and have opposite signs, then the points are incomparable.

In case the components are non-positive and at least one of them negative, then Q

dominates P .

The approach can easily be applied to three or many objective problems. When

the number of objectives is m (m > 2) and the rotation angle for each edge of the

cone is α, the (m×m) matrix (3.1) gives the coordinates of the unit point on rotated

edges: for each unit point on the edge of the standard Pareto cone, each column of

the matrix gives its new coordinates after rotation. For example, in three-dimensional

space, (1, 0, 0) is the unit point on one edge of the standard Pareto cone, then

(cos (−α), sin (−α)√
2

, sin (−α)√
2

) are its new coordinates after the edge is rotated by an

angle of α (0 ≤ α ≤ π
4 ).

When using the edge-rotated cone order in MOEAs by this method, the inverse

matrix only needs to be calculated once and this leads to almost no extra computing

time added in MOEAs.

3.2.3 Integration Algorithm

In a multi-objective optimization algorithm, by using the edge-rotated cone, a solution

has a higher chance to be dominated by other solutions and thus the selection pressure

toward the Pareto front is increased. However, an edge-rotated cone can degrade

the diversity to some extent because more solutions will be dominated and therefore

excluded from the result set. To circumvent this, Algorithm 2 is proposed to pick a

proper cone order (the standard Pareto cone order or edge-rotated cone order) in each

iteration of the algorithm in order to promote diversity in addition to convergence.

Specifically speaking, at the beginning of each iteration, the population is ranked based

on the current cone order; the edge-rotated cone order will be adopted only under the

condition that all the solutions in the population are mutually non-dominated. In

case the current population consists of multiple layers, the standard Pareto cone (i.e.,

the rotation angle is 0◦) is picked to select offspring. The underlying idea is when all
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Figure 3.8: The dynamics of the number of layers.

the solutions are non-dominated with each other, the edge-rotated cone is adopted to

enhance the selection pressure; otherwise, the standard Pareto cone is used to maintain

the diversity of the population.

Algorithm 2 Applying a proper cone order in each iteration.

1: m← the number of objectives;
2: Degree[m]; // the rotation angle for each edge of the standard Pareto order;
3: n rank ← Pareto rank number of current population;
4: if n rank = 0 then
5: for each i ∈ {1, . . . ,m} do
6: Degree[i]← π/6; // rotation angle is 30◦

7: end for
8: else
9: for each i ∈ {1, . . . ,m} do

10: Degree[i]← 0; // standard Pareto cone
11: end for
12: end if

The ability of the edge-rotated cone to make Pareto incomparable solutions com-

parable can especially benefit many-objective optimization due to the reason that the

likelihood of solution pairs of being comparable decreases exponentially with the in-

crease of the dimension m. For many-objective optimization, a large portion of points

in the objective space is non-dominated and the optimization process tends to produce
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a large set of alternative solutions.

When Algorithm 2 is applied in NSGA-II on the DTLZ1 eight objective problem,

Figure 3.8 compares the changes of the number of layers between running NSGA-II

using only the Pareto dominance and involving the edge-rotated cone order with a

rotation angle of 20◦ within the first 400 iterations (Population size is 100.). When

running the original NSGA-II, except that one point lies at level 2 (i.e., the number of

fronts is two) at the very beginning, the number of layers always remains one, meaning

that all solutions in the current population are non-dominated with each other. As

a result, the Pareto dominance relation has no effect on parent selection. That is,

an individual with a larger crowding distance is always chosen as a parent in the

binary tournament selection since all solutions have the same rank. In this manner,

the selection pressure toward the Pareto front is severely weakened. However, when

the edge-rotated cone is involved, the layering of the population is very noticeable.

In this case, an ordering among the incomparable solutions is established and it can

guide the search towards the Pareto front better.

3.2.4 Experimental Results

The proposed strategy can be integrated with any standard MOEA which works with a

population in each iteration and uses the Pareto dominance relation to select solutions,

such as NSGA-II [29], DI-MOEA [116], NSGA-III [26] and others. In this section,

the edge-rotated cone order is applied by Algorithm 2 to observe its behavior on

multi-objective and many-objective optimization problems respectively. To this end,

different rotation angles have been tested, hypervolume and IGD have been adopted

to compare the performance of the algorithms. The population size is 100 for all

experiments.

Multi-objective Optimization

For starts, four tri-objective optimization problems have been chosen in the experi-

ments, which are DTLZ1, DTLZ2, DTLZ7 and DTLZ2 convex. The first three prob-

lems are from the DTLZ problem test suite. The optimal Pareto front of DTLZ1

lies on a linear hyperplane. The optimal Pareto front of DTLZ2 is concave. DTLZ7

is a multi-modal problem. To measure the performance on the multi-objective opti-

mization problem with a convex Pareto front, original DTLZ2 problem is transformed

to DTLZ2 convex problem by simply decreasing all objective values by 3.5. When

calculating the hypervolume of the solution set, the reference point is the point (0.6,
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0.6, 0.6) for DTLZ1, the point (1.1, 1.1, 1.1) is the reference point for DTLZ2, the

point (5, 5, 5) for DTLZ2 convex, and (1, 1, 6.5) for DTLZ7. Meanwhile, the ori-

gin is used as the ideal point. When calculating the IGD value, the reference sets

of DTLZ1, DTLZ2 and DTLZ7 are from the MOEA framework, and the reference

set of DTLZ2 convex is obtained by running DI-MOEA because DI-MOEA is good

at achieving well-distributed solution sets. The merged non-dominated solution sets

from 30 independent runs are used as the reference sets of DTLZ2 convex.

Firstly, the edge-rotated cone order is integrated by Algorithm 2 with NSGA-II

which is one of the most popular Pareto dominance-based MOEAs. Regarding to

the computing budget, when the number of evaluations is 30000, Table 3.5 shows the

mean hypervolume and mean IGD from 30 independent runs when several different

edge-rotated cone orders are adopted. The “P cone” column provides the results

obtained by the original MOEAs, i.e., the algorithms only adopt the standard Pareto

order. The “30◦” column gives the results of the algorithm involving the edge-rotated

cone and each edge of the standard Pareto order cone has been rotated by 30◦, and

similar remarks are used for the remaining columns. The mean hypervolume and mean

IGD values obtained by the original NSGA-II have been used as the reference values

(printed in blue) to be compared with the results achieved by the algorithms involving

the edge-rotated cone orders. For the algorithms combining the edge-rotated cones,

the mean hypervolume and mean IGD values better than the values obtained by the

original MOEAs have been highlighted in bold (i.e., a larger hypervolume value and

lower IGD value); and the largest value for each algorithm among them is printed in

red. At the same time, the standard deviation of each algorithm is also given under

each mean hypervolume and mean IGD.

It can be observed that the performance of NSGA-II (for both the hypervolume

and IGD values) can always be improved when the edge-rotated cone with a proper

angle is involved, for example, when the rotation angle is 6◦ or 2◦. However, the

best performance takes place with different edge-rotated cones for different problems.

When the rotation angle is 30◦, the algorithm behaves the best on DTLZ1 problems

and the rotation angle of 6◦ is the best on other problems. The standard deviations

show the stable behavior of the algorithm involving the edge-rotated cone order, which

is even better than the original NSGA-II.

When different edge-rotated cone orders are integrated in NSGA-III, Table 3.6

presents the mean hypervolume and mean IGD. NSGA-III is an extension of NSGA-II

and it eliminates the drawbacks of NSGA-II such as the lack of a good diversity in a

set of non-dominated solutions. Although NSGA-III is a decomposition-based MOEA,
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Table 3.5: The mean hypervolume (M-HV) and mean IGD (M-IGD) when integrating
edge-rotated cone orders with NSGA-II.

Problems Metrics P cone 30◦ 12◦ 6◦ 2◦

DTLZ1

M-HY 0.7064 0.8621 0.8569 0.8490 0.8360

std 0.2731 0.0029 0.0143 0.0429 0.1111

M-IGD 0.2420 0.0676 0.0732 0.0807 0.0927

std 0.3102 0.0039 0.0168 0.0428 0.1194

M-HY 0.5276 0.2786 0.5487 0.5399 0.5348

DTLZ2 std 0.0044 0.0246 0.0029 0.0026 0.0031

concave M-IGD 0.0709 0.4909 0.0801 0.0674 0.0692

std 0.0034 0.0627 0.0040 0.0032 0.0028

M-HY 0.6862 0.4895 0.6891 0.6921 0.6894

DTLZ2 std 0.0030 0.0010 0.0018 0.0019 0.0025

convex M-IGD 0.0707 0.3490 0.0835 0.0706 0.0698

std 0.0030 0.0012 0.0026 0.0026 0.0032

DTLZ7

M-HY 0.2739 0.0151 0.2716 0.2787 0.2767

std 0.0016 0.0000 0.0009 0.0019 0.0013

M-IGD 0.0519 0.9587 0.1213 0.0482 0.0492

std 0.0029 0.0001 0.0023 0.0029 0.0028

the basic framework of NSGA-III is similar to NSGA-II. It employs non-dominated

sorting to partition the population into a number of fronts, but replaces the crowding

distance operator with a clustering operator based on a set of reference points. NSGA-

III is assumed to be powerful enough to handle these benchmark problems, however,

according to the data in Table 3.6, it can be seen that its performance can still be

improved by the edge-rotated cone order.

The same pattern can be observed from the two tables: the 30◦ rotation angle

works best for DTLZ1 problem; a small rotation angle (i.e., 6◦ or 2◦) works best for

other problems, and a small rotation angle can almost always improve the behavior

of the original algorithms. From the two tables, it can also be observed that the

edge-rotated cone order can benefit NSGA-II more than NSGA-III. In some cases, the

performance of NSGA-II with an edge-rotated cone can even reach the performance

of the original NSGA-III.

A straightforward way to improve the results of MOEAs is to increase the com-

puting budget. When the computing budget of the original MOEAs is increased to

300000, Table 3.7 gives the values of the mean hypervolume and mean IGD of NSGA-
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Table 3.6: The mean hypervolume (M-HV) and mean IGD (M-IGD) when integrating
edge-rotated cones with NSGA-III.

Problem Metrics P cone 30◦ 12◦ 6◦ 2◦

DTLZ1

M-HY 0.8709 0.8771 0.8763 0.8756 0.8761

std 0.0108 0.0010 0.0015 0.0047 0.0013

M-IGD 0.0616 0.0538 0.0539 0.0552 0.0539

std 0.0224 0.0006 0.0006 0.0067 0.0004

M-HY 0.5593 0.2628 0.5526 0.5595 0.5600

DTLZ2 std 0.0006 0.0159 0.0010 0.0007 0.0003

concave M-IGD 0.0554 0.5353 0.0804 0.0534 0.0554

std 0.0005 0.0522 0.0030 0.0008 0.0004

M-HY 0.6941 0.4827 0.6823 0.6913 0.6946

DTLZ2 std 0.0024 0.0039 0.0025 0.0023 0.0023

convex M-IGD 0.0635 0.3541 0.0898 0.0711 0.0641

std 0.0028 0.0035 0.0041 0.0030 0.0027

DTLZ7

M-HY 0.2264 0.0697 0.2234 0.2324 0.2288

std 0.0343 0.0496 0.0310 0.0352 0.0360

M-IGD 0.3705 0.7702 0.4024 0.3472 0.3614

std 0.2070 0.1296 0.1819 0.2085 0.2172

II and NSGA-III. It can be observed that the algorithms combining the edge-rotated

cone order when only using a small computing budget can even behave better than

the original NSGA-II and NSGA-III when using a large computing budget. Only in

several cases (values in blue), the algorithm involving the edge-rotated cone order with

the small budget cannot reach the performance of the original MOEAs with the large

budget, but their behavior is already very close to the original MOEAs with the large

budget.

Many-objective Optimization

In this section, four, six, eight objective DTLZ1, DTLZ2, DTLZ2 convex problems,

UF11 and UF13 [136] have been chosen in the experiments. UF11 is a rotated in-

stance of the 5D DTLZ2 test problem, and UF13 is the 5D WFG1 test problem. For

each problem, the computing budget for running the algorithm (i.e., the number of

evaluations) is determined by max{100000, 10000 × D}, where D is the number of

decision variables. Likewise, hypervolume and IGD have been adopted to compare

the performance of the algorithms. When calculating HV, the objective values of the
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Table 3.7: The Mean hypervolume (M-HV) and mean IGD (M-IGD) of original NSGA-II
and NSGA-III with larger computing budget.

Problem DTLZ1 DTLZ2 concave DTLZ2 convex DTLZ7

M-HY 0.8630 0.5281 0.6884 0.2755

M-IGD 0.0657 0.0705 0.0698 0.0506

M-HY 0.8757 0.5603 0.6944 0.2284

M-IGD 0.0597 0.0552 0.0628 0.3599

reference point are 0.6 on DTLZ1, 1.1 on DTLZ2, 5 on DTLZ2 convex, 2.2 on UF11

and 11 on UF13. The origin is used as the ideal point. When calculating the IGD

value, the merged non-dominated solution sets from all runs are used as the reference

sets of the DTLZ2 convex problems and the reference sets of other problems are from

the MOEA framework.

Tables 3.9 - 3.11 show the mean hypervolume and mean IGD from 15 independent

runs when different edge-rotated cone orders are integrated in NSGA-II, DI-MOEA

and NSGA-III. Similarly, for the algorithms combining the edge-rotated cone, the

mean hypervolume and mean IGD values are better than the values obtained by the

original MOEAs have been highlighted in bold; the largest respectively lowest value

for each algorithm among them is printed in red. Tables for the DTLZ benchmark

problems consist of four parts, namely four objective, six objective, eight objective

with full budget, and eight objective with half budget. Both UF11 and UF13 are five

objective problems and their behaviors with full budget and half budget are given in

Table 3.11.

The following conclusions can be drawn from the data in these tables.

1. The algorithms do not work well when a large rotation angle is adopted (e.g.,

30◦).

2. The algorithms show similar performance to the original MOEAs when the ro-

tation angle is very small (e.g., 3◦).

3. When an intermediate rotation angle is adopted, the performance of the algo-

rithms (both hypervolume and IGD values) shows a significant improvement

except for a few cases which display values close to the original MOEAs.

4. Although it differs depending on the specific problems, the best performance is

usually obtained when the rotation angle is 15◦.

5. It can be seen that the edge-rotated cone can improve the performance of all
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three adopted MOEAs (i.e., NSGA-II, DI-MOEA and NSGA-III) in most cases

when an intermediate rotation angle is used. Even though NSGA-III is assumed

to be powerful enough to handle these benchmark problems, its performance can

still be improved by the edge-rotated cone approach.

6. The edge-rotated cone can benefit MOEAs even more with the increase of the

number of objectives. For example, when a 15◦ rotation angle is applied on

the DTLZ2 (concave) four objective problem, the hypervolume of NSGA-II is

improved from 0.5953 to 0.6760; for the six objective problem, the hypervolume

is improved from 0.1224 to 0.8156; and for the eight objective problem, the

hypervolume is improved from 0.0168 to 0.8850.

7. The edge-rotated cone can benefit the algorithm with a small computing budget

more than the algorithm with a large budget. For example, when using half of

the computing budget on UF13 five objective problem and the rotation angle

is set to 20◦, the hypervolume values of the Pareto fronts from NSGA-II, DI-

MOEA and NSGA-III can be improved to 0.7259, 0.7254, 0.7073, which are

already larger than the hypervolume values obtained by the original MOEAs

with full budget, namely 0.6937, 0.6611 and 0.6497.

8. Even though the median values of the hypervolume and IGD values have not

been presented in the tables, they show similar values as the mean values. At the

same time, the standard deviations show a stable behavior of the edge-rotated

cone order when it is integrated in MOEAs.

Preference-based Multi-objective Optimization

In the previous experiments, the rotation angles on all edges of the Pareto cone are

kept the same. However, the edge-rotated cone is not necessarily “symmetric”. When

rotating the different edges of the Pareto cone by different angles, the generated edge-

rotated cone can lead the search towards different focuses on the Pareto front. To

observe the effect of the “unsymmetrical” edge-rotated cone, it is integrated in DI-

MOEA and the tri-objective DTLZ2 concave and convex problems are adopted to

observe the experimental results due to the typical shape of their Pareto fronts. The

setting of the other parameters, such as the number of evaluations, population size, is

the same as in previous experiments for multi-objective optimization.

The two left images in Figure 3.9 show the results of only rotating one edge of the

cone on the concave DTLZ2 problem. The black points give the entire Pareto front
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Table 3.8: The mean hypervolume (M-HV) and mean IGD (M-IGD) on DTLZ1.

Four objective (NE = 100000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.5811 0.7735 0.9405 0.9403 0.9400 0.9393 0.9398
std 0.3347 0.1918 0.0024 0.0021 0.0026 0.0021 0.0018

DI-MOEA
M-HV 0.4842 0.0000 0.9535 0.9537 0.9521 0.9538 0.9533
std 0.4250 0.0000 0.0010 0.0009 0.0056 0.0005 0.0009

NSGA-III
M-HV 0.9447 0.6399 0.9448 0.9444 0.9458 0.9453 0.9452
std 0.0024 0.2561 0.0020 0.0024 0.0020 0.0018 0.0028

NSGA-II
M-IGD 0.9725 0.3083 0.1537 0.1550 0.1553 0.1491 0.1511
std 0.0044 0.0444 0.0036 0.0026 0.0037 0.0046 0.0034

DI-MOEA
M-IGD 1.2772 763.0901 0.1287 0.1287 0.1329 0.1303 0.1311
std 1.4694 9.6585 0.0021 0.0026 0.0128 0.0019 0.0027

NSGA-III
M-IGD 0.1300 0.4122 0.1297 0.1295 0.1315 0.1298 0.1313
std 0.0024 0.2506 0.0038 0.0031 0.0029 0.0027 0.0032

Six objective (NE = 100000)

NSGA-II
M-HV 0.0000 0.0000 0.9857 0.9851 0.9844 0.9808 0.8922
std 0.0000 0.0000 0.0007 0.0007 0.0010 0.0023 0.2001

DI-MOEA
M-HV 0.0000 0.0000 0.9911 0.9911 0.9906 0.9885 0.9728
std 0.0000 0.0000 0.0002 0.0003 0.0002 0.0019 0.0084

NSGA-III
M-HV 0.9880 0.0000 0.9887 0.9885 0.9883 0.9881 0.9883
std 0.0009 0.0000 0.0005 0.0006 0.0005 0.0008 0.0006

NSGA-II
M-IGD 75.4078 744.6850 0.3041 0.3026 0.3079 0.3256 0.4541
std 41.1790 49.7971 0.0169 0.0136 0.0183 0.0159 0.2359

DI-MOEA
M-IGD 349.0537 769.4755 0.3086 0.3102 0.3151 0.3196 0.3791
std 76.0015 37.4396 0.0050 0.0043 0.0064 0.0104 0.0291

NSGA-III
M-IGD 0.2990 770.0300 0.2935 0.3007 0.3020 0.3015 0.3020
std 0.0101 40.8585 0.0050 0.0085 0.0095 0.0085 0.0092

Eight objective (NE = 120000)

NSGA-II
M-HV 0.0000 0.0000 0.9957 0.9956 0.9937 0.9422 0.7397
std 0.0000 0.0000 0.0003 0.0004 0.0005 0.1638 0.3584

DI-MOEA
M-HV 0.0000 0.0000 0.9976 0.9976 0.9965 0.8700 0.2850
std 0.0000 0.0000 0.0001 0.0002 0.0007 0.2892 0.3758

NSGA-III
M-HV 0.9877 0.0000 0.9855 0.9858 0.9853 0.9865 0.9854
std 0.0025 0.0000 0.0027 0.0038 0.0032 0.0042 0.0025

NSGA-II
M-IGD 128.0384 721.0803 0.4286 0.4272 0.4452 0.5575 0.8845
std 56.8022 57.7441 0.0199 0.0148 0.0232 0.2231 0.4798

DI-MOEA
M-IGD 517.2231 758.8918 0.4843 0.4866 0.5043 0.8457 3.3619
std 108.7324 142.8642 0.0068 0.0056 0.0106 0.6234 3.5900

NSGA-III
M-IGD 0.3599 418.6033 0.3461 0.3567 0.3565 0.3557 0.3594
std 0.0113 43.8714 0.0106 0.0106 0.0123 0.0192 0.0096

Eight objective - Half budget (NE = 60000)

NSGA-II
M-HV 0.0000 0.0000 0.9954 0.9944 0.7331 0.2971 0.2048
std 0.0000 0.0000 0.0006 0.0012 0.3764 0.3660 0.3120

DI-MOEA
M-HV 0.0000 0.0000 0.9634 0.9972 0.9861 0.7335 0.0745
std 0.0000 0.0000 0.0863 0.0003 0.0341 0.3592 0.1555

NSGA-III
M-HV 0.9813 0.0000 0.9855 0.9842 0.9849 0.9856 0.9863
std 0.0138 0.0000 0.0027 0.0033 0.0033 0.0034 0.0027

NSGA-II
M-IGD 170.7728 681.8762 0.4248 0.4248 1.0092 2.3994 3.2542
std 92.0427 64.1913 0.0204 0.0151 0.8559 2.0576 3.1045

DI-MOEA
M-IGD 592.0768 747.5064 0.5889 0.4881 0.5406 1.2579 4.0558
std 93.9853 94.6608 0.2782 0.0087 0.0983 1.1140 2.8857

NSGA-III
M-IGD 0.3777 405.6668 0.3509 0.3576 0.3635 0.3663 0.3627
std 0.0588 48.9879 0.0192 0.0107 0.0124 0.0216 0.0169
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Table 3.9: The mean hypervolume (M-HV) and mean IGD (M-IGD) on DTLZ2 (concave).

Four objective (NE = 130000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.5953 0.1971 0.5458 0.6760 0.6525 0.6388 0.6333
std 0.0089 0.1182 0.0535 0.0041 0.0048 0.0080 0.0077

DI-MOEA
M-HV 0.6471 0.0913 0.5639 0.6944 0.6897 0.6755 0.6688
std 0.0094 0.0012 0.0406 0.0038 0.0026 0.0066 0.0039

NSGA-III
M-HV 0.6597 0.2508 0.5749 0.6863 0.6821 0.6652 0.6592
std 0.0054 0.1265 0.0362 0.0017 0.0040 0.0031 0.0066

NSGA-II
M-IGD 0.1634 0.8352 0.4037 0.1867 0.1492 0.1536 0.1542
std 0.0045 0.2290 0.0794 0.0056 0.0040 0.0055 0.0041

DI-MOEA
M-IGD 0.1363 1.0405 0.3810 0.1731 0.1264 0.1295 0.1279
std 0.0045 0.0183 0.0661 0.0049 0.0022 0.0061 0.0028

NSGA-III
M-IGD 0.1501 0.7553 0.3510 0.1749 0.1361 0.1477 0.1490
std 0.0046 0.2196 0.0705 0.0039 0.0034 0.0054 0.0026

Six objective (NE = 150000)

NSGA-II
M-HV 0.1224 0.0000 0.4304 0.8156 0.7608 0.7284 0.6490
std 0.0701 0.0000 0.0254 0.0036 0.0067 0.0119 0.0221

DI-MOEA
M-HV 0.0000 0.0000 0.4488 0.8397 0.8016 0.7479 0.6543
std 0.0000 0.0000 0.0126 0.0055 0.0055 0.0117 0.0347

NSGA-III
M-HV 0.8052 0.0000 0.4411 0.8446 0.8185 0.8127 0.8111
std 0.0076 0.0000 0.0130 0.0048 0.0038 0.0056 0.0041

NSGA-II
M-IGD 0.7278 2.5612 0.7003 0.3447 0.2856 0.2887 0.3137
std 0.0758 0.0090 0.0380 0.0119 0.0051 0.0046 0.0091

DI-MOEA
M-IGD 1.9390 2.5824 0.6961 0.2913 0.2774 0.2898 0.3335
std 0.3246 0.0059 0.0285 0.0074 0.0026 0.0058 0.0172

NSGA-III
M-IGD 0.3125 2.5596 0.7260 0.3073 0.3061 0.3092 0.3095
std 0.0105 0.0154 0.0283 0.0145 0.0071 0.0065 0.0080

Eight objective (NE = 170000)

NSGA-II
M-HV 0.0168 0.0000 0.4947 0.8850 0.8193 0.7068 0.4062
std 0.0355 0.0000 0.0576 0.0068 0.0068 0.0487 0.0754

DI-MOEA
M-HV 0.0000 0.0000 0.4250 0.9002 0.8011 0.4619 0.0138
std 0.0000 0.0000 0.1260 0.0033 0.0196 0.1500 0.0516

NSGA-III
M-HV 0.8543 0.0000 0.3151 0.9079 0.8727 0.8632 0.8522
std 0.0121 0.0000 0.0643 0.0044 0.0074 0.0078 0.0138

NSGA-II
M-IGD 1.2941 2.4798 0.7887 0.5247 0.3955 0.4332 0.6433
std 0.1867 0.0422 0.0507 0.0210 0.0068 0.0201 0.0687

DI-MOEA
M-IGD 2.4722 2.5704 0.8728 0.4483 0.4425 0.6013 2.3017
std 0.0430 0.0129 0.1118 0.0054 0.0088 0.0682 0.4257

NSGA-III
M-IGD 0.4594 1.9278 0.9662 0.4936 0.4659 0.4638 0.4680
std 0.0105 0.1043 0.0491 0.0130 0.0099 0.0093 0.0175

Eight objective - Half budget (NE = 85000)

NSGA-II
M-HV 0.0001 0.0000 0.4674 0.8859 0.8161 0.7145 0.4251
std 0.0003 0.0000 0.0847 0.0047 0.0083 0.0334 0.0851

DI-MOEA
M-HV 0.0000 0.0000 0.4196 0.9000 0.8061 0.5432 0.0213
std 0.0000 0.0000 0.1254 0.0050 0.0207 0.0931 0.0606

NSGA-III
M-HV 0.8526 0.0000 0.3223 0.9063 0.8728 0.8616 0.8548
std 0.0084 0.0000 0.0553 0.0048 0.0054 0.0085 0.0116

NSGA-II
M-IGD 1.6856 2.4963 0.8125 0.5167 0.3939 0.4295 0.6116
std 0.1949 0.0202 0.0763 0.0091 0.0060 0.0126 0.0869

DI-MOEA
M-IGD 2.4858 2.5688 0.8765 0.4520 0.4391 0.5633 2.0740
std 0.0272 0.0276 0.1149 0.0073 0.0072 0.0403 0.5132

NSGA-III
M-IGD 0.4611 1.9307 0.9590 0.4923 0.4691 0.4630 0.4597
std 0.0178 0.1646 0.0433 0.0127 0.0115 0.0101 0.0152
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Table 3.10: The mean hypervolume (M-HV) and mean IGD (M-IGD) on DTLZ2 convex.

Four objective (NE = 130000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.4433 0.2126 0.4302 0.4613 0.4577 0.4514 0.4502
std 0.0046 0.0286 0.0025 0.0019 0.0027 0.0037 0.0036

DI-MOEA
M-HV 0.4643 0.0427 0.4308 0.4673 0.4730 0.4688 0.4678
std 0.0071 0.0048 0.0039 0.0051 0.0017 0.0025 0.0019

NSGA-III
M-HV 0.4419 0.1978 0.4182 0.4501 0.4552 0.4499 0.4470
std 0.0078 0.0329 0.0037 0.0036 0.0025 0.0053 0.0036

NSGA-II
M-IGD 0.1484 0.5018 0.2137 0.1512 0.1454 0.1466 0.1458
std 0.0044 0.0444 0.0036 0.0026 0.0037 0.0046 0.0034

DI-MOEA
M-IGD 0.1284 0.7288 0.2108 0.1426 0.1238 0.1252 0.1255
std 0.0093 0.0154 0.0055 0.0074 0.0017 0.0034 0.0026

NSGA-III
M-IGD 0.1471 0.5242 0.2295 0.1660 0.1424 0.1439 0.1424
std 0.0094 0.0511 0.0052 0.0052 0.0031 0.0067 0.0043

Six objective (NE = 150000)

NSGA-II
M-HV 0.1299 0.0223 0.1304 0.1471 0.1376 0.1348 0.1325
std 0.0029 0.0042 0.0016 0.0017 0.0018 0.0027 0.0023

DI-MOEA
M-HV 0.1343 0.0133 0.1280 0.1525 0.1408 0.1376 0.1365
std 0.0018 0.0009 0.0019 0.0011 0.0014 0.0017 0.0020

NSGA-III
M-HV 0.0993 0.0072 0.1109 0.1386 0.1234 0.1116 0.1045
std 0.0078 0.0010 0.0026 0.0027 0.0045 0.0061 0.0072

NSGA-II
M-IGD 0.2713 0.5058 0.4106 0.2789 0.2655 0.2686 0.2698
std 0.0047 0.0282 0.0043 0.0049 0.0046 0.0053 0.0054

DI-MOEA
M-IGD 0.2571 0.6012 0.4149 0.2657 0.2513 0.2530 0.2557
std 0.0030 0.0044 0.0050 0.0054 0.0038 0.0029 0.0028

NSGA-III
M-IGD 0.2911 0.7106 0.4557 0.3039 0.2677 0.2764 0.2869
std 0.0093 0.0245 0.0074 0.0110 0.0106 0.0070 0.0073

Eight objective (NE = 170000)

NSGA-II
M-HV 0.0276 0.0155 0.0187 0.0355 0.0298 0.0292 0.0283
std 0.0010 0.0013 0.0029 0.0005 0.0011 0.0007 0.0008

DI-MOEA
M-HV 0.0264 0.0213 0.0151 0.0357 0.0280 0.0269 0.0267
std 0.0008 0.0007 0.0004 0.0005 0.0006 0.0007 0.0009

NSGA-III
M-HV 0.0210 0.0014 0.0127 0.0256 0.0219 0.0211 0.0206
std 0.0010 0.0013 0.0005 0.0009 0.0015 0.0010 0.0014

NSGA-II
M-IGD 0.3649 0.4218 0.5285 0.3607 0.3548 0.3573 0.3607
std 0.0087 0.0083 0.0236 0.0040 0.0061 0.0086 0.0067

DI-MOEA
M-IGD 0.3816 0.3946 0.5611 0.3597 0.3736 0.3788 0.3803
std 0.0036 0.0047 0.0029 0.0048 0.0044 0.0057 0.0050

NSGA-III
M-IGD 0.4197 0.7074 0.5811 0.4178 0.4176 0.4198 0.4211
std 0.0094 0.0272 0.0037 0.0073 0.0136 0.0095 0.0120

Eight objective - Half budget (NE = 85000)

NSGA-II
M-HV 0.0282 0.0152 0.0187 0.0356 0.0304 0.0293 0.0286
std 0.0007 0.0012 0.0025 0.0006 0.0006 0.0007 0.0010

DI-MOEA
M-HV 0.0263 0.0217 0.0150 0.0359 0.0276 0.0268 0.0266
std 0.0010 0.0008 0.0005 0.0006 0.0006 0.0007 0.0008

NSGA-III
M-HV 0.0202 0.0012 0.0126 0.0249 0.0213 0.0207 0.0200
std 0.0013 0.0009 0.0005 0.0009 0.0008 0.0010 0.0014

NSGA-II
M-IGD 0.3649 0.4218 0.5285 0.3607 0.3548 0.3573 0.3607
std 0.0087 0.0083 0.0236 0.0040 0.0061 0.0086 0.0067

DI-MOEA
M-IGD 0.3801 0.3937 0.5616 0.3588 0.3784 0.3796 0.3792
std 0.0071 0.0046 0.0037 0.0039 0.0065 0.0074 0.0035

NSGA-III
M-IGD 0.4263 0.7102 0.5815 0.4210 0.4238 0.4234 0.4250
std 0.0113 0.0213 0.0042 0.0093 0.0086 0.0086 0.0110
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Table 3.11: The mean hypervolume (M-HV) and mean IGD (M-IGD) on UF11 & UF13.

UF11 Five objective (NE = 300000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.0000 0.0000 0.0211 0.0291 0.0306 0.0218 0.0104
std 0.0000 0.0000 0.0024 0.0058 0.0012 0.0011 0.0014

DI-MOEA
M-HV 0.0029 0.0000 0.0191 0.0336 0.0256 0.0188 0.0138
std 0.0018 0.0000 0.0035 0.0008 0.0012 0.0015 0.0024

NSGA-III
M-HV 0.0147 0.0000 0.0266 0.0350 0.0278 0.0201 0.0171
std 0.0016 0.0000 0.0034 0.0017 0.0016 0.0014 0.0015

NSGA-II
M-IGD 1.5208 14.6626 0.3890 0.2990 0.2685 0.3119 0.4531
std 0.2173 0.2878 0.0368 0.0374 0.0171 0.0241 0.0289

DI-MOEA
M-IGD 0.7304 15.1690 0.6152 0.2807 0.3339 0.3946 0.4621
std 0.0944 0.2054 0.1997 0.0210 0.0228 0.0352 0.0545

NSGA-III
M-IGD 0.4517 15.0785 0.4190 0.2795 0.3188 0.3848 0.4166
std 0.0388 0.2105 0.0697 0.0247 0.0235 0.0324 0.0183

UF11 Five objective - Half budget (NE = 150000)

NSGA-II
M-HV 0.0000 0.0000 0.0205 0.0269 0.0288 0.0201 0.0082
std 0.0000 0.0000 0.0025 0.0055 0.0014 0.0016 0.0017

DI-MOEA
M-HV 0.0012 0.0000 0.0237 0.0316 0.0244 0.0185 0.0126
std 0.0011 0.0000 0.0030 0.0020 0.0010 0.0014 0.0017

NSGA-III
M-HV 0.0148 0.0000 0.0268 0.0342 0.0270 0.0199 0.0170
std 0.0020 0.0000 0.0029 0.0013 0.0018 0.0016 0.0010

NSGA-II
M-IGD 1.7202 14.7243 0.3951 0.3031 0.2731 0.3208 0.4846
std 0.2541 0.1769 0.0392 0.0343 0.0164 0.0289 0.0312

DI-MOEA
M-IGD 0.8730 15.1172 0.4910 0.2939 0.3418 0.4061 0.4831
std 0.1485 0.2099 0.0619 0.0269 0.0244 0.0329 0.0439

NSGA-III
M-IGD 0.4606 15.0148 0.3897 0.2752 0.3204 0.4009 0.4314
std 0.0433 0.1881 0.0615 0.0186 0.0265 0.0393 0.0335

UF13 Five objective (NE = 300000)

NSGA-II
M-HV 0.6937 0.5041 0.7410 0.7424 0.7177 0.7065 0.6994
std 0.0079 0.1742 0.0096 0.0070 0.0091 0.0084 0.0084

DI-MOEA
M-HV 0.6611 0.4625 0.7343 0.7152 0.6590 0.6567 0.6589
std 0.0063 0.1580 0.0064 0.0119 0.0073 0.0067 0.0071

NSGA-III
M-HV 0.6498 0.4523 0.7164 0.7226 0.7023 0.6703 0.6532
std 0.0130 0.1017 0.0048 0.0108 0.0085 0.0106 0.0077

NSGA-II
M-IGD 1.4761 1.3108 1.4316 1.3805 1.4656 1.4391 1.4181
std 0.1315 0.2267 0.0565 0.0857 0.0664 0.1572 0.1029

DI-MOEA
M-IGD 1.5448 1.5031 1.5151 1.5481 1.7512 1.6351 1.5934
std 0.0473 0.4180 0.0533 0.0646 0.0384 0.0667 0.0399

NSGA-III
M-IGD 1.8698 1.6030 1.6324 1.5813 1.6675 1.7950 1.8527
std 0.1842 0.1835 0.0285 0.0658 0.0969 0.1457 0.1245

UF13 Five objective - Half budget (NE = 150000)

NSGA-II
M-HV 0.6687 0.5016 0.7259 0.7170 0.6915 0.6831 0.6738
std 0.0041 0.1749 0.0092 0.0058 0.0042 0.0047 0.0057

DI-MOEA
M-HV 0.6457 0.3427 0.7254 0.7002 0.6513 0.6481 0.6497
std 0.0045 0.2041 0.0044 0.0133 0.0056 0.0053 0.0057

NSGA-III
M-HV 0.6432 0.4702 0.7073 0.7045 0.6770 0.6579 0.6417
std 0.0086 0.0996 0.0074 0.0076 0.0103 0.0071 0.0056

NSGA-II
M-IGD 1.5720 1.3736 1.5455 1.5074 1.5968 1.5746 1.5262
std 0.0946 0.1703 0.0638 0.0649 0.0786 0.1135 0.0860

DI-MOEA
M-IGD 1.6609 1.5321 1.5939 1.6311 1.8048 1.7286 1.6403
std 0.0557 0.3781 0.0268 0.0781 0.0509 0.0794 0.0613

NSGA-III
M-IGD 1.8931 1.7553 1.6824 1.6832 1.8163 1.8976 1.9725
std 0.1238 0.2361 0.0456 0.0376 0.0924 0.1200 0.0562
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Figure 3.9: Pareto front approximations of (concave & convex) DTLZ2 obtained by the
cone with different rotation angles on different edges.

from original DI-MOEA. The blue, green and red points in the top image show the

results when only F3, F2, F1 of the standard Pareto cone is rotated outside by 30◦

(π/6) respectively and the other two edges of the cone remain. In the bottom image,

the rotation angle is 22.5◦ (π/8) on the extended edge and the other edges are the

same as those of the Pareto cone. Under the condition that the original Pareto front

is concave, it can be observed that the achieved Pareto front focuses on a different

corner and the side right against the corner of the entire Pareto front when only one

edge of the cone is rotated. Moreover, the smaller the angle, the larger the covered

Pareto front area. The right two images in Figure 3.9 present the results on the convex

DTLZ2 problem. The points with different colors in the top image, again, show the

Pareto fronts when only one edge of the cone is rotated and the rotation angle is 45◦

(π/4). It can be seen that the solutions focus on different corners. The bottom image

shows again when the rotation angle is larger, the Pareto front can be narrowed down

and concentrate more on the corner. The literature of the preference-based MOEAs

mostly focus on the knee or central region of the Pareto front, however, the edge-
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rotated cones make it possible to obtain preferred solutions if the “corner” regions are

interested, i.e., the edges of the cone are rotated by different angles to express the

preference on different objectives.

3.2.5 Conclusion and Future Work

The edge-rotated cone is generated by simply rotating the edges of the Pareto cone.

The edge-rotated cone order, when used as the ranking criterion by MOEAs, can rank

the Pareto incomparable solutions into different layers. Hence, the selection pressure

toward the Pareto front can be strengthened and the convergence of the algorithm can

be accelerated. To avoid neglecting the diversity, the edge-rotated cone order is de-

signed to work together with the standard Pareto order in MOEAs. After testing the

edge-rotated cones with various rotation angles on multi-objective and many-objective

optimization problems and comparing their performance with the original MOEAs, it

can be seen that many-objective optimization can really benefit from the edge-rotated

cones. To be specific, a cone with a relatively small rotation angle (> 3◦, e.g., 6◦) can

almost always improve the performance of original algorithms. On many-objective op-

timization problems, the best behavior usually appears when an intermediate rotation

angle (e.g., 15◦) is adopted. However, on multi-objective problems, the rotation angles

which can achieve the best performance are usually smaller. In the experiment, it can

also be observed that the performance of NSGA-II integrating the edge-rotated cone

can reach the performance of NSGA-III in some cases. Moreover, when the algorithm

uses a small computing budget and edge-rotated cones, it can achieve better behavior

than when the algorithm uses a large budget but without edge-rotated cones.

From the experimental results, it can be seen that a smaller rotation angle is more

suitable in low dimensions than in high dimensions. The reason is high dimensional

problems need strong convergence. Otherwise, it is difficult to find a good Pareto

front approximation. Therefore, a larger rotation angle is needed by many-objective

problems. However, a larger rotation angle also leads to the focus of the search on a

smaller region of the Pareto front (Please refer to Figure 3.9), MOEAs then need to

find a good balance between the convergence and coverage to avoid that the obtained

solution set covers only a part of region of the Pareto front. It has also been found that

the properties of the problem determine the performance of a specific rotation angle

more than the objective number. For example, the rotation angle which can achieve

the best performance on DTLZ1 problems is always higher than on other problems,

no matter the number of objectives is three, four or eight, and no matter whether the
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edge-rotated cone is integrated in NSGA-II or NSGA-III. The reason behind this is

that the Pareto front of DTLZ1 problems is linear. All points on the linear Pareto

front can be found even when the rotation angle is large. Therefore, a large rotation

angle can be used to improve the convergence ability of MOEAs without deteriorating

the coverage of the Pareto front. However, when the Pareto front is non-linear, it is

possible that only a part of the Pareto front can be obtained by a large rotation angle.

In future, the mechanism that relates the properties of the problem with the rotation

angle should be researched more. Furthermore, when the edges of the Pareto cone are

rotated by different angles, the obtained Pareto front approximation can focus on the

different region of the entire Pareto front, and these “unsymmetrical” cones are very

promising to be used when exists different emphasis on the Pareto front. However,

further research on its ability on articulating the preference on both multi-objective

and many-objective optimization should be done. In general, the use of cone orders to

formulate preferences based on trade-off rates and angles will be a topic that deserves

also attention for problems with a larger number of objectives and tools to better

guide users in choosing their preferences will be of crucial importance to improve

applicability in practice.
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