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Chapter 2

Preliminaries

This chapter provides an introduction to critical basics of optimization, multi-objective

optimization, multi-objective evolutionary algorithm, and the discussion of order re-

lations for multi-objective optimization.

2.1 Optimization

An optimization problem is the problem of finding the best solution from all feasi-

ble solutions. All sorts of optimization problems arise in different disciplines from

mathematics, computer science to engineering and economics, and so on.

2.1.1 Applications

Some applications listed below can give a rough impression on optimization problems.

It is worthy noting that this is just a drop in the ocean, the real-world optimization

problems go far beyond these disciplines and applications.

Agriculture: managing river basins to satisfy urban and agricultural consumptive

demand, also in-stream environmental demands [126].

Architecture: designing a building with respect to thermal comfort, energy effi-

ciency, and construction cost criteria [58].

Aviation: planning airport construction to minimize the cost of all the items

influenced by the site layout; maximize the safety of airport operations dur-
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2.1. Optimization

ing construction; reduce construction-related security breaches; and improve the

safety of construction operations [69].

Aerospace: designing satellite orbits to minimize the spatial resolution require-

ment (at-nadir resolution and off-nadir resolution) and temporal resolution re-

quirement (the repeat cycle and the revisit time) [98].

Chemistry: finding desirable molecule drug which can improve solubility, metabolic

stability, cell permeability, and with reduced side effects. [125].

Engineering: designing hydraulic presser to maximize the nominal pressure rat-

ing and fully loaded power while minimizing the oil injection volume [123].

Environment: designing marine protected area networks to maximize network

effectiveness, species persistence, and minimize cost of protection [47].

Investment: choosing an optimal set of assets in order to minimize the risk and

maximize the profit of the investment [101].

Machine learning: assisting machine learning algorithms to optimize their hyper-

parameters, selecting models to minimize model complexity and maximize clas-

sification accuracy [65].

Manufacturing: making an efficient supply chain plan to minimize total losses

of supply chain including production cost, hiring, firing and training cost, raw

material and end product inventory holding cost, transportation and shortage

cost, simultaneously, minimize the sum of the maximum amount of shortages

among the customers’ zones in all periods to improve customer satisfaction [78].

Medical: searching for new therapeutic drugs to maximize the potency of the

drug, at the same time, minimize synthesis costs and unwanted side effects [108].

Scheduling: determining the vehicle routing to minimize the total distance trav-

eled, the total time required, the total tour cost, and the fleet size, and maxi-

mizing the quality of the service and the profit collected [66].

All these problems have in common that a software/ search algorithm framework

which can support human decision makers in solving such problems is desirable due

to the large number of alternative solutions.
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2.1.2 Mathematical Definition

The goal of the optimization process is to find the values of decision variables that

result in a maximum or minimum of a function called the objective function. In

mathematical terms, optimization problems can be formulated as:

Minimize f(x) (2.1)

Subject to gi(x) = 0, i = 1, · · · , p (2.2)

hj(x) ≥ 0, j = 1, · · · , q (2.3)

x ∈ X . (2.4)

Here x is the set of decision variables. The decision variables are the numerical

quantities for which values are under our control and are to be chosen to find an

optimal solution. The decision variables consist of independent variables, a vector x

containing n decision variables can be represented by: x = (x1, x2...., xn)
T . Decision

variables may have continuous values which can take on any value in a specified interval

or discrete values which are restricted to a specified interval of integers. This leads

to continuous optimization and discrete optimization problems. In theory, continuous

optimization problems tend to be easier to solve than discrete optimization problems

because the information about points in a neighborhood of one decision variable can

be deduced more smoothly.

The constraints, i.e., equality constraints in Eq. (2.2) and inequality constraints

in Eq. (2.3), are also functions of the decision variables. Their values decide which

solutions are feasible. Some of the optimization problems do not have any constraints

and they are therefore called unconstrained optimization problems. Sometimes, only

simple constraints on the range of the input variables are given by means of intervals.

These problems are usually referred to as box-constraints problems. Constrained op-

timization problems can be reformulated to unconstrained optimization problems in

which the constraints are replaced by a penalty term in the objective function.

The optimization process is to find the values of decision variables that result in

a maximum or minimum of the objective function f(x), i.e., Eq. (2.1). Without loss

of generality, the objective function is to be minimized in this work. In other words,

the objective function is a measure to compare alternative solutions. The optimization

problems having a single objective function are single-objective optimization problems.

But in the real-world, the optimization problems with multiple objective functions, i.e.,
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2.2. Multi-objective Optimization

multi-objective optimization problems, are more common.

2.2 Multi-objective Optimization

A multi-objective optimization problem is an optimization problem with more than

one objective function to be minimized. That is to say, instead of one single objective

function f(x), multiple objective functions, f1(x), . . . , fm(x), are optimized simulta-

neously. Here, m (m ≥ 2) indicates the number of objectives.

In multi-objective optimization, the objectives are usually conflicting with each

other. Therefore, there does not typically exist a feasible solution that minimizes all

objective functions simultaneously; and the trade-off among different objectives gives

rise to a set of potential compromise solutions. A minimal requirement for a compro-

mise solution is that it should be a Pareto optimal solution. Pareto optimal solutions

are solutions that cannot be improved in any of the objectives without deteriorating

at least one of the other objectives.

2.2.1 Pareto Optimal and Non-dominated Solutions

The solutions are evaluated by the objective functions which represent a mapping from

the decision space to the objective space. For an optimization problem, the decision

space X comprises all candidate solutions. When the problem has m objectives, an

m-dimensional Euclidean space forms its objective space in which objective function

vectors coexist and where each coordinate axis corresponds to one objective. For each

solution in the decision space, there is a point in the objective space. At the same

time, multiple solutions in the decision space may be projected onto the same point

in the objective space. A relative comparison between solutions can be achieved by

the dominance relation.

Definition 2.1 (Dominance (Objective Space)). Given two solutions in the objective

space, that is y(1) ∈ Rm and y(2) ∈ Rm, solution y(1) is said to dominate solution

y(2) if and only if ∀ i ∈ {1, . . . ,m} : y(1)i ≤ y
(2)
i and ∃ j ∈ {1, . . . ,m} : y(1)j < y

(2)
j , in

symbols y(1) ≺ y(2).

Definition 2.2 (Dominance (Decision Space)). Given two solutions x(1) and x(2) in

the decision space, then solution x(1) is said to dominate x(2) if and only if ∀ i ∈
{1, . . . ,m} : fi(x(1)) ≤ fi(x

(2)) and ∃ j ∈ {1, . . . ,m} : fj(x(1)) < fj(x
(2)).
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Definition 2.3 (Incomparability (objective space)). Solution y(1) is said to be in-

comparable to solution y(2) if and only if y(1) ̸= y(2), y(1) ⊀ y(2) and y(2) ⊀ y(1), in

symbols y(1)∥ y(2).

Definition 2.4 (Indifference and incomparability (decision space)). Solution x(1) is

said to be indifferent to solution x(2) (x(1) ∼ x(2)) if and only if f(x(1)) = f(x(2)).

Here x(1) ∼ x(2) ⇏ x(1) = x(2). Solution x(1) is said to be incomparable to solution

x(2) (x(1)∥x(2)) if and only if f(x(1))∥f(x(2)).

Definition 2.5 (Pareto Optimal and Non-dominated Solution). In decision space, a

decision vector x∗ is a Pareto optimal solution if there does not exist a decision vector

x (x ̸= x∗) that dominates it, i.e., ∄ x ∈ X : f(x) ≺ f(x∗). If x∗ is Pareto optimal,

f(x∗) is called a non-dominated point (solution).

The set of all Pareto optimal vectors in the decision space is referred to as the

Pareto optimal set or efficient set; and the image of the Pareto optimal set in the

objective space is referred to as the Pareto Front.

2.2.2 Pareto Front Geometry

Figure 2.1 shows several typical types of the Pareto fronts: convex, concave, neither

convex nor concave and disconnected Pareto fronts. The Pareto front in the bottom

left image consists of convex and concave parts.

The Pareto front can be represented by a function, u : Rm−1 → R and m the

number of objectives. A function is said to be convex if it satisfies the following

equation [11]:

u(θx+ (1− θ)y) ≤ θu(x) + (1− θ)u(y) (2.5)

with x, y in the domain of g and θ ∈ [0, 1]. In words, it means that the line between

(x, u(x)) and (y, u(y)) is above the graph between x to y. Accordingly, a function u

is concave if −u is convex.

Multi-objective optimization problems with more than three objectives are called

many-objective optimization problems [41] and they form a special and important

case of multi-objective optimization problems. An increase in the number of objec-

tives causes a large portion of solutions to become non-dominated. This leads to the

difficulty in searching for Pareto optimal solutions, meanwhile, a huge number of solu-

tions may be needed to estimate the entire Pareto front. Many-objective optimization

gives rise to a new set of challenges [3, 61]. The need for tackling many-objective
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Figure 2.1: Examples of Pareto fronts.

problems became evident recently because it would allow us to solve more complex

real world problems.

2.3 Multi-objective Evolutionary Algorithm

EA has been successfully adapted to dealing with multi-objective optimization and

these specialised algorithms are called multi-objective evolutionary algorithm (MOEA)

or, sometimes, also evolutionary multi-objective optimization algorithm (EMOA). The

optimization mechanism of MOEA is very similar to EA, such as population-based

search and information exchange among solutions (individuals). One special charac-

teristic of MOEA is the use of the dominance relationship to assign the fitness to each

solution in the population. In detail, at each iteration, the objective values are cal-

culated for each individual and then used to determine the relationship of dominance

in the population in order to choose a potentially better solution for the creation of

the offspring population. At the same time, the ability to maintain diversity within a

14



Chapter 2. Preliminaries

population of individuals is another key component of MOEA.

2.3.1 Classification

Classical Pareto dominance-based MOEAs, such as NSGA-II [29], use Pareto domi-

nance as a first ranking criterion and use a second ranking criterion to maintain and

increase diversity. Pareto dominance-based MOEAs have been a mainstream class

for a long time in the field of evolutionary multi-objective optimization (EMO). They

are very efficient on multi-objective optimization problems with two or three objec-

tives. However, their performance degrades significantly on many-objective optimiza-

tion problems due to their ineffectiveness in distinguishing the quality of solutions

when the number of objectives becomes large.

As the performance assessment of MOEAs reached a mature stage, performance

measures (indicators) on the quality of Pareto front approximations were adopted to

search for solutions. These indicators capture both convergence and diversity in a

single value. Additionally for Pareto compliant indicators, it can be shown that they

obtain their maximum in a diversified set of solutions on the Pareto front. In general,

indicator-based MOEAs (IBEA) [139], such as SMS-EMOA [9] and R2-EMOA [104],

have strong theoretical support. However, the commonly used performance indicators

lead to a convergence in distribution with a high density on the boundary of the Pareto

front, as well as on knee regions [9].

Decomposition is a search paradigm that was originally applied by EMO two

decades ago [53] and recently regained prominence from the MOEA/D framework

[135] and NSGA-III [26]. Decomposition-based MOEAs transform the original multi-

objective problem into simpler, single-objective subproblems by means of scalarizations

with different weights or reference vectors, therefore they can converge to a well de-

fined, diverse set. However, the central issue in decomposition-based methods is how

to select a set of weighting vectors that can provide a well distributed set of Pareto

optimal points, given that the location and shape of the Pareto front are unknown

a priori. Moreover, the number of weights required to sample a Pareto front with a

sufficient resolution suffers an exponential growth from the objective space dimension

[51].

2.3.2 Quality Measures

The goal of solving a multi-objective optimization problem is to approximate or com-

pute all or a representative set of Pareto optimal solutions. The quality of the approx-
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imation sets is evaluated to compare different algorithms when solving multi-objective

optimization problems. The major characteristics for evaluating fronts include conver-

gence and diversity, and the diversity consists of two aspects: distribution and spread.

A good multi-objective optimization algorithm is required to generate solutions that

are close to the Pareto front, well distributed and spread widely over the entire Pareto

front at minimum computational cost.

Among numerous metrics, we choose the following ones to evaluate the quality of

the obtained Pareto front approximation, which are also performance metrics com-

monly used by the evolutionary multi-objective evolutionary community.

Hypervolume Indicator

The hypervolume (HV) indicator [141], previously also known as S metric [137] or

Lebesgue measure [72], is one of the most popular indicators for multi-objective opti-

mization. It has been proven that the maximization of this performance measure is

equivalent to finding the Pareto front [45] provided it is a finite set. In other cases,

it leads to a well distributed approximation of the Pareto optimal set if the number

of objectives is small (say ≤ 4). The HV indicator is an unary metric which evalu-

ates one approximation set, and it measures the volume of the objective space jointly

dominated by the Pareto front approximation, relative to a reference point r ∈ Rm.

Definition 2.6 (Hypervolume Indicator).

HV (Y, r) = λm(
⋃
y∈Y

[y, r]) (2.6)

here λm denotes the Lebesgue measure on Rm, with m being the number of objective

functions.

The HV indicator considers both convergence and diversity. The HV indicator,

and its variations, are the only known unary indicator to be strictly monotonic [138],

i.e., if an Pareto front approximation A strictly dominates another Pareto front ap-

proximation B, HV (A, r) > HV (B, r). Therefore, the HV indicator is said to be

Pareto compliant. The major disadvantage of the HV indicator is calculating hyper-

volume exactly is NP-hard and exponential in the number of objectives [8]. For a small

constant number of objectives, however, there exists fast computation algorithms.

To evaluate the fitness value of each solution in the Pareto front approximation,

the hypervolume contribution can be used. The hypervolume contribution of a point

y ∈ Y is defined as the difference between the hypervolume indicator of Y and the
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Figure 2.2: Illustration of the hypervolume indicator and hypervolume contribution for a
bi-objective problem.

hypervolume indicator of Y \ {y}. Figure 2.2 shows the hypervolume indicator and

hypervolume contribution for a bi-objective problem. The size of the blue part in the

dominated region is the hypervolume contribution of one solution.

Inverted generational distance (IGD)

IGD [17] has been widely considered as a reliable performance indicator. It is comple-

mentary to generational distance (GD). Both IGD and GD use the true Pareto front

as a reference set; if the true Pareto front is unknown, the reference set is usually a

combination of the non-dominated points of several approximate fronts.

They are given by the following formulas:

Definition 2.7 (IGD Metric).

IGD(Y, P ) =
1

|P |
(

|P |∑
i=1

d(ri, Y )2)
1
2 (2.7)

where |P | is the number of points in the reference front P and Y is the obtained

Pareto front approximation; d(ri, Y ) denotes the minimum Euclidean distance between

a point in the reference front and the solutions in the Pareto front approximation Y .
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Definition 2.8 (GD Metric).

GD(Y, P ) =
1

|Y |
(

|Y |∑
i=1

d(yi, P )2)
1
2 (2.8)

where |Y | is the number of solutions in the Pareto set approximation Y and P is the

reference front; d(yi, P ) denotes the minimum Euclidean distance between solution yi

and the points in the reference front P .

It can be seen that IGD(Y, P ) = GD(P, Y ), but there is significant difference

between IGD and GD. IGD uses the reference front as reference and calculates the

distance of each point from the reference front to the Pareto front approximation,

which means no part of the reference front (or “true” Pareto front) can be missed.

If sufficient members of the reference front are known, IGD could measure both the

diversity and the convergence of a Pareto front approximation. The smaller the value

of this metric, the closer the obtained front is to the true Pareto front. IGD is efficient

to compute in low dimensions of the objective space, but it requires the knowledge of

the Pareto front.

Beyond the metrics introduced here, the interested reader is referred to [89] and

[4] for a general overview and introduction to performance metrics in multi-objective

optimization.

2.3.3 Dominance Relations

The concept of Pareto dominance is of fundamental importance to multi-objective op-

timization. We use this section to discuss further the Pareto dominance and introduce

other dominance relations. Let us first review the basic concept of binary relations

and some general properties that binary relations can potentially have (see also [34]).

Definition 2.9 (Binary relation). A binary relation R over a set X is defined as a

set of pairs of elements of X, that is, a subset of X × X = {(x, y)| x, y ∈ X}. The

statement (x, y) ∈ R reads “x is R-related to y” and is denoted by xRy.

Definition 2.10 (Properties of Binary Relations). Given a set X, a binary relation

R is said to be

• reflexive, if and only if ∀x ∈ X : (x, x) ∈ R.

• irreflexive, if and only if ∀x ∈ X, (x, x) ̸∈ R.
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• symmetric, if and only if ∀x ∈ X,∀y ∈ X : (x, y) ∈ R⇔ (y, x) ∈ R.

• asymmetric, if and only if ∀x ∈ X,∀y ∈ X : (x, y) ∈ R⇒ (y, x) ̸∈ R.

• anti-symmetric, if and only if ∀x ∈ X,∀y ∈ X : (x, y) ∈ R ∧ (y, x) ∈ R⇒ x = y.

• transitive, if and only if ∀x ∈ X,∀y ∈ X,∀z ∈ X : (x, y) ∈ R ∧ (y, z) ∈ R ⇒
(x, z) ∈ R.

Based on these properties, different types of orders then can be defined.

Definition 2.11 (Pre-order, Partial Order, Strict Partial Order). A binary relation

R is

• pre-order (aka quasi-order), if and only if it is transitive and reflexive.

• partial order, if and only if it is an antisymmetric pre-order.

• strict partial order, if and only if it is irreflexive and transitive.

Note that a strict partial order is necessarily asymmetric (and therefore also anti-

symmetric). Next, the definition of Pareto order is given in the objective space Rm

and it can be viewed as a cone order from a geometrical perspective, as will be shown

later on.

Recall Definition 2.1 introduced the concept of dominance in the objective space

or Pareto dominance. In this section, to distinguish it from other orders, we denote it

with ≺Pareto. The Pareto order ≺Pareto is a strict partial order defined in the objective

space, i.e., the m-dimensional Euclidean space Rm with the objective function values

being the coordinate axes. It allows a comparison between (some) pairs of feasible

solutions in the objective space. Moreover, it is a transitive relation and as in the more

general case of a pre-order, minimal elements and maximal elements are defined. In

comparison to the more general pre-order, a partial order relation also is constrained

by the anti-symmetry axiom, which implicates that indifference falls together with

incomparability. The concept of Pareto dominance implies that, for a solution to

dominate another one, it should not be worse in any objective and must be strictly

better in at least one objective. The Pareto order is a special case of a cone order,

which are a family of partial orders defined on vector spaces.

Definition 2.12 (Non-trivial Cone). A set C ⊂ Rm with ∅ ≠ C ̸= Rm is called a

non-trivial cone, if and only if ∀α ∈ R, α > 0,∀c ∈ C : αc ∈ C.
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Figure 2.3: Example of a polyhedral cone C generated by (2, 1) and (1, 2) (left), Minkowski
sum of a singleton {y} = {(1, 1)} and C (middle), and Minkowski sum of {y} and the cone
R2

≻0. The cone R2
≻0 is equal to the non-negative quadrant minus {(0, 0)}. (cf. [36])

Definition 2.13 (Minkowski Sum). The Minkowski sum (aka algebraic sum) of two

sets A ∈ Rm and B ∈ Rm is defined as A⊕B := {a+ b | a ∈ A∧ b ∈ B}. Moreover we

define αA = {αa| a ∈ A}.

Figure 2.3 gives an illustration and examples of Minkowski sums, also refer to [36].

Definition 2.14 (Binary Relation Associated to Cone). Given a cone C, the binary

relation associated to this cone, notation RC , is defined as follows: ∀x ∈ Rm,∀y ∈
Rm : (x,y) ∈ RC if and only if y ∈ {x} ⊕ C.

For any cone C, the associated binary relation RC is translation invariant (i.e.,

if ∀u ∈ Rm : (x,y) ∈ RC ⇒ (x + u,y + u) ∈ RC) and multiplication invariant by

any positive real (i.e., ∀α > 0 : (x,y) ∈ RC ⇒ (αx, αy) ∈ RC). At the same time,

given a binary relation R which is translation invariant and multiplication invariant

by any positive real, the set CR := {y − x | (x,y) ∈ R} is a cone. The above two

operations are inverses of each other, i.e., starting from a cone C, a binary relation RC

which is translation invariant and multiplication invariant by any positive real can be

associated to it; starting from a binary relation R which is translation invariant and

multiplication invariant by any positive real, a cone CR can be obtained. It can be

seen there is a natural one to one correspondence between cones and binary relations

on Rm which are translation invariant and multiplication invariant by positive reals

(see also [80]).

We restrict our attention to relations which are translation invariant and positive

multiplication invariant to get this bijection between cones and relations. Note if

a translation invariant and positive multiplication invariant relation R is such that

∅ ≠ R ̸= Rm × Rm, the associated cone CR is non-trivial. Relations associated to

non-trivial cones are non-empty and not equal to Rm × Rm as well.
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Figure 2.4: Pareto dominance relation and cone.

The reason to view the Pareto dominance relation or Pareto order as derived from a

cone is that it gives the opportunity to study this order more geometrically. Figure 2.4

illustrates geometrically the Pareto order and Pareto cone in two and three dimensional

spaces. In the objective space, each solution can be located in the vector space based

on its objective values. One solution S dominates another solution if all objective

values of S are better than the corresponding objective values of another solution, or

the objective values of S are equal to but at least one better than the corresponding

objective values of another solution. In other words, if a solution is located in the

dark gray cone area of S (including the boundaries), it is dominated by S. Similarly,

solutions in the light gray cone area of S (including the boundaries) dominate S;

solutions in other areas, for examples, the blue points, are incomparable to S.

It can be seen that, in two dimensional space, the cone which associates the Pareto

order is the positive quadrant and the angle between two edges of the cone is 90◦.

Similarly, the Pareto cone in three dimensional space is the positive octant. In the

following, the detailed definitions are given.

Definition 2.15. Let m be a natural number bigger or equal to 1, the non-negative

orthant of Rm, denoted by Rm
≥0, is the set of all elements in Rm whose coordinates

are non-negative. Furthermore, the zero-dominated orthant, denoted by Rm
≻0, is the

set Rm
≥0 \ {0} with 0 denoting the m dimensional vector (0, . . . , 0). Analogously, the

non-positive orthant of Rm, denoted by R≤0, is the set of elements in Rm whose

coordinates are non-positive. Furthermore, the set of elements in Rm which dominate

the zero vector 0, denoted by Rm
≺0, is the set Rm

≤0 \ {0}. The set of positive reals is
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denoted by R>0 and the set of non-negative reals is denoted by R≥0.

The Pareto order can be associated to cone Rm
≻0, i.e., the Pareto order ≺Pareto on

Rm is given by the cone order with cone Rm
≻0. This cone is also referred to as the

Pareto cone.

Definition 2.16 (Pointed cone and convex cone). A cone C is pointed, if and only if

C ∩ −C ⊆ {0} where −C = {−c | c ∈ C} and C is convex if and only if ∀c1 ∈ C, c2 ∈
C,∀α such that 0 ≤ α ≤ 1 : αc1 + (1− α)c2 ∈ C.

As Rm
≻0 is a pointed 1 and convex cone and 0 ̸∈ Rm

≻0, the associated binary relation

is irreflexive, antisymmetric and transitive, therefore strict partial order.

The following concepts are useful in order to compare order relations.

Definition 2.17 (Order Extension). An order relation R′ on the set X is said to

extend an order relation R on the set X if R′ ⊇ R. In other words, for all x, x′ ∈ X :

xRx′ implies xR′x′.

Definition 2.18 (Minimal Element). A minimal element x ∈ X in a (strictly) par-

tially ordered set (X,R) is an element for which there does not exist an x′ ∈ X with

x′Rx and x′ ̸= x. (In case, the order R is a strict partial order, x′Rx implies x′ ̸= x).

Let (X,R) and (X,R′) denote two strict partially ordered sets. If R′ is an order

extension of R, this implies:

1. The set of incomparable pairs in (X,R′) is a subset of the set of incomparable

pairs in (X,R).

2. The set of minimal elements of (X,R) is a superset of minimal elements of

(X,R′).

The first statement is true because if a pair of elements is incomparable in R′, such

a pair will also be incomparable in the smaller relation R. The second statement is

also clear: as R ⊆ R′ a minimal element with respect to R′ is also a minimal element

with respect to R. In other words, if an element is non-dominated in R′ it cannot be

dominated in a smaller relation.

In the context of many objective optimization, extensions of the Pareto dominance

order play an important role, since they on the one hand preserve the important and

1Different definitions of pointed cone are given in literature, here we use the definition by Matthias
Ehrgott [34].
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somewhat essential solutions, because one would not like to consider a Pareto dom-

inated solution to be optimal; on the other hand, by extending Pareto dominance

relation, the number of minimal (non-dominated) elements and the number of in-

comparable solutions can be reduced. Thereby, if wisely chosen, they can provide a

(partial) remedy to the curse of dimensionality that occurs if the number of objective

functions (m) increases.

The study of cone-based dominance goes back to the early work of Yu [130] and

Miettinen relates it in her book to proper Pareto dominance and bounded trade-off

[77]. It has also been related to equity preferences in the work of Shukla [96]. Next,

we introduce several recently proposed alternative dominance relations which utilizing

the extensions of the Pareto dominance order. They are also called relaxed forms or

loose versions of Pareto dominance. It can be shown that they are also special cases

of cone orders.

α-dominance

Ikeda et al. proposed α-dominance [60] to deal with dominance resistant solutions,

i.e., solutions that are extremely inferior to other solutions in at least one objective,

but hardly dominated in the other objectives. The idea behind α-dominance is that a

small detriment in one or perhaps several of the objectives is permitted if an attractive

improvement in the other objective(s) is achieved.

The α-dominance uses linear trade-off functions to define the tolerance of domi-

nance. The approach is to define the following m functions on Rm×Rm with codomain

R using m2 a-priori given real numbers αij (i, j ∈ {1, · · · ,m}) as follows:

gi(y,y
′) :=

m∑
j=1

αij(y
′
j − yj).

In [60], αij ≥ 0 and αii = 1. For each such m-tuple of such functions, a strict

partial order on Rm can be defined, denoted by
α
≺ as follows:

y
α
≺ y′ :⇔ ∀i ∈ {1, · · · ,m} : gi(y,y′) ≥ 0 and ∃k ∈ {1, · · · ,m} : gk(y,y′) > 0.

ϵ-dominance

Laumanns et al. proposed the concept of ϵ-dominance [71].

Definition 2.19 (ϵ-dominance). Let y, y′ ∈ Rm and ϵ ∈ R, with ϵ > 0, then y is

said to ϵ-dominate y′ (denoted by y ≺ϵ y
′) if and only if ∀i ∈ {1, ...,m} : yi − ϵ ≤ y′i.
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Optimizing based on ϵ-dominance creates, for objective functions with bounded

ranges, a finite set of non-dominated solutions that will be placed distant from each

other. If the decision maker wants to maintain a set of maximally T non-dominated

solutions and let K denote a constant such that 0 ≤ fi ≤ K,∀i ∈ {1, . . . ,m}, then ϵ

can be adjusted to ϵ = (K/T )1/(m−1). An alleged disadvantage of ϵ-dominance is that

certain regions of the Pareto front with steep trade-off are underrepresented.

Batista et al. [6] proposed cone ϵ-dominance to improve the way solutions distribute

as compared to ϵ-dominance. For this they propose to use a polyhedral cone given by

a Rm×m generator matrix and exemplify their approach in two dimensions, whereas

some concepts were introduced also in higher dimensions.

Control Dominance Area of Solutions (CDAS)

Sato et al. proposed an approach to control the dominance area of solutions (CDAS)

[90]. In CDAS, the objective values are modified and the i-th objective value of x after

modification is defined as: f̂i(x) =
r·sin (wi+Si·π)

sin (Si·π) , where r is the norm of f(x), wi is

the declination angle between f(x) and the coordinate axis. The degree of expansion

or contraction of the dominance area of solutions can be controlled by the user-defined

parameter S, i.e., f̂i(x) > fi(x) when Si < 0.5; in case of Si = 0.5, fi(x) does not

change; and when Si > 0.5, f̂i(x) < fi(x). Depending on increasing or decreasing the

parameter S, the dominance area of solutions expands or increases. Only in case all

the Si ≤ 1, CDAS is an extension of the Pareto relation.

Angle dominance

Liu et al. defined angle dominance [75]. For each point y, a point dependent “cone” is

constructed as follows. For each i (i = 1, · · · ,m), a point P (i) := (0, · · · , 0, pi, 0, · · · 0)⊤ ∈
Rm is introduced, all coordinates of P (i) are zero, except the i-th coordinate. The i-th

coordinate is derived from the worst point and a parameter k > 0. The worst point w

is the point for which its i-th coordinate is equal to wi := sup{fi(x) |x ∈ X}, where fi
is the i-th objective (i = 1, · · · ,m), and X is the search space. Using the parameter k

one defines P (i) := (0, · · · , 0, pi = kwi, 0, · · · , 0)⊤. The second ingredient used is the

ideal point (or if needed the utopian point). Denote the ideal point by zideal. Then to

a point y, it associates m angles: (α1, · · · , αm). The cosine of αi is equal to

cos(αi ) =
(P (i) − y) · (P (i) − zideal)

|P (i) − y| |P (i) − zideal|
,
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where in the numerator the inner product is used. The angle dominance relation is

defined as follows.

Definition 2.20 (Angle Dominance). y ≺angle y′ :⇐⇒ ∀i ∈ {1, · · · ,m} : αi ≤
α′
i and ∃i ∈ {1, · · · ,m} : αi < α′

i, where αi are the m angles associated to y and

α′
i are m angles associated to y′.

The authors show that given the premise that the parameter k is greater than 1,

the angle dominance is irreflexive, asymmetric and transitive. Therefore, the angle

dominance defines a strict partial order.

Figure 2.5: Dominance relations in a two-dimensional objective space.

Figure 2.5 illustrates these dominance relations in a two-dimensional objective

space. The dotted lines indicate the space where solutions are Pareto dominated by

the point y. The gray areas show the dominated spaces by y based on α-dominance,

ϵ-dominance, CDAS and angel dominance respectively. For the α-dominance (at the

top left corner), the α-dominated area by y can be seen as expanding the angle of
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Pareto cone and the degree of expansion is controlled by α. For ϵ-dominance (at

the top right corner), the ϵ-dominated area by y can be seen as shifting the point

y towards a position which Pareto dominates y, therefore, the dominated area by y

is expanded and the degree of expansion is controlled by ϵ. The dominated space by

CDAS (at the bottom left corner) can also be seen as expanding the dominance area of

y by translating Pareto cone. The degree of translation is decided by the parameter S

because S controls φ (φi = Si ·π). Angle dominance area is also obtained by expanding

the angle of Pareto cone; the degree of expansion is decided by the parameter k and

the worst point which controls α.

These dominance relations extend the Pareto dominance. Despite the difference

in algorithm and controlling mechanisms, their eventual implementation is to allow

a solution to dominate a larger space. At the same time, shifting the point to its

dominating space which dominates it or opening the edges of its dominated space

which is dominated by it, they are convertible. For instance, the dominated space of a

point by CDAS can also be seen as opening the edges of Pareto order cone with a angle

of π/2−S ·π because the opening angles are the same for each point. More details are

available in [33]. In the next chapter, we use the geometrical interpretations directly

to extend the Pareto dominance relation.
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