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Chapter 1

Introduction

1.1 Background

Optimization aims to make the most effective or functional use of resources. Math-

ematically speaking, optimization is the problem of finding the best feasible solution

with respect to an objective function which is used to evaluate solutions for deter-

mining the best one. Most real-world optimization problems necessitate optimization

of multiple, conflicting objectives, they are referred to as multi-objective optimiza-

tion which is much more challenging but has extremely practical importance. We can

find multi-objective optimization applications in every aspect of our real world, such

as engineering, computer science, ecology, sociology, economics, agriculture, aviation,

automotive, medicine, and so on.

Classically multi-objective optimization problems were handled by deterministic

methods [77]. These methods have a limited scope and require functions to have

certain properties, such as convexity or differentiability, and often computationally-

intensive to find an exact solution. The more flexible metaheuristic approaches were

introduced in some early work by Schaffer [92], Fonesca and Fleming [46], Srinivas and

Deb [99], Horn et al. [59], Kursawe [70], etc. They were popularized by Deb’s book

“Multi-Objective Optimization using Evolutionary Algorithms” [22]. Among powerful

metaheuristic techniques, evolutionary algorithms (EAs) have been used extensively

and proven to be suited for solving complex optimization problems. Multi-objective

evolutionary algorithm (MOEA) has already become the major approach to solve

multi-objective optimization (MOO) problems.

The process of evolutionary computing is inspired by biological evolution. EA

1



1.1. Background

mimics evolutionary processes in nature, such as nature selection and variation (mu-

tation, crossover). Candidate solutions are represented as chromosomes, for instance,

integer vectors or real vectors, depending on the real world application. The steps of

an EA can be described as follows: a set of solutions (population) is created usually

randomly (initialization). In each iteration (generation), new solutions (offspring) are

created by genetic operators: selecting top members by the quality (fitness) function

as parents (mating selection); recombining portions of these parents to create offspring

solutions (crossover); producing a small modification to offspring solutions (mutation).

From the set of old and new solutions (parents and offspring), a new set of solutions

(new generation) is chosen based on the quality function, where better solutions are

preferred (survivor selection). With the iteration of this process (generational loop),

the solutions become better and better, and approach optimal values closer and closer

(evolution). Unlike single-objective optimization, when dealing with multiple conflict-

ing objectives, the ranking mechanism of EA needs to be designed because it is no

longer obvious which solutions are better or worse than others. Moreover, to present a

wide variety of trade–off solutions, diversity maintenance in the population is required.

Due to the historical development, one distinguishes different methods of evolu-

tionary computing to: genetic algorithms (GA), evolution strategies (ES), evolutionary

programming (EP), and genetic programming (GP) [5]. The major technical differ-

ence between them is the preferred representation. For example, GAs work better

at binary representation, ES concentrate on real-valued representation, EP focuses

on finite state machines, and GP relies on tree structured representations in order to

evolve mathematical expressions. Today, these representatives are converging and the

distinction between them is getting vague. It was suggested by Bäck to unify these

branches under the common term “evolutionary algorithms”. Therefore, EAs will be

used in this thesis as the general term.

This thesis focuses on the application of scheduling optimization which is a typical

and important branch of optimization problem. Thinking of many tasks, such as

production tasks, maintenance tasks or service tasks, how to allocate these tasks to

the workers or machines, for example, when to perform a task and what is the execution

sequence, is usually an NP-hard problem, especially when multiple objectives are

pursued, like resource consumption, completion time, economic cost, etc. The features

of scheduling optimization make it a meaningful and interesting research topic. This

thesis discusses two types of scheduling problems: flexible job shop scheduling and

dynamic prediction-based maintenance scheduling problem. The flexible job shop

scheduling problem is one of the best known combinatorial optimization problems.
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Chapter 1. Introduction

It is realistic for modeling a wide range of real-life applications because it captures

key features of modern manufacturing and service systems. Dynamic prediction-based

maintenance scheduling problem comes from a real world application that was studied

in this PhD thesis. Its goal is to optimize the maintenance schedule based on the

predicted life-span of components and the condition of available workshops. Especially,

the process of optimizing the schedule needs to be performed in a rolling horizon

fashion.

1.2 Research Questions

To thoroughly explore MOEA and apply them in the domain of scheduling optimiza-

tion, the following research questions are investigated in this thesis.

RQ1 (Chapter 3) How can an MOEA be developed that generates uniformly dis-

tributed sets on the Pareto front regardless of the shape of the Pareto front?

Many MOEAs have been suggested in the literature since the first real imple-

mentation of an MOEA in 1984 [91]. But none of these algorithms is perfect

and can behave well in all MOO problems. One special open challenge is to

devise MOEA that are invariant to the shape of the Pareto front [40, 64]. In

this thesis, we want to therefore study methods and techniques which can gen-

erate uniformly distributed sets on the Pareto front regardless of the shape of

the Pareto front.

RQ2 (Chapters 3) How can the performance of MOEAs be improved generally?

MOEAs need to consider convergence and diversity properties of the obtained

solution set. For this reason, most MOEAs have two design criteria: to find a

solution set, the solutions of which are close to the Pareto front and also well-

spread across the Pareto front. Although it can be non-trivial, we study whether

there can be a method which can improve MOEA in general with respect to these

design criteria as compared to existing EAs.

RQ3 (Chapter 4) Instead of the whole Pareto front, how can preferred solutions which

are of real interest to the decision maker (DM) be obtained?

Over the past decade, the research on preference-based multi-objective opti-

mization has been strongly motivated by real-world applications. In reality, the

DM is often not interested in discovering the whole Pareto front, but rather in

approximating the portion of the front that best matches his/her preferences.
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1.3. Outline

Incorporating the preference information in MOEA allows the algorithm to fo-

cus on the part of the objective space, which is most interesting to the DM.

The question arises of how the algorithms can adapt the search to focus on the

interesting regions.

RQ4 (Chapter 5) How to solve multi-objective flexible job shop scheduling optimiza-

tion problems?

Due to the NP-hard characteristic of flexible job shop scheduling problems, it

is difficult to propose exact algorithms with satisfactory running time for them.

Moreover, the consideration of multiple objectives further complicates the situ-

ation. However, research work on these problems is essential, and can be used

as the foundation for solving our real-world scheduling optimization problems.

This thesis seeks to design MOEAs to tackle these important combinatorial op-

timisation problems.

RQ5 (Chapter 5) How to represent and solve a real-world scheduling optimization

problem in the EA world?

To solve a problem with an MOEA, the representation of the problem for evo-

lutionary computation is an important step and defining a good representation

can have a substantial impact on the performance of MOEAs. Solving an MOO

problem involves the formulation of the real-world problem, the choice of the

data structure used for representing solutions as the chromosomes and the ge-

netic operators, and also many other problem specific issues.

RQ6 (Chapter 6) How to apply and adapt the developed algorithms to the dynamic

prediction-based maintenance scheduling optimization problem?

In the process of generating the prediction-based maintenance schedule periodi-

cally, the time-varying characteristics, i.e., the dynamics of the optimization, are

considered to find the optimal solutions at different moments. This should also

lead to dynamic optimization.

1.3 Outline

This thesis is structured as follows. The content, corresponding research question(s)

and publication(s) are introduced for each chapter.

Chapter 2 gives a brief introduction on optimization, multi-objective optimization,

evolutionary computation. Especially, different order relations for multi-objective opti-
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Chapter 1. Introduction

mization have been discussed. The work presented in this chapter has been (partially)

published in:

1) André Deutz, Michael Emmerich and Yali Wang. Many-Criteria Dominance

Relations. In Dimo Brockhoff, Michael Emmerich, Boris Naujoks, and Robin

Purshouse, editors, Many-Criteria Optimization and Decision Analysis, Springer,

Natural Computing Series (2022). [33]

In Chapter 3, to answer RQ1 and RQ2, first, a diversity-indicator based multi-

objective evolutionary algorithm is proposed. After that, the performance of the

standard Pareto dominance relation is improved to enhance the behaviour of general

multi-objective evolutionary algorithms [114]. The work presented in this chapter has

been (partially) published in:

2) Yali Wang, Michael Emmerich, André Deutz, and Thomas Bäck. Diversity-

indicator Based Multi-Objective Evolutionary Algorithm: DI-MOEA. In Inter-

national Conference on Evolutionary Multi-Criterion Optimization, pages 346–358.

Springer, 2019. [116].

3) Yali Wang, André Deutz, Thomas Bäck, and Michael Emmerich. Edge-Rotated

Cone Orders in Multi-Objective Evolutionary Algorithms for Improved Conver-

gence and Preference Articulation. In 2020 IEEE Symposium Series on Compu-

tational Intelligence (SSCI), pp. 165-172. IEEE, 2020. [115].

4) Yali Wang, André Deutz, Thomas Bäck, and Michael Emmerich. Improv-

ing Many-Objective Evolutionary Algorithms by Means of Edge-rotated Cones.

In International Conference on Parallel Problem Solving from Nature, pages

313–326. Springer, 2020. [114].

Chapter 4 extends the basic static multi-objective optimization to preference-based

multi-objective optimization. The corresponding preference-based multi-objective evo-

lutionary algorithms are proposed with the aim of answering RQ3 and have been

published in:

5) Yali Wang, Longmei Li, Kaifeng Yang, and Michael Emmerich. A New Approach

to Target Region Based Multiobjective Evolutionary Algorithms. In 2017 IEEE

Congress on Evolutionary Computation (CEC), pages 1757–1764. IEEE, 2017.

[117].
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1.3. Outline

6) Longmei Li, Yali Wang, Heike Trautmann, Ning Jing, and Michael Emmerich.

Multiobjective Evolutionary Algorithms Based on Target Region Preferences.

Swarm and Evolutionary Computation, 40:196–215, 2018. [73].

7) Yali Wang, Steffen Limmer, Markus Olhofer, Michael Emmerich, and Thomas

Bäck. Automatic Preference Based Multi-Objective Evolutionary Algorithm on

Vehicle Fleet Maintenance Scheduling Optimization. Swarm and Evolutionary

Computation, p.100933, 2021. [118].

In Chapter 5 the flexible job shop scheduling problem is introduced due to its

practical importance. A multi-objective evolutionary approach is developed to address

multi-objective flexible job shop scheduling problems with three considered objectives:

minimizing makespan, total workload and critical workload [121], this answers RQ4.

After the analysis of the multi-objective flexible job shop scheduling problem, the

problem of vehicle fleet maintenance scheduling optimization is formulated for our

real-world application. On the basis of this formulation, the representation and corre-

sponding algorithm are developed to solve this multi-objective optimization problem

[119], this answers RQ5. The work presented in this chapter has been (partially)

published in:

8) Yali Wang, Steffen Limmer, Markus Olhofer, Michael Emmerich, and Thomas

Bäck. Vehicle Fleet Maintenance Scheduling Optimization by Multi-Objective

Evolutionary Algorithms. In 2019 IEEE Congress on Evolutionary Computation

(CEC), pages 442–449. IEEE, 2019. [119].

9) Yali Wang, Bas van Stein, Thomas Bäck, and Michael Emmerich. Improving

NSGA-III for Flexible Job Shop Scheduling Using Automatic Configuration,

Smart Initialization and Local Search. In Proceedings of the 2020 Genetic and

Evolutionary Computation Conference Companion, pages 181–182, 2020. [121].

10) Yali Wang, Bas van Stein, Thomas Bäck, and Michael Emmerich. A Tailored

NSGA-III for Multi-Objective Flexible Job Shop Scheduling. In 2020 IEEE

Symposium Series on Computational Intelligence (SSCI), pp. 2746-2753, IEEE,

2020. [122].

Chapter 6 gives attention to RQ6, it looks at the performance of proposed (preference-

based) multi-objective evolutionary algorithms on our real-world vehicle fleet mainte-

nance scheduling optimization problem. Especially, to apply the dynamic algorithm

on this application problem, the scenario of a taxi fleet is simulated, the maintenance

6



Chapter 1. Introduction

schedule is based on the prediction of remaining useful life (RUL) of components in

each car. The dynamic algorithm is used to update the maintenance schedule of the

vehicles based on the predicted RUL which keeps changing with the execution of driv-

ing tasks. Moreover, an empirical comparison of different maintenance strategies is

presented. The work presented in this chapter has been (partially) published in:

11) Yali Wang, Steffen Limmer, Duc Van Nguyen, Markus Olhofer, Thomas Bäck

and Michael Emmerich. Optimizing the Maintenance Schedule for A Vehicle

Fleet: A Simulation-based Case Study. Engineering optimization, pp. 1-14.

2021. [120].

Chapter 7 concludes the thesis and closes with a discussion of future work.
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Chapter 2

Preliminaries

This chapter provides an introduction to critical basics of optimization, multi-objective

optimization, multi-objective evolutionary algorithm, and the discussion of order re-

lations for multi-objective optimization.

2.1 Optimization

An optimization problem is the problem of finding the best solution from all feasi-

ble solutions. All sorts of optimization problems arise in different disciplines from

mathematics, computer science to engineering and economics, and so on.

2.1.1 Applications

Some applications listed below can give a rough impression on optimization problems.

It is worthy noting that this is just a drop in the ocean, the real-world optimization

problems go far beyond these disciplines and applications.

Agriculture: managing river basins to satisfy urban and agricultural consumptive

demand, also in-stream environmental demands [126].

Architecture: designing a building with respect to thermal comfort, energy effi-

ciency, and construction cost criteria [58].

Aviation: planning airport construction to minimize the cost of all the items

influenced by the site layout; maximize the safety of airport operations dur-

9



2.1. Optimization

ing construction; reduce construction-related security breaches; and improve the

safety of construction operations [69].

Aerospace: designing satellite orbits to minimize the spatial resolution require-

ment (at-nadir resolution and off-nadir resolution) and temporal resolution re-

quirement (the repeat cycle and the revisit time) [98].

Chemistry: finding desirable molecule drug which can improve solubility, metabolic

stability, cell permeability, and with reduced side effects. [125].

Engineering: designing hydraulic presser to maximize the nominal pressure rat-

ing and fully loaded power while minimizing the oil injection volume [123].

Environment: designing marine protected area networks to maximize network

effectiveness, species persistence, and minimize cost of protection [47].

Investment: choosing an optimal set of assets in order to minimize the risk and

maximize the profit of the investment [101].

Machine learning: assisting machine learning algorithms to optimize their hyper-

parameters, selecting models to minimize model complexity and maximize clas-

sification accuracy [65].

Manufacturing: making an efficient supply chain plan to minimize total losses

of supply chain including production cost, hiring, firing and training cost, raw

material and end product inventory holding cost, transportation and shortage

cost, simultaneously, minimize the sum of the maximum amount of shortages

among the customers’ zones in all periods to improve customer satisfaction [78].

Medical: searching for new therapeutic drugs to maximize the potency of the

drug, at the same time, minimize synthesis costs and unwanted side effects [108].

Scheduling: determining the vehicle routing to minimize the total distance trav-

eled, the total time required, the total tour cost, and the fleet size, and maxi-

mizing the quality of the service and the profit collected [66].

All these problems have in common that a software/ search algorithm framework

which can support human decision makers in solving such problems is desirable due

to the large number of alternative solutions.

10



Chapter 2. Preliminaries

2.1.2 Mathematical Definition

The goal of the optimization process is to find the values of decision variables that

result in a maximum or minimum of a function called the objective function. In

mathematical terms, optimization problems can be formulated as:

Minimize f(x) (2.1)

Subject to gi(x) = 0, i = 1, · · · , p (2.2)

hj(x) ≥ 0, j = 1, · · · , q (2.3)

x ∈ X . (2.4)

Here x is the set of decision variables. The decision variables are the numerical

quantities for which values are under our control and are to be chosen to find an

optimal solution. The decision variables consist of independent variables, a vector x

containing n decision variables can be represented by: x = (x1, x2...., xn)
T . Decision

variables may have continuous values which can take on any value in a specified interval

or discrete values which are restricted to a specified interval of integers. This leads

to continuous optimization and discrete optimization problems. In theory, continuous

optimization problems tend to be easier to solve than discrete optimization problems

because the information about points in a neighborhood of one decision variable can

be deduced more smoothly.

The constraints, i.e., equality constraints in Eq. (2.2) and inequality constraints

in Eq. (2.3), are also functions of the decision variables. Their values decide which

solutions are feasible. Some of the optimization problems do not have any constraints

and they are therefore called unconstrained optimization problems. Sometimes, only

simple constraints on the range of the input variables are given by means of intervals.

These problems are usually referred to as box-constraints problems. Constrained op-

timization problems can be reformulated to unconstrained optimization problems in

which the constraints are replaced by a penalty term in the objective function.

The optimization process is to find the values of decision variables that result in

a maximum or minimum of the objective function f(x), i.e., Eq. (2.1). Without loss

of generality, the objective function is to be minimized in this work. In other words,

the objective function is a measure to compare alternative solutions. The optimization

problems having a single objective function are single-objective optimization problems.

But in the real-world, the optimization problems with multiple objective functions, i.e.,

11



2.2. Multi-objective Optimization

multi-objective optimization problems, are more common.

2.2 Multi-objective Optimization

A multi-objective optimization problem is an optimization problem with more than

one objective function to be minimized. That is to say, instead of one single objective

function f(x), multiple objective functions, f1(x), . . . , fm(x), are optimized simulta-

neously. Here, m (m ≥ 2) indicates the number of objectives.

In multi-objective optimization, the objectives are usually conflicting with each

other. Therefore, there does not typically exist a feasible solution that minimizes all

objective functions simultaneously; and the trade-off among different objectives gives

rise to a set of potential compromise solutions. A minimal requirement for a compro-

mise solution is that it should be a Pareto optimal solution. Pareto optimal solutions

are solutions that cannot be improved in any of the objectives without deteriorating

at least one of the other objectives.

2.2.1 Pareto Optimal and Non-dominated Solutions

The solutions are evaluated by the objective functions which represent a mapping from

the decision space to the objective space. For an optimization problem, the decision

space X comprises all candidate solutions. When the problem has m objectives, an

m-dimensional Euclidean space forms its objective space in which objective function

vectors coexist and where each coordinate axis corresponds to one objective. For each

solution in the decision space, there is a point in the objective space. At the same

time, multiple solutions in the decision space may be projected onto the same point

in the objective space. A relative comparison between solutions can be achieved by

the dominance relation.

Definition 2.1 (Dominance (Objective Space)). Given two solutions in the objective

space, that is y(1) ∈ Rm and y(2) ∈ Rm, solution y(1) is said to dominate solution

y(2) if and only if ∀ i ∈ {1, . . . ,m} : y(1)i ≤ y
(2)
i and ∃ j ∈ {1, . . . ,m} : y(1)j < y

(2)
j , in

symbols y(1) ≺ y(2).

Definition 2.2 (Dominance (Decision Space)). Given two solutions x(1) and x(2) in

the decision space, then solution x(1) is said to dominate x(2) if and only if ∀ i ∈
{1, . . . ,m} : fi(x(1)) ≤ fi(x

(2)) and ∃ j ∈ {1, . . . ,m} : fj(x(1)) < fj(x
(2)).

12
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Definition 2.3 (Incomparability (objective space)). Solution y(1) is said to be in-

comparable to solution y(2) if and only if y(1) ̸= y(2), y(1) ⊀ y(2) and y(2) ⊀ y(1), in

symbols y(1)∥ y(2).

Definition 2.4 (Indifference and incomparability (decision space)). Solution x(1) is

said to be indifferent to solution x(2) (x(1) ∼ x(2)) if and only if f(x(1)) = f(x(2)).

Here x(1) ∼ x(2) ⇏ x(1) = x(2). Solution x(1) is said to be incomparable to solution

x(2) (x(1)∥x(2)) if and only if f(x(1))∥f(x(2)).

Definition 2.5 (Pareto Optimal and Non-dominated Solution). In decision space, a

decision vector x∗ is a Pareto optimal solution if there does not exist a decision vector

x (x ̸= x∗) that dominates it, i.e., ∄ x ∈ X : f(x) ≺ f(x∗). If x∗ is Pareto optimal,

f(x∗) is called a non-dominated point (solution).

The set of all Pareto optimal vectors in the decision space is referred to as the

Pareto optimal set or efficient set; and the image of the Pareto optimal set in the

objective space is referred to as the Pareto Front.

2.2.2 Pareto Front Geometry

Figure 2.1 shows several typical types of the Pareto fronts: convex, concave, neither

convex nor concave and disconnected Pareto fronts. The Pareto front in the bottom

left image consists of convex and concave parts.

The Pareto front can be represented by a function, u : Rm−1 → R and m the

number of objectives. A function is said to be convex if it satisfies the following

equation [11]:

u(θx+ (1− θ)y) ≤ θu(x) + (1− θ)u(y) (2.5)

with x, y in the domain of g and θ ∈ [0, 1]. In words, it means that the line between

(x, u(x)) and (y, u(y)) is above the graph between x to y. Accordingly, a function u

is concave if −u is convex.

Multi-objective optimization problems with more than three objectives are called

many-objective optimization problems [41] and they form a special and important

case of multi-objective optimization problems. An increase in the number of objec-

tives causes a large portion of solutions to become non-dominated. This leads to the

difficulty in searching for Pareto optimal solutions, meanwhile, a huge number of solu-

tions may be needed to estimate the entire Pareto front. Many-objective optimization

gives rise to a new set of challenges [3, 61]. The need for tackling many-objective
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Figure 2.1: Examples of Pareto fronts.

problems became evident recently because it would allow us to solve more complex

real world problems.

2.3 Multi-objective Evolutionary Algorithm

EA has been successfully adapted to dealing with multi-objective optimization and

these specialised algorithms are called multi-objective evolutionary algorithm (MOEA)

or, sometimes, also evolutionary multi-objective optimization algorithm (EMOA). The

optimization mechanism of MOEA is very similar to EA, such as population-based

search and information exchange among solutions (individuals). One special charac-

teristic of MOEA is the use of the dominance relationship to assign the fitness to each

solution in the population. In detail, at each iteration, the objective values are cal-

culated for each individual and then used to determine the relationship of dominance

in the population in order to choose a potentially better solution for the creation of

the offspring population. At the same time, the ability to maintain diversity within a
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population of individuals is another key component of MOEA.

2.3.1 Classification

Classical Pareto dominance-based MOEAs, such as NSGA-II [29], use Pareto domi-

nance as a first ranking criterion and use a second ranking criterion to maintain and

increase diversity. Pareto dominance-based MOEAs have been a mainstream class

for a long time in the field of evolutionary multi-objective optimization (EMO). They

are very efficient on multi-objective optimization problems with two or three objec-

tives. However, their performance degrades significantly on many-objective optimiza-

tion problems due to their ineffectiveness in distinguishing the quality of solutions

when the number of objectives becomes large.

As the performance assessment of MOEAs reached a mature stage, performance

measures (indicators) on the quality of Pareto front approximations were adopted to

search for solutions. These indicators capture both convergence and diversity in a

single value. Additionally for Pareto compliant indicators, it can be shown that they

obtain their maximum in a diversified set of solutions on the Pareto front. In general,

indicator-based MOEAs (IBEA) [139], such as SMS-EMOA [9] and R2-EMOA [104],

have strong theoretical support. However, the commonly used performance indicators

lead to a convergence in distribution with a high density on the boundary of the Pareto

front, as well as on knee regions [9].

Decomposition is a search paradigm that was originally applied by EMO two

decades ago [53] and recently regained prominence from the MOEA/D framework

[135] and NSGA-III [26]. Decomposition-based MOEAs transform the original multi-

objective problem into simpler, single-objective subproblems by means of scalarizations

with different weights or reference vectors, therefore they can converge to a well de-

fined, diverse set. However, the central issue in decomposition-based methods is how

to select a set of weighting vectors that can provide a well distributed set of Pareto

optimal points, given that the location and shape of the Pareto front are unknown

a priori. Moreover, the number of weights required to sample a Pareto front with a

sufficient resolution suffers an exponential growth from the objective space dimension

[51].

2.3.2 Quality Measures

The goal of solving a multi-objective optimization problem is to approximate or com-

pute all or a representative set of Pareto optimal solutions. The quality of the approx-
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imation sets is evaluated to compare different algorithms when solving multi-objective

optimization problems. The major characteristics for evaluating fronts include conver-

gence and diversity, and the diversity consists of two aspects: distribution and spread.

A good multi-objective optimization algorithm is required to generate solutions that

are close to the Pareto front, well distributed and spread widely over the entire Pareto

front at minimum computational cost.

Among numerous metrics, we choose the following ones to evaluate the quality of

the obtained Pareto front approximation, which are also performance metrics com-

monly used by the evolutionary multi-objective evolutionary community.

Hypervolume Indicator

The hypervolume (HV) indicator [141], previously also known as S metric [137] or

Lebesgue measure [72], is one of the most popular indicators for multi-objective opti-

mization. It has been proven that the maximization of this performance measure is

equivalent to finding the Pareto front [45] provided it is a finite set. In other cases,

it leads to a well distributed approximation of the Pareto optimal set if the number

of objectives is small (say ≤ 4). The HV indicator is an unary metric which evalu-

ates one approximation set, and it measures the volume of the objective space jointly

dominated by the Pareto front approximation, relative to a reference point r ∈ Rm.

Definition 2.6 (Hypervolume Indicator).

HV (Y, r) = λm(
⋃
y∈Y

[y, r]) (2.6)

here λm denotes the Lebesgue measure on Rm, with m being the number of objective

functions.

The HV indicator considers both convergence and diversity. The HV indicator,

and its variations, are the only known unary indicator to be strictly monotonic [138],

i.e., if an Pareto front approximation A strictly dominates another Pareto front ap-

proximation B, HV (A, r) > HV (B, r). Therefore, the HV indicator is said to be

Pareto compliant. The major disadvantage of the HV indicator is calculating hyper-

volume exactly is NP-hard and exponential in the number of objectives [8]. For a small

constant number of objectives, however, there exists fast computation algorithms.

To evaluate the fitness value of each solution in the Pareto front approximation,

the hypervolume contribution can be used. The hypervolume contribution of a point

y ∈ Y is defined as the difference between the hypervolume indicator of Y and the
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Figure 2.2: Illustration of the hypervolume indicator and hypervolume contribution for a
bi-objective problem.

hypervolume indicator of Y \ {y}. Figure 2.2 shows the hypervolume indicator and

hypervolume contribution for a bi-objective problem. The size of the blue part in the

dominated region is the hypervolume contribution of one solution.

Inverted generational distance (IGD)

IGD [17] has been widely considered as a reliable performance indicator. It is comple-

mentary to generational distance (GD). Both IGD and GD use the true Pareto front

as a reference set; if the true Pareto front is unknown, the reference set is usually a

combination of the non-dominated points of several approximate fronts.

They are given by the following formulas:

Definition 2.7 (IGD Metric).

IGD(Y, P ) =
1

|P |
(

|P |∑
i=1

d(ri, Y )2)
1
2 (2.7)

where |P | is the number of points in the reference front P and Y is the obtained

Pareto front approximation; d(ri, Y ) denotes the minimum Euclidean distance between

a point in the reference front and the solutions in the Pareto front approximation Y .
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Definition 2.8 (GD Metric).

GD(Y, P ) =
1

|Y |
(

|Y |∑
i=1

d(yi, P )2)
1
2 (2.8)

where |Y | is the number of solutions in the Pareto set approximation Y and P is the

reference front; d(yi, P ) denotes the minimum Euclidean distance between solution yi

and the points in the reference front P .

It can be seen that IGD(Y, P ) = GD(P, Y ), but there is significant difference

between IGD and GD. IGD uses the reference front as reference and calculates the

distance of each point from the reference front to the Pareto front approximation,

which means no part of the reference front (or “true” Pareto front) can be missed.

If sufficient members of the reference front are known, IGD could measure both the

diversity and the convergence of a Pareto front approximation. The smaller the value

of this metric, the closer the obtained front is to the true Pareto front. IGD is efficient

to compute in low dimensions of the objective space, but it requires the knowledge of

the Pareto front.

Beyond the metrics introduced here, the interested reader is referred to [89] and

[4] for a general overview and introduction to performance metrics in multi-objective

optimization.

2.3.3 Dominance Relations

The concept of Pareto dominance is of fundamental importance to multi-objective op-

timization. We use this section to discuss further the Pareto dominance and introduce

other dominance relations. Let us first review the basic concept of binary relations

and some general properties that binary relations can potentially have (see also [34]).

Definition 2.9 (Binary relation). A binary relation R over a set X is defined as a

set of pairs of elements of X, that is, a subset of X × X = {(x, y)| x, y ∈ X}. The

statement (x, y) ∈ R reads “x is R-related to y” and is denoted by xRy.

Definition 2.10 (Properties of Binary Relations). Given a set X, a binary relation

R is said to be

• reflexive, if and only if ∀x ∈ X : (x, x) ∈ R.

• irreflexive, if and only if ∀x ∈ X, (x, x) ̸∈ R.
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• symmetric, if and only if ∀x ∈ X,∀y ∈ X : (x, y) ∈ R⇔ (y, x) ∈ R.

• asymmetric, if and only if ∀x ∈ X,∀y ∈ X : (x, y) ∈ R⇒ (y, x) ̸∈ R.

• anti-symmetric, if and only if ∀x ∈ X,∀y ∈ X : (x, y) ∈ R ∧ (y, x) ∈ R⇒ x = y.

• transitive, if and only if ∀x ∈ X,∀y ∈ X,∀z ∈ X : (x, y) ∈ R ∧ (y, z) ∈ R ⇒
(x, z) ∈ R.

Based on these properties, different types of orders then can be defined.

Definition 2.11 (Pre-order, Partial Order, Strict Partial Order). A binary relation

R is

• pre-order (aka quasi-order), if and only if it is transitive and reflexive.

• partial order, if and only if it is an antisymmetric pre-order.

• strict partial order, if and only if it is irreflexive and transitive.

Note that a strict partial order is necessarily asymmetric (and therefore also anti-

symmetric). Next, the definition of Pareto order is given in the objective space Rm

and it can be viewed as a cone order from a geometrical perspective, as will be shown

later on.

Recall Definition 2.1 introduced the concept of dominance in the objective space

or Pareto dominance. In this section, to distinguish it from other orders, we denote it

with ≺Pareto. The Pareto order ≺Pareto is a strict partial order defined in the objective

space, i.e., the m-dimensional Euclidean space Rm with the objective function values

being the coordinate axes. It allows a comparison between (some) pairs of feasible

solutions in the objective space. Moreover, it is a transitive relation and as in the more

general case of a pre-order, minimal elements and maximal elements are defined. In

comparison to the more general pre-order, a partial order relation also is constrained

by the anti-symmetry axiom, which implicates that indifference falls together with

incomparability. The concept of Pareto dominance implies that, for a solution to

dominate another one, it should not be worse in any objective and must be strictly

better in at least one objective. The Pareto order is a special case of a cone order,

which are a family of partial orders defined on vector spaces.

Definition 2.12 (Non-trivial Cone). A set C ⊂ Rm with ∅ ≠ C ̸= Rm is called a

non-trivial cone, if and only if ∀α ∈ R, α > 0,∀c ∈ C : αc ∈ C.
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Figure 2.3: Example of a polyhedral cone C generated by (2, 1) and (1, 2) (left), Minkowski
sum of a singleton {y} = {(1, 1)} and C (middle), and Minkowski sum of {y} and the cone
R2

≻0. The cone R2
≻0 is equal to the non-negative quadrant minus {(0, 0)}. (cf. [36])

Definition 2.13 (Minkowski Sum). The Minkowski sum (aka algebraic sum) of two

sets A ∈ Rm and B ∈ Rm is defined as A⊕B := {a+ b | a ∈ A∧ b ∈ B}. Moreover we

define αA = {αa| a ∈ A}.

Figure 2.3 gives an illustration and examples of Minkowski sums, also refer to [36].

Definition 2.14 (Binary Relation Associated to Cone). Given a cone C, the binary

relation associated to this cone, notation RC , is defined as follows: ∀x ∈ Rm,∀y ∈
Rm : (x,y) ∈ RC if and only if y ∈ {x} ⊕ C.

For any cone C, the associated binary relation RC is translation invariant (i.e.,

if ∀u ∈ Rm : (x,y) ∈ RC ⇒ (x + u,y + u) ∈ RC) and multiplication invariant by

any positive real (i.e., ∀α > 0 : (x,y) ∈ RC ⇒ (αx, αy) ∈ RC). At the same time,

given a binary relation R which is translation invariant and multiplication invariant

by any positive real, the set CR := {y − x | (x,y) ∈ R} is a cone. The above two

operations are inverses of each other, i.e., starting from a cone C, a binary relation RC

which is translation invariant and multiplication invariant by any positive real can be

associated to it; starting from a binary relation R which is translation invariant and

multiplication invariant by any positive real, a cone CR can be obtained. It can be

seen there is a natural one to one correspondence between cones and binary relations

on Rm which are translation invariant and multiplication invariant by positive reals

(see also [80]).

We restrict our attention to relations which are translation invariant and positive

multiplication invariant to get this bijection between cones and relations. Note if

a translation invariant and positive multiplication invariant relation R is such that

∅ ≠ R ̸= Rm × Rm, the associated cone CR is non-trivial. Relations associated to

non-trivial cones are non-empty and not equal to Rm × Rm as well.
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Figure 2.4: Pareto dominance relation and cone.

The reason to view the Pareto dominance relation or Pareto order as derived from a

cone is that it gives the opportunity to study this order more geometrically. Figure 2.4

illustrates geometrically the Pareto order and Pareto cone in two and three dimensional

spaces. In the objective space, each solution can be located in the vector space based

on its objective values. One solution S dominates another solution if all objective

values of S are better than the corresponding objective values of another solution, or

the objective values of S are equal to but at least one better than the corresponding

objective values of another solution. In other words, if a solution is located in the

dark gray cone area of S (including the boundaries), it is dominated by S. Similarly,

solutions in the light gray cone area of S (including the boundaries) dominate S;

solutions in other areas, for examples, the blue points, are incomparable to S.

It can be seen that, in two dimensional space, the cone which associates the Pareto

order is the positive quadrant and the angle between two edges of the cone is 90◦.

Similarly, the Pareto cone in three dimensional space is the positive octant. In the

following, the detailed definitions are given.

Definition 2.15. Let m be a natural number bigger or equal to 1, the non-negative

orthant of Rm, denoted by Rm
≥0, is the set of all elements in Rm whose coordinates

are non-negative. Furthermore, the zero-dominated orthant, denoted by Rm
≻0, is the

set Rm
≥0 \ {0} with 0 denoting the m dimensional vector (0, . . . , 0). Analogously, the

non-positive orthant of Rm, denoted by R≤0, is the set of elements in Rm whose

coordinates are non-positive. Furthermore, the set of elements in Rm which dominate

the zero vector 0, denoted by Rm
≺0, is the set Rm

≤0 \ {0}. The set of positive reals is
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denoted by R>0 and the set of non-negative reals is denoted by R≥0.

The Pareto order can be associated to cone Rm
≻0, i.e., the Pareto order ≺Pareto on

Rm is given by the cone order with cone Rm
≻0. This cone is also referred to as the

Pareto cone.

Definition 2.16 (Pointed cone and convex cone). A cone C is pointed, if and only if

C ∩ −C ⊆ {0} where −C = {−c | c ∈ C} and C is convex if and only if ∀c1 ∈ C, c2 ∈
C,∀α such that 0 ≤ α ≤ 1 : αc1 + (1− α)c2 ∈ C.

As Rm
≻0 is a pointed 1 and convex cone and 0 ̸∈ Rm

≻0, the associated binary relation

is irreflexive, antisymmetric and transitive, therefore strict partial order.

The following concepts are useful in order to compare order relations.

Definition 2.17 (Order Extension). An order relation R′ on the set X is said to

extend an order relation R on the set X if R′ ⊇ R. In other words, for all x, x′ ∈ X :

xRx′ implies xR′x′.

Definition 2.18 (Minimal Element). A minimal element x ∈ X in a (strictly) par-

tially ordered set (X,R) is an element for which there does not exist an x′ ∈ X with

x′Rx and x′ ̸= x. (In case, the order R is a strict partial order, x′Rx implies x′ ̸= x).

Let (X,R) and (X,R′) denote two strict partially ordered sets. If R′ is an order

extension of R, this implies:

1. The set of incomparable pairs in (X,R′) is a subset of the set of incomparable

pairs in (X,R).

2. The set of minimal elements of (X,R) is a superset of minimal elements of

(X,R′).

The first statement is true because if a pair of elements is incomparable in R′, such

a pair will also be incomparable in the smaller relation R. The second statement is

also clear: as R ⊆ R′ a minimal element with respect to R′ is also a minimal element

with respect to R. In other words, if an element is non-dominated in R′ it cannot be

dominated in a smaller relation.

In the context of many objective optimization, extensions of the Pareto dominance

order play an important role, since they on the one hand preserve the important and

1Different definitions of pointed cone are given in literature, here we use the definition by Matthias
Ehrgott [34].
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somewhat essential solutions, because one would not like to consider a Pareto dom-

inated solution to be optimal; on the other hand, by extending Pareto dominance

relation, the number of minimal (non-dominated) elements and the number of in-

comparable solutions can be reduced. Thereby, if wisely chosen, they can provide a

(partial) remedy to the curse of dimensionality that occurs if the number of objective

functions (m) increases.

The study of cone-based dominance goes back to the early work of Yu [130] and

Miettinen relates it in her book to proper Pareto dominance and bounded trade-off

[77]. It has also been related to equity preferences in the work of Shukla [96]. Next,

we introduce several recently proposed alternative dominance relations which utilizing

the extensions of the Pareto dominance order. They are also called relaxed forms or

loose versions of Pareto dominance. It can be shown that they are also special cases

of cone orders.

α-dominance

Ikeda et al. proposed α-dominance [60] to deal with dominance resistant solutions,

i.e., solutions that are extremely inferior to other solutions in at least one objective,

but hardly dominated in the other objectives. The idea behind α-dominance is that a

small detriment in one or perhaps several of the objectives is permitted if an attractive

improvement in the other objective(s) is achieved.

The α-dominance uses linear trade-off functions to define the tolerance of domi-

nance. The approach is to define the following m functions on Rm×Rm with codomain

R using m2 a-priori given real numbers αij (i, j ∈ {1, · · · ,m}) as follows:

gi(y,y
′) :=

m∑
j=1

αij(y
′
j − yj).

In [60], αij ≥ 0 and αii = 1. For each such m-tuple of such functions, a strict

partial order on Rm can be defined, denoted by
α
≺ as follows:

y
α
≺ y′ :⇔ ∀i ∈ {1, · · · ,m} : gi(y,y′) ≥ 0 and ∃k ∈ {1, · · · ,m} : gk(y,y′) > 0.

ϵ-dominance

Laumanns et al. proposed the concept of ϵ-dominance [71].

Definition 2.19 (ϵ-dominance). Let y, y′ ∈ Rm and ϵ ∈ R, with ϵ > 0, then y is

said to ϵ-dominate y′ (denoted by y ≺ϵ y
′) if and only if ∀i ∈ {1, ...,m} : yi − ϵ ≤ y′i.
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Optimizing based on ϵ-dominance creates, for objective functions with bounded

ranges, a finite set of non-dominated solutions that will be placed distant from each

other. If the decision maker wants to maintain a set of maximally T non-dominated

solutions and let K denote a constant such that 0 ≤ fi ≤ K,∀i ∈ {1, . . . ,m}, then ϵ

can be adjusted to ϵ = (K/T )1/(m−1). An alleged disadvantage of ϵ-dominance is that

certain regions of the Pareto front with steep trade-off are underrepresented.

Batista et al. [6] proposed cone ϵ-dominance to improve the way solutions distribute

as compared to ϵ-dominance. For this they propose to use a polyhedral cone given by

a Rm×m generator matrix and exemplify their approach in two dimensions, whereas

some concepts were introduced also in higher dimensions.

Control Dominance Area of Solutions (CDAS)

Sato et al. proposed an approach to control the dominance area of solutions (CDAS)

[90]. In CDAS, the objective values are modified and the i-th objective value of x after

modification is defined as: f̂i(x) =
r·sin (wi+Si·π)

sin (Si·π) , where r is the norm of f(x), wi is

the declination angle between f(x) and the coordinate axis. The degree of expansion

or contraction of the dominance area of solutions can be controlled by the user-defined

parameter S, i.e., f̂i(x) > fi(x) when Si < 0.5; in case of Si = 0.5, fi(x) does not

change; and when Si > 0.5, f̂i(x) < fi(x). Depending on increasing or decreasing the

parameter S, the dominance area of solutions expands or increases. Only in case all

the Si ≤ 1, CDAS is an extension of the Pareto relation.

Angle dominance

Liu et al. defined angle dominance [75]. For each point y, a point dependent “cone” is

constructed as follows. For each i (i = 1, · · · ,m), a point P (i) := (0, · · · , 0, pi, 0, · · · 0)⊤ ∈
Rm is introduced, all coordinates of P (i) are zero, except the i-th coordinate. The i-th

coordinate is derived from the worst point and a parameter k > 0. The worst point w

is the point for which its i-th coordinate is equal to wi := sup{fi(x) |x ∈ X}, where fi
is the i-th objective (i = 1, · · · ,m), and X is the search space. Using the parameter k

one defines P (i) := (0, · · · , 0, pi = kwi, 0, · · · , 0)⊤. The second ingredient used is the

ideal point (or if needed the utopian point). Denote the ideal point by zideal. Then to

a point y, it associates m angles: (α1, · · · , αm). The cosine of αi is equal to

cos(αi ) =
(P (i) − y) · (P (i) − zideal)

|P (i) − y| |P (i) − zideal|
,
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where in the numerator the inner product is used. The angle dominance relation is

defined as follows.

Definition 2.20 (Angle Dominance). y ≺angle y′ :⇐⇒ ∀i ∈ {1, · · · ,m} : αi ≤
α′
i and ∃i ∈ {1, · · · ,m} : αi < α′

i, where αi are the m angles associated to y and

α′
i are m angles associated to y′.

The authors show that given the premise that the parameter k is greater than 1,

the angle dominance is irreflexive, asymmetric and transitive. Therefore, the angle

dominance defines a strict partial order.

Figure 2.5: Dominance relations in a two-dimensional objective space.

Figure 2.5 illustrates these dominance relations in a two-dimensional objective

space. The dotted lines indicate the space where solutions are Pareto dominated by

the point y. The gray areas show the dominated spaces by y based on α-dominance,

ϵ-dominance, CDAS and angel dominance respectively. For the α-dominance (at the

top left corner), the α-dominated area by y can be seen as expanding the angle of
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Pareto cone and the degree of expansion is controlled by α. For ϵ-dominance (at

the top right corner), the ϵ-dominated area by y can be seen as shifting the point

y towards a position which Pareto dominates y, therefore, the dominated area by y

is expanded and the degree of expansion is controlled by ϵ. The dominated space by

CDAS (at the bottom left corner) can also be seen as expanding the dominance area of

y by translating Pareto cone. The degree of translation is decided by the parameter S

because S controls φ (φi = Si ·π). Angle dominance area is also obtained by expanding

the angle of Pareto cone; the degree of expansion is decided by the parameter k and

the worst point which controls α.

These dominance relations extend the Pareto dominance. Despite the difference

in algorithm and controlling mechanisms, their eventual implementation is to allow

a solution to dominate a larger space. At the same time, shifting the point to its

dominating space which dominates it or opening the edges of its dominated space

which is dominated by it, they are convertible. For instance, the dominated space of a

point by CDAS can also be seen as opening the edges of Pareto order cone with a angle

of π/2−S ·π because the opening angles are the same for each point. More details are

available in [33]. In the next chapter, we use the geometrical interpretations directly

to extend the Pareto dominance relation.

26



Chapter 3

Diversity-based and

Cone-based Multi-objective

Evolutionary Algorithms

This chapter proposes an algorithm that will play an important role in solving multi-

objective optimization problems of this thesis. The first part of this chapter is ded-

icated to answering RQ1, which is to develop an MOEA and compare it with state-

of-the-art MOEAs. The proposed MOEA is called diversity indicator-based MOEA

(DI-MOEA). DI-MOEA introduces a new principle to use non-dominated sorting com-

bined with a set-based diversity indicator which can be efficiently computed, and it

can achieve a uniformly distributed PF approximation regardless of the shape of the

PF.

Followed by the introduction of several alternatives to Pareto dominance relation-

ship in the previous chapter, the second part of this chapter aims to improve the

performance of Pareto dominance by making use of its geometrical property, further-

more, propose an approach to promote the behavior of MOEAs in general (RQ2). The

proposed cone order increases solutions’ dominance area and the convergence speed

of MOEAs adopting it. Special emphasis is given to many-objective optimization due

to the degraded ability of Pareto dominance to establish a ranking when handling

many-objective problems.
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3.1 Diversity Indicator-based MOEAs

As mentioned before, indicator-based optimization has been a successful principle for

MOEA design. The idea is to guide the search for approximating the Pareto front by a

performance indicator. Ideally, the indicator captures both convergence to the Pareto

front and a high diversity, and it does not require a priori knowledge of the Pareto front

shape and location. It is, however, so far difficult to define indicators that scale well

in computation time for high dimensional objective spaces, and that distribute points

evenly on the Pareto front. Moreover, the behavior of commonly applied indicators

depends on additional information, such as reference points or sets. For example,

when the hypervolume indicator is used for performance comparison in indicator-

based MOEAs, it has been show that the distribution of points is biased towards the

knee point and the boundary if the reference point is not properly set [62]. Some

multi-indicator-based MOEAs have been created to overcome these issues by using

multiple quality indicators, such as [39], [40]. In this work, a diversity-indicator based

multi-objective evolutionary algorithm is proposed. It combines principles from Pareto

dominance-based approach and from indicator-based algorithms. Instead of requiring

the indicator to take into account diversity and Pareto dominance, it is proposed to

• use dominance rank as a primary selection indicator, in order to ensure conver-

gence to the Pareto front;

• use performance indicators that measure the diversity of a set of mutually non-

dominated solutions.

However, as opposed to Pareto dominance-based approaches such as SPEA2 and

NSGA-II that also maintain diversity, in DI-MOEA, the diversity of a set is measured

by a scalar value, such that convergence to a maximum diverse set can be achieved

and theoretically assessed.

Based on these principles, DI-MOEA therefore takes advantage of Pareto dominance-

based approaches, and excludes the complex structure and parameters in decomposition-

based and contemporary indicator-based approaches. Most importantly, experimental

results show that it can find well converged and evenly spaced Pareto front approxi-

mations without the involvement of any reference points and assumptions about the

location and shape of the Pareto front.

From here on, the adopted diversity indicator, i.e., the Euclidean distance based

geometric mean gap indicator is introduced in detail. The proposed algorithm is
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described and experimental results on benchmark problems are shown. Lastly, a con-

clusion of the work is given and some possible future work is indicated.

3.1.1 Diversity Indicators and Gap Contribution

There exist many indicators that assess the diversity of a distribution of points in

Rm. Among these, the Weitzman indicator and discrepancy measures have excellent

theoretical properties, but their computation is expensive. The Hausdorff distance

and related measures are indicators that would require the knowledge of the set on

which points should be distributed, which is typically not available in Pareto opti-

mization. The Solow-Polasky indicator has been suggested in the context of diversity

assessment due to its moderate computational effort and good theoretical properties

[105]. However, it is sensitive to the choice of the correlation strength parameter of an

exponential kernel function and it requires matrix inversion which might cause numer-

ical instability. The gap indicators (or the averages of distances to nearest neighbours)

have been suggested in [37]. They are very fast to compute and easy to implement

diversity indicators. In addition, they have certain favorable theoretical properties and

empirical results show that their maximization results in diversified, evenly spread ap-

proximation sets. These results were obtained for multimodal optimization [124] and

evolutionary level set approximation [74] for a wide range of test problems.

Let A define a set of points in Rm, D(x,A \ {x}) = mina∈A\{x}{d(x, a)} and d

denote the Euclidean distance, then the gap indicators (GI) are defined as follows:

GImin(A) = min
x∈A
{D(x,A \ {x})} Minimal gap

GIΣ(A) =
1

|A|
∑

x∈A D(x,A \ {x}) Arithmetic mean gap

GIΠ(A) = (
∏

x∈A D(x,A \ {x}))
1

|A| Geometric mean gap.

Note, thatGImin is the well known diversity indicator used in the max-min diversity

problem [50]. One can leave out the exponent in GIΠ and this yields the product

distance to the nearest neighbour (PDNN) indicator, considered by Wessing [124] in

the context of multimodal optimization. Wessing [124] pointed out that GIΠ obtains

the value of zero in case of duplicates in the set, a property that also holds for GImin.

Besides, it can only be used for comparing sets of equal size. Since we are using

the indicator contribution as a relative measure of performance of points, these two

properties do not cause problems.
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In indicator-based steady state selection [9] is to optimize a quality indicator QI

for a solution set. W.l.o.g. we assume the quality indicator is to be maximized. The

selection strategy is to add a non-dominated solution x to an approximation set A of

size µ and then retain the best subset S ⊂ P with |S| = µ of the new set P = A∪{x}.
This can be achieved by removing the point that contributes the least to the quality

indicator. The indicator contribution of a point p ∈ P is defined as:

∆QI(p, P )← QI(P )−QI(P \ {p}).

In DI-MOEA, the set-indicator contribution of the individual p ∈ P is defined as

the difference of the geometric mean gap indicator value of the set with the individual

p minus the indicator-value of the set without it. The computation of the minimal

contributor in case of the gap indicators can be solved by computing the solution to the

all point nearest neighbour problem (APNN). The straightforward implementation,

i. e. measuring distance between all pairs, requires a running time of O(n2). The

APNN problem can be solved by Vaidya’s algorithm [107] in optimal time O(n log n)

for a fixed dimensional space and any Minkowski metric, including the Euclidean

metric. The Euclidean distance is chosen as distance measure due to its rotational

invariance.

3.1.2 Algorithm

A hybrid selection scheme: the (µ + µ) generational selection operator and the (µ +

1) steady state selection operator, is utilized in DI-MOEA. The algorithm consists of

two components:

• The (µ+ µ) generational selection operator: When the population is layered to

multiple (more than one) dominance ranks, it indicates that the population has

not yet converged to the true Pareto front. In this case, the (µ+µ) generational

selection operator is used to explore the decision space for dominating solutions.

In this stage, a strict consideration of the diversity indicator is not yet the key

determinant factor. Rather the first priority should be to push the population

quickly to the Pareto front. Still, diversity is considered as a secondary ranking

criterion in order to bring the points in a good starting position for searching

for a uniformly distributed population. Overall, the selection operator is using

non-dominated sorting as a primary ranking criterion, then if more than µ so-

lutions are obtained by adding a layer, two alternative strategies are proposed
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Algorithm 1 DI-MOEA

1: P0 ← init(); //Initialize random population
2: popsize← |P0|;
3: (R1, ..., Rℓ0) ← Partition P0 into subsets of increasing dominance rank; //Non-

dominated sorting
4: for each i ∈ {1, . . . , ℓ0} do
5: calculate diversity indicator for all solutions based on the current front;
6: end for
7: t← 0;
8: while Stop criterion not satisfied() do
9: if ℓt > 1 || t == 0 then

10: // (µ + µ) selection operator
11: Qt ← Gen(Pt); // Generate offspring with the size of popsize by variation
12: Evaluate Qt;
13: Pt = Pt ∪Qt // Combine offspring and parents
14: (R1, ..., Rℓt) ← Partition P0 into subsets of increasing dominance rank;

//Non-dominated sorting
15: i← 0; Pt+1 ← ∅;
16: while |Pt+1| < popsize do
17: Pt+1 ← all solutions on i-th front Ri;
18: i← i+ 1;
19: end while
20: if |Pt+1| > popsize then
21: n← |Pt+1| − popsize
22: while n > 0 do
23: calculate diversity indicator for all solutions on the last front;
24: remove the least contributor solution based on rank and diversity;
25: n← n− 1;
26: end while
27: end if
28: else
29: // (µ + 1) selection operator
30: q ← Gen(Pt); // Generate only an offspring by variation
31: Pt ← Pt ∪ {q};
32: Rank Pt based on Pareto dominance rule; //Non-dominated sorting
33: for each front do
34: calculate set-indicator contribution for all solutions on the least ranked

front |Rℓt |, if |Rℓt | > 1;
35: end for
36: remove the least contributor to diversity-indicator on the least ranked front;
37: end if
38: end while
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to truncate: the crowding distance (variant 1 ) as in NSGA-II, and the diversity

indicator contribution (variant 2 ), where points are successively removed in a

greedy manner and the contributions are recomputed after each removal. Under

the condition that the µ selected solutions are mutually non-dominated after an

iteration, the algorithm switches to the (µ+ 1) steady state selection operator.

• The (µ+1) steady state selection operator: When the parent population consists

of only one non-dominated set, it is likely that the population has already reached

a region near the Pareto front. In this case, the indicator-based (µ + 1) steady

state selection operator is applied, as described in Section 3.1.1. It discards

the least contributor to the quality indicator, here, the diversity indicator. The

intent is to achieve a uniformly distributed set on the Pareto front, that is to

converge to a maximum of the diversity indicator. If there are more than one

dominance ranks in the resulting population, the algorithm switches back to a

(µ+ µ) generational selection operator.

Besides the hybrid selection scheme, another important design choice is the quality

indicator, to be specific, the Euclidean distance based geometric mean gap indicator is

used to guide the search towards the uniformly distributed Pareto front approximations

regardless of the shape of the Pareto front. The proposed algorithm is presented as

pseudo-code in Algorithm 1.

3.1.3 Experimental Results and Discussion

In this section, simulations are conducted to demonstrate the performance of the

proposed algorithm. Because two different diversity measures are employed in the (µ

+ µ) generational selection operator, two variants of DI-MOEA are involved in the

experiments: the crowding distance and the set-indicator contribution are chosen as

the second measure in the generational (µ + µ) selection operator in algorithm DI-1

and algorithm DI-2 respectively.

In the simulations1, the SBX operator with an index of 15 (30 in NSGA-III and

a differential evolution operator is used in MOEA/D.) and polynomial mutation with

an index 20 are used. The crossover and mutation probabilities are set to 1 and

1/L respectively and L is the number of variables. In NSGA-III, the number of

1All MOEAs in the thesis are implemented and tested based on the MOEA Framework (version 2.1,
available from http://www.moeaframework.org). The MOEA Framework is Java-based framework for
multi-objective optimization and it supports a number of MOEAs, test problems and search operators.
It is also easy to be extended to introduce new problems and algorithms.
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subdivisions is 99 for bi-objective problems, and 12 for tri-objective problems. The

number of evaluation (NE) is chosen to be dependent on the complexity of the test

problem. 20000 NE is used for ZDT problems and 100000 NE for DTLZ problems.

The population size is 100 for all problems. Here we set the population size to be 100

because such number can be sufficient to represent the Pareto front of the adopted

benchmark problems and it is an intuitive number usually given by the decision maker.

However, for decomposition-based MOEAs, such as MOEA/D and NSGA-III, it is

better to consider the number of reference vectors when specifying the population size.

For example, the number of weight vectors in MOEA/D for three-objective problems

is 1 + 2+ 3+ 4+ ...+H (where H is an integer), which is the same as the population

size in MOEA/D. Thus, the population size of MOEA/D on three-objective problems

can be 91 or 105 (instead of 100).

Experiments on bi-objective problems

For bi-objective problems, algorithms are tested on ZDT1, ZDT2 and ZDT3 with 30

variables. Two new algorithms, DI-1 and DI-2, are compared with NSGA-II, SMS-

EMOA, NSGA-III and MOEA/D. Table 3.1 and Table 3.2 show the aggregate hy-

pervolume and aggregate IGD across 30 independent runs (with a different seed for

each run but same seeds for all algorithms). The aggregate value is the value obtained

when the Pareto solutions from all runs are combined into one. For each problem

in the two tables, the upper row denotes the aggregate hypervolume/IGD. (The best

value is highlighted in bold.) The lower row is the standard deviation (Std) of re-

sults from 30 runs. The Mann-Whitney U test is used to determine if the medians of

different algorithms for the same problem are significantly indifferent. In the tables,

algorithms whose median performance is indifferent to the algorithm with the best

aggregate performance are also highlighted. It can be observed that SMS-EMOA or

NSGA-III can achieve the best hypervolume and the best IGD on all three problems,

and the proposed DI-MOEA can obtain better hypervolume and IGD than NSGA-II

and MOEA/D. In some instances, DI-MOEA can even get better hypervolume and

IGD than NSGA-III or SMS-EMOA.

Experiments on tri-objective problems

For tri-objective problems, DTLZ1 with 7 variables, DTLZ2 with 12 variables and

DTLZ7 with 22 variables are tested. Both DI-1 and DI-2 behave very well, and

they are indifferent on the statistical significance of median performance of aggregate
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Table 3.1: The aggregate hypervolume (HV) on bi-objective problems.

HV
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std↘

ZDT1
0.66399 0.66602 0.66428 0.66029 0.66473 0.66491

4.8379e-04 7.2331e-05 3.9507e-04 0.0028 3.5973e-04 2.8447e-04

ZDT2
0.33002 0.33265 0.33266 0.32849 0.33073 0.33141

4.7756e-04 8.7207e-05 0.0086 0.0030 4.9232e-04 5.8483e-04

ZDT3
0.51600 0.51718 0.51720 0.51582 0.51623 0.51634

3.9954e-04 0.0013 0.0010 0.0011 4.1969e-04 2.7955e-04

Table 3.2: The aggregate IGD on bi-objective problems.

IGD
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std↘

ZDT1
0.00163 0.00039 0.00168 0.00385 0.00116 0.00106

2.6517e-04 1.9915e-05 8.2835e-04 0.0018 1.4110e-04 9.7026e-05

ZDT2
0.00202 0.00084 0.00051 0.00247 0.00159 0.00120

2.1844e-04 1.0340e-04 0.0088 0.0014 2.1557e-04 2.4062e-04

ZDT3
0.00092 0.00037 0.00054 0.00190 0.00087 0.00092

1.5809e-04 0.0100 0.0080 8.6720e-04 1.6713e-04 1.3157e-04

hypervolume and IGD. Statistical data averaging 10 runs per problem and algorithm

are shown on Table 3.3 and Table 3.4. DI-1 beats all the algorithms on the aggregate

hypervolume on all problems, and DI-2 also behaves better than other algorithms

except for SMS-EMOA on DTLZ1. For IGD, the new algorithms perform the best on

DTLZ1 and DTLZ2 problems. NSGA-II obtains the best IGD on DTLZ7, while IGD

values of DI-1 and DI-2 are only slightly higher than NSGA-II on DTLZ7, but better

than all other algorithms.

Table 3.3: The aggregate hypervolume (HV) on tri-objective problems.

HV
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘

DTLZ1
0.80605 0.80732 0.78400 0.80198 0.80806 0.80645
0.0062 1.8738e-04 0.0179 0.0015 0.0013 6.1716e-04

DTLZ2
0.44263 0.45269 0.41915 0.42907 0.45511 0.45489
0.0070 5.8698e-05 5.1471e-04 0.0031 0.0033 0.0014

DTLZ7
0.31064 0.24694 0.30624 0.30164 0.31227 0.31339
0.0034 0.0038 0.0328 0.0055 0.0051 0.0137

To easily observe the results of algorithms, the results on the tri-objective problems

are visualized. Figure 3.1 shows the Pareto front approximations of a typical run on

DTLZ1. It can be observed that the solutions of NSGA-II and MOEA/D are not

uniformly distributed, and there are several overlaps in the result of NSGA-III. While,

SMS-EMOA and DI-MOEA can obtain evenly spaced solutions on the linear Pareto

front.
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Table 3.4: The aggregate IGD on tri-objective problems.

IGD
NSGA-II SMS-EMOA NSGA-III MOEA/D DI-1 DI-2

Std ↘

DTLZ1
0.02149 0.02074 0.04266 0.02779 0.01966 0.02381
0.0063 8.1450e-04 0.0159 0.0018 0.0017 0.0016

DTLZ2
0.02414 0.03415 0.05181 0.03902 0.01799 0.01909
0.0047 0.0014 2.1056e-04 0.0026 0.0019 0.0030

DTLZ7
0.01820 0.09182 0.02381 0.041367 0.01826 0.02191
0.0027 0.0020 0.2151 0.0867 0.0017 0.0944

Figure 3.2 shows the Pareto front approximations of a typical run on DTLZ2.

For NSGA-III, we observed the same phenomenon: some solutions are overlapping

or very close. The result of SMS-EMOA is distributed across the Pareto front with

emphasis on the boundary and knee regions of the Pareto front. The results of the two

DI-MOEA variants are uniformly distributed and evenly spaced on the Pareto front.

DI-MOEA also behaves well on the multimodal DTLZ7 problem, which has non-

linear disconnected Pareto front regions. Figure 3.3 shows the results under 200 pop-

ulation size and 500000 NE.

When running the DI-MOEA, it can be observed that the population evolves to-

wards the Pareto front at the initial stage (the first phase) using the generational

selection operator. After a short period where the two selection operators alternate

(the second phase), the steady state selection operator takes over and the population

converges to a set with maximum diversity (the third phase). When the number of

objectives becomes large, the third phase is more prominent than the previous two

phases because it is more likely for solutions to be mutually non-dominated for a large

objective number. In the runs conducted on tri-objective problems, the generational

selection operator was applied around 100-200 iterations before it switched to the

steady state selection operator for the first time. The intermittent alternating phase

took about 20-50 iterations, and in most of the running time, the algorithm used the

steady state selection operator and throughout this phase, only occasionally the algo-

rithm switched back to generational selection operator for at most a single iteration.

Overall, the first and the second phase took only a minor amount of the total running

time.

It is worth noting that we observed dominance resistant solutions (DRSs) [54]

occasionally on the linear Pareto front of DI-2 on DTLZ1 tri-objective problem; these

are points that have a large contribution to diversity, but dominate only a very narrow

region exclusively. It might be necessary to keep these “special solutions”, but on

the other side, they make the Pareto front approximation less evenly distributed. A
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Figure 3.1: Representative Pareto front approximations of DTLZ1.

strategy has been tested to eliminate DRSs. Before the calculation of the set-indicator

contribution for a front, each solution is checked by comparing with all other solutions:

the distances between two solutions in all dimensions are calculated, if the result of the

minimal distance divided by the maximal distance is too small, the current solution

will be removed from the front. Therefore, a shrinked front is created and the diversity
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Figure 3.2: Representative Pareto front approximations of DTLZ2.

indicator can be calculated only in the new front. The underlying idea of this strategy

is that for two solutions, if their distance is too close in one dimension and too large

in another dimension, keeping both of them will result in an uneven distribution.
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Figure 3.3: Representative Pareto front approximations of DTLZ7.

3.1.4 Conclusion and Further Work

The proposed DI-MOEA combines the advantage of Pareto dominance-based and

indicator-based methods. Moreover, the achieved Pareto front approximations are

excellent in both hypervolume indicator and IGD. In particular, the relative perfor-

mance of DI-MOEA even gets better with an increasing number of objectives. The
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set-indicator used in our algorithms is computationally simpler than the hypervolume

indicator and only depends linearly on the number of objectives, making it possess a

potential advantage on many-objective optimization problems. Most importantly, the

uniformly distributed, evenly spaced solution set can be achieved without the use of

decomposition sets and the estimation of the location and shape of the true Pareto

front.

In the current implementation of DI-MOEA, only a naive way of calculating the

Euclidean distance based geometric mean gap is implemented. Although the com-

putational time of the implemented algorithm is shorter than SMS-EMOA, it should

be further improved, e.g., by using Vaidya’s algorithm [107] and incremental updates

of contributions. Besides, DI-MOEA holds the promise of performing well in many-

objective optimization. To study this, its performance should be tested on many-

objective optimization benchmarks, paying special attention to effects that might

occur in high dimensional objective spaces, such as distance concentration and the

increasing number of non-dominated solutions.

3.2 Cone-based MOEAs

In this section, the edge-rotated cone order is first proposed for the purpose of building

an ordering which can guide the search towards the Pareto front better than the Pareto

order in MOEAs. Two different methods have been proposed to implement the edge-

rotated cone order. Afterwards, the edge-rotated cone order is integrated in MOEAs

by a proper approach which gives consideration to both convergence and diversity

in the evolutionary searching process. The integrated MOEAs are then tested on

multi-objective and many-objective optimization problems to compare with original

MOEAs. Moreover, the ability of the edge-rotated cone order on expressing preferences

in evolutionary multi-objective optimization is investigated.

3.2.1 Edge-rotated Cone Order

In an MOEA, if a solution can dominate more areas based on the adopted dominance

relation, the algorithm is capable of exploring more solutions and hence accelerating

convergence. To this end, the edge-rotated cone is devised by widening the angle of the

Pareto order cone and it allows a solution to dominate a larger area. Given a linearly

independent vector set {w1, w2, . . . , wm}, a cone can be generated in m-dimensional

space.
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Definition 3.1 (Generated m-dimensional cone). The cone generated by the vectors

w1, w2, . . . , wm is the set C = {z : z = λ1w1 + λ2w2 + · · ·+ λmwm,∀λ1, λ2, . . . ,

λm ≥ 0, λ ̸= 0}; w1, . . . , wm are linearly independent.

Figure 3.4 presents a two dimensional scenario of generating the standard Pareto

order cone and edge-rotated cones. The Pareto order cone is the cone constructed

by two half-lines aligned with two vectors, a⃗ and b⃗, which support an angle of 90◦.

Similarly, vectors L⃗1 and L⃗2 determine a cone with an angle of 150◦. Intuitively,

this cone can be formed by rotating the edges of the Pareto order cone towards the

opposite direction around the origin. Note that vectors L⃗3 and L⃗4 determine a cone

with an angle of 180◦ and the cone with an angle of 180◦ is a line. Any two vectors

between L⃗3 and L⃗4 (excluding at least one of L⃗3 and L⃗4) can construct a convex cone

(Definition 2.16), i.e., the space to the right of the corresponding lines and the lines

themselves.

Figure 3.4: Cones with different angles.

When applying this cone order by means of the Minkowski sum (Definition 2.13),

a solution can dominate more objective space. The left image of Figure 3.5 shows an

example of applying the Pareto order cone to illustrate Pareto dominance relation, i.e.,

P dominates the points in P ⊕R2
≻o and Q dominates the points in Q⊕R2

≻o. Here, ⊕
is the Minkowski sum; R2

≻o is equal to the cone constructed by a⃗ and b⃗ in Figure 3.4,

the origin is excluded. In other words the non-negative quadrant with origin excluded.

It can be seen that P and Q are mutually non-dominated in terms of Pareto

dominance relation because neither of them is in the dominating space of the other

point. However, when an edge-rotated cone (e.g., the cone constructed by L⃗1 and L⃗2
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Figure 3.5: Pareto cone and edge-rotated cone orders.

in Figure 3.4) is adopted in the right image, the dominance relation between the point

P and Q has changed and now Q is dominated by P .

The edge-rotated cone can be interpreted as a constraint on trade-offs. In Fig-

ure 3.5, two points P = (p1, p2) and Q = (q1, q2) are Pareto incomparable in R2. The

trade-off, that is, the decrease in f2 per unit of increase of f1 is p2−q2
q1−p1

. It is easily

seen that in case p2−q2
q1−p1

≤ tan(α) (Here, α is the rotating angle on the edge of Pareto

cone.), the points P and Q become comparable in the edge-rotated cone order and if
p2−q2
q1−p1

> tan(α) the points P and Q stay incomparable in the edge-rotated cone order.

Similarly, if for the decrease in f1 per unit increase of f2 it holds that q1−p1

p2−q2
≤ tan(α),

then the points Q and P become comparable in the edge-rotated cone order and if
q1−p1

p2−q2
> tan(α), then they are still incomparable in the edge-rotated cone order. In

summary, if for two Pareto incomparable points one of the trade-offs is bounded by

tan(α), then the points are comparable in the edge-rotated cone order; in case, both

trade-offs are bigger than tan(α), the points are also incomparable with respect to the

edge-rotated cone order.

When using the edge-rotated cone order in MOEAs, since the concave cones do not

give rise to a strict partial order and the non-dominated points in the order generated

by acute cones can be dominated in the Pareto order, the adopted edge-rotated cones

are restricted to convex obtuse cones obtained by rotating each edge of the standard

Pareto cone towards the outside with an angle of maximal 45◦. For example, in the

case of a bi-objective problem, one edge of the cone can exist between a⃗ and L⃗3 and

another edge of the cone can exist between b⃗ and L⃗4. The approach of widening the

standard Pareto cone in m-dimensional space (m > 2) is the same. Each edge of the

standard Pareto order cone is rotated around the origin by an angle of maximal 45◦

towards the opposite direction of the identity line in the first cube’s orthant on the

plane consisting of the edge and the identity line. In m-dimensional space, the identity
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line in the first cube’s orthant is the line that passes through the origin and the point

(1, ..., 1).

It is worth noting that solutions that are dominating in the Pareto order are also

dominating in the edge-rotated cone order. Therefore, it is guaranteed that a minimal

element of the edge-rotated cone order is also a minimal element of the Pareto order,

and thus algorithms that converge to globally efficient points under the edge-rotated

cone order will also converge to globally Pareto efficient points.

Figure 3.6: Trade-off on Pareto front.

The edge-rotated cone gives rise to an extended dominance relation and it es-

tablishes an ordering among Pareto incomparable solutions (i.e., being Pareto non-

dominated to each other) in the sense that better Pareto incomparable solutions are

preferred. By using the edge-rotated cone, a solution, especially the solution which is

not in the knee region, has a higher chance to be dominated by other solutions. The

knee region is the region where the maximum trade-off of objective functions takes

place. For the Pareto front in Figure 3.6, the knee region is where the Pareto surface

bulges the most, i.e., the region near solution a. When comparing the knee point a

with another solution c, solution c has a better (i.e., lower) f2 value as compared to

solution a. However, this small improvement leads to a large deterioration in the other

objective f1. Due to the reason that in the absence of explicitly provided preferences,

all objectives are considered equally important, solution a, thus, is more preferable

than solution c. It has been argued in the literature that knee points are the most

interesting solutions and preferred solutions [12, 13, 20, 24]. In this sense, although

not all globally efficient points might be obtained by the edge-rotated cone orders, the

edge-rotated cone orders naturally filter out non-preferred solutions. In Figure 3.6,

when applying the edge-rotated cone, solutions in the knee region can survive, while
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solutions like b and c are on the flat Pareto surface and are more easily to be domi-

nated. The feature of the edge-rotated cone to eliminate solutions can be appreciated

as an advantage especially in the realm of many-objective optimization considering

the exponential increase in the number of non-dominated solutions necessary for ap-

proximating the entire Pareto front.

3.2.2 Implementation Methods

Two different methods have been proposed to implement the edge-rotated cone or-

der. The first one emphasises on its geometrical property and the second one inclines

towards its mathematical characteristic.

Method 1

Let us assume an edge-rotated cone constructed by L⃗1 and L⃗2 (Figure 3.4) is adopted

in the right image of Figure 3.7. The area dominated by P can be determined by two

lines: PA and PB. We can see that A is equal to P + (cos (−α), sin (−α)) and B is

equal to P +(sin (−α), cos (−α)), where α is the rotated angle of the edge with respect

to the standard Pareto order cone. In this example, α is π/6 (i.e., 30◦); the points A

and B are then P + (
√
3/2,−1/2) and P + (−1/2,

√
3/2) respectively.

Figure 3.7: Pareto cone and edge-rotated cone orders.

In order to determine whether P dominates Q, we choose a point C on the identity

line of the extension cone as a reference point which is known to be dominated by P .

For instance, take C to be P + (1, 1). To learn if another point Q is dominated by P

or not, we only need to compare its position relative to the reference point, i.e., if Q

and C are on the same side of line PA, and at the same time, both points are on the

same side of line PB, Q is dominated by P .
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Line PA can be defined by ax+ by + c = 0, where the parameters, a, b and c, can

be determined by two points on the line, i.e., P and A. To identify if two points, C

and Q, are on the same side of this line, we only need to substitute these two points

in ax + by + c, if the values of ax + by + c are both negative or positive, it can be

concluded that two points are on the same side of this line.

This comparison approach of identifying the dominance relationship between two

points with the edge-rotated cone can also be easily implemented in larger dimensional

space. When the number of objectives is m (m > 2), the space dominated by a point

(e.g., P ) is composed of m hyperplanes; each hyperplane is determined by m points

and these m points include P and other m − 1 points picked from (P1, . . . , Pi, . . . ,

Pm) successively. The point Pi (∈ Rm) is equal to P + oi; and the point oi locates the

new position of the ith edge of the cone together with the origin, the value of oi is the

ith column of the following (m×m) matrix.
cos (−α) sin (−α)√

m−1
· · · sin (−α)√

m−1
sin (−α)√

m−1
cos (−α) · · · sin (−α)√

m−1
...

...
. . .

...
sin (−α)√

m−1

sin (−α)√
m−1

· · · cos (−α)

 (3.1)

The equation of a hyperplane in the m-dimensional space is a1x1 + a2x2 + · · · +
aixi + · · · + amxm + am+1 = 0, where xi (i ∈ (1, . . . ,m)) is the ith objective value

and ai (i ∈ (1, . . . ,m + 1)) is the parameter. All parameters of the hyperplane (i.e.,

from a1 to am+1) can be calculated by the m points on the hyperplane. Again,

the point C (i.e., P + (1, . . . , 1)) can be used as the reference and if another point

Q is dominated by P , the two points Q and C would be on the same side of all

hyperplanes, meaning that if for each hyperplane, we put the two points in the equation

a1x1+a2x2+· · ·+aixi+· · ·+amxm+am+1, both results would be negative or positive.

Method 2

In this method, a criterion is derived by which one can determine whether a point

Q ∈ R2 is dominated by a point P ∈ R2 with respect to the edge-rotated cone order.

Let e1 :=

[
1

0

]
and e2 :=

[
0

1

]
be the edges of the two-dimensional standard Pareto

cone. Then the edges of the edge-rotated cone by a rotation angle α ( 0 ≤ α ≤ π
4 ) are

Ae1 and Ae2, where A =

[
cos(−α) sin(−α)√

2−1
sin(−α)√

2−1
cos(−α)

]
.
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A point Q lies in the edge-rotated cone region of P if and only if for some λ,

Q = P +λ1Ae1+λ2Ae2 such that λ1, λ2 ≥ 0, λ ̸= 0. This is equivalent to: for some λ,

A−1(Q− P ) = λ1e1 + λe2 such that λ1, λ2 ≥ 0, λ ̸= 0. In short, P dominates Q with

respect to the edge-rotated cone order if and only if the components of A−1(Q−P ) are

non-negative and at least one of them is strictly positive. Thus, once the inverse matrix

of A is computed (A−1 = c ·

[
cos(α) sin(α)

sin(α) cos(α)

]
, c := 1

(cos(α))2−(sin(α))2 ) , it can readily

be determined whether Q is in the dominating region of P . Moreover, in case the

components are non-zero and have opposite signs, then the points are incomparable.

In case the components are non-positive and at least one of them negative, then Q

dominates P .

The approach can easily be applied to three or many objective problems. When

the number of objectives is m (m > 2) and the rotation angle for each edge of the

cone is α, the (m×m) matrix (3.1) gives the coordinates of the unit point on rotated

edges: for each unit point on the edge of the standard Pareto cone, each column of

the matrix gives its new coordinates after rotation. For example, in three-dimensional

space, (1, 0, 0) is the unit point on one edge of the standard Pareto cone, then

(cos (−α), sin (−α)√
2

, sin (−α)√
2

) are its new coordinates after the edge is rotated by an

angle of α (0 ≤ α ≤ π
4 ).

When using the edge-rotated cone order in MOEAs by this method, the inverse

matrix only needs to be calculated once and this leads to almost no extra computing

time added in MOEAs.

3.2.3 Integration Algorithm

In a multi-objective optimization algorithm, by using the edge-rotated cone, a solution

has a higher chance to be dominated by other solutions and thus the selection pressure

toward the Pareto front is increased. However, an edge-rotated cone can degrade

the diversity to some extent because more solutions will be dominated and therefore

excluded from the result set. To circumvent this, Algorithm 2 is proposed to pick a

proper cone order (the standard Pareto cone order or edge-rotated cone order) in each

iteration of the algorithm in order to promote diversity in addition to convergence.

Specifically speaking, at the beginning of each iteration, the population is ranked based

on the current cone order; the edge-rotated cone order will be adopted only under the

condition that all the solutions in the population are mutually non-dominated. In

case the current population consists of multiple layers, the standard Pareto cone (i.e.,

the rotation angle is 0◦) is picked to select offspring. The underlying idea is when all
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Figure 3.8: The dynamics of the number of layers.

the solutions are non-dominated with each other, the edge-rotated cone is adopted to

enhance the selection pressure; otherwise, the standard Pareto cone is used to maintain

the diversity of the population.

Algorithm 2 Applying a proper cone order in each iteration.

1: m← the number of objectives;
2: Degree[m]; // the rotation angle for each edge of the standard Pareto order;
3: n rank ← Pareto rank number of current population;
4: if n rank = 0 then
5: for each i ∈ {1, . . . ,m} do
6: Degree[i]← π/6; // rotation angle is 30◦

7: end for
8: else
9: for each i ∈ {1, . . . ,m} do

10: Degree[i]← 0; // standard Pareto cone
11: end for
12: end if

The ability of the edge-rotated cone to make Pareto incomparable solutions com-

parable can especially benefit many-objective optimization due to the reason that the

likelihood of solution pairs of being comparable decreases exponentially with the in-

crease of the dimension m. For many-objective optimization, a large portion of points

in the objective space is non-dominated and the optimization process tends to produce
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a large set of alternative solutions.

When Algorithm 2 is applied in NSGA-II on the DTLZ1 eight objective problem,

Figure 3.8 compares the changes of the number of layers between running NSGA-II

using only the Pareto dominance and involving the edge-rotated cone order with a

rotation angle of 20◦ within the first 400 iterations (Population size is 100.). When

running the original NSGA-II, except that one point lies at level 2 (i.e., the number of

fronts is two) at the very beginning, the number of layers always remains one, meaning

that all solutions in the current population are non-dominated with each other. As

a result, the Pareto dominance relation has no effect on parent selection. That is,

an individual with a larger crowding distance is always chosen as a parent in the

binary tournament selection since all solutions have the same rank. In this manner,

the selection pressure toward the Pareto front is severely weakened. However, when

the edge-rotated cone is involved, the layering of the population is very noticeable.

In this case, an ordering among the incomparable solutions is established and it can

guide the search towards the Pareto front better.

3.2.4 Experimental Results

The proposed strategy can be integrated with any standard MOEA which works with a

population in each iteration and uses the Pareto dominance relation to select solutions,

such as NSGA-II [29], DI-MOEA [116], NSGA-III [26] and others. In this section,

the edge-rotated cone order is applied by Algorithm 2 to observe its behavior on

multi-objective and many-objective optimization problems respectively. To this end,

different rotation angles have been tested, hypervolume and IGD have been adopted

to compare the performance of the algorithms. The population size is 100 for all

experiments.

Multi-objective Optimization

For starts, four tri-objective optimization problems have been chosen in the experi-

ments, which are DTLZ1, DTLZ2, DTLZ7 and DTLZ2 convex. The first three prob-

lems are from the DTLZ problem test suite. The optimal Pareto front of DTLZ1

lies on a linear hyperplane. The optimal Pareto front of DTLZ2 is concave. DTLZ7

is a multi-modal problem. To measure the performance on the multi-objective opti-

mization problem with a convex Pareto front, original DTLZ2 problem is transformed

to DTLZ2 convex problem by simply decreasing all objective values by 3.5. When

calculating the hypervolume of the solution set, the reference point is the point (0.6,
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0.6, 0.6) for DTLZ1, the point (1.1, 1.1, 1.1) is the reference point for DTLZ2, the

point (5, 5, 5) for DTLZ2 convex, and (1, 1, 6.5) for DTLZ7. Meanwhile, the ori-

gin is used as the ideal point. When calculating the IGD value, the reference sets

of DTLZ1, DTLZ2 and DTLZ7 are from the MOEA framework, and the reference

set of DTLZ2 convex is obtained by running DI-MOEA because DI-MOEA is good

at achieving well-distributed solution sets. The merged non-dominated solution sets

from 30 independent runs are used as the reference sets of DTLZ2 convex.

Firstly, the edge-rotated cone order is integrated by Algorithm 2 with NSGA-II

which is one of the most popular Pareto dominance-based MOEAs. Regarding to

the computing budget, when the number of evaluations is 30000, Table 3.5 shows the

mean hypervolume and mean IGD from 30 independent runs when several different

edge-rotated cone orders are adopted. The “P cone” column provides the results

obtained by the original MOEAs, i.e., the algorithms only adopt the standard Pareto

order. The “30◦” column gives the results of the algorithm involving the edge-rotated

cone and each edge of the standard Pareto order cone has been rotated by 30◦, and

similar remarks are used for the remaining columns. The mean hypervolume and mean

IGD values obtained by the original NSGA-II have been used as the reference values

(printed in blue) to be compared with the results achieved by the algorithms involving

the edge-rotated cone orders. For the algorithms combining the edge-rotated cones,

the mean hypervolume and mean IGD values better than the values obtained by the

original MOEAs have been highlighted in bold (i.e., a larger hypervolume value and

lower IGD value); and the largest value for each algorithm among them is printed in

red. At the same time, the standard deviation of each algorithm is also given under

each mean hypervolume and mean IGD.

It can be observed that the performance of NSGA-II (for both the hypervolume

and IGD values) can always be improved when the edge-rotated cone with a proper

angle is involved, for example, when the rotation angle is 6◦ or 2◦. However, the

best performance takes place with different edge-rotated cones for different problems.

When the rotation angle is 30◦, the algorithm behaves the best on DTLZ1 problems

and the rotation angle of 6◦ is the best on other problems. The standard deviations

show the stable behavior of the algorithm involving the edge-rotated cone order, which

is even better than the original NSGA-II.

When different edge-rotated cone orders are integrated in NSGA-III, Table 3.6

presents the mean hypervolume and mean IGD. NSGA-III is an extension of NSGA-II

and it eliminates the drawbacks of NSGA-II such as the lack of a good diversity in a

set of non-dominated solutions. Although NSGA-III is a decomposition-based MOEA,
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Table 3.5: The mean hypervolume (M-HV) and mean IGD (M-IGD) when integrating
edge-rotated cone orders with NSGA-II.

Problems Metrics P cone 30◦ 12◦ 6◦ 2◦

DTLZ1

M-HY 0.7064 0.8621 0.8569 0.8490 0.8360

std 0.2731 0.0029 0.0143 0.0429 0.1111

M-IGD 0.2420 0.0676 0.0732 0.0807 0.0927

std 0.3102 0.0039 0.0168 0.0428 0.1194

M-HY 0.5276 0.2786 0.5487 0.5399 0.5348

DTLZ2 std 0.0044 0.0246 0.0029 0.0026 0.0031

concave M-IGD 0.0709 0.4909 0.0801 0.0674 0.0692

std 0.0034 0.0627 0.0040 0.0032 0.0028

M-HY 0.6862 0.4895 0.6891 0.6921 0.6894

DTLZ2 std 0.0030 0.0010 0.0018 0.0019 0.0025

convex M-IGD 0.0707 0.3490 0.0835 0.0706 0.0698

std 0.0030 0.0012 0.0026 0.0026 0.0032

DTLZ7

M-HY 0.2739 0.0151 0.2716 0.2787 0.2767

std 0.0016 0.0000 0.0009 0.0019 0.0013

M-IGD 0.0519 0.9587 0.1213 0.0482 0.0492

std 0.0029 0.0001 0.0023 0.0029 0.0028

the basic framework of NSGA-III is similar to NSGA-II. It employs non-dominated

sorting to partition the population into a number of fronts, but replaces the crowding

distance operator with a clustering operator based on a set of reference points. NSGA-

III is assumed to be powerful enough to handle these benchmark problems, however,

according to the data in Table 3.6, it can be seen that its performance can still be

improved by the edge-rotated cone order.

The same pattern can be observed from the two tables: the 30◦ rotation angle

works best for DTLZ1 problem; a small rotation angle (i.e., 6◦ or 2◦) works best for

other problems, and a small rotation angle can almost always improve the behavior

of the original algorithms. From the two tables, it can also be observed that the

edge-rotated cone order can benefit NSGA-II more than NSGA-III. In some cases, the

performance of NSGA-II with an edge-rotated cone can even reach the performance

of the original NSGA-III.

A straightforward way to improve the results of MOEAs is to increase the com-

puting budget. When the computing budget of the original MOEAs is increased to

300000, Table 3.7 gives the values of the mean hypervolume and mean IGD of NSGA-
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Table 3.6: The mean hypervolume (M-HV) and mean IGD (M-IGD) when integrating
edge-rotated cones with NSGA-III.

Problem Metrics P cone 30◦ 12◦ 6◦ 2◦

DTLZ1

M-HY 0.8709 0.8771 0.8763 0.8756 0.8761

std 0.0108 0.0010 0.0015 0.0047 0.0013

M-IGD 0.0616 0.0538 0.0539 0.0552 0.0539

std 0.0224 0.0006 0.0006 0.0067 0.0004

M-HY 0.5593 0.2628 0.5526 0.5595 0.5600

DTLZ2 std 0.0006 0.0159 0.0010 0.0007 0.0003

concave M-IGD 0.0554 0.5353 0.0804 0.0534 0.0554

std 0.0005 0.0522 0.0030 0.0008 0.0004

M-HY 0.6941 0.4827 0.6823 0.6913 0.6946

DTLZ2 std 0.0024 0.0039 0.0025 0.0023 0.0023

convex M-IGD 0.0635 0.3541 0.0898 0.0711 0.0641

std 0.0028 0.0035 0.0041 0.0030 0.0027

DTLZ7

M-HY 0.2264 0.0697 0.2234 0.2324 0.2288

std 0.0343 0.0496 0.0310 0.0352 0.0360

M-IGD 0.3705 0.7702 0.4024 0.3472 0.3614

std 0.2070 0.1296 0.1819 0.2085 0.2172

II and NSGA-III. It can be observed that the algorithms combining the edge-rotated

cone order when only using a small computing budget can even behave better than

the original NSGA-II and NSGA-III when using a large computing budget. Only in

several cases (values in blue), the algorithm involving the edge-rotated cone order with

the small budget cannot reach the performance of the original MOEAs with the large

budget, but their behavior is already very close to the original MOEAs with the large

budget.

Many-objective Optimization

In this section, four, six, eight objective DTLZ1, DTLZ2, DTLZ2 convex problems,

UF11 and UF13 [136] have been chosen in the experiments. UF11 is a rotated in-

stance of the 5D DTLZ2 test problem, and UF13 is the 5D WFG1 test problem. For

each problem, the computing budget for running the algorithm (i.e., the number of

evaluations) is determined by max{100000, 10000 × D}, where D is the number of

decision variables. Likewise, hypervolume and IGD have been adopted to compare

the performance of the algorithms. When calculating HV, the objective values of the
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Table 3.7: The Mean hypervolume (M-HV) and mean IGD (M-IGD) of original NSGA-II
and NSGA-III with larger computing budget.

Problem DTLZ1 DTLZ2 concave DTLZ2 convex DTLZ7

M-HY 0.8630 0.5281 0.6884 0.2755

M-IGD 0.0657 0.0705 0.0698 0.0506

M-HY 0.8757 0.5603 0.6944 0.2284

M-IGD 0.0597 0.0552 0.0628 0.3599

reference point are 0.6 on DTLZ1, 1.1 on DTLZ2, 5 on DTLZ2 convex, 2.2 on UF11

and 11 on UF13. The origin is used as the ideal point. When calculating the IGD

value, the merged non-dominated solution sets from all runs are used as the reference

sets of the DTLZ2 convex problems and the reference sets of other problems are from

the MOEA framework.

Tables 3.9 - 3.11 show the mean hypervolume and mean IGD from 15 independent

runs when different edge-rotated cone orders are integrated in NSGA-II, DI-MOEA

and NSGA-III. Similarly, for the algorithms combining the edge-rotated cone, the

mean hypervolume and mean IGD values are better than the values obtained by the

original MOEAs have been highlighted in bold; the largest respectively lowest value

for each algorithm among them is printed in red. Tables for the DTLZ benchmark

problems consist of four parts, namely four objective, six objective, eight objective

with full budget, and eight objective with half budget. Both UF11 and UF13 are five

objective problems and their behaviors with full budget and half budget are given in

Table 3.11.

The following conclusions can be drawn from the data in these tables.

1. The algorithms do not work well when a large rotation angle is adopted (e.g.,

30◦).

2. The algorithms show similar performance to the original MOEAs when the ro-

tation angle is very small (e.g., 3◦).

3. When an intermediate rotation angle is adopted, the performance of the algo-

rithms (both hypervolume and IGD values) shows a significant improvement

except for a few cases which display values close to the original MOEAs.

4. Although it differs depending on the specific problems, the best performance is

usually obtained when the rotation angle is 15◦.

5. It can be seen that the edge-rotated cone can improve the performance of all
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three adopted MOEAs (i.e., NSGA-II, DI-MOEA and NSGA-III) in most cases

when an intermediate rotation angle is used. Even though NSGA-III is assumed

to be powerful enough to handle these benchmark problems, its performance can

still be improved by the edge-rotated cone approach.

6. The edge-rotated cone can benefit MOEAs even more with the increase of the

number of objectives. For example, when a 15◦ rotation angle is applied on

the DTLZ2 (concave) four objective problem, the hypervolume of NSGA-II is

improved from 0.5953 to 0.6760; for the six objective problem, the hypervolume

is improved from 0.1224 to 0.8156; and for the eight objective problem, the

hypervolume is improved from 0.0168 to 0.8850.

7. The edge-rotated cone can benefit the algorithm with a small computing budget

more than the algorithm with a large budget. For example, when using half of

the computing budget on UF13 five objective problem and the rotation angle

is set to 20◦, the hypervolume values of the Pareto fronts from NSGA-II, DI-

MOEA and NSGA-III can be improved to 0.7259, 0.7254, 0.7073, which are

already larger than the hypervolume values obtained by the original MOEAs

with full budget, namely 0.6937, 0.6611 and 0.6497.

8. Even though the median values of the hypervolume and IGD values have not

been presented in the tables, they show similar values as the mean values. At the

same time, the standard deviations show a stable behavior of the edge-rotated

cone order when it is integrated in MOEAs.

Preference-based Multi-objective Optimization

In the previous experiments, the rotation angles on all edges of the Pareto cone are

kept the same. However, the edge-rotated cone is not necessarily “symmetric”. When

rotating the different edges of the Pareto cone by different angles, the generated edge-

rotated cone can lead the search towards different focuses on the Pareto front. To

observe the effect of the “unsymmetrical” edge-rotated cone, it is integrated in DI-

MOEA and the tri-objective DTLZ2 concave and convex problems are adopted to

observe the experimental results due to the typical shape of their Pareto fronts. The

setting of the other parameters, such as the number of evaluations, population size, is

the same as in previous experiments for multi-objective optimization.

The two left images in Figure 3.9 show the results of only rotating one edge of the

cone on the concave DTLZ2 problem. The black points give the entire Pareto front

52



Chapter 3. Diversity-based and Cone-based Multi-objective
Evolutionary Algorithms

Table 3.8: The mean hypervolume (M-HV) and mean IGD (M-IGD) on DTLZ1.

Four objective (NE = 100000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.5811 0.7735 0.9405 0.9403 0.9400 0.9393 0.9398
std 0.3347 0.1918 0.0024 0.0021 0.0026 0.0021 0.0018

DI-MOEA
M-HV 0.4842 0.0000 0.9535 0.9537 0.9521 0.9538 0.9533
std 0.4250 0.0000 0.0010 0.0009 0.0056 0.0005 0.0009

NSGA-III
M-HV 0.9447 0.6399 0.9448 0.9444 0.9458 0.9453 0.9452
std 0.0024 0.2561 0.0020 0.0024 0.0020 0.0018 0.0028

NSGA-II
M-IGD 0.9725 0.3083 0.1537 0.1550 0.1553 0.1491 0.1511
std 0.0044 0.0444 0.0036 0.0026 0.0037 0.0046 0.0034

DI-MOEA
M-IGD 1.2772 763.0901 0.1287 0.1287 0.1329 0.1303 0.1311
std 1.4694 9.6585 0.0021 0.0026 0.0128 0.0019 0.0027

NSGA-III
M-IGD 0.1300 0.4122 0.1297 0.1295 0.1315 0.1298 0.1313
std 0.0024 0.2506 0.0038 0.0031 0.0029 0.0027 0.0032

Six objective (NE = 100000)

NSGA-II
M-HV 0.0000 0.0000 0.9857 0.9851 0.9844 0.9808 0.8922
std 0.0000 0.0000 0.0007 0.0007 0.0010 0.0023 0.2001

DI-MOEA
M-HV 0.0000 0.0000 0.9911 0.9911 0.9906 0.9885 0.9728
std 0.0000 0.0000 0.0002 0.0003 0.0002 0.0019 0.0084

NSGA-III
M-HV 0.9880 0.0000 0.9887 0.9885 0.9883 0.9881 0.9883
std 0.0009 0.0000 0.0005 0.0006 0.0005 0.0008 0.0006

NSGA-II
M-IGD 75.4078 744.6850 0.3041 0.3026 0.3079 0.3256 0.4541
std 41.1790 49.7971 0.0169 0.0136 0.0183 0.0159 0.2359

DI-MOEA
M-IGD 349.0537 769.4755 0.3086 0.3102 0.3151 0.3196 0.3791
std 76.0015 37.4396 0.0050 0.0043 0.0064 0.0104 0.0291

NSGA-III
M-IGD 0.2990 770.0300 0.2935 0.3007 0.3020 0.3015 0.3020
std 0.0101 40.8585 0.0050 0.0085 0.0095 0.0085 0.0092

Eight objective (NE = 120000)

NSGA-II
M-HV 0.0000 0.0000 0.9957 0.9956 0.9937 0.9422 0.7397
std 0.0000 0.0000 0.0003 0.0004 0.0005 0.1638 0.3584

DI-MOEA
M-HV 0.0000 0.0000 0.9976 0.9976 0.9965 0.8700 0.2850
std 0.0000 0.0000 0.0001 0.0002 0.0007 0.2892 0.3758

NSGA-III
M-HV 0.9877 0.0000 0.9855 0.9858 0.9853 0.9865 0.9854
std 0.0025 0.0000 0.0027 0.0038 0.0032 0.0042 0.0025

NSGA-II
M-IGD 128.0384 721.0803 0.4286 0.4272 0.4452 0.5575 0.8845
std 56.8022 57.7441 0.0199 0.0148 0.0232 0.2231 0.4798

DI-MOEA
M-IGD 517.2231 758.8918 0.4843 0.4866 0.5043 0.8457 3.3619
std 108.7324 142.8642 0.0068 0.0056 0.0106 0.6234 3.5900

NSGA-III
M-IGD 0.3599 418.6033 0.3461 0.3567 0.3565 0.3557 0.3594
std 0.0113 43.8714 0.0106 0.0106 0.0123 0.0192 0.0096

Eight objective - Half budget (NE = 60000)

NSGA-II
M-HV 0.0000 0.0000 0.9954 0.9944 0.7331 0.2971 0.2048
std 0.0000 0.0000 0.0006 0.0012 0.3764 0.3660 0.3120

DI-MOEA
M-HV 0.0000 0.0000 0.9634 0.9972 0.9861 0.7335 0.0745
std 0.0000 0.0000 0.0863 0.0003 0.0341 0.3592 0.1555

NSGA-III
M-HV 0.9813 0.0000 0.9855 0.9842 0.9849 0.9856 0.9863
std 0.0138 0.0000 0.0027 0.0033 0.0033 0.0034 0.0027

NSGA-II
M-IGD 170.7728 681.8762 0.4248 0.4248 1.0092 2.3994 3.2542
std 92.0427 64.1913 0.0204 0.0151 0.8559 2.0576 3.1045

DI-MOEA
M-IGD 592.0768 747.5064 0.5889 0.4881 0.5406 1.2579 4.0558
std 93.9853 94.6608 0.2782 0.0087 0.0983 1.1140 2.8857

NSGA-III
M-IGD 0.3777 405.6668 0.3509 0.3576 0.3635 0.3663 0.3627
std 0.0588 48.9879 0.0192 0.0107 0.0124 0.0216 0.0169
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Table 3.9: The mean hypervolume (M-HV) and mean IGD (M-IGD) on DTLZ2 (concave).

Four objective (NE = 130000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.5953 0.1971 0.5458 0.6760 0.6525 0.6388 0.6333
std 0.0089 0.1182 0.0535 0.0041 0.0048 0.0080 0.0077

DI-MOEA
M-HV 0.6471 0.0913 0.5639 0.6944 0.6897 0.6755 0.6688
std 0.0094 0.0012 0.0406 0.0038 0.0026 0.0066 0.0039

NSGA-III
M-HV 0.6597 0.2508 0.5749 0.6863 0.6821 0.6652 0.6592
std 0.0054 0.1265 0.0362 0.0017 0.0040 0.0031 0.0066

NSGA-II
M-IGD 0.1634 0.8352 0.4037 0.1867 0.1492 0.1536 0.1542
std 0.0045 0.2290 0.0794 0.0056 0.0040 0.0055 0.0041

DI-MOEA
M-IGD 0.1363 1.0405 0.3810 0.1731 0.1264 0.1295 0.1279
std 0.0045 0.0183 0.0661 0.0049 0.0022 0.0061 0.0028

NSGA-III
M-IGD 0.1501 0.7553 0.3510 0.1749 0.1361 0.1477 0.1490
std 0.0046 0.2196 0.0705 0.0039 0.0034 0.0054 0.0026

Six objective (NE = 150000)

NSGA-II
M-HV 0.1224 0.0000 0.4304 0.8156 0.7608 0.7284 0.6490
std 0.0701 0.0000 0.0254 0.0036 0.0067 0.0119 0.0221

DI-MOEA
M-HV 0.0000 0.0000 0.4488 0.8397 0.8016 0.7479 0.6543
std 0.0000 0.0000 0.0126 0.0055 0.0055 0.0117 0.0347

NSGA-III
M-HV 0.8052 0.0000 0.4411 0.8446 0.8185 0.8127 0.8111
std 0.0076 0.0000 0.0130 0.0048 0.0038 0.0056 0.0041

NSGA-II
M-IGD 0.7278 2.5612 0.7003 0.3447 0.2856 0.2887 0.3137
std 0.0758 0.0090 0.0380 0.0119 0.0051 0.0046 0.0091

DI-MOEA
M-IGD 1.9390 2.5824 0.6961 0.2913 0.2774 0.2898 0.3335
std 0.3246 0.0059 0.0285 0.0074 0.0026 0.0058 0.0172

NSGA-III
M-IGD 0.3125 2.5596 0.7260 0.3073 0.3061 0.3092 0.3095
std 0.0105 0.0154 0.0283 0.0145 0.0071 0.0065 0.0080

Eight objective (NE = 170000)

NSGA-II
M-HV 0.0168 0.0000 0.4947 0.8850 0.8193 0.7068 0.4062
std 0.0355 0.0000 0.0576 0.0068 0.0068 0.0487 0.0754

DI-MOEA
M-HV 0.0000 0.0000 0.4250 0.9002 0.8011 0.4619 0.0138
std 0.0000 0.0000 0.1260 0.0033 0.0196 0.1500 0.0516

NSGA-III
M-HV 0.8543 0.0000 0.3151 0.9079 0.8727 0.8632 0.8522
std 0.0121 0.0000 0.0643 0.0044 0.0074 0.0078 0.0138

NSGA-II
M-IGD 1.2941 2.4798 0.7887 0.5247 0.3955 0.4332 0.6433
std 0.1867 0.0422 0.0507 0.0210 0.0068 0.0201 0.0687

DI-MOEA
M-IGD 2.4722 2.5704 0.8728 0.4483 0.4425 0.6013 2.3017
std 0.0430 0.0129 0.1118 0.0054 0.0088 0.0682 0.4257

NSGA-III
M-IGD 0.4594 1.9278 0.9662 0.4936 0.4659 0.4638 0.4680
std 0.0105 0.1043 0.0491 0.0130 0.0099 0.0093 0.0175

Eight objective - Half budget (NE = 85000)

NSGA-II
M-HV 0.0001 0.0000 0.4674 0.8859 0.8161 0.7145 0.4251
std 0.0003 0.0000 0.0847 0.0047 0.0083 0.0334 0.0851

DI-MOEA
M-HV 0.0000 0.0000 0.4196 0.9000 0.8061 0.5432 0.0213
std 0.0000 0.0000 0.1254 0.0050 0.0207 0.0931 0.0606

NSGA-III
M-HV 0.8526 0.0000 0.3223 0.9063 0.8728 0.8616 0.8548
std 0.0084 0.0000 0.0553 0.0048 0.0054 0.0085 0.0116

NSGA-II
M-IGD 1.6856 2.4963 0.8125 0.5167 0.3939 0.4295 0.6116
std 0.1949 0.0202 0.0763 0.0091 0.0060 0.0126 0.0869

DI-MOEA
M-IGD 2.4858 2.5688 0.8765 0.4520 0.4391 0.5633 2.0740
std 0.0272 0.0276 0.1149 0.0073 0.0072 0.0403 0.5132

NSGA-III
M-IGD 0.4611 1.9307 0.9590 0.4923 0.4691 0.4630 0.4597
std 0.0178 0.1646 0.0433 0.0127 0.0115 0.0101 0.0152

54



Chapter 3. Diversity-based and Cone-based Multi-objective
Evolutionary Algorithms

Table 3.10: The mean hypervolume (M-HV) and mean IGD (M-IGD) on DTLZ2 convex.

Four objective (NE = 130000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.4433 0.2126 0.4302 0.4613 0.4577 0.4514 0.4502
std 0.0046 0.0286 0.0025 0.0019 0.0027 0.0037 0.0036

DI-MOEA
M-HV 0.4643 0.0427 0.4308 0.4673 0.4730 0.4688 0.4678
std 0.0071 0.0048 0.0039 0.0051 0.0017 0.0025 0.0019

NSGA-III
M-HV 0.4419 0.1978 0.4182 0.4501 0.4552 0.4499 0.4470
std 0.0078 0.0329 0.0037 0.0036 0.0025 0.0053 0.0036

NSGA-II
M-IGD 0.1484 0.5018 0.2137 0.1512 0.1454 0.1466 0.1458
std 0.0044 0.0444 0.0036 0.0026 0.0037 0.0046 0.0034

DI-MOEA
M-IGD 0.1284 0.7288 0.2108 0.1426 0.1238 0.1252 0.1255
std 0.0093 0.0154 0.0055 0.0074 0.0017 0.0034 0.0026

NSGA-III
M-IGD 0.1471 0.5242 0.2295 0.1660 0.1424 0.1439 0.1424
std 0.0094 0.0511 0.0052 0.0052 0.0031 0.0067 0.0043

Six objective (NE = 150000)

NSGA-II
M-HV 0.1299 0.0223 0.1304 0.1471 0.1376 0.1348 0.1325
std 0.0029 0.0042 0.0016 0.0017 0.0018 0.0027 0.0023

DI-MOEA
M-HV 0.1343 0.0133 0.1280 0.1525 0.1408 0.1376 0.1365
std 0.0018 0.0009 0.0019 0.0011 0.0014 0.0017 0.0020

NSGA-III
M-HV 0.0993 0.0072 0.1109 0.1386 0.1234 0.1116 0.1045
std 0.0078 0.0010 0.0026 0.0027 0.0045 0.0061 0.0072

NSGA-II
M-IGD 0.2713 0.5058 0.4106 0.2789 0.2655 0.2686 0.2698
std 0.0047 0.0282 0.0043 0.0049 0.0046 0.0053 0.0054

DI-MOEA
M-IGD 0.2571 0.6012 0.4149 0.2657 0.2513 0.2530 0.2557
std 0.0030 0.0044 0.0050 0.0054 0.0038 0.0029 0.0028

NSGA-III
M-IGD 0.2911 0.7106 0.4557 0.3039 0.2677 0.2764 0.2869
std 0.0093 0.0245 0.0074 0.0110 0.0106 0.0070 0.0073

Eight objective (NE = 170000)

NSGA-II
M-HV 0.0276 0.0155 0.0187 0.0355 0.0298 0.0292 0.0283
std 0.0010 0.0013 0.0029 0.0005 0.0011 0.0007 0.0008

DI-MOEA
M-HV 0.0264 0.0213 0.0151 0.0357 0.0280 0.0269 0.0267
std 0.0008 0.0007 0.0004 0.0005 0.0006 0.0007 0.0009

NSGA-III
M-HV 0.0210 0.0014 0.0127 0.0256 0.0219 0.0211 0.0206
std 0.0010 0.0013 0.0005 0.0009 0.0015 0.0010 0.0014

NSGA-II
M-IGD 0.3649 0.4218 0.5285 0.3607 0.3548 0.3573 0.3607
std 0.0087 0.0083 0.0236 0.0040 0.0061 0.0086 0.0067

DI-MOEA
M-IGD 0.3816 0.3946 0.5611 0.3597 0.3736 0.3788 0.3803
std 0.0036 0.0047 0.0029 0.0048 0.0044 0.0057 0.0050

NSGA-III
M-IGD 0.4197 0.7074 0.5811 0.4178 0.4176 0.4198 0.4211
std 0.0094 0.0272 0.0037 0.0073 0.0136 0.0095 0.0120

Eight objective - Half budget (NE = 85000)

NSGA-II
M-HV 0.0282 0.0152 0.0187 0.0356 0.0304 0.0293 0.0286
std 0.0007 0.0012 0.0025 0.0006 0.0006 0.0007 0.0010

DI-MOEA
M-HV 0.0263 0.0217 0.0150 0.0359 0.0276 0.0268 0.0266
std 0.0010 0.0008 0.0005 0.0006 0.0006 0.0007 0.0008

NSGA-III
M-HV 0.0202 0.0012 0.0126 0.0249 0.0213 0.0207 0.0200
std 0.0013 0.0009 0.0005 0.0009 0.0008 0.0010 0.0014

NSGA-II
M-IGD 0.3649 0.4218 0.5285 0.3607 0.3548 0.3573 0.3607
std 0.0087 0.0083 0.0236 0.0040 0.0061 0.0086 0.0067

DI-MOEA
M-IGD 0.3801 0.3937 0.5616 0.3588 0.3784 0.3796 0.3792
std 0.0071 0.0046 0.0037 0.0039 0.0065 0.0074 0.0035

NSGA-III
M-IGD 0.4263 0.7102 0.5815 0.4210 0.4238 0.4234 0.4250
std 0.0113 0.0213 0.0042 0.0093 0.0086 0.0086 0.0110
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Table 3.11: The mean hypervolume (M-HV) and mean IGD (M-IGD) on UF11 & UF13.

UF11 Five objective (NE = 300000)
Algorithms Metrics P cone 30◦ 20◦ 15◦ 10◦ 6◦ 3◦

NSGA-II
M-HV 0.0000 0.0000 0.0211 0.0291 0.0306 0.0218 0.0104
std 0.0000 0.0000 0.0024 0.0058 0.0012 0.0011 0.0014

DI-MOEA
M-HV 0.0029 0.0000 0.0191 0.0336 0.0256 0.0188 0.0138
std 0.0018 0.0000 0.0035 0.0008 0.0012 0.0015 0.0024

NSGA-III
M-HV 0.0147 0.0000 0.0266 0.0350 0.0278 0.0201 0.0171
std 0.0016 0.0000 0.0034 0.0017 0.0016 0.0014 0.0015

NSGA-II
M-IGD 1.5208 14.6626 0.3890 0.2990 0.2685 0.3119 0.4531
std 0.2173 0.2878 0.0368 0.0374 0.0171 0.0241 0.0289

DI-MOEA
M-IGD 0.7304 15.1690 0.6152 0.2807 0.3339 0.3946 0.4621
std 0.0944 0.2054 0.1997 0.0210 0.0228 0.0352 0.0545

NSGA-III
M-IGD 0.4517 15.0785 0.4190 0.2795 0.3188 0.3848 0.4166
std 0.0388 0.2105 0.0697 0.0247 0.0235 0.0324 0.0183

UF11 Five objective - Half budget (NE = 150000)

NSGA-II
M-HV 0.0000 0.0000 0.0205 0.0269 0.0288 0.0201 0.0082
std 0.0000 0.0000 0.0025 0.0055 0.0014 0.0016 0.0017

DI-MOEA
M-HV 0.0012 0.0000 0.0237 0.0316 0.0244 0.0185 0.0126
std 0.0011 0.0000 0.0030 0.0020 0.0010 0.0014 0.0017

NSGA-III
M-HV 0.0148 0.0000 0.0268 0.0342 0.0270 0.0199 0.0170
std 0.0020 0.0000 0.0029 0.0013 0.0018 0.0016 0.0010

NSGA-II
M-IGD 1.7202 14.7243 0.3951 0.3031 0.2731 0.3208 0.4846
std 0.2541 0.1769 0.0392 0.0343 0.0164 0.0289 0.0312

DI-MOEA
M-IGD 0.8730 15.1172 0.4910 0.2939 0.3418 0.4061 0.4831
std 0.1485 0.2099 0.0619 0.0269 0.0244 0.0329 0.0439

NSGA-III
M-IGD 0.4606 15.0148 0.3897 0.2752 0.3204 0.4009 0.4314
std 0.0433 0.1881 0.0615 0.0186 0.0265 0.0393 0.0335

UF13 Five objective (NE = 300000)

NSGA-II
M-HV 0.6937 0.5041 0.7410 0.7424 0.7177 0.7065 0.6994
std 0.0079 0.1742 0.0096 0.0070 0.0091 0.0084 0.0084

DI-MOEA
M-HV 0.6611 0.4625 0.7343 0.7152 0.6590 0.6567 0.6589
std 0.0063 0.1580 0.0064 0.0119 0.0073 0.0067 0.0071

NSGA-III
M-HV 0.6498 0.4523 0.7164 0.7226 0.7023 0.6703 0.6532
std 0.0130 0.1017 0.0048 0.0108 0.0085 0.0106 0.0077

NSGA-II
M-IGD 1.4761 1.3108 1.4316 1.3805 1.4656 1.4391 1.4181
std 0.1315 0.2267 0.0565 0.0857 0.0664 0.1572 0.1029

DI-MOEA
M-IGD 1.5448 1.5031 1.5151 1.5481 1.7512 1.6351 1.5934
std 0.0473 0.4180 0.0533 0.0646 0.0384 0.0667 0.0399

NSGA-III
M-IGD 1.8698 1.6030 1.6324 1.5813 1.6675 1.7950 1.8527
std 0.1842 0.1835 0.0285 0.0658 0.0969 0.1457 0.1245

UF13 Five objective - Half budget (NE = 150000)

NSGA-II
M-HV 0.6687 0.5016 0.7259 0.7170 0.6915 0.6831 0.6738
std 0.0041 0.1749 0.0092 0.0058 0.0042 0.0047 0.0057

DI-MOEA
M-HV 0.6457 0.3427 0.7254 0.7002 0.6513 0.6481 0.6497
std 0.0045 0.2041 0.0044 0.0133 0.0056 0.0053 0.0057

NSGA-III
M-HV 0.6432 0.4702 0.7073 0.7045 0.6770 0.6579 0.6417
std 0.0086 0.0996 0.0074 0.0076 0.0103 0.0071 0.0056

NSGA-II
M-IGD 1.5720 1.3736 1.5455 1.5074 1.5968 1.5746 1.5262
std 0.0946 0.1703 0.0638 0.0649 0.0786 0.1135 0.0860

DI-MOEA
M-IGD 1.6609 1.5321 1.5939 1.6311 1.8048 1.7286 1.6403
std 0.0557 0.3781 0.0268 0.0781 0.0509 0.0794 0.0613

NSGA-III
M-IGD 1.8931 1.7553 1.6824 1.6832 1.8163 1.8976 1.9725
std 0.1238 0.2361 0.0456 0.0376 0.0924 0.1200 0.0562
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Figure 3.9: Pareto front approximations of (concave & convex) DTLZ2 obtained by the
cone with different rotation angles on different edges.

from original DI-MOEA. The blue, green and red points in the top image show the

results when only F3, F2, F1 of the standard Pareto cone is rotated outside by 30◦

(π/6) respectively and the other two edges of the cone remain. In the bottom image,

the rotation angle is 22.5◦ (π/8) on the extended edge and the other edges are the

same as those of the Pareto cone. Under the condition that the original Pareto front

is concave, it can be observed that the achieved Pareto front focuses on a different

corner and the side right against the corner of the entire Pareto front when only one

edge of the cone is rotated. Moreover, the smaller the angle, the larger the covered

Pareto front area. The right two images in Figure 3.9 present the results on the convex

DTLZ2 problem. The points with different colors in the top image, again, show the

Pareto fronts when only one edge of the cone is rotated and the rotation angle is 45◦

(π/4). It can be seen that the solutions focus on different corners. The bottom image

shows again when the rotation angle is larger, the Pareto front can be narrowed down

and concentrate more on the corner. The literature of the preference-based MOEAs

mostly focus on the knee or central region of the Pareto front, however, the edge-
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rotated cones make it possible to obtain preferred solutions if the “corner” regions are

interested, i.e., the edges of the cone are rotated by different angles to express the

preference on different objectives.

3.2.5 Conclusion and Future Work

The edge-rotated cone is generated by simply rotating the edges of the Pareto cone.

The edge-rotated cone order, when used as the ranking criterion by MOEAs, can rank

the Pareto incomparable solutions into different layers. Hence, the selection pressure

toward the Pareto front can be strengthened and the convergence of the algorithm can

be accelerated. To avoid neglecting the diversity, the edge-rotated cone order is de-

signed to work together with the standard Pareto order in MOEAs. After testing the

edge-rotated cones with various rotation angles on multi-objective and many-objective

optimization problems and comparing their performance with the original MOEAs, it

can be seen that many-objective optimization can really benefit from the edge-rotated

cones. To be specific, a cone with a relatively small rotation angle (> 3◦, e.g., 6◦) can

almost always improve the performance of original algorithms. On many-objective op-

timization problems, the best behavior usually appears when an intermediate rotation

angle (e.g., 15◦) is adopted. However, on multi-objective problems, the rotation angles

which can achieve the best performance are usually smaller. In the experiment, it can

also be observed that the performance of NSGA-II integrating the edge-rotated cone

can reach the performance of NSGA-III in some cases. Moreover, when the algorithm

uses a small computing budget and edge-rotated cones, it can achieve better behavior

than when the algorithm uses a large budget but without edge-rotated cones.

From the experimental results, it can be seen that a smaller rotation angle is more

suitable in low dimensions than in high dimensions. The reason is high dimensional

problems need strong convergence. Otherwise, it is difficult to find a good Pareto

front approximation. Therefore, a larger rotation angle is needed by many-objective

problems. However, a larger rotation angle also leads to the focus of the search on a

smaller region of the Pareto front (Please refer to Figure 3.9), MOEAs then need to

find a good balance between the convergence and coverage to avoid that the obtained

solution set covers only a part of region of the Pareto front. It has also been found that

the properties of the problem determine the performance of a specific rotation angle

more than the objective number. For example, the rotation angle which can achieve

the best performance on DTLZ1 problems is always higher than on other problems,

no matter the number of objectives is three, four or eight, and no matter whether the
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edge-rotated cone is integrated in NSGA-II or NSGA-III. The reason behind this is

that the Pareto front of DTLZ1 problems is linear. All points on the linear Pareto

front can be found even when the rotation angle is large. Therefore, a large rotation

angle can be used to improve the convergence ability of MOEAs without deteriorating

the coverage of the Pareto front. However, when the Pareto front is non-linear, it is

possible that only a part of the Pareto front can be obtained by a large rotation angle.

In future, the mechanism that relates the properties of the problem with the rotation

angle should be researched more. Furthermore, when the edges of the Pareto cone are

rotated by different angles, the obtained Pareto front approximation can focus on the

different region of the entire Pareto front, and these “unsymmetrical” cones are very

promising to be used when exists different emphasis on the Pareto front. However,

further research on its ability on articulating the preference on both multi-objective

and many-objective optimization should be done. In general, the use of cone orders to

formulate preferences based on trade-off rates and angles will be a topic that deserves

also attention for problems with a larger number of objectives and tools to better

guide users in choosing their preferences will be of crucial importance to improve

applicability in practice.
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Chapter 4

Preference-based

Multi-objective Evolutionary

Algorithms

With the MOEAs, the entire Pareto front of a multi-objective optimization problem

can be approximated. However, finding a well-distributed set of solutions on the

Pareto front requests a large population size and computational effort. At the same

time, the final goal of EMO is to help the DM to find solutions which match his/her

preferences most, and the DM may only pay attention to a smaller set of Pareto

optimal solutions. Therefore, integrating preferences in solving MOPs has become the

subject of intensive studies of EMO. In other words, instead of spreading a limited

size of individuals across the entire Pareto front, the search for solutions will be only

guided towards the preference region.

The existing preference-based optimization methods can be classified into three

categories according to the time when preference information is incorporated, i.e., a

priori, interactive, and a posteriori methods. In a priori methods, the DM articulates

preference information before the optimization process. In a posteriori methods, a

set of Pareto optimal solutions is obtained first, and then the DM selects the most

preferred ones among them. In interactive methods, the DM participates in the op-

timization process and directs the search according to his/her preferences. With the

increasing understanding of the problem as the optimization proceeds, DMs are able

to fine tune their preferences according to the obtained solutions in the optimization
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process.

The preference based multi-objective evolutionary algorithms drive the population

towards the region(s) of interest (ROI). The definition of the ROI depends on the way

how the DM articulates his/her preference information. The preference information

can be represented as the reference point(s) (e.g., [30, 43]); preference region(s) (e.g.,

[68, 79]), reference direction(s) (e.g., [28]); light beams (e.g., [27]), ranking (e.g., [44]),

trade-offs (e.g., [95]), etc. However, the essence of preference information is to imply

the ROI which allows a more focused search, thus to save computational resources.

This chapter is related to answer RQ3. First, a method that incorporates target

region(s) into the core of the optimization process is proposed in Section 4.1. Then, in

Section 4.2 to reduce the burden of the DM, an automatic preference based algorithm

is proposed and integrated in DI-MOEA. In this algorithm, the preference region is

generated automatically and narrowed down step by step to benefit its accuracy.

4.1 Target Region Based MOEAs

A target region based multi-objective evolutionary algorithm framework is proposed

to find a more fine-grained resolution of a target region without exploring the whole

set of Pareto optimal solutions. The idea of the target region is to first present a

rough approximation of the Pareto front, then let the DM decide which region of

interest to zoom in. Therefore, the target region is assumed to be the preference region

according to the DM. The algorithm framework has been combined with SMS-EMOA,

R2-EMOA, NSGA-II to form three target region based multi-objective evolutionary

algorithms: T-SMS-EMOA, T-R2-EMOA and T-NSGA-II (where T stands for target).

NSGA-II is a frequently-used Pareto dominance-based MOEA; SMS-EMOA [9]

and R2-EMOA [104] are indicator-based approaches which use performance measures

(indicators) on the quality of the PF approximations to guide the search. The hyper-

volume is used in SMS-EMOA and the R2 indicator [55] is used in R2-EMOA. These

two indicators measure both convergence and diversity of a PF approximation.

The R2 indicator of a solution set A is defined as

R2(A,Λ, i) =
1

|Λ|
∑
λ∈Λ

min
a∈A
{ max
j∈{1,...,m}

{λj |ij − aj |}}. (4.1)

Here i is the ideal point and m is the objective number, λ = (λ1, ..., λd) ∈ Λ is

a given set of weight vectors. Usually, the weight vectors are chosen uniformly dis-

tributed over the weight space, for example, for m = 2 objectives, Λk = (0, 1; 1
k−1 , 1−
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1
k−1 ;

2
k−1 , 1−

2
k−1 ; ...; 1, 0) denotes k uniformly distributed weights in the space [0, 1]2.

The three proposed target region based algorithms have been tested with rectan-

gular and spherical target regions on some benchmark problems, including continu-

ous problems and discrete problems. Moreover, the proposed algorithms have been

enhanced to support multiple target regions and preference information based on a

target point or multiple target points.

The remainder of this section is organized as follows. In Section 4.1.1, the proposed

algorithms are described. The experimental results are reported in Section 4.1.2. The

details and graphical results of enhanced algorithms are presented in Section 4.1.3.

Section 4.1.4 concludes the work with the summary and outlook.

4.1.1 Basic Algorithms

In the proposed algorithms, i.e., T-SMS-EMOA, T-R2-EMOA and T-NSGA-II, three

ranking criteria: 1. non-dominated sorting; 2. performance indicator (Hypervolume

in T-SMS-EMOA, R2 in T-R2-EMOA) and crowding distance in T-NSGA-II; 3. the

Chebyshev distance to the target region, work together to achieve a well-converged and

well-distributed set of Pareto optimal solutions in the target region using preference

information provided by the DM. The Chebyshev distance speeds up evolution toward

the target region and is computed as the distance to the center of the target region.

The second level ranking criterion: hypervolume, R2 indicator or crowding dis-

tance, is used as a diversity mechanism and measured based on coordinate transfor-

mations using desirability functions (DFs). The concept of desirability is introduced

by Harrington [56] in the context of multi-objective industrial quality control and the

approach of expressing the preferences of the DM using DFs is suggested by Wagner

and Trautmann [112]. DFs map the objective values to desirabilities which are nor-

malized values in the interval [0, 1], where the larger the value, the more satisfying the

quality of the objective value. The Harrington DF [56] and Derringer-Suich DF [100]

are two most common types of DFs. By mapping the objective values to desirabili-

ties according to preference information, both of these two DFs can result in biased

distributions of the solutions on the PF. In the proposed algorithms, a simple DF 4.2

is used and it classifies the domain of the objective function into only two classes,

“unacceptable” and “acceptable”.

D(x) =

1 x is in the target region,

0 x is not in the target region.
(4.2)
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The desirability here is for a solution. Solutions out of the target region are consid-

ered as unacceptable solutions and their desirabilities are assigned to be 0; at the same

time, all solutions inside the target region are assumed acceptable and of equal impor-

tance, their desirabilities are assigned to be 1. For solutions with desirability 0, their

second level ranking criterion is assigned to be 0 and for solutions with desirability 1,

their second level ranking criterion needs to be calculated further. Since only solutions

in the target region are retained, an approach is derived to simplify the calculation of

the indicator values and realize a reference point free version of indicators [38], which

is coordinate transformation. To be specific, the target region is treated as a new

coordinate space of which the origin being the lower bound. For the maximization

problem in T-SMS-EMOA or the minimization problem in T-R2-EMOA, a coordinate

transformation is performed for the i-th objective as:

Cti(x) = fi(x)− LB(fi). (4.3)

For minimization problem in T-SMS-EMOA or the maximization problem in T-R2-

EMOA, coordinate transformation is performed for the i-th objective as:

Cti(x) = UB(fi)− (fi(x)− LB(fi)) (4.4)

where LB(fi) and UB(fi) are the lower bound and upper bound of the i-th objective

in the target region predefined by the DM.

The reason for distinguishing the maximization and minimization problem in co-

ordinate transformation is that the origin of the new coordinate space (i.e., the lower

bound of the target region) is adopted as the reference point when calculating the

indicator values. In T-SMS-EMOA, the worst point in the target region is chosen as

the reference point when calculating hypervolume. On the contrary, the ideal point

is chosen as the reference point when calculating R2 indicator in T-R2-EMOA. After

completing coordinate transformation, the calculation of the second ranking criterion

is implemented only in the target region instead of the whole coordinate system. It

does make sense because the target region is the desired space to the DM. No refer-

ence point is needed in the calculation of crowding distance, therefore, any of the two

formulas of coordinate transformation can be used in T-NSGA-II. Figure 4.1 shows

an example of obtaining solutions in the target region by the proposed approach.

The target region is used to express the preference information from the DM, the

shape of the target region does not necessarily need to be rectangular, it could as
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Figure 4.1: An example of obtaining solutions in the target region by proposed approach.

well be a circle, an ellipse or in other shapes as long as it can be confirmed efficiently

whether or not a solution is in the target region. For instance, if the DM wants the

solutions to be restricted into a sphere, s/he can specify the center point and radius

of the sphere, the solution set can be achieved in the sphere.

T-SMS-EMOA

The details of T-SMS-EMOA are given in Algorithm 3.

The framework of T-SMS-EMOA is based on the framework of SMS-EMOA. How-

ever, after the step of non-dominated sorting, all solutions in the worst ranked front

are partitioned into two parts (i.e., acceptable and unacceptable) by the DF. Solutions

in the first part have desirability 0 and their hypervolume contributions are assigned

to be 0. Solutions in the second part have desirability 1 and coordinate transformation

is conducted on each objective of each solution in this part; afterwards, their hypervol-

ume contributions are calculated in the new coordinate system and the origin in the

new coordinate system is adopted as the reference point. The other difference between

T-SMS-EMOA and SMS-EMOA is the involvement of the Chebyshev distance. In the

early iterations, the existence of individuals in the target region is low, the Chebyshev

distance works on attracting solutions towards the target region.
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Algorithm 3 T-SMS-EMOA

1: P0 ← init(); //Initialize random population
2: t← 0;
3: while Stop criterion not satisfied() do
4: qt+1 ← Gen(Pt); //Generate offspring by variation
5: Pt ← Pt ∪ {qt+1};
6: {R1, · · · , Rv} ← Nondominated-sort(Pt);
7: ∀x ∈ Rv : compute DCh(x); //Chebyshev distance to center of target region
8: Rv1 ∪Rv2 ← Rv; //Solutions not in the target region → Rv1; others → Rv2

9: ∀x ∈ Rv1 : HC(x)← 0; //Hypervolume contribution
10: Rv2 ← Coordinate Transformation(Rv2);
11: ∀x ∈ Rv2 : HC(x)← HV (Rv2)−HV (Rv2\x);
12: if unique argmin{HC(x) : x ∈ Rv} exists then
13: x∗ ← argmin{HC(x) : x ∈ Rv};
14: else
15: x∗ ← argmax{DCh(x) : x ∈ Rv}; //In case of tie, choose randomly
16: end if
17: Pt+1 ← P\{x∗};
18: t← t+ 1;
19: end while

T-R2-EMOA

The details of T-R2-EMOA are given in Algorithm 4.

R2-EMOA is extended to T-R2-EMOA in the same way SMS-EMOA is extended

to T-SMS-EMOA. The formula of coordinate transformation used in T-R2-EMOA,

however, is opposite to the formula used in T-SMS-EMOA for the same problem since

the origin of the new coordinate system is used as the reference point in the measure

of both hypervolume indicator in T-SMS-EMOA and R2 indicator in T-R2-EMOA.

T-NSGA-II

The details of T-NSGA-II are given in Algorithm 5.

In T-NSGA-II, the size of the offspring population is the same as the size of the

parent population, which is the specified population size. The next population is gen-

erated by choosing the best half solutions from the merged population: starting with

points in the first non-domination front, continuing with points in the second non-

domination front, and so on; if by adding all points in one front, the population size

exceeds the specified population size, picking points in the descending order of crowd-

ing distance; if by adding all points with the same crowding distance, the population
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Algorithm 4 T-R2-EMOA

1: P0 ← init(); //Initialize random population
2: t← 0;
3: while Stop criterion not satisfied() do
4: qt+1 ← Gen(Pt); //Generate offspring by variation
5: Pt ← Pt ∪ {qt+1};
6: {R1, · · · , Rv} ← Nondominated-sort(Pt);
7: ∀x ∈ Rv : compute DCh(x); //Chebyshev distance to center of target region
8: Rv1 ∪Rv2 ← Rv; //Solutions not in the target region → Rv1; others → Rv2

9: ∀x ∈ Rv1 : r(x)← 0; //R2 indicator contribution
10: Rv2 ← Coordinate Transformation(Rv2);
11: ∀x ∈ Rv2 : r(x)← R2(Rv2\{x}; Λ; i); //i is ideal point
12: if unique argmin{r(x) : x ∈ Rv} exists then
13: x∗ ← argmin{r(x) : x ∈ Rv};
14: else
15: x∗ ← argmax{DCh(x) : x ∈ Rv}; //In case of tie, choose randomly
16: end if
17: Pt+1 ← P\{x∗};
18: t← t+ 1;
19: end while

Algorithm 5 T-NSGA-II

1: P0 ← init(); //Initialize random population
2: t← 0;
3: while Stop criterion not satisfied() do
4: Qt ← Gen(Pt); //Generate offsprings by variation
5: Pt ← Pt ∪Qt;
6: ∀x ∈ Pt : compute DCh(x); //Chebyshev distance to center of target region
7: {R1, · · · , Rv} ← Nondominated-sort(Pt);
8: for i = 1, · · · , v do
9: Ri1 ∪Ri2 ← Ri; //Solutions not in the target region → Ri1; others → Ri2

10: ∀x ∈ Ri1 : Dc(x)← 0; //Crowding distance
11: Ri2 ← Coordinate Transformation(Ri2);
12: ∀x ∈ Ri2 : compute Dc(x);
13: end for
14: Pt+1 ← half the size of Pt based on rank, Dc and then DCh;
15: t← t+ 1;
16: end while
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size still exceeds the specified population size, picking points in the ascending order of

the Chebyshev distance. Unlike T-SMS-EMOA and T-R2-EMOA, no reference point

is needed in T-NSGA-II.

4.1.2 Experimental Study

In this part, experiments are conducted on some benchmark problems, including ZDT,

DTLZ and knapsack problems, to investigate performance of the proposed algorithms.

In all experiments, the SBX operator with an index of 15 and polynomial mutation

with an index 20 are used. The crossover and mutation probabilities are set to 1

and 1/L, where L is the number of variables. The population size and the number

of evaluations are chosen to be dependent on the complexity of the test problem.

Table 4.1 shows the population size and the number of evaluations used on different

test problems.

Table 4.1: Population Size and Number of Evaluation

Problems Population Size NE
ZDT1 100 10000
ZDT2-3 100 20000
DTLZ1-2 100 30000

knapsack-250-2
knapsack-500-2

200 200000

knapsack-250-3
knapsack-500-3

250 500000

Bi-objective ZDT Problems

Three bi-objective ZDT problems are considered. The 30-variable ZDT1 problem

has a convex Pareto front which is a connected curve and can be determined by

f2(x) = 1 −
√
f1(x). The true PF spans continuously in f1 ∈ [0, 1]. Four different

target regions are chosen to observe the performance of T-SMS-EMOA, T-R2-EMOA

and T-NSGA-II. The first target region covers the entire PF with the lower bound (0,

0) and the upper bound (1, 1). The second target region restricts preferred solutions

to the central part of the PF and its lower bound is (0.1, 0.1), upper bound is (0.5,

0.5). The third and fourth target regions take two ends of the PF respectively and

have their lower bounds to be (0, 0.6) and (0.6, 0), upper bounds to be (0.3, 1) and

(1, 0.3).

Figure 4.2 ∼ Figure 4.4 show PF approximations obtained from the proposed

algorithms on the four different target regions in a random single run. The target
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Figure 4.2: Representative PF approximations of T-SMS-EMOA on ZDT1.

regions are highlighted by gray boxes. It is observed that all three algorithms can

find well-distributed and well-converged solutions on the PF in the target regions and

no outliers exist. The solution set obtained by T-SMS-EMOA is more uniform than

the solution sets obtained by the other two algorithms. It is also observable from the

upper left graph in Figure 4.3 that the R2 indicator has a bias towards the center of

the PF.

When examining the performance by the hypervolume metric, the hypervolume

value of the obtained solution set is calculated within the target region by normaliz-

ing the values of each objective to the values between 0 and 1 and using the lower

bound of the target region as the reference point for the maximization problem and

the upper bound of target region as the reference point for the minimization problem.

Table 4.2 shows the median and variance of hypervolume over 30 runs. The statistical

results correspond to the observation that T-SMS-EMOA outperforms T-R2-EMOA

and T-NSGA-II slightly. The original SMS-EMOA, R2-EMOA and NSGA-II are also

involved in the comparison and the results of the original MOEAs are obtained by

firstly presenting the target region as constraints in the description of the problem;
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Figure 4.3: Representative PF approximations of T-R2-EMOA on ZDT1.

and secondly, making a change in the description of the problem. It is demonstrated

that the new algorithms obtain higher hypervolume value than original MOEAs with

no constraint descriptions in the problem. Although the results of the proposed algo-

rithms are not better than original MOEAs with constraints on the range of objectives,

experiments show that the proposed algorithms can reduce computation time dramat-

ically on this problem.

In the table, the symbol of ∗ on the values for the same target region means

the medians of these algorithms are significantly indifferent. The Mann-Whitney U

test (also called the Mann-Whitney-Wilcoxon, Wilcoxon rank-sum test, or Wilcoxon-

Mann-Whitney test) is used to determine if the medians of different algorithms for the

same problem are significantly indifferent. The chances that the medians of T-SMS-

EMOA and T-R2-EMOA are indifferent have been observed.

Next, circle target regions are adopted on the 30-variable ZDT2 and ZDT3 prob-

lems. ZDT2 has a concave Pareto front and ZDT3 has a disconnected set of Pareto

front which consists of five non-contiguous convex parts. A circle with a center point

(1, 0) and radius 0.5 intersects the whole PF of ZDT2 at its one end and a circle with
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Figure 4.4: Representative PF approximations of T-NSGA-II on ZDT1.

a center point (0.6, 0.5) and radius 0.3 intersects the whole PF at its central part.

The two different circles are chosen as examples for target regions on ZDT2 problem.

Experiments for a circle with a center point (0.3, 0.1) and radius 0.3 as target region

are conducted on ZDT3 problem.

Figure 4.5 shows PF approximations from T-SMS-EMOA in these target regions.

Similar figures can also be achieved by T-R2-EMOA and T-NSGA-II. In the graph,

the target regions are purple circles and center points are red points. Orange points

denote the results obtained from T-SMS-EMOA with provided preference information.

The blue points show the entire true PF of ZDT2 and ZDT3 problems. Statistical

results of the median of hypervolume for three algorithms in 30 independent runs on

each target region are shown in Table 4.3.

Tri-objective DTLZ Problems

Next, tri-objective DTLZ1 and DTLZ2 problems are involved in the experiments.

The 7-variable DTLZ1 problem has a linear Pareto optimal front which is a three-
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Table 4.2: The median, variance of hypervolume and average computation time (Sec.) on
ZDT1 with respect to different target regions and different algorithms

New Algorithms
T-SMS-EMOA T-R2-EMOA T-NSGA-II

Target Region Metric

(0,0)(1,1)
HV(m) 0.6580 0.6566 0.6425
Variance 6.4e-06 1.4e-06 1.0e-05
Time 24.99 74.01 0.21

(0.1,0.1)(0.5,0.5)
HV(m) 0.1640∗ 0.1638∗ 0.1543
Variance 1.4e-06 1.5e-06 8.9e-06
Time 10.30 23.61 0.19

(0,0.6)(0.3,1)
HV(m) 0.8110 0.8103 0.7936
Variance 5.9e-06 6.0e-06 4.4e-05
Time 12.86 31.78 0.20

(0.6,0)(1,0.3)
HV(m) 0.6255∗ 0.6233∗ 0.6079
Variance 8.9e-06 6.7e-06 4.5e-05
Time 11.45 27.92 0.21

Original Algorithms (Constraints) SMS-EMOA R2-EMOA NSGA-II

(0,0)(1,1)
HV(m) 0.6621 0.6610 0.6609
Variance 8.9e-11 1.2e-08 5.3e-08
Time 108.57 314.99 0.25

(0.1,0.1)(0.5,0.5)
HV(m) 0.1694 0.1693 0.1690
Variance 1.6e-11 1.1e-11 6.2e-09
Time 106.32 274.05 0.23

(0,0.6)(0.3,1)
HV(m) 0.8197 0.8185 0.8191
Variance 1.6e-08 4.6e-08 2.9e-08
Time 105.73 271.00 0.21

(0.6,0)(1,0.3)
HV(m) 0.6364 0.6348 0.6356
Variance 3.2e-09 2.2e-08 3.8e-08
Time 101.82 283.3 0.22

Original Algorithms SMS-EMOA R2-EMOA NSGA-II

(0,0)(1,1)
HV(m) 0.6558 0.6566 0.6362
Variance 1.6e-06 8.5e-07 3.5e-05
Time 26.77 73.34 0.21

(0.1,0.1)(0.5,0.5)
HV(m) 0.1545 0.1585 0.1236
Variance 4.7e-06 2.2e-06 4.4e-05
Time 24.17 74.85 0.20

(0,0.6)(0.3,1)
HV(m) 0.8012 0.7972 0.7649
Variance 6.3e-06 6.4e-06 0.00013
Time 24.85 71.90 0.20

(0.6,0)(1,0.3)
HV(m) 0.6119∗ 0.6110∗ 0.5604
Variance 2.3e-05 7.4e-06 0.00014
Time 26.29 78.93 0.20

Table 4.3: The median hypervolume of ZDT2 and ZDT3 with a circular target region.

Algorithm
T-SMS-EMOA T-R2-EMOA T-NSGA-II

Target Region
ZDT2 (1,0) 0.5 0.3168 0.3167 0.3159

ZDT2 (0.6,0.5) 0.3 0.3257 0.3256 0.3234
ZDT3 (0.3,0.1) 0.3 0.3377 0.3375 0.3365
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Figure 4.5: Representative PF approximations of T-SMS-EMOA on ZDT2 and ZDT3 with
respect to different circular target regions.

dimensional, triangular hyperplane. A sphere with the center point (0.3, 0.3, 0.3) and

radius 0.3 is defined as the target region for tri-objective DTLZ1 problem. The 11-

variable DTLZ2 problem has a three-dimensional concave Pareto front. A box with

the lower bound (0.4, 0.4, 0.2) and upper bound (0.8, 0.8, 0.8) is defined as the target

region for DTLZ2 problem.

Figure 4.6 shows PF approximation of tri-objective DTLZ1 problem. The graphs

in the upper row are solutions from T-SMS-EMOA, graphs in the middle row are

solutions from T-R2-EMOA and graphs in the lower row are solutions from T-NSGA-

II. The blue points show the true entire PFs. The transparent spheres depict target

regions and red points are solutions obtained by T-SMS-EMOA, T-R2-EMOA and T-

NSGA-II. It can be observed that T-SMS-EMOA behaves the best in three algorithms.

Statistical results of the median of hypervolume in Table 4.4 are coincident with our

observation.

Figure 4.7 shows PF approximations of tri-objective DTLZ2 problem. The trans-
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Figure 4.6: Representative PF approximations of T-SMS-EMOA(the upper row), T-R2-
EMOA(the middle row) and T-NSGA-II(the lower row) with a spherical target region on
tri-objective DTLZ1 problem.

Table 4.4: The median hypervolume of tri-objective DTLZ1 problem with a spherical
target region.

Algorithm
T-SMS-EMOA T-R2-EMOA T-NSGA-II

Target Region
(0.3,0.3,0.3) 0.3 0.8028 0.7992 0.7823
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parent boxes depict target regions and red points are solutions obtained by T-SMS-

EMOA. Statistical results of the median of hypervolume for three algorithms and

original MOEAs with constraints description in 30 independent runs on cubic target

regions are shown in Table 4.5. It is observable that the best result is achieved by

T-SMS-EMOA and all new algorithms outperform original MOEAs except for R2-

EMOA.

Figure 4.7: Representative PF approximations from T-SMS-EMOA in a cubic target region
on tri-objective DTLZ2 problem.

Table 4.5: The median hypervolume on tri-objective DTLZ2 problem with a cubic target
region.

MOEA T-SMS T-R2 T-NSGA SMS- R2- NSGA
Target Region -EMOA -EMOA -II EMOA EMOA -II
(0.4,0.4,0.2)
(0.8,0.8,0.8)

0.4632 0.4303 0.4189 0.3369 0.4351 0.4185

75



4.1. Target Region Based MOEAs

Knapsack Problems

Knapsack Problems have been studied first by Dantzig in the late 1950′s [19]. The

problem is a general, understandable, and one of the most representative discrete

optimization problems. At the same time, it is difficult to solve (NP-hard). The Multi-

objective 0/1 Knapsack Problems from Zitzler and Thiele [142] are used as discrete

test problems in this part. Formally, the multi-objective 0/1 knapsack problem can

be formulated as the following maximization problem:

maximize f(x) = (f1(x), f2(x), · · · , fm(x))

subject to

n∑
j=1

wijxj ≤ ci, i = 1, · · · ,m

xj ∈ {0, 1}, j = 1, · · · , n

where fi(x) =

n∑
j=1

pijxj , i = 1, · · · ,m.

Here n is the number of items and m is the number of knapsacks, wij is the weight

of item j according to knapsack i, pij is the profit of item j according to knapsack i

and ci is the capacity of knapsack i. The Multi-objective 0/1 Knapsack Problem is to

find Pareto optimal vectors x = (x1, x2, · · · , xn) and xj = 1 when item j is selected

and xj = 0 otherwise.

Figure 4.8 shows solutions obtained in a random single run when the number of

knapsack is 2 and the number of items is 250. The results of SMS-EMOA, R2-EMOA

and NSGA-II give the entire PF approximations. The target region for T-SMS-EMOA,

T-R2-EMOA and T-NSGA-II is highlighted by the gray box. The lower bound is

(9000, 9000), the upper bound is (9800, 9800). It can be observed that the proposed

algorithms can find solutions in the target region except for several outliers from T-

NSGA-II.

Statistical results of the median of hypervolume are presented in Table 4.6. No

constraints of the target region are converted in the description of the problem for the

results of original MOEAs in the table. In the experiments, two and three objectives

are taken into consideration, in combination with 250 and 500 items. The test data

sets are from [142]. The target region of knapsack-250-2 is from (9000, 9000) to

(9800, 9800), of knapsack-250-3 is from (8500, 8500, 8500) to (10000, 10000, 10000),

of knapsack-500-2 is from (18000, 18000) to (20000, 20000), of knapsack-500-3 is from
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Figure 4.8: Representative PF approximations of knapsack-250-2 problem.

(17000, 17000, 17000) to (19000, 19000, 19000). The better results from the proposed

algorithms than from the original algorithms can be seen.

4.1.3 Enhanced Algorithms and Experiments

As mentioned before, the second ranking criterion (Hypervolume, R2 indicator or

crowding distance) in the proposed algorithms only works for solutions in the target

region, which means if the intersection of the target region and true PF is empty,

the second ranking criterion becomes useless. Under this condition, well-distributed

solutions can not be obtained because solutions are guided only by non-dominated

sorting and the Chebyshev distance. In addition, if multiple target regions are spec-

ified, sometimes the obtained solutions only converge to one target region. Inspired

by some ideas from R-NSGA-II [30], two methods are adopted to overcome these

limitations and extend the proposed algorithms.
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Table 4.6: The median hypervolume of Knapsack problems with respect to different target
regions.

Algorithms T-SMS T-R2 T-NSG SMS- R2- NSGA
Problems -EMOA -EMOA A-II EMOA EMOA -II
Knapsack
-250-2

0.2117 0.2160 0.2230 0.2102 0.2099 0.1821

Knapsack
-250-3

0.0295 0.0296 0.0311 0.0204 0.0293 0.0085

Knapsack
-500-2

0.3273 0.3318 0.3230 0.3225 0.3272 0.2857

Knapsack
-500-3

0.1936 0.1855 0.1713 0.1699 0.1747 0.0718

Separate Population to Different Targets

The first method can attract the population to different targets and it is used in

the calculation of both the second ranking criterion (Hypervolume, R2 indicator or

crowding distance) and the third ranking criterion (the Chebyshev distance). The aim

of this method is to support multiple targets.

Taking R2 indicator as an example, after coordinate transformation, for all target

regions, R2 indicator values of all solutions on the worst ranked front are calculated and

the solutions are sorted in descending order of R2 indicator. Thereafter, R2 indicator

values are replaced by R2 indicator ranks: solutions with the largest R2 indicator

values for all target regions are assigned the same largest R2 indicator rank, solutions

having next-to-largest R2 indicator values for all target regions are assigned the same

next-to-largest R2 indicator rank, and so on, until the number of solutions which have

been assigned the R2 indicator rank for each target region reaches its proportion in

population. For the solutions assigned more than one ranks, the largest rank number

is kept as its final R2 indicator rank. If the even distribution of solutions in all target

regions is expected, the proportion of each target region should be divided equally

between all target regions. For example, when the number of target regions is two,

the proportion for each target region should be 1/2 and the number of solutions being

assigned a R2 indicator rank should reach half of the size of the worst ranked front.

Lastly, for solutions that haven’t been assigned a R2 indicator rank, their R2 indicator

values should be mapped to values smaller than the smallest R2 indicator rank. One

way to do this is to calculate their R2 indicator values in the combined region of all

target regions and normalize them to values lower than all R2 indicator ranks. By this

way, solutions with larger R2 indicator values in each target region are emphasized

more.
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Figure 4.9: An example of assigning Chebyshev ranks to solutions on the current worst
ranked front.

The Chebyshev rank is used in place of the Chebyshev distance when the method

is added to work with the third ranking criterion. Firstly, the Chebyshev distances of

each solution to all targets are calculated. The solutions are sorted in ascending order

of distance. The Chebyshev rank of the solutions closest to all targets is assigned to

be the same smallest rank of zero, the Chebyshev rank of the solutions having next-to-

smallest Chebyshev distance is assigned to be the same next-to-smallest rank of one,

and so on, until the number of solutions which have been assigned the Chebyshev rank

for each target reaches its proportion in population. Similarly, the lowest rank of a

solution is used as its Chebyshev distance if a solution is close enough to more than

one target. Figure 4.9 shows an example of assigning Chebyshev ranks to solutions

on the current worst ranked front. In the example, red Chebyshev ranks are assigned

by sorting solutions in ascending order of the Chebyshev distance to Target Region 1

and blue Chebyshev ranks are assigned by sorting solutions in ascending order of the

Chebyshev distance to Target Region 2, solutions with lower ranks are encouraged to

remain in the population. The worst solution will be chosen from two solutions having

the Chebyshev rank 3 randomly.
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Improve Diversity

Under the circumstance that the second ranking criterion (Hypervolume, R2 indicator

or crowding distance) doesn’t work well, the diversity is lost and the solution set

would converge to one point when the number of evaluations is high enough. To

solve the problem, a parameter ϵ is introduced in the proposed algorithms and works

with the third ranking criterion (the Chebyshev distance) to improve the diversity.

Firstly, the solution with the shortest Chebyshev distance to the target is picked out.

Thereafter, all other solutions having a Chebyshev distance less than the sum of the

current shortest Chebyshev distance and ϵ are assigned a relatively large distance to

discourage them to remain in the population. Then, another solution (not already

considered earlier) is picked and the above procedure is performed again. This way,

only one solution within a ϵ-neighborhood is emphasized and the diversity of the

solution set is improved.

Figure 4.10: Illustration of ϵ parameter.

Figure 4.10 illustrates how the parameter ϵ takes effect when involved in the cal-

culation of the Chebyshev distance. The Chebyshev distance between two vectors is

the greatest of their differences along any coordinate dimension. Therefore, in the

graph, the Chebyshev distances of solutions on the current font to the center point

are distances along f2. Apparently, point a is the point with the shortest Chebyshev

distance to the center point, point b has a Chebyshev distance less than the sum of a’s

80



Chapter 4. Preference-based Multi-objective Evolutionary Algorithms

Chebyshev distance and ϵ, thus, it will be assigned an relatively large distance value.

So will point d and e. Point b, d and e are discouraged to remain in the population.

Algorithm Structure

When using above two methods in basic algorithms, Algorithm 6, 7, and 8 show the

structures of enhanced algorithms.

Experiments on Multiple Target Regions

If multiple target regions of interest can be found simultaneously, the DM can make

a more effective selection towards finding the ultimate preferred solution(s). The

enhanced algorithms can guide the search toward multiple target regions. Three pair

of spherical target regions are used on tri-objective DTLZ1 problem separately to

demonstrate differences of results between T-SMS-EMOA (Figure 4.11), T-R2-EMOA

(Figure 4.12) and T-NSGA-II (Figure 4.13). The center point and radius of two target

regions are shown above each graph. The first pair of target regions have the same

radius and both center points are on the PF which is a three-dimensional, triangular

hyperplane. The second pair of target regions have the same radius, but one center

point is on the PF, the other is not. The third pair of target regions have different

radius, and both center points are on the PF. Experimental results over consecutive 30

runs show that all three algorithms can obtain uniform solutions in two target regions,

no outliers exist. When the assigned population size is 100, each target region obtains

50 solutions for all 30 runs. While when the number of runs increases to 50, the case

of 49 and 51 solutions in two regions also appears once.

In the above experiments, it has been specified that solutions are equally dis-

tributed in multiple target regions. For the population size of 100, this means that

there are 50 solutions in each target region. It is also possible that we hope for a

different proportion of solutions for each target region. For example, the real inter-

section areas of the third pair of target regions and the PF are obviously different.

Therefore, 1/4th of population size is specified as the number of obtained solutions

in the small intersection area and 3/4th of population size is specified as the number

of obtained solutions in the larger intersection area. Figure 4.14 shows the difference

between equally distributed solutions (left graph) and solutions with newly-specified

proportion for each target region (right graph) of T-SMS-EMOA.

Furthermore, when there is no intersection between the target region and the PF,

the enhanced algorithms can still obtain solutions close to the target region. Fig-
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Algorithm 6 T-SMS-EMOA Enhanced version

1: P0 ← init(); //Initialize random population
2: t← 0;
3: while Stop criterion not satisfied() do
4: qt+1 ← Gen(Pt); //Generate offspring by variation
5: Pt ← Pt ∪ {qt+1};
6: {R1, · · · , Rv} ← Nondominated-sort(Pt);
7: for all targets do
8: ∀x ∈ Rv : compute DCh(x); //Chebyshev distance to current target
9: R′

v ← Rv; //Sorted in ascending order of DCh

10: for unlabeled x ∈ R′
v do //Start from the first solution in R′

v

11: Label(x);
12: for x′ ∈ R′

v \X do //X is the set of labeled points
13: if DCh(x

′) < DCh(x) + ϵ then
14: Label(x′); DCh(x

′)← relatively large value;
15: end if
16: end for
17: end for
18: Rv ← R′

v; //Sorted in ascending order of DCh

19: for pre-defined number of x ∈ Rv do
20: DCh(x)← DCh rank(x); //Start from the smallest; keep smaller rank
21: end for
22: end for
23: for unranked x ∈ Rv do
24: DCh(x)← Normalized DCh(x); //Normalized DCh >largest DCh rank
25: end for
26: for all targets do
27: Rv1∪Rv2 ← Rv; //solutions not in the target region→ Rv1; others→ Rv2

28: ∀x ∈ Rv1 : HC(x)← 0;
29: Rv2 ← Coordinate Transformation(Rv2);
30: ∀x ∈ Rv2 : HC(x)← HV (Rv2)−HV (Rv2\x);
31: R′

v ← Rv; //Sorted in descending order of HC values
32: for pre-defined number of x ∈ R′

v do
33: HC(x)← HC rank(x); //Start from the largest; keep larger rank
34: end for
35: end for
36: for unranked x ∈ Rv do
37: HC(x)← Normalized HC(x); //Normalized HC <smallest HC rank
38: end for
39: if unique argmin{HC(x) : x ∈ Rv} exists then
40: x∗ ← argmin{HC(x) : x ∈ Rv};
41: else
42: x∗ ← argmax{DCh(x) : x ∈ Rv}; //In case of tie, choose randomly
43: end if
44: Pt+1 ← P\{x∗}; t← t+ 1;
45: end while
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Algorithm 7 T-R2-EMOA Enhanced version

1: P0 ← init(); //Initialize random population
2: t← 0;
3: while Stop criterion not satisfied() do
4: qt+1 ← Gen(Pt); //Generate offspring by variation
5: Pt ← Pt ∪ {qt+1};
6: {R1, · · · , Rv} ← Nondominated-sort(Pt);
7: for all targets do
8: ∀x ∈ Rv : compute DCh(x); //Chebyshev distance to current target
9: R′

v ← Rv; //Sorted in ascending order of DCh

10: for unlabeled x ∈ R′
v do //Start from the first solution in R′

v

11: Label(x);
12: for x′ ∈ R′

v \X do //X is the set of labeled points
13: if DCh(x

′) < DCh(x) + ϵ then
14: Label(x′); DCh(x

′)← relatively large value;
15: end if
16: end for
17: end for
18: Rv ← R′

v; //Sorted in ascending order of DCh

19: for pre-defined number of x ∈ Rv do
20: DCh(x)← DCh rank(x); //Start from the smallest; keep smaller rank
21: end for
22: end for
23: for unranked x ∈ Rv do
24: DCh(x)← Normalized DCh(x); //Normalized DCh >largest DCh rank
25: end for
26: for all targets do
27: Rv1∪Rv2 ← Rv; //solutions not in the target region→ Rv1; others→ Rv2

28: ∀x ∈ Rv1 : r(x)← 0;
29: Rv2 ← Coordinate Transformation(Rv2);
30: ∀x ∈ Rv2 : r(x)← R2(P\{x}; Λ; i); //i is ideal point
31: R′

v ← Rv; //Sorted in descending order of R2 values
32: for pre-defined number of x ∈ R′

v do
33: r(x)← r rank(x); //Start from the largest, keep larger rank
34: end for
35: end for
36: for unranked x ∈ Rv do
37: r(x)← Normalized r(x); //Normalized r(x) <smallest r rank
38: end for
39: if unique argmin{r(x) : x ∈ Rv} exists then
40: x∗ = argmin{r(x) : x ∈ Rv};
41: else
42: x∗ = argmax{DCh(x) : x ∈ Rv}; //In case of tie, choose randomly
43: end if
44: Pt+1 ← P\{x∗}; t← t+ 1;
45: end while
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Algorithm 8 T-NSGA-II Enhanced version

1: P0 ← init(); //Initialize random population
2: t← 0;
3: while Stop criterion not satisfied() do
4: Qt ← Gen(Pt); //Generate offsprings by variation
5: Pt = Pt ∪Qt;
6: for all targets do
7: ∀x ∈ Pt : compute DCh(x); //Chebyshev distance to current target
8: P ′

t ← Pt; //Sorted in ascending order of DCh

9: for unlabeled x ∈ P ′
t do //Start from the first in P ′

t

10: Label(x);
11: for x′ ∈ P ′

t \X do //X is the set of points have been labelled
12: if DCh(x

′) < DCh(x) + ϵ then
13: Label(x′);
14: DCh(x

′)← relatively large value;
15: end if
16: end for
17: end for
18: Pt ← P ′

t ; //Sorted in ascending order of DCh

19: for pre-defined number of x ∈ Pt do
20: DCh(x)← DCh rank(x); //Start from the smallest; keep smaller rank
21: end for
22: end for
23: for unranked x ∈ Pt do
24: DCh(x)← Normalized DCh(x); //Normalized DCh >largest DCh rank
25: end for
26: {R1, · · · , Rv} ← Nondominated-sort(Pt);
27: for i = 1, · · · , v do
28: for all targets do
29: Ri1 ∪Ri2 ← Ri; //Solutions not in target region → Ri1; others → Ri2

30: ∀x ∈ Ri1 : Dc(x)← 0; //Crowding distance
31: Ri2 ← Coordinate Transformation(Ri2);
32: ∀x ∈ Ri2 : compute Dc(x);
33: R

′

i ← Ri; //Sorted in descending order of Dc

34: for pre-defined number of x ∈ R′
i do

35: Dc(x)← Dc rank(x); //Start from the largest Dc rank : |R′
i|; keep

larger rank if already assigned a rank.
36: end for
37: end for
38: for unranked x ∈ R′

i do
39: Dc(x)← Normalized Dc(x); //Normalized Dc(x) <smallestDc rank
40: end for
41: end for
42: Pt+1 ← half the size of Pt based on rank, Dc and then DCh;
43: t← t+ 1;
44: end while
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Figure 4.11: Representative PF approximations of T-SMS-EMOA with two spherical
target regions on tri-objective DTLZ1.
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Figure 4.12: Representative PF approximations of T-R2-EMOA with two spherical target
regions on tri-objective DTLZ1.
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Figure 4.13: Representative PF approximations of T-NSGA-II with two spherical target
regions on tri-objective DTLZ1.
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Figure 4.14: Representative PF approximations of T-SMS-EMOA with different solution
distribution in two spherical target regions on tri-objective DTLZ1.

ure 4.15 shows PF approximations for different target regions which don’t intersect

with the PF.

Experiments on Single Target Point

The enhanced algorithms are not only capable of obtaining solutions in the target

region, they also belong to reference point-based approaches. When the lower bound

and the upper bound of the target region specified in the algorithms are the same, the

target region shrinks to a target point. In this section, only results of T-SMS-EMOA

are presented, T-R2-EMOA and T-NSGA-II can obtain similar results. Figure 4.16

shows PF approximations of T-SMS-EMOA for different single target points: the point

around the PF, near the border, in the feasible area and in the infeasible area.

For three objective problem, the parameter ϵ plays an essential role in balancing

convergence and diversity of the solutions near the target point. Figure 4.17 shows PF

approximations of T-SMS-EMOA for one target point when the values of parameter ϵ

are different. The black point is the target point and red points are obtained solutions;

blue points indicate the entire PF. It is observed that when the parameter ϵ is smaller,

obtained solutions are denser and more concentrated.

Experiments on Multiple Target Points

The enhanced algorithms can also work on multiple target points. Increasing the

number of evaluations to 20000, Figure 4.18 shows PF approximations of T-SMS-
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Figure 4.15: Representative PF approximations of T-SMS-EMOA on tri-objective DTLZ2;
ϵ=0.001.
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Figure 4.16: Representative PF approximations of T-SMS-EMOA on ZDT1; ϵ=0.0001.

EMOA for two target points on ZDT1 problem when the values of parameter ϵ are

different. The red points are the target points and blue points are obtained solutions;

purple points indicate the entire PF.

Increasing the number of evaluations to 50000, Figure 4.19 shows PF approxima-

tions of T-SMS-EMOA for two target points on tri-objective DTLZ1 problem when

the values of parameter ϵ are different. The black points are the target points and red

points are obtained solutions; blue points indicate the entire PF.

4.1.4 Conclusion

In this part, a target region based multi-objective evolutionary approach has been pro-

posed. Three algorithms named T-SMS-EMOA, T-R2-EMOA and T-NSGA-II have

been instantiated when combining the proposed algorithm framework with original

SMS-EMOA, R2-EMOA and NSGA-II. These new algorithms have been applied to a

number of continuous and combinational benchmark problems with two or three ob-

jectives. Experimental results show that the proposed algorithms can guide the search

toward the preferred region on the Pareto optimal front. Almost no outliers appear
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Figure 4.17: Representative PF approximations of T-SMS-EMOA on tri-objective DTLZ1
problem for one target point: (0.25, 0.25, 0.25).
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Figure 4.18: Representative PF approximations of T-SMS-EMOA on ZDT1 for two target
points.

outside of the target region. In addition, these basic algorithms have been improved.

The enhanced algorithms are more powerful and do not only support multiple target

regions but also target point(s). It is worth noting that different numbers of solutions

can be allocated to different targets by assigning the proportion of population size for

each target.

On several instances, the proposed algorithms presented similar performance to

the original MOEAs when converting the target region into constraints in the problem

description. However, the proposed algorithms save a large amount of computational

effort by guiding the search towards the preferred region without the calculation of the

second ranking criterion in initial iterations. On the contrary, for original MOEAs,

the increase in the number of constraints leads to the decrease of the search ability.

Moreover, compared to the original MOEAs, the proposed algorithms exhibit the trend

of behaving better with the increase in the number of objectives. More importantly,

when there is no intersection between targets and the PF, the proposed algorithms

can still find Pareto optimal solutions close to the targets. The future work would be
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Figure 4.19: Representative PF approximations of T-SMS-EMOA on tri-objective DTLZ1
problem for two target points: (0.25, 0.25, 0.25) (0.4, 0.4, 0.1).

to compare the proposed algorithms with other preference-based MOEAs, especially

multiple preferences based algorithms.

4.2 Automatic Preference Based MOEAs

When the algorithm aims at converging to the preferred solutions of the DMs, the DMs

are asked for preference information. However, inspecting and choosing solutions from

a large amount of solutions of a multi-objective optimization problem is not a trivial

task for the DMs. The visualization of high-dimensional space further aggravates the

difficulty. Sometimes, the DMs have no domain knowledge about the problems, they

might set unreasonable goals which may mislead the search process. Therefore, an

automatic preference based MOEA is proposed to avoid these difficulties and generate

solutions in an automatically detected knee region. It is developed based on the
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framework of DI-MOEA (see Section 3.1) and named automatic preference based DI-

MOEA (AP-DI-MOEA).

AP-DI-MOEA can generate the preference region automatically, narrow down the

feasible objective space progressively, and eventually obtain the preferred solutions.

The preference region in AP-DI-MOEA is determined by the knee point. The knee

point is a point for which a small improvement in any objective would lead to a

large deterioration in at least one other objective. Several features of AP-DI-MOEA

include: (1) no prior knowledge is used in identifying the knee point and knee region;

(2) the preference region is generated automatically and narrowed down step by step

to benefit its accuracy; (3) the proposed strategy can handle both multi-objective and

many-objective optimization problems; (4) although AP-DI-MOEA is proposed based

on DI-MOEA, the proposed strategy can be integrated with any standard MOEAs

to form automatic preference based MOEAs; (5) the proposed algorithm is capable

of finding preferred solutions for multi-objective optimization problems with linear,

convex, concave Pareto fronts and discrete problems.

The remainder of this section is organized as follows. A literature review on knee

based optimization is provided in Section 4.2.1. In Section 4.2.2, the proposed algo-

rithm is described in detail. The experimental results are reported in Section 4.2.3

and Section 4.2.4 concludes the work with the summary and outlook.

4.2.1 Literature Review

In AP-DI-MOEA, the search for solutions is only guided towards the preference region

which is determined by the knee point. It has been argued in the literature that knee

points are most interesting solutions, naturally preferred solutions and most likely the

optimal choice of the decision maker [12, 20, 23, 76].

In the last decade, several methods have been presented to identify knee points

or knee regions. Das [20] refers the point where the Pareto surface “bulges” the

most as the knee point, and this point corresponds to the farthest solution from the

convex hull of individual minima which is the minima of the single objective functions.

Zitzler [140] defines ϵ-dominance: a solution a is said to ϵ-dominate a solution b if

and only if fi(a) + ϵ ≥ fi(b) ∀i = 1, ...,m where m is the number of objectives. A

solution with a higher ϵ-dominance value with respect to the other solutions in the

Pareto front approximation, is a solution having higher trade-offs and in this definition

corresponds to a knee point. The authors of [128] propose to calculate the density of

solutions projected onto the hyperplane constructed by the extreme points of the non-
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dominated solutions, then identify the knee regions based on the solution density.

Different algorithms of applying knee points in MOEAs have also been proposed.

Branke [12] modifies the second criterion in NSGA-II, and replaces the crowding dis-

tance by either an angle-based measure or a utility-based measure. The angle-based

method calculates the angle between an individual and its two neighbors in the objec-

tive space. The smaller the angle, the more clearly the individual can be classified as

a knee point. However, this method can only be used for two objective problems. In

the utility-based method, a marginal utility function is suggested to approximate the

angle-based measure in the case of more than two objectives. The larger the external

angle between a solution and its neighbors, the larger the gain in terms of linear utility

obtained from substituting the neighbors with the solution of interest. However, the

utility-based measure is not suited for finding knees in concave regions of the Pareto

front.

Rachmawati [85, 86] proposes a knee-based MOEA which computes a transforma-

tion of original objective values based on a weighted sum niching approach. The extent

and density of coverage of the knee regions are controllable by the parameters for the

niche strength and pool size. The strategy is susceptible to the loss of less pronounced

knee regions.

Schütze [93] investigates two strategies for the approximation of knees of bi-objective

optimization problems with stochastic search algorithms. Several new definitions for

identifying knee points and knee regions for bi-objective optimization problems has

been suggested in [25] and the possibility of applying them has also been discussed.

Besides the knee points, the reference points, which are normally provided by

the DM, have also been used to find a set of solutions near reference points. Deb [30]

proposes an MOEA, called R-NSGA-II, by which a set of Pareto optimal solutions near

a supplied set of reference points can be found. The dominance relation together with

a modified crowding distance operator is used in this methodology. For all solutions

of the population, the distances to all reference points are calculated and ranked. The

lowest rank (over all reference points) of a solution is used as its crowding distance.

Besides, a parameter ϵ is used to control the spread of obtained solutions. Recently,

R-NSGA-II was extended and the reference point based NSGA-III (R-NSGA-III) is

proposed for solving higher objective problems [111]. Bechikh proposes KR-NSGA-II

[7] by extending R-NSGA-II. Instead of obtaining the reference points from the DM,

in KR-NSGA-II, the knee points are used as mobile reference points and the search

of the algorithm was guided towards these points. The number of knee points of the

optimization problem is needed as prior information in KR-NSGA-II.
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Gaudrie [49] uses the projection (intersection in case of a continuous front) of

the closest non-dominated point on the line connecting the estimated ideal and nadir

points as default preference. Conditional Gaussian process simulations are performed

to create possible Pareto fronts, each of which defines a sample for the ideal and the

nadir point, and the estimated ideal and nadir are the medians of the samples.

Rachmawati and Srinivasan [87] evaluate the worthiness of each non-dominated

solution in terms of compromise between the objectives. The local maxima is then

identified as potential knee solutions and the linear weighted-sums of the original

objective functions are optimized to guide solutions toward the knee regions.

Another idea of incorporating preference information into multi-objective opti-

mization is proposed in [103]. They combine the fitness function and an achievement

scalarizing function containing the reference point. In this approach, the preference

information is given in the form of a reference point and an indicator-based evolution-

ary algorithm IBEA [139] is modified by embedding the preference information into

the indicator. Various further preference based MOEAs have been suggested, e.g.,

[13, 88, 117].

In our proposed algorithm, i.e., AP-DI-MOEA, we adopt the method from [20]

to identify the knee point, design the preference region based on the knee point, and

guide the search towards the preference region.

4.2.2 Algorithms

Two variants of DI-MOEA, DI-1 and DI-2 (see Section 3.1), exist. Analogously, two

variants of AP-DI-MOEA, i.e., AP-DI-1 and AP-DI-2, are derived from the two vari-

ants of DI-MOEA. The workings of AP-DI-MOEA are outlined in Algorithm 9. In

the algorithm, the variable evals update is used to record the condition of generating

or updating the preference region. Its initial value is assigned to divide size (line 4 in

Algorithm 9). Exceedance of divide size is a predefined condition to divide the algo-

rithm into two phases: learning phase and decision phase. In the learning phase, the

algorithm explores the possible area of Pareto optimal solutions and finds the rough

approximations of the Pareto front. In the decision phase, the algorithm identifies the

preference region and finds preferred solutions. When the algorithm starts running

and the number of evaluations reaches or exceeds divide size at some moment, the

first preference region will be generated and evals update will be updated for deter-

mining a new future moment when the preference region needs to be updated (line

12 - 16 in Algorithm 9). The process of updating evals update repeats until the end
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to narrow down the preference region step by step. The first value of evals update,

i.e., divide size, is a boundary line. Before it is satisfied, AP-DI-MOEA runs exactly

like DI-MOEA to approximate the whole Pareto front; while, after it is satisfied, the

preference region is generated automatically and AP-DI-MOEA finds solutions focus-

ing on the preference region. The subsequent values of evals update define the later

moments to update the preference region; eventually, a precise ROI with a proper size

can be achieved.

Figure 4.20: Finding the knee point in bi-dimensional space.

The first/new preference region is formed based on the population at the moment

when the condition of evals update is satisfied. To be specific, the preference region

is determined by the knee point of the current Pareto front. Algorithm 10 gives the

details of line 14 in Algorithm 9, it introduces the steps of finding the knee point of

a non-dominated solution set and constituting a hypercube shaped preference region

according to the knee point. Figure 4.20 also gives an illustration of finding the knee

point in bi-dimensional space. Firstly, the upper quartile objective values (line 12 in

Algorithm 10) in the solution set are used as a boundary to define outliers. To identify

the knee point, solutions outside this boundary are removed from the solution set (line

15 - 19 in Algorithm 10). The extreme solutions (the solutions with the maximum

value in one objective) are then found inside the boundary (line 22 in Algorithm 10)

and a hyperplane is formed based on the extreme solutions (line 23 in Algorithm 10).

In a bi-dimensional space (Figure 4.20), the hyperplane is only a line connecting two

extreme solutions. According to the numbers of points below and above the hyperplane
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Algorithm 9 AP-DI-MOEA-2

Inputs:
popsize; // population size
divide size; // number of evaluations before generating 1st preference region
batch size; // number of evaluations between preference region updates

1: P0 ← init(popsize); // initialize random population
2: existRegion← false; // indicates whether a preference region was already computed
3: evals← 0; // number of evaluations to far
4: evals update← divide size; // number of evaluations when 1st preference region is computed
5: (R1, ..., R`0)← non dominated sorting(P0); // partition into fronts of increasing dominance ranks
6: for each i ∈ {1, . . . , `0} do
7: calculate diversity indicator for all solutions on Ri;
8: end for
9: t← 0;

10: while Stop criterion not satisfied() do
11: // update / computation of preference region
12: if (evals > evals update && `t == 1) then
13: existRegion← true;
14: calculate P region; //generate a (new) preference region, i.e., Algorithm 2
15: evals update← evals update+ batch size;
16: end if
17:
18: // offspring generation
19: if (`t > 1 || t == 0) then
20: //(µ + µ) generational scheme
21: Qt ← Gen(Pt); // generate popsize offspring by recombination and mutation
22: evaluate(Qt);
23: evals← evals+ popsize;
24: Mt+1 = Pt ∪Qt; // combine offspring and parent population
25: else
26: // (µ + 1) steady state generational scheme
27: q ← Gen(Pt); // generate only one offspring by recombination and mutation
28: evaluate(qt);
29: evals← evals+ 1;
30: Mt+1 = Pt ∪ {qt}; // combine offspring and parent population
31: end if
32:
33: // construction of new population based on non-dominated sorting
34: (R1, ..., R`t+1) ← non dominated sorting(Mt+1);
35: Pt+1 ← ∅;
36: i← 0;
37: while |Pt+1| < popsize do
38: i← i+ 1;
39: Pt+1 ← Pt+1 ∪ Ri;
40: end while
41:
42: // truncation of new population based on further ranking criterion(s)
43: if (|Pt+1| > popsize) then
44: if (existRegion == false) then
45: rank solutions in Ri by diversity indicator contribution;
46: else
47: rank solutions in Ri by diversity indicator contribution and Euclidean distance to knee point;
48: assign the lowest possible rank to all solutions in Ri, which are outside P region;
49: end if
50: n← |Pt+1| − popsize;
51: remove the n solutions in Ri with lowest ranks from Pt+1;
52: end if
53:
54: t← t+ 1;
55: lt ←the number of fronts of Pt;
56: end while
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Algorithm 10 Finding the knee point and defining the preference region.

Inputs:
popsize; // population size
n; // number of objectives
Pt; // current population
ε; // parameter (>0) for distinguishing convex/concave shape

1: declare(Q[n]); //upper quartile objective values of Pt

2: declare(L[n]); //worst objective values of Pt

3: declare(knee[n]); //knee point of Pt

4: declare(P region[n]); //preference region of Pt

5: declare(Epoints[n][n]); //extreme points (single-objectives)
6: foundknee← false; // indicates whether the knee point was already found
7: P ′t ← Pt; //copy the current population for finding the knee
8:
9: // remove outliers with lowest 25% of objective values

10: for each i ∈ {1, . . . , n} do
11: sort(P ′t ) by the ith objective in ascending order;
12: Q[i]← P ′t .get index( 3

4
× popsize).get obj(i); //upper quartile value of the ith objective

13: L[i]← P ′t .get index(popsize).get obj(i); //the largest (worst) value of the ith objective
14: end for
15: for all solution s ∈ P ′t do
16: if s.get obj(i = 1, ..., n) > Q[i] then
17: remove s from P ′t ; //remove outliers
18: end if
19: end for
20:
21: //find knee point by computing distance to hyperplane
22: Epoints[�][�]← extreme points in P ′t ;
23: hyperplane(Epoints[�][�]); //generate hyperplane by Epoints[�][�]
24: numa ← number of points in concave region of hyperplane;
25: numv ← |P ′t | − numa; // number of points in convex region
26: if (numv − numa > ε) then
27: //roughly convex shape
28: remove solutions in concave region from P ′t ;
29: else if (numa − numv > ε) then
30: //roughly concave shape
31: remove solutions in convex region from P ′t ;
32: else
33: //roughly linear shape
34: //find knee point by computing hypervolume
35: for all solution s ∈ P ′t do
36: calculate hypervolume of s with reference point L[�];
37: end for
38: knee[�]← solution with the largest hypervolume value;
39: foundknee← true;
40: end if
41: if (foundknee == false) then
42: for all solution s ∈ P ′t do
43: calculate distance between s and hyperplane;
44: end for
45: knee[�]← solution with the largest distance;
46: end if
47:
48: //determine current preference region by knee point.
49: for each i ∈ {1, . . . , n} do
50: P region[i]← knee[i] + (L[i]− knee[i])× 85%
51: end for
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(line 24 - 25 in Algorithm 10), the shape of the solution set can be roughly perceived.

We will distinguish between “convex” and “concave” regions. Points in the convex

(concave) region are dominating (dominated by) at least one point in the hyperplane

spanned by the extreme points. However, when the number of the points in the convex

region and the number of points in the concave region is close enough, it implies that

the shape of the current solution set is almost linear. This occurs both when the true

Pareto front is linear and when the solution set converges very well in a small area

of the Pareto front. A parameter ϵ then is used to represent the closeness and it is

a small number decided by the size of the solution set. In the case that the shape of

the current solution set is (almost) linear, the solution with the largest hypervolume

value with regards to the worst objective vector (i.e., L[i] in line 13 in Algorithm

10) is adopted as the knee point (line 33 - 39 in Algorithm 10). While, under the

condition that the shape of the current solution set is convex or concave, the knee

point is identified by the method in [20]. The solution in the convex or concave region

with the largest Euclidean distance to the hyperplane is chosen as the knee point (line

42 - 45 in Algorithm 10). After the knee point is found, the preference region can be

determined based on the knee point by the following formula:

P region[i] = knee[i] + (L[i]− knee[i])× 85%. (4.5)

Let i denotes the ith objective, as in Algorithm 10, L[i] is the worst value of the

ith objective in the population, knee[i] is the ith objective value of the knee point

and P region[i] is the upper bound of the preference region. W.l.o.g. We assume the

objectives are to be minimized and the lower bound of the preference region is the

origin point. According to the formula, we can see that the first preference region

is relatively large (roughly 85% of the entire Pareto front). With the increase in

the number of iterations, the preference region will be updated and become smaller

and smaller because every preference region picks 85% of the current Pareto front.

Eventually, we want the preference region to reach a proper range, say, 15% of the

initial Pareto front. The process of narrowing down the preference region step by step

can benefit the accuracy of the preference region.

Algorithm 9 only shows the workings of AP-DI-2. The difference between AP-DI-1

and AP-DI-2 is the same as the difference between DI-1 and DI-2, i.e., the diversity

criterion in the (µ + µ) generational selection operator in AP-DI-1 is the crowding

distance, in AP-DI-2 it is the diversity indicator. In the algorithm, the initialized

population is sorted based on non-domination and the diversity value of each solution
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is calculated to be used in later parent selection (line 5 - 8 in Algorithm 9). When

evolution of the population takes place, according to different phases of optimization,

the (µ + µ) generational selection operator generates multiple offspring in one iteration

to explore more decision space and push the population quickly towards the Pareto

front (line 20 - 24 in Algorithm 9); the (µ + 1) steady state selection operator generates

only one offspring in order to achieve a uniformly distributed set (line 26 - 30 in

Algorithm 9). To achieve the next generation population, the combination of parents

and offspring is classified into different layers according to the non-dominance relation.

The points from the first non-domination front are preserved, continuing with points

in the second non-domination front, until the number of points reaches the population

size (line 34 -40 in Algorithm 9). Under the case that the number of points surpasses

the population size, a truncation selection is carried out (line 43 - 52 in Algorithm

9). When there is no preference region, the population will be truncated based on the

diversity indicator. While, if a preference region already exists, the population will be

truncated based on first the diversity indicator, then Euclidean distance to the knee

point. In this process, the diversity indicator contribution and Euclidean distance to

the knee point are calculated only for the solutions in the preference region. Solutions

outside of the region are given relatively larger values and they will be eliminated in

the following optimization process.

There are different strategies to set and update the value of evals update. In

our algorithm, we divide the whole computing budget into two parts, the first half is

used to find an initial entire Pareto front approximation, and the second half is used

to update the preference region and find solutions in the preference region. Assume

the total computing budget is budget size (the number of evaluations), then the first

value of evals update is 1
2 × budget size. Due to the reason that we expect a final

preference region with a size of around 15% of the initial entire Pareto front and each

new preference region takes 85% of the current Pareto front, according to the formula:

0.8512 ≈ 0.14, the value of evals update can be updated by the following formula:

evals update = evals update+ batch size = evals update+ (budget size/2)/12.

(4.6)

Another half of the budget can be divided into 12 partial-budgets and a new pref-

erence region is constituted after each partial-budget. In the end, the final preference

region is achieved and solutions focusing on this preference region are obtained.

101



4.2. Automatic Preference Based MOEAs

4.2.3 Experimental Results

Experimental Design

For the two variants of AP-DI-MOEA: AP-DI-1 and AP-DI-2, their performances

have been compared with DI-MOEA: DI-1, DI-2 and NSGA-III. NSGA-III is involved

in the comparison because NSGA-III is a representative state-of-the-art evolutionary

multi-objective algorithm and it is very powerful to handle problems with non-linear

characteristics. For bi-objective benchmark problems, algorithms are tested on ZDT1

and ZDT2 with 30 variables. For tri-objective benchmark problems, DTLZ1 with 7

variables and DTLZ2 with 12 variables are tested. On every problem, each algorithm

runs for 30 times with different seeds, while the same 30 different seeds are used for

all algorithms. All the experiments are performed with a population size of 100. For

bi-objective problems, experiments are run with a budget of 22000 (objective function)

evaluations; for DTLZ tri-objective problems, the budget is 120000 evaluations.

Experiments on Bi-objective Problems

Bi-objective problems are optimized with a total budget of 22000 evaluations, when

the number of evaluations reaches 10000, the first preference region is generated, then

after every 1200 evaluations, the preference region will be updated. Figure 4.21 shows

Pareto front approximations from a typical run on ZDT1 (left column) and ZDT2

(right column). The graphs on the upper row are obtained from DI-1 and AP-DI-1,

while the graphs on the lower row are from DI-2 and AP-DI-2. In each graph, the

entire Pareto front approximations from DI-MOEA and the preferred solutions from

AP-DI-MOEA (or AP solutions) are presented, at the same time, the final preference

regions of AP-DI-MOEA are also shown by the gray areas.

Besides the visualization of the Pareto fronts, the knee point of the entire final

Pareto front approximation from DI-MOEA is also computed via the strategy de-

scribed in Algorithm 10. For each run of DI-MOEA and AP-DI-MOEA with the same

seed, the following two issues have been checked:

• if the knee point from DI-MOEA is in the preference region achieved by its

derived AP-DI-MOEA;

• if the knee point from DI-MOEA is dominated by or dominating AP solutions; or

if it is a non-dominated solution (mutually non-dominated with all AP solutions).

Table 4.7 shows the results of 30 runs. For ZDT1 problem, all 30 knee points from

DI-1 and DI-2 are in the preference regions from AP-DI-1 and AP-DI-2 respectively; in
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(a) ZDT1. (b) ZDT2.

Figure 4.21: Pareto front approximations on ZDT1 and ZDT2.

all these knee points, 10 from DI-1 and 7 from DI-2 are dominated by AP solutions. For

ZDT2 problem, most knee points are not in the corresponding preference regions, but

for those in the preference regions, almost all of them are dominated by AP solutions.

Please note that when a knee point from DI-MOEA is outside of the preference region

from AP-DI-MOEA, it is not possible that it can dominate any AP solutions because

all AP solutions are in the preference region and only solutions in the left side of the

gray area can dominate AP solutions.

The same comparison is also performed between AP-DI-MOEA and NSGA-III, the

results are shown in Table 4.8. For ZDT1 problem, all knee points from NSGA-III

are in the preference regions from AP-DI-MOEA. Some of these knee points dominate

AP solutions. For ZDT2 problem, most knee points from NSGA-III are not in the

preference regions and these knee points are incomparable with AP solutions. For the

knee points in the preference regions, all three dominating relations with AP solutions
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Table 4.7: Space and dominance relation of knee point from DI-MOEA and AP solutions
on ZDT problems.

Problem ZDT1 ZDT2

Algorithm
DI-1/ DI-2/ DI-1/ DI-2/

AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2
In Incomparable 20 23 1 1

preference Dominated 10 7 9 9
region Dominating 0 0 0 0
Outside Incomparable 0 0 20 20
p-region Dominated 0 0 0 0

appear. For both problems, when the knee point from NSGA-III is dominating AP

solutions, it only dominates one AP solution.

Table 4.8: Space and dominance relation of knee point from NSGA-III and AP solutions
on ZDT problems.

Problem ZDT1 ZDT2

Algorithm
NSGA-III/ NSGA-III/ NSGA-III/ NSGA-III/
AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2

In Incomparable 14 19 3 1
preference Dominated 0 0 2 3
region Dominating 16 11 4 6
Outside Incomparable 0 0 21 20
p-region Dominated 0 0 0 0

Instead of spreading the population across the entire Pareto front, the optimization

only focuses on the preference region. To ensure that the algorithm can guide the

search towards the preference region and the achieved solution set is distributed across

the preference region, the performance of AP-DI-MOEA, DI-MOEA and NSGA-III is

compared in the preference region. For each Pareto front approximation from DI-

MOEA and NSGA-III, the solutions in the corresponding preference region from AP-

DI-MOEA are picked, and these solutions are compared with AP solutions through

the hypervolume indicator. The point formed by the largest objective values over all

solutions in the preference region is adopted as the reference point when calculating

the hypervolume indicator. It has been found that all hypervolume values of new

solution sets from DI-MOEA and NSGA-III in the preference region are worse than

the hypervolume values of the solution sets from AP-DI-MOEA, which proves that the

mechanism indeed works in practice. Figure 4.22 shows box plots of the distribution

of hypervolume indicators over 30 runs.

It can be seen that on both ZDT1 (with a convex Pareto front) and ZDT2 (with a

concave Pareto front), AP-DI-MOEA can find solutions in the preference region which

is determined by the knee points. Here for ZDT2 problem, its knee region is still a
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compromise of two objectives. If the Pareto front is severely concave, adopting the

knee region as the preference region is probably not a good decision because solutions

in the knee region have poor values on both objectives, and it is not clear which region

is preferred by the decision maker. But for the common cases, especially most real-

world application problems, they don’t have a severely concave Pareto front, the knee

region is still recommended as the preference region.

(a) ZDT1. (b) ZDT2.

Figure 4.22: Boxplots comparing the hypervolume values on ZDT1 and ZDT2.

Experiments on Tri-objective Problems

DTLZ1 and DTLZ2 are chosen as tri-objective benchmark problems to investigate the

algorithms. They are performed with a total budget of 120000 fitness evaluations, when

the number of evaluations reaches 60000, the first preference region is formed, then

after every 5000 evaluations, the preference region is updated. Figure 4.23 shows the

Pareto front approximations from a typical run on DTLZ1 (left column) and DTLZ2

(right column). The upper graphs are obtained from DI-1 and AP-DI-1, while the lower

graphs are from DI-2 and AP-DI-2. In each graph, the Pareto front approximations

from DI-MOEA and corresponding AP-DI-MOEA are given. Since the target region

is actually an axis aligned box, the obtained knee region (i.e., the intersection of the
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axis aligned box with the Pareto front) has an inverted triangle shape for these two

benchmark problems.

(a) DTLZ1 tri-objective problem. (b) DTLZ2 tri-objective problem.

Figure 4.23: Pareto front approximations on DTLZ1 and DTLZ2.

Table 4.9 shows the space and dominance relation of the knee point from DI-MOEA

and the solution set from AP-DI-MOEA over 30 runs. For DTLZ1 problem, most knee

points from DI-MOEA are in their respective preference regions and all knee points

are mutually non-dominated with AP solutions. For DTLZ2 problem, it has been

observed that more knee points are not in the corresponding preference regions. This

is because too few solutions from DI-MOEA are in the preference region. For DTLZ1

problem, six solutions from DI-MOEA are in the corresponding preference region on

average for each run, while, for DTLZ2 problem, only less than two solutions are in

the corresponding preference region on average. Therefore, it can seen that on the

one side, it is normal that many knee points from the entire Pareto fronts are not in

their corresponding preference regions; on the other side, the aim of finding more fine-

grained resolution in the preference region has been well achieved because only few

solutions can be obtained in the preference region if the population is spread across
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the entire Pareto front. At the same time, one knee point from DI-1 on DTLZ2 is

dominated by solutions from the corresponding AP-DI-1, which proves that AP-DI-

MOEA can converge better than DI-MOEA because AP-DI-MOEA focuses on the

preference region.

Table 4.9: Space and dominance relation of knee point from DI-MOEA and AP solutions
on DTLZ problems.

Problem DTLZ1 DTLZ2

Algorithm
DI-1/ DI-2/ DI-1/ DI-2/

AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2
In Incomparable 29 27 10 13

preference Dominated 0 0 1 0
region Dominating 0 0 0 0
Outside Incomparable 1 3 19 17
p-region Dominated 0 0 0 0

AP-DI-1 and AP-DI-2 have also been compared with NSGA-III in the same way.

Table 4.10 shows the comparison result. For DTLZ1, the average number of solutions

from NSGA-III in the corresponding preference regions from AP-DI-MOEA is six.

Still, almost all knee solutions from NSGA-III are in the preference region. For DTLZ2,

the average number of solutions from NSGA-III in the corresponding preference region

from AP-DI-MOEA is less than one, while, in more than half of 30 runs, the knee points

from NSGA-III are still in the preference region. To some extent, it can be concluded

that the preference regions from AP-DI-MOEA are accurate. It can also be observed

that AP-DI-1 behaves better than AP-DI-2 on DTLZ2, because two knee points from

NSGA-III dominate the solutions from AP-DI-2.

Table 4.10: Space and dominance relation of knee point from NSGA-III and AP solutions
on DTLZ problems.

Problem DTLZ1 DTLZ2

Algorithm
NSGA-III/ NSGA-III/ NSGA-III/ NSGA-III/
AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2

In Incomparable 30 29 14 17
preference Dominated 0 0 1 1
region Dominating 0 0 0 2
Outside Incomparable 0 1 15 10
p-region Dominated 0 0 0 0

Similarly, solutions which are in the corresponding preference region of AP-DI-

MOEA are picked from DI-MOEA and NSGA-III, and the hypervolume indicator

value is compared between these solutions and AP solutions. It has been found that all

hypervolume values of solutions from AP-DI-MOEA are better than those of solutions

from DI-MOEA and NSGA-III. The left column of Figure 4.24 shows box plots of
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the distribution of hypervolume values over 30 runs on DTLZ1, and the right column

shows the hypervolume comparison on DTLZ2.

(a) DTLZ1. (b) DTLZ2.

Figure 4.24: Boxplots comparing the hypervolume values on DTLZ1 and DTLZ2.

In the experiments, half of the total budget is used to find an initial Pareto front

because it turned out to be a good compromise: half budget for the initial Pareto

front and another half budget for the solutions focusing on the preference region.

Experiments using 25% and 75% of the total budget for the initial Pareto front have

also been conducted. Figure 4.25 presents the entire Pareto front from DI-MOEA

and the Pareto front from AP-DI-MOEA with different budgets for the initial Pareto

front. The left two images are on DTLZ1 and the right two images are on DTLZ2.

The upper two images are from DI-1 and AP-DI-1; the lower two images are from DI-2

and AP-DI-2. In the legend labels, 50%, 25% and 75% indicate the budgets which are

utilized to find the initial entire Pareto front. It can be observed that the preference

region from AP-DI-MOEA with 50% of budget is located in a better position than

with 25% and 75% of budget, and the position of the preference region from AP-DI-

MOEA with 50% of budget is more stable. Therefore, in our algorithm, 50% of budget

is used before the generation of the first preference region.
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(a) DTLZ1 tri-objective problem. (b) DTLZ2 tri-objective problem.

Figure 4.25: Pareto front approximations by different budgets generating initial Pareto
front.

4.2.4 Conclusion

A preference based multi-objective evolutionary algorithm, AP-DI-MOEA, is pro-

posed. In the absence of explicitly provided preferences, the knee region is usually

treated as the region of interest or the preference region. Given this, AP-DI-MOEA

generates the knee region automatically and finds solutions with a more fine-grained

resolution in the knee region. This has been demonstrated on the bi-objective ZDT1

and ZDT2 problems , and tri-objective DTLZ1 and DTLZ2 problems. In the bench-

mark, the proposed approach is also proven to perform better than NSGA-III which

is included in the benchmark as a state-of-the-art reference algorithm.

It would be an interesting question how to adapt the algorithm to problems with

multiple knee points and more irregular shapes. Besides, the proposed approach re-

quires a definition of knee points. Future work will provide a more detailed comparison

of different variants of methods to generate knee points.
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Chapter 5

Multi-objective Scheduling

Optimization

In previous chapters different MOEAs have been proposed for multi-objective op-

timization. However, the core issue of these algorithms is to solve the real-world

application problems, as is required to answer RQ5. The exact real-world problem

to be solved is the multi-objective vehicle fleet maintenance scheduling optimization

(MOVFMSO) problem. As the preparatory work for solving this real-world scheduling

optimization problem, in this chapter, first, study has been done on the benchmark

multi-objective scheduling optimization problems, i.e., the flexible job shop schedul-

ing problem (FJSP), and an MOEA has been proposed to solve the FJSP. Therefore,

RQ4 is answered. Following this, the real-world MOVFMSO problem is formulated,

its representation is defined and the problem specific genetic operators are developed.

Based on these works, the previously proposed MOEAs can be applied to solve the

MOVFMSO problem.

This chapter continues with Section 5.1, where the FJSP is introduced, the pro-

posed algorithm for solving the FJSP is described and tested. Thereafter, in Sec-

tion 5.2, the MOVFMSO application problem is established. To solve it, the problem

representation, i.e., an encoding of the problem in decision variables, is designed for

evolutionary computation. MOEAs have been devised, along with genetic operators.

In this chapter, only the basic MOEAs are applied on the MOVFMSO problems, the

preference-based MOEA and dynamic MOEA which is developed based on these static

algorithms for dynamic environments on the MOVFMSO problem will be introduced
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in next chapter.

5.1 Tailored NSGA-III Instantiation for Flexible Job

Shop Scheduling

In this section, a customized multi-objective evolutionary algorithm is proposed for the

multi-objective flexible job shop scheduling problem (MOFJSP) with three objectives

(makespan, total workload, critical workload). Multiple initialization approaches have

been adopted to produce the first-generation population based on the definition of the

chromosome representation; at the same time, diverse genetic operators are applied

to guide the search towards offspring with a wide diversity; especially, an algorithm

configurator, i.e., the MIP-EGO configurator [110], is used to tune the parameter

configuration; furthermore, two levels of local search are employed to explore the

neighborhood for better solutions. In general, the proposed algorithm for the FJSP

can be combined with any standard MOEAs to solve the MOFJSP. In this work, it

has been combined with NSGA-III to solve some benchmark multi-objective FJSPs,

whereas an off-the-shelf implementation of NSGA-III is not capable of solving them.

The remainder of this section is structured as follows. The multi-objective FJSP

is first introduced in Section 5.1.1. Section 5.1.2 provides necessary background

knowledge. In Section 5.1.3, the algorithm strategies for the FJSP are developed,

and combined with NSGA-III, therefore, the tailored NSGA-III can solve the multi-

objective FJSPs. After that, Section 5.1.4 reports the experimental results. Finally,

Section 5.1.5 concludes the work and suggests future work directions.

5.1.1 Flexible Job Shop Scheduling

The job shop scheduling problem (JSP) is an important branch of production planning

problems. The classical JSP consists of a set of independent jobs to be processed on

multiple machines and each job contains a number of operations with a predetermined

order. It is assumed that each operation must be processed on a specific machine

with a specified processing time. The JSP is to determine a schedule of jobs, meaning

to sequence operations on the machines. The FJSP is an important extension of the

classical JSP due to the wide employment of multi-purpose machines in the real-world

job shop. The FJSP extends the JSP by assuming that each operation is allowed to be

processed on a machine out of a set of alternatives, rather than one specified machine.

Therefore, the FJSP is not only to find the best sequence of operations on a machine,
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but also to assign each operation to a machine out of a set of qualified machines. The

JSP is well known to be strongly NP-hard [48]. The FJSP is an even more complex

version of the JSP, so the FJSP is clearly also strongly NP-hard.

The MOFJSP addressed in this work is described as follows:

1. There are n jobs J = {J1, J2, · · · , Jn} andmmachinesM = {M1,M2, · · · ,Mm}1.

2. Each job Ji comprises li operations for i = 1, · · · , n, the jth operation of job Ji

is represented by Oij , and the operation sequence of job Ji is from Oi1 to Oili .

3. For each operation Oij , there is a set of machines capable of performing it, which

is represented by Mij and it is a subset of M .

4. The processing time of the operation Oij on machine Mk is predefined and

denoted by tijk.

At the same time, the following assumptions are made:

1. All machines are available at time 0 and assumed to be continuously available.

2. All jobs are released at time 0 and independent from each other.

3. Setting up times of machines and transportation times between operations are

negligible.

4. Environmental changes (such as machine breakdowns) are neglected.

5. A machine can only work on one operation at a time.

6. There are no precedence constraints among the operations of different jobs, and

the order of operations for each job cannot be modified.

7. An operation, once started, must run to completion.

8. No operation for a job can be started until the previous operation for that job

is completed.

The makespan, total workload and critical workload, which are commonly consid-

ered in the literature on FJSP (e.g., [16], [131]), are minimized and used as the three

objectives in our algorithm. Minimizing the makespan can facilitate the rapid response

1In this chapter and the next chapter, m is used to represent the number of machines or workshops
to be consistent with prior literature. The objectives have been given for each specific problem.
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to the market demand. The total workload represents the total working time of all

machines and the critical workload is the maximum workload among all machines.

Minimizing the total workload can reduce the use of machines; minimizing the critical

workload can balance the workload between machines. Let Ci denote the completion

time of job Ji, Wk the sum of processing time of all operations that are processed on

machine Mk. The three objectives can be defined as follows:

Makespan(Cmax) : f1 = max{Ci|i = 1, 2, · · · , n} (5.1)

Total workload(Wt) : f2 =

m∑
k=1

Wk (5.2)

Critical workload(Wmax) : f3 = max{Wk|k = 1, 2, · · · ,m}. (5.3)

An example of MOFJSP is shown in Table 5.1 as an illustration, where rows

correspond to operations and columns correspond to machines. In this example, there

are three machines: M1, M2 and M3. Each entry of the table denotes the processing

time of that operation on the corresponding machine, and the tag “− ” means that a

machine cannot execute the corresponding operation.

Table 5.1: Processing time of a FJSP instance.

Job Operation M1 M2 M3

J1

O11 3 - 2
O12 5 7 6
O13 - - 2

J2
O21 2 4 3
O22 2 - 1

J3
O31 4 2 2
O32 3 5 -

5.1.2 Background and Related Work

Algorithms for MOFJSP

The FJSP has been investigated extensively in the last three decades. According to

[15], EA is the most popular non-hybrid technique to solve the FJSP. Among all EAs

for FJSP, some are developed for the more challenging FJSP: the MOFJSP which we

formulated in Section 5.1.1, and [16], [113], [131] are very successful MOFJSP algo-

rithms and have obtained high-quality solutions. [113] proposed a multi-objective ge-

netic algorithm (MOGA) based on the immune and entropy principle. In this MOGA,
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the fitness was determined by the Pareto dominance relation and the diversity was

kept by the immune and entropy principle. In [16], a simple EA (SEA) was proposed,

which used domain heuristics to generate the initial population and balanced the ex-

ploration and exploitation by refining duplicate individuals with mutation operators.

A memetic algorithm (MA) was proposed in [131] and it incorporated a local search

into NSGA-II [29]. A hierarchical strategy was adopted in the local search to handle

objectives. In Section 5.1.4, these algorithms have been compared with the proposed

algorithm on the benchmark MOFJSPs.

Parameter Tuning

EA involves using multiple parameters, such as the crossover probability, mutation

probability, computational budget, as so on. The preset values of these parameters

affect the performance of the algorithm in different situations. The parameters are

usually set to values which are assumed to be good. For example, the mutation

probability normally is kept very low, otherwise the convergence is supposed to be

delayed unnecessarily. But the best way to identify the probability would be to do

a sensitivity analysis: carrying out multiple runs of the algorithms with different

mutation probabilities and comparing the outcomes. Although there are some self-

tuning techniques for adjusting these parameters on the go, the hyper-parameters in

EA can be optimized using the technique from machine learning.

The optimization of hyper-parameters and neural network architectures is a very

important topic in the field of machine learning due to the large number of design

choices for a network architecture and its parameters. Recently, algorithms have been

developed to accomplish this automatically since it is intractable to do it by hand.

The MIP-EGO [110] is one of these configurators that can automatically configure

convolutional neural network architectures and the resulting optimized neural networks

have been proven to be competitive with the state-of-the-art manually designed ones on

some popular classification tasks. Moreover, MIP-EGO allows for multiple candidate

points to be selected and evaluated in parallel, which can speed up the automatic

tuning procedure. In this work, several parameters are tuned with MIP-EGO to find

the best parameter setting for them.

NSGA-III

NSGA-III is a decomposition-based MOEA, it is an extension of the well-known

NSGA-II and eliminates the drawbacks of NSGA-II such as the lack of uniform di-
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versity among a set of non-dominated solutions. The basic framework of NSGA-III is

similar to the original NSGA-II, while it replaces the crowding distance operator with

a clustering operator based on a set of reference points. A widely-distributed set of

reference points can efficiently promote the population diversity during the search and

NSGA-III defines a set of reference points by Das and Dennis′s method [21].

In each iteration t, an offspring population Qt of size Npop is created from the

parent population Pt of size Npop using usual selection, crossover and mutation. Then

a combined population Rt = Pt ∪Qt is formed and classified into different layers (F1,

F2, and so on ), each layer consists of mutually non-dominated solutions. Thereafter,

starting from the first layer, points are put into a new population St. A whole pop-

ulation is obtained until the first time the size of St is equal to or larger than Npop.

Suppose the last layer included in St is the l-th layer, so far, members in St \ Fl are

points that have been chosen for Pt+1 and the next step is to choose the remaining

points from Fl to make a complete Pt+1. In general (when the size of St doesn’t equal

to Npop), Npop − |St \ Fl| solutions from Fl needs to be selected for Pt+1.

When selecting individuals from Fl, first, each member in St is associated with

a reference point by searching the shortest perpendicular distance from the member

to all reference lines created by joining the ideal point with reference points. Next, a

niching strategy is employed to choose points associated with the least reference points

in Pt+1 from Fl. The niche count for each reference point, defined as the number of

members in St \ Fl that are associated with the reference point, is computed. The

member in Fl associated with the reference point having the minimum niche count is

included in Pt+1. The niche count of that reference point is then increased by one and

the procedure is repeated to fill the remaining population slots of Pt+1.

NSGA-III is powerful to handle problems with non-linear characteristics as well as

having many objectives. Therefore, we decided to enhance NSGA-III in our algorithm

for the MOFJSP.

5.1.3 Proposed Algorithm

The proposed algorithm, Flexible Job shop Scheduling Problem Multi-Objective Evolu-

tionary Algorithm (FJSP-MOEA) can in principal be combined with any MOEA and

help MOEAs solve the MOFJSP, whereas the standard MOEAs cannot solve MOFJSP

solely. The algorithm follows the flow of a typical EA and generates improved solu-

tions by using local search. Details of the following components are given in the next

subsections.
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• Initialization: encode the individual and generate the initial population.

• Genetic operators: generate offspring by crossover and mutation operators.

• Local search: decode the individual and improve the solution with local search.

Initialization

1. Chromosome Encoding

The MOFJSP is a combination of assigning each operation to a machine and ordering

operations on the machines. In the algorithm, each chromosome (individual) repre-

sents a solution in the search space and the chromosome consists of two parts: the

operation sequence vector and the machine assignment vector. Let N denote the num-

ber of all operations of all jobs. The length of both vectors is equal toN . The operation

sequence vector decides the sequence of operations assigned to each machine. For any

two operations which are processed by the same machine, the one located in front

is processed earlier than the other one. The machine assignment vector assigns the

operations to machines, in other words, it determines which operation is processed by

which machine and the machine should be the one capable of processing the operation.

The format of representing an individual not only influences the implementation

of crossover and mutation operators, a proper representation can also avoid the pro-

duction of infeasible schedules and reduces the computational time. In the algorithm,

the chromosomal representation proposed by Zhang et al. in [134] is adopted and an

example is given in Table 5.2.

Table 5.2: An example of a chromosome representation.

Operation sequence 111 222 333 222 111 111 333
O11 O21 O31 O22 O12 O13 O32

Machine assignment 222 111 111 333 222 222 111
O11 O12 O13 O21 O22 O31 O32

M3 M1 M3 M3 M3 M2 M1

In Table 5.2, the first row shows the operation sequence vector which consists of

only job indexes. For each job, the first appearance of its index represents the first

operation of that job and the second appearance of the same index represents the

second operation of that job, and so on. The occurrence number of an index is equal

to the number of operations of the corresponding job. The second row explains the
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first row by giving the real operations. The third row is the machine assignment vector

which presents the selected machines for all operations. The operation sequence of the

machine assignment vector is fixed, which is from the first job to the last job and from

the first operation to the last operation for each job. The fourth row indicates the

fixed operation sequence of the machine assignment vector and the fifth row shows the

real machines of the operations. Each integer value in the machine assignment vector

is the index of the machine in the set of alternative machines of that operation. In

this example, O13 is assigned to M3 because M3 is the first (and only) machine in

the alternative machine set of O13 (Table 5.1). The alternative machine set of O22 is

{M1,M3}, the second machine in this set is M3, therefore, O22 is assigned to M3.

2. Initial Population

The algorithm starts by creating the initial population. The machine assignment

and operation sequence vectors are generated separately for each individual. In the

literature, a few approaches have been proposed for producing individuals, such as

global minimal workload in [67]; AssignmentRule1 and AssignmentRule2 in [82]. In

the proposed algorithm, several new methods are proposed, namely the Processing

Time Roulette Wheel (PRW) and Workload Roulette Wheel (WRW) for initialising

the machine assignment and the Most Remaining Machine Operations (MRMO) and

Most Remaining Machine Workload (MRMW) for initialising the operation sequence.

These new approaches have been used together with some commonly used dispatching

rules in initializing individuals for the purpose of enriching the initial population.

When generating a new individual, two initialization methods are randomly picked

from the following two lists; one for the machine assignment vector and one for the

operation sequence vector.

Initialization Methods for Machine Assignment

1. Random assignment (Random): an operation is assigned to an eligible machine

randomly.

2. Processing time Roulette Wheel (PRW): for each operation, the roulette wheel

selection is adopted to select a machine from its machine set based on the processing

times of these capable machines. The machine with the shorter processing time is

more likely to be selected.

3. Workload Roulette Wheel (WRW): for each operation, the roulette wheel selection

is used to select a machine from its machine set based on the current workloads
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plus the processing times of these capable machines. The machine with lower sum

of the workload and processing time is more likely to be selected.

PRW and WRW are proposed to assign the operation to the machine with less

processing time or accumulated workload, at the same time, maintaining the freedom

of exploring the entire search space.

Initialization Methods for Operation Sequence

1. Random permutation (Random): starting from a fixed sequence: all job indexes of

J1 (the number of J1 job indexes is the number of operations of J1), followed by all

job indexes of J2, and so on. Then the array with the fixed sequence is permuted

and a random order is generated.

2. Most Work Remaining (MWR): operations are placed one by one into the operation

sequence vector. Before selecting an operation, the remaining processing times of

all jobs are calculated respectively, the first optional operation of the job with the

longest remaining processing time is placed into the chromosome.

3. Most number of Operations Remaining (MOR): operations are placed one by one

into the operation sequence vector. Before selecting an operation, the number of

succeeding operations of all jobs is counted respectively, the first optional operation

of the job with the most remaining operations is placed into the chromosome.

4. Long Processing Time (LPT)[127]: operations are placed one by one into the op-

eration sequence vector, each time, the operation with maximal processing time is

selected without breaking the order of jobs.

5. Most Remaining Machine Operations (MRMO): operations are placed into the op-

eration sequence vector according to both the number of subsequent operations

on machines and the number of subsequent operations of jobs. MRMO is a hier-

archical method and takes the machine assignment into consideration. First, the

machine with the most subsequent operations is selected. After that, the optional

operations in the subsequent operations on that machine are found based on the

already placed operations. For example, if O11 → O12 → O21 are placed opera-

tions, the current optional operation can only be chosen from O13, O22, and O31.

In these optional operations, those which are assigned to the selected machine are

picked and the one that belongs to the job with the most subsequent operations is

placed into the chromosome. In this example, O31 will be chosen if it is assigned to

the selected machine because there are two subsequent operations for J3 and only
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one subsequent operation for J1 and J2. Note that it is possible that no operation

is available on that machine, in that case, the machine with the second biggest

number of subsequent operations will be selected, and so forth.

6. Most Remaining Machine Workload (MRMW): operations are placed into the oper-

ation sequence vector according to both the remaining processing times of machines

and the remaining processing times of jobs. MRMW is a hierarchical method sim-

ilar to MRMO. After finding the machine with the longest remaining process time

and the optional operations on that machine, the operation which belongs to the

job with the longest remaining process time is placed into the chromosome. Again,

if no operation is available on that machine, the machine with the second longest

remaining processing time will be selected, and so forth.

MRMO and MRMW are proposed to give priority to both the machine and the job

with the most number of remaining operations (MRMO) and the longest remaining

processing time (MRMW).

Crossover

Crossover is a matter of replacing some of the genes in one parent with the corre-

sponding genes of the other. Since the representation of chromosomes has two parts,

crossover operators applied to these two parts of chromosomes are implemented sep-

arately as well. Two new crossover operators, Precedence Preserving Two Points

Crossover (PPTP) and Uniform Preservative crossover (UPX), are proposed and

used together with several commonly adopted crossover operators. When executing

the crossover operation in the proposed algorithm, one crossover operator for machine

assignment and one operator for the operation sequence, are randomly chosen from

the following two lists to generate the offspring.

Crossover Operators for Machine Assignment

1. No crossover

2. One point crossover: a cutting point is picked randomly and genes after the cutting

point are swapped between two parents.

3. Two points crossover: two cutting points are picked randomly and genes between

the two points are swapped between two parents.

4. Job-based crossover (JX): it generates two children from two parents by the follow-

ing procedure:
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a A vector with the size of the jobs is generated, which consists of random values

0 and 1.

b For the job corresponding to value 0, the assigned machines of its operations

are preserved.

c For the job corresponding to value 1, the machines of its operations are

swapped between two parents.

5. Multi-point preservative crossover (MPX)[133]: MPX generates two children from

two parents by the following procedure:

a A vector with the size of all operations is generated, which consists of random

values 0 and 1.

b For the operations corresponding to value 0, their machines (genes) are pre-

served.

c For the operations corresponding to value 1, their machines (genes) are swapped

between the two parents.

Crossover Operators for Operation Sequence

1. No crossover

2. Precedence preserving one point crossover (PPOP) [102]: PPOP generates two

children from two parents by the following procedure:

a A cutting point is picked randomly, genes to the left are preserved and copied

from parent1 to child1 and from parent2 to child2.

b The remaining operations in parent1 are reallocated in the order they appear

in parent2.

c The remaining operations in parent2 are reallocated in the order they appear

in parent1.

An example of PPOP is shown in Figure 5.1 and the cutting point is between the

third and fourth operation. Red numbers in parent2 are the genes on the right

side of the cutting point in parent1 and they are copied to child1 with their own

sequence following the genes on the left side of the cutting point in parent1, and

vice versa.

3. Precedence Preserving Two Points Crossover (PPTP): PPTP generates two chil-

dren from two parents by the following procedure:
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Figure 5.1: The process of PPOP.

a Two cutting points are picked randomly, genes except for those between the

two points are preserved and copied from parent1 to child1 and from parent2

to child2.

b Operations between the two cutting points in parent1 are reallocated in the

order they appear in parent2.

c Operations between the two cutting points in parent2 are reallocated in the

order they appear in parent1.

4. Improved precedence operation crossover (IPOX)[132]: IPOX divides the job set

into two complementary and non-empty subsets randomly. The operations of one

job subset are preserved, while the operations of another job subset are copied from

another parent.

5. Uniform Preservative crossover (UPX): UPX generates two children from two par-

ents by the following procedure:

a A vector with the size of all operations is generated, which consists of random

values 0 and 1.

b For the operations corresponding to value 0, the genes are preserved and copied

from parent1 to child1 and from parent2 to child2.

c For the operations corresponding to value 1, the genes in parent1 are found in

parent2 and copied from parent2 with the sequence in parent2, and vice versa.

Mutation

The mutation operator flips the gene values at selected locations. By forcing the

algorithm to search areas other than the current area, the mutation operator is used

to maintain genetic diversity from one generation of a population to the next. In this

algorithm, insertion mutation and swap mutation (including one point swap and two

points swap) are proposed and used.
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Insertion Mutation Operator generates a new individual by the following pro-

cedure:

• Two random numbers i and j (1 ≤ i ≤ N , 1 ≤ j ≤ N) are selected.

• For the operation sequence vector, the operation on position j is inserted in front

of the operation on position i.

• For the machine assignment vector, a machine is randomly selected for both

the operations on i and on j respectively. If the processing time on the newly

selected machine is lower than that on the current machine, the current machine

is replaced by the new machine. If the processing time on the new machine is

longer than that on the old machine, there is only a 20% probability that the

new machine replaces the old machine.

Swap Mutation Operator generates a new individual by the following proce-

dure:

• One random number i (1 ≤ i ≤ N) is selected or two random numbers i and j

(1 ≤ i ≤ N , 1 ≤ j ≤ N) are selected.

• For the operation sequence vector, with only one swap point i, the operation

on the swap point is swapped with its neighbour; with two swap points, the

operations on position i and j are swapped.

• For the machine assignment vector, the machine on position i (and j) is replaced

with a new machine by the same rule used in the insertion mutation operator.

Decoding and Local Search

Decoding a chromosome is to convert an individual into a feasible schedule to calculate

the objective values which represents the relative superiority of a solution. In this

process, the operations are picked one by one from the operation sequence vector and

placed on the machines from the machine assignment vector to form the schedule.

When placing each operation to its machine, local search (in the sense of heuristic

rules to improve solution) is involved to refine an individual in order to obtain an

improved schedule in the proposed algorithm. Two levels of local search are applied

to allocate each operation to a time slot on its machine. We know that idle times

may exist between operations on each machine due to precedence constraints among

operations of each job, and two levels of local search utilize idle times in different

degrees.
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The First Level Local Search

Let Sij be the starting time of Oij and Cij the completion time of Oij , an example of

the first level local search is shown in Figure 5.2. Because Omn needs to be processed

after the completion of Omn−1, an idle time interval between the completion of Oab and

the starting of Omn appeared on machine Mk. Oij is assigned to Mk and we assume

that Omn is the last operation on Mk before handling Oij , therefore the starting time

of Oij is max{Cmn, Cij−1}, which in this example is Cmn and it is later than Cij−1,

thus, there is an opportunity that Oij can be processed earlier. When checking the

idle time on Mk, the idle time interval [Cab, Smn] is found available for Oij because

the idle time span [Cij−1, Smn], which is part of [Cab, Smn], is enough to process Oij

or longer than tijk.

Figure 5.2: First level local search Figure 5.3: Second level local search

Let Sd
k be the starting time of the dth idle time interval on Mk and Cd

k be the

completion time. Oij can be transferred to an earliest possible idle time interval of its

machine which satisfies the following equation:

max{Sd
k , Cij−1}+ tijk ≤ Cd

k , (Cij = 0, if j = 1). (5.4)

After using the idle time interval, the starting time of Oij is max{Sd
k , Cij−1} and

the idle interval is updated based on the starting and completion time of Oij : (1)

the idle time interval is removed; (2) the starting or completion time of the idle time

interval is modified; (3) the idle time interval is replaced by two new shorter idle time

intervals, like in the example of Figure 5.2.

After decoding a chromosome, the operation sequence vector of the chromosome is

updated according to new starting times of operations, and three objective values are
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calculated. The first level local search only finds for each operation the available idle

time interval on its assigned machine. After generating the corresponding schedule

with the first level search method, it is possible that there are still operations that

can be allocated to available idle time intervals to benefit the fitness value. To achieve

this, decoding the chromosome which has been updated with the first level local search

is performed with the second level local search, and again operations are moved to

available idle time intervals.

The Second Level Local Search

The second level local search not only checks the idle time intervals on the assigned

machine, but also the idle time intervals on alternative machines. An example of

making use of the idle time interval on another machine is shown in Figure 5.3. Let

Sijk be the starting time and Cijk be the completion time of Oij on Mk. In this

example, Oij is assigned to Mk in the initial chromosome, we assume that Oij can

also be performed by Me. Under the condition that the starting time of Oij on Mk

is later than the completion time of Oij−1, the idle time intervals on all alternative

machines which can process Oij are checked. An idle time interval on Me could be a

choice and Oij can be reallocated to Me. In this example, the processing time of Oij

on Me is even shorter then the processing time on Mk, therefore, this reallocation can

at least benefit the total workload.

In the second level local search, all available idle time intervals of an operation

are checked one by one until the first “really” available idle time interval is found

and then the operation is moved to that idle time interval. Any idle time interval

on an alternative machine which can satisfy Equation 5.4 is an available idle time

interval, while it must meet at least one of the following conditions to become a

“really” available idle time interval.

1. The processing time of the operation on the new machine is shorter than on

the initially assigned machine if the available idle time interval is on a different

machine;

2. The operation can be moved from the machine with the maximal makespan to

another machine.

3. The operation can be moved from the machine with the maximal workload to

another machine.

The total workload can be improved directly by the first condition; the motive of the
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second condition is to decrease the maximal makespan and the third condition can

benefit the critical workload.

After the reallocation of the operations with the second level local search, the

corresponding schedule is obtained and objective values are calculated. While, instead

of updating the chromosome immediately, the new objective values are compared with

the old objective values first, the chromosome can be updated only when at least one

objective is better than its old value. This is to make sure that the new schedule is at

least not worse than the old schedule (The new solution is not dominated by the old

solution). Another difference between the first and second level local search is that the

first level local search is performed on every evaluation, while the second level local

search is only performed with a 30% probability for each chromosome to avoid local

optima. Although these two local searches can be applied repeatedly to improve the

solution, to avoid that the algorithm is stuck in a local optima, they are employed

only once for each evaluation.

5.1.4 Experimental Results

The algorithms are tested on two sets of well-known FJSP benchmark instances: 4

Kacem instances (ka4x5, ka10x7, ka10x10, ka15x10) and 10 BRdata instances (Mk01-

Mk10). Table 5.3 gives the scale of these instances. The first column is the name of

each instance; the second column shows the size of the instance, in which n stands for

the number of jobs and m the number of machines; the third column represents the

number of operations; the fourth column lists the flexibility of each instance, which

means the average number of alternative machines for each operation in the problem.

All the experiments are performed with a population size of 100, each run of the

algorithm will stop based on a predefined number of evaluation, which is 10000 for

Kacem instances and 150000 for BRdata instances. For each problem instance, the

proposed algorithm is independently run 30 times. The resulting set is formed by all

non-dominated solutions from the union of 30 runs.

The crossover probability is set to 1 and two random crossover operators can be

chosen each time (one for operation sequence and one for machine assignment). For

Kacem instances, the mutation probabilities are set to 0.6. For BRdata instances,

which include larger-scale and more complex problems, the MIP-EGO configurator

[110] is adopted to tune both insertion and swap mutation probabilities (one point

swap mutation and two points swap mutation) to find the best parameter values for

each problem. The hypervolume of the solution set has been used in MIP-EGO as the
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Table 5.3: The scale of benchmark instances.

Instance n → m #Opr Flex.
ka4x5 4 → 5 12 5
ka10x7 10 → 7 29 7
ka10x10 10 → 10 30 10
ka15x10 15 → 10 56 10
Mk01 10 → 6 55 2
Mk02 10 → 6 58 3.5
Mk03 15 → 8 150 3
Mk04 15 → 8 90 2
Mk05 15 → 4 106 1.5
Mk06 10 → 15 150 3
Mk07 20 → 5 100 3
Mk08 20 → 10 225 1.5
Mk09 20 → 10 240 3
Mk10 20 → 15 240 3

objective value to tune three mutation probabilities. Although the true PFs for test

instances are unknown, [131] provides the reference set for Kacem and BRdata FJSP

instances, which is formed by gathering all non-dominated solutions found by all the

implemented algorithms in [131] and also non-dominated solutions from other state-

of-the-art MOFJSP algorithms. The reference point for calculating the hypervolume

value is determined by the largest value in this reference set. To be specific, each

objective function value of the reference point is: 1.1 × largest objective function

value of the respective dimension in the reference set. The origin point is used as the

ideal point. Other basic parameter settings of MIP-EGO are listed in Table 5.4. For

each mutation probability, we only consider a discretized number with only one digit

after the decimal point, therefore, the search space is ordinal or integer space, which

in MIP-EGO are handled in the same way.

Table 5.4: Settings for MIP-EGO.

Parameter value
maximal number of evaluations 200
surrogate model random forest
optimizer for infill criterion MIES
search space ordinal space

Table 5.5 shows the percentage of the evaluations which can achieve the largest

hypervolume value (or the best PF) by MIP-EGO (200 Evaluations). In each evalua-

tion, MIP-EGO assigns a specific parameter setting for our optimization algorithm. It
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can be observed for Mk05 and Mk08 that all the evaluations have obtained the largest

hypervolume value; it means that all parameter values of mutation probabilities in

MIP-EGO can achieve the best PF for these two problems. It can also be seen in

Table 5.3 that both problems have a low flexibility value. On the contrary, for Mk06,

Mk09 and Mk10, these problems have a large operation number and high flexibility.

It seems that they can be difficult to solve because only one best parameter setting for

mutation probabilities has been found among all evaluations. This also means that it

is highly likely better solution sets can be found with a higher budget.

Table 5.5: Probability of finding best configuration.

Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10
73% 60% 95% 1% 100% 0.5% 4.5% 100% 0.5% 0.5%

With the best parameter setting of the mutation probabilities for BRdata instances,

our experimental results are compared with the reference set in [131]. The proposed

algorithm can achieve the same Pareto optimal solutions as in the reference set for all

BRdata instances except for Mk06, Mk09 and Mk10. At the same time, for Mk06 and

Mk10, our algorithm can find new non-dominated solutions. Table 5.6 is the list of

new non-dominated solutions obtained by our algorithm, each row of an instance is a

solution with three objectives: makespan, total workload, and critical workload.

Table 5.6: Newly achieved non-dominated solutions.

Mk06 Mk10
61 427 53 218 1973 195
63 428 52 218 1991 194
63 435 51 219 1965 195
65 453 49 220 1984 191
66 451 49 225 1979 194
66 457 48 226 1954 196

226 1974 194
226 1979 192
228 1973 194
235 1938 199
236 1978 193

Another comparison is between our algorithm (FJSP-MOEA) and MOGA [113],

SEA [16] and MA1, MA2 [131]. In [131], there are several variants of the proposed

algorithm with different strategies in the local search. MA1 and MA2 are chosen as

compared algorithms because they perform equally good or superior to other variants
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on almost all problems. Table 5.7 displays the hypervolume value of the PF approx-

imation from all algorithms and the new reference set which is formed by combining

all solutions from the PF by all algorithms. The highest hypervolume value on each

problem in all algorithms has been highlighted in bold. It can be observed that FJSP-

MOEA and MA1, MA2 show the best and similar performance, and MOGA behaves

the best for three of the BRdata instances. The good performance of MOGA on three

problems is interesting. MOGA has an entropy-based mechanism to maintain decision

space diversity which might be beneficial for solving these problem instances. When

using one best parameter setting, the average hypervolume and standard deviation

from 30 runs on each problem are given in Table 5.8, the standard deviation of each

problem shows the stable behaviour of each run.

Table 5.7: Hypervolume from MOGA, SEA, MA1, MA2, FJSP-MOEA and the reference
set.

Problem MOGA SEA MA1 MA2 FJSP-MOEA Ref
Mk01 0.00426 0.00508 0.00512 0.00512 0.00512 0.00512
Mk02 0.01261 0.01206 0.01294 0.01294 0.01294 0.01294
Mk03 0.02460 0.02165 0.02165 0.02165 0.02165 0.02809
Mk04 0.06906 0.06820 0.06901 0.06901 0.06901 0.07274
Mk05 0.00626 0.00635 0.00655 0.00655 0.00655 0.00655
Mk06 0.05841 0.06173 0.06585 0.06692 0.06709 0.07065
Mk07 0.02244 0.02132 0.02269 0.02269 0.02269 0.02288
Mk08 0.00418 0.00356 0.00361 0.00361 0.00361 0.00428
Mk09 0.01547 0.01755 0.01788 0.01789 0.01785 0.01789
Mk10 0.01637 0.01778 0.02145 0.02196 0.02081 0.02249

Table 5.8: Average hypervolume and std with the best parameter setting.

Problem Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10
Ave-HV 0.0050 0.0122 0.0216 0.0672 0.0064 0.0598 0.0222 0.0036 0.0174 0.0186

Std 0 0.0003 0.0001 0.0004 0.0001 0.0019 0.0003 0 0.0002 0.0006

For Kacem instances and with fixed mutation probabilities, the obtained non-

dominated solutions by the proposed algorithm are the same as the PF in the reference

set. MA1 and MA2 also achieved the best PF for all Kacem instances, but the pro-

posed FJSP-MOEA uses far less computational resources. It uses only a population

size of 100 whereas the population size of MA algorithms is 300. FJSP-MOEA uses

only 10000 objective function evaluations, whereas MA uses 150000 evaluations. In

terms of computational resources the proposed FJSP-MOEA can therefore be used on
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smaller computer systems, entailing broader applicability, and possibly also in real-

time algorithm implementations such as dynamic optimization.

5.1.5 Conclusion

A novel multi-objective evolutionary algorithm for the multi-objective flexible job shop

scheduling problem (MOFJSP) is proposed. It uses multiple initialization approaches

to enrich the first generation population, and various crossover operators to create

better diversity for offspring. Moreover, to determine the optimal mutation probabili-

ties, the MIP-EGO configurator is adopted to automatically generate proper mutation

probabilities. Besides, the straightforward local search is employed with different lev-

els to aid more accurate convergence to the PF. The proposed customization approach

in principle can be combined with almost all MOEAs. In this work, it is incorporated

with one of the state-of-the-art MOEAs, namely NSGA-III, to solve the MOFJSP,

and the new algorithm can find all Pareto optimal solutions in literature for most

problems, and even new Pareto optimal solutions for the large scale instances.

The ability of the MIP-EGO configurator in finding the optimal mutation prob-

abilities is shown in this work. However, there is more potential in the automated

parameter configuration domain that can benefit EA. For example, to know the ef-

fects of different initialization approaches and crossover operators, we can optimize

the initialization and crossover configuration. Furthermore, other parameters of the

proposed algorithm, such as, population size, evaluation number, and so on, can also

be tuned automatically. However, so far the efficiency of the existing tuning frame-

work is limited when it comes to a larger number of parameters. It would therefore

be a good topic of future research to find more efficient implementations of these.

5.2 MOEAs for Vehicle Fleet Maintenance Schedul-

ing Optimization

Nowadays, companies, corporations, and organizations of all sorts rely on vehicle fleets

to deliver products and services. Typical examples of such vehicle fleets are taxi cab

fleets, public bus fleets, car rental fleets, delivery fleets, and so on. According to

the statistical data from the European Automobile Manufacturers Association, the

global vehicle fleet grows continuously, and the EU has a total fleet of 259.7 million
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passenger cars and 39.1 million commercial vehicles in 20172. The maintenance of fleet

vehicles plays a critical role in their efficient use. Fleet vehicles should be maintained

according to a schedule to ensure that they are safe for use; at the same time, a good

maintenance schedule can reduce related expenses, increase the efficiency of the assets,

ensure consistent service delivery, and even reduce its carbon footprint.

Due to various tasks the vehicles execute, damages to vehicles occur after varying

duration. To be more precise, the critical components of each car need to be main-

tained based on their respective damages from wear and tear. To decide when each

component should be maintained, the remaining useful lifetime (RUL) of each com-

ponent, which is the time remaining until the component no longer meets operational

requirements, can be predicted based on adequate predictive approaches or models

[35]. Other than the predicted RUL of components, to maintain a vehicle fleet, dif-

ferent maintenance resources are needed. For example, a vehicle component may take

several days to be repaired and the maintenance activity can be performed on one of

several optional workshops.

The goal of optimizing the maintenance schedule for a vehicle fleet is to ensure

that all maintenance tasks are performed on time, keeping the vehicle fleet in healthy

operating condition and under business requirements. This section continues in Sec-

tion 5.2.1 with the formulation of the vehicle fleet maintenance scheduling optimization

(VFMSO) problem. A literature review is provided in Section 5.2.2. The customized

multi-objective evolutionary algorithm for the VFMSO problem is described in Sec-

tion 5.2.3, Section 5.2.4 presents and discusses experiments and their results. Lastly,

Section 5.2.5 concludes the work and outlines directions for future work.

5.2.1 Problem Formulation

In the real world, the size of a vehicle fleet can be large and its distribution wide,

which makes it necessary to distribute the maintenance of a vehicle fleet in multiple

separate workshops. At the same time, each workshop has its own capacity and ability,

meaning that on the one hand, each workshop has its own team and each team can

work on only one car simultaneously; on the other hand, each workshop is limited

to the maintenance of the specific component(s) due to restrictions in the equipment

or skill level of the staff. These conditions form the primary constraints faced by

the vehicle fleet maintenance scheduling optimization. Moreover, the cost and time

which are needed to repair car components by different workshops are required. It

2https://www.acea.be/statistics/tag/category/size-distribution-of-vehicle-fleet retrieved on 17th
of December 2018.
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is possible that the maintenance of the same component produces different costs and

workloads when the activity is performed in different workshops because, for example,

the distances between vehicles and the workshops are different. The set-up cost and

set-up time are fixed for each visit of a car to a workshop, which correspond to the cost

and time required for the preparation of the maintenance. In this work, the predicted

RULs of components are converted to the due dates to determine the maintenance

time of each component which is the estimate of the date when the component fails

in case no maintenance takes place before its due date.

The vehicle fleet maintenance scheduling optimization problem addressed in this

work is defined as follows:

1. There are n cars C = {C1, C2, · · · , Cn} andm workshopsW = {W1,W2, · · · ,Wm}.

2. Each car Ci comprises li components to be maintained for i = 1, · · · , n.

3. For each component Oij , i.e., the jth operation of car Ci, there is a set of

workshops capable of repairing it. The set of workshops is represented by Wij

which is a subset of W .

4. The processing time of the maintenance of the component Oij in workshop Wk

is predefined and denoted by pijk.

5. The maintenance cost of the maintenance of the component Oij in workshop Wk

is predefined and denoted by qijk.

6. The set-up time of car Ci in workshop Wk is predefined and denoted by Xik.

7. The set-up cost of car Ci in workshop Wk is predefined and denoted by Yik.

8. The number of teams in workshop Wk is predefined and denoted by Zk.

9. The due date and previous repair time of each component Oij are predefined

and denoted by Dij and Rij respectively.

10. All business requirements or vehicle demands are predefined. There are r vehicle

demands and the format of one demand is: Ni cars are required from day di1 to

day di2 for i = 1, · · · , r.

At the same time, the following assumptions are made:

1. All workshops and cars are available at time 0 and assumed to be continuously

available.

2. All the components are independent from each other.

132



Chapter 5. Multi-objective Scheduling Optimization

3. Times required for transport of cars from/to workshops are included in the main-

tenance time and cost of cars.

4. Environmental changes (such as car accidents) are not considered here.

5. There are no precedence constraints among the components of different cars.

Cars are maintained on a first-come-first-served basis.

6. An operation, once started, must run to completion.

7. No operation can start before completion of the previous operation.

A multi-objective scheduling optimization problem is considered in this work and

three objectives are assumed to be relevant for the vehicle fleet operator, which are

the total workload, total cost and demand satisfaction. The reason why demand

satisfaction is defined as objective is that it is treated as flexible and violable. Let Tk

denote the sum of the maintenance times spent on all operations that are processed in

workshop Wk; Mi the sum of all costs of all operations of car Ci; N
t
avail the number

of cars which are not in workshops on day t, N t
demand the number of cars required on

day t. Three objectives can be defined as:

Minimize the total workload : f1 =

m∑
k=1

Tk (5.5)

Minimize the total cost : f2 =

n∑
i=1

Mi (5.6)

Maximize the demand satisfaction : f3 =
∑
t

min{N t
avail −N t

demand, 0}. (5.7)

For illustration purposes, an example of parameters for a car is shown in Table 5.9,

where rows correspond to components of the car; columns correspond to the cost, pro-

cessing time, set-up time and set-up cost of the car in alternative workshops, also due

date and previous repair date. In this example, there are two workshops: W1 and W2.

The tag “− ” means that the workshop cannot repair the corresponding component,

therefore, workshop W1 cannot maintain O14 and workshop W2 cannot maintain O11.

Here, the predefined costs of components are the same at both workshops: e200, so

are the processing times, set-up costs and set-up times. Of course, times and costs

in different workshops can be different. The due date and previous repair time are

relative to day 0.
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Table 5.9: Parameters of car C1.

Comp
cost time date set-up cost set-up time

W1 W2 W1 W2 Due Pre W1 W2 W1 W2

O11 200 - 2 - 74 -61

100 1 100 1
O12 200 200 2 2 25 -6
O13 200 200 2 2 15 -50
O14 - 200 - 2 60 -1

5.2.2 Literature Review

In the early studies of predictive maintenance, also called condition-based mainte-

nance (CBM) [63], the condition monitoring, failure diagnostics, and prognostics al-

ways attracted more attention than planning the maintenance schedule based on the

information obtained from the condition monitoring, failure diagnostics and prognos-

tics. In [83], an onboard locomotive diagnostic system was invented to monitor the

transmitted onboard vehicle data, determine whether any of the monitored data is out

of a predetermined range, compare monitored data with historical data and calculate

trends, predict if any vehicle system(s) must be corrected to avoid vehicle failure and

when such system(s) are likely to fail. It was mentioned in [83] that the onboard

diagnostic systems are not helpful in optimizing locomotive maintenance scheduling

because they do not communicate with a rail carrier’s scheduling center.

Simultaneously, the prognostic information included in maintenance policies may

be given in different formats such as RUL, efficiency decrease, the probability of failure.

Prognostics and reliability information in [14] were the failure probabilities of the

components. The failure probabilities were analyzed to schedule maintenance with

minimum system risk using a genetic algorithm. The systematic risk was treated as

part of the cost of performing the maintenance schedule. System conflicts and resources

were also considered as constraints in this single-objective problem. [10] introduced

deterioration models to take into account the component degradation information

of a multi-component system. The optimal dates of maintenance operations can be

computed based on the model, and additional costs can be evaluated if the operations

are not executed at the optimal maintenance dates. Lastly, the optimal grouping of

individual maintenance actions was found to reduce the maintenance cost, and the

maintenance plan was updated dynamically at each inspection date.

Optimizing the maintenance schedule has been widely neglected in the study of

predictive maintenance, while it can be crucial for effective maintenance planning and

scheduling. As an essential branch of production planning problems and the basis
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of maintenance scheduling optimization, the flexible job shop scheduling problem has

been extensively studied in the literature (please refer to Section 5.1). According to

[15], most research papers have addressed classical FJSP in the last 25 years, while

only around 35% of papers considered different scenarios such as machine breakdown,

uncertain processing times, overlapping operations and so on. [81] considered FJSP-

PPF (process plan flexibility), where jobs can have alternative process plans. It was

assumed that the process plans are known in advance and that they are represented

by linear precedence relationships. Because only one of the alternative plans had to

be adopted for each job, the FJSP-PPF dealt with not only routing and sequencing

sub-problems, but also the process plan selection sub-problem. In this paper, a mixed-

integer linear programming model was developed for the FJSP-PPF and makespan was

adopted as the single performance measure.

In [32], a mathematical model and a genetic algorithm were proposed to handle the

feature of overlapping in operations. It was assumed that a lot which contains a batch

of identical items is transferred from one machine to the next only when all items in

the lot have completed their processing, therefore, sublots are transferred from one

machine to the next for processing without waiting for the entire lot to be processed

at the predecessor machine, meaning that starting a successor operation of job is not

necessary to finish of its predecessor completely.

Three features were considered in [129], which were (1) job priority; (2) parallel

operations: some operations can be processed simultaneously; (3) sequence flexibility:

the sequence of some operations can be exchanged. A mixed integer linear program-

ming formulation (MILP) model was established to formulate the problem and an

improved differential evolution algorithm was designed.

Because of unexpected events occurring in most of the real manufacturing systems,

there is a new type of scheduling problem known as the dynamic scheduling problem.

This type of problem considers random machine breakdowns, adding new machines,

new job arrival, job cancellation, changing processing time, rush order, rework or

quality problem, due date changing, etc. Corresponding works on the FJSP include

[1], [2], [42], [94].

Compared with the FJSP introduced in Section 5.1.1, the VFMSO problem has

some special properties: (1) flexible sequence: the sequence of the components is not

predefined, and the starting time of each component is mainly determined by its due

date. (2) multiple problem parameters: besides the processing time, other problem pa-

rameters like the maintenance cost, set-up time, set-up cost, repair teams, the demand

for cars at a specific time, also have an impact on the maintenance schedule.
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5.2.3 Customized Algorithm

A specialized evolutionary algorithm framework is defined and applied with MOEAs to

solve the multi-objective vehicle fleet maintenance scheduling optimization (MOVFMSO)

problem. In this part, the approach underlying the algorithm and the implementation

of genetic search, including chromosome encoding, chromosome decoding and genetic

operators, are described.

Components Grouping

When scheduling components, the idea of grouping several components of the same car

for one visit is employed in the proposed algorithm. By grouping the maintenance of

multiple components into one maintenance operation, the set-up cost and set-up time

apply only once for the complete group of components. However, the maintenance

cost could be indirectly penalized:

• with the reduction of the component useful life if the maintenance date is shifted

backward;

• with the increase of the risk of breaking down on the road if the maintenance

date is shifted forward.

Therefore, the maintenance of each component should not be shifted too far from

its due date. In the proposed algorithm, an interval or execution window of the starting

time is defined for each component, and the maintenance of the component can only

start at a time spot inside the corresponding interval. The interval of each component

consists of two parts and their respective lengths are defined as:

• Length of the interval before the due date: 0.3× (Due date - Previous repair

date);

• Length of the interval after the due date: 0.1× (Due date - Previous repair date).

The interval is chosen relatively long so that maintenance before or after the interval

hardly makes sense. With the interval, combining components can only be effective if

their intervals overlap, and the starting time of the group maintenance must lie within

the interval intersection.

Grouping components also means that not all the components can be maintained

exactly at their due dates. For the component that is maintained before or after its due

date, an extra cost is introduced to penalize either the reduction of the useful life when
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the maintenance is performed before the due date or the increase of component failure

probability when the maintenance is performed after the due date. Figure 5.4 gives

an example of the execution window and penalty function of a component. Two linear

penalty functions are proposed to calculate the penalty cost based on the following

assumptions.

• If a component is maintained at the same time as the previous repair time, the

penalty cost would be c+ s: the sum of its maintenance cost and the set-up cost

of the car;

• If a component is maintained at the end of the interval (the latest possible repair

time), the penalty cost would be 100 ∗ c (c: the maintenance cost of the compo-

nent). This penalty cost is the combination of all losses: the expense needed if

the defect occurs on the use (diagnostics, technical and logistics support, repair

or replacement of the failed component), the loss of reputation, and so on.

As can be seen, if the component Oij is maintained at tij (tij is in its interval), its

penalty cost is:

((c+ s)/(Dij −Rij))× (Dij − tij) if tij < Dij

0 if tij = Dij

((100× c)/((Dij −Rij)/10))× (tij −Dij) if tij > Dij .

When components are grouped together, the maintenance time of the group is the

sum of the processing times of all components in the group plus one set-up time; the

cost of the group is the combination of one set-up cost, the maintenance costs and the

penalty costs of all components in the group.

Chromosome Encoding

EAs typically start with a diverse set of feasible solutions (a population) and iteratively

replace the current population by a new population. A suitable encoding is required

for the problem. Based on the properties of the application problem, a three-vector

chromosome (Figure 5.5) is proposed to represent an individual, which includes:

• group structure vector: the group structures of vehicles one by one;

• starting time vector: the starting times of group operations;

• workshop assignment vector: the workshops of group operations.
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Figure 5.4: Execution window and penalty function of a component.

Figure 5.5: Three-vector chromosome.

Figure 5.6: Possible groups of a car with eight components.

1. Group structure vector Figure 5.6 represents the intervals of eight components

of a car. Component c1 can be grouped with c2 and/or c3 due to the overlap between

their execution windows. Other possible group structures can be deduced in the same

manner. However, the practical situation can be more complicated. For example, in

Figure 5.7, c1 can be grouped with c2; c1 can be grouped with c3 and c4; c1 can also

be grouped with c3 and c5. But c1 and c2 together cannot be grouped with other

components; c1, c3 and c4 together cannot be grouped with c5. The overlaps and

possible group structures of all components from one car are checked by the following
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Figure 5.7: Five component intervals of a car.

sweep line algorithm:

1. All components of one car are sorted as a list according to the left end of the

intervals.

2. Starting from the first component, all components are checked one by one. For

each component, only this component and the subsequent components in the

list are necessary in the check because the possible groups with the preceding

components have been found when checking those components.

3. A stack is utilized to store the intervals and their corresponding components.

The interval of the checked component is pushed onto the stack first. Look

at the next component, if there is an overlap between them, push the overlap

interval onto the stack; otherwise, pop off the topmost element from the stack,

return the only group possibility and end the checking process.

4. Compare the topmost interval on the stack with the interval of the next compo-

nent, if they overlap, push the overlap interval onto the stack; otherwise, pop off

the topmost element from the stack. Repeat this step until the interval stack is

empty or the last component has been checked.

All possible group numbers will be found after the above steps. Figure 5.8 shows

the alternative groups of components on Figure 5.6 (left table) and Figure 5.7 (right

table). Each component corresponds to a column and the numbers in its column

are all the possible group numbers the component can choose. Components which

have picked the same group number belong to the same group. Table 5.10 shows two

randomly generated group structure vectors of the car in Figure 5.6. The first example

“1 2 1 4 5 6 7 7” represents that c1 and c3 are in the same group; c7 and c8 are in

the same group; c2, c4, c5, c6 are in four different groups. It does not matter what

the group number is, the group number only tells us which components are in the

same group. For example, “3 4 5 5 7” could be a group structure vector of the car in

Figure 5.7.
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Figure 5.8: Alternative groups of components in Fig.5.6 and Fig.5.7.

Table 5.10: Examples of group structure.

Component 111 222 333 444 555 666 777 888
Example 1 1 2 1 4 5 6 7 7
Example 2 1 1 1 4 4 6 7 8

2. Starting time vector A starting time vector can be randomly generated based

on its group structure vector. Before picking the starting time for each group, the

interval intersection of each group is calculated and the starting time is randomly

picked from this intersection. Under the condition that a component is the sole member

of a group, its starting time can be selected from its entire maintenance interval.

3. Workshop assignment vector A workshop is considered as “several work-

shops” based on its capacity (the number of teams). By this way, the schedule of each

workshop team can be achieved from the solution. For example, consider that two

workshops have three and four repairing teams respectively. Then, group operations

can be randomly assigned to seven “workshops”, the former three and the latter four

represent corresponding teams in two workshops.

Genetic Operators

Based on the encoding, the corresponding genetic operators are designed, i.e., crossover

and mutation operators. Crossover operators are applied separately to the three parts

of the chromosomes.

140



Chapter 5. Multi-objective Scheduling Optimization

For the group structure vector, one point or multi-point crossover can be used as

crossover operator. Figure 5.9 is an example of one point crossover on the two group

structure vectors in Table 5.10. Two new vectors are generated, and they are always

valid because the group number of each component is from its own alternative group

numbers. Because the whole group structure vector consists of all car components,

one point crossover may not be efficient enough. Therefore, multi-point crossover can

be applied.

Figure 5.9: One point crossover.

The same cutting points are applied to the starting time vector when doing crossover.

However, the change on the group structure vector caused by the crossover can result

in the invalidity of the starting time vector because it is possible that the group mem-

bers and intersection have changed due to the new group structure. Therefore, when

performing the crossover on the starting time vector, the starting times of all group

operations are checked and a new starting time is generated randomly from the new

feasible intersection in the case that the starting time of a group is invalid.

A multi-point crossover can be applied to the workshop assignment vector as well.

Every component is assigned a workshop team randomly. In the proposed algorithm,

the workshop team of a group operation is decided by the first component in that

group in case different workshop teams are assigned to components in the same group.

The mutation operators applied to three parts of the chromosome are also imple-

mented separately. One or more gene values in the group structure vector can be

exchanged by another alternative value from the same column in Figure 5.8 in order

to generate a new individual. Again, the change applied to the group structure vector

can result in the invalidity of the starting time vector. Hence, the starting time is

checked for the corresponding groups after the mutation is done on the group struc-

ture vector; a valid starting time is generated randomly if it is invalid. Afterwards,

some gene values can be altered in the starting time vector and workshop assignment

vector to generate a new individual.
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Chromosome Decoding

Decoding the chromosome is to convert an individual into a feasible schedule to cal-

culate the objectives and constraints which represent the relative superiority of a

chromosome. The group structure, the starting time and the workshop team of the

operations can be obtained from each individual. Thereafter, the objective values

can be calculated. When converting an individual to a schedule, it is possible that

the processing times of two or more group operations assigned to the same workshop

team are overlapping since the starting time of each group operation is fixed in the

starting time vector. In this case, the principle of first-come-first-served is followed:

the starting time and processing time of the earlier started group are not changed;

the starting time of the later started group operation is not changed either; but the

processing time of the later group operation is increased because the later group op-

eration can be maintained only after the previous group operation is implemented.

In the algorithm, the workshop abilities (components a workshop can maintain) are

used as constraints to guarantee that a component will not be assigned to a workshop

which cannot maintain it.

5.2.4 Experimental Results

The proposed evolutionary algorithm framework has been combined with four MOEAs:

NSGA-III, SMS-EMOA, DI-MOEA (DI-1 and DI-2) to solve the real-world vehicle

fleet maintenance schedule optimization problem, and their performance is presented

in this section. Three application instances with different sizes are generated and their

parameters are listed in Table 5.11. For example, the problem P1 includes 30 cars, each

car consists of 4 components and 2 workshops are available; the two workshops have

3 and 4 repairing teams, and they can only maintain component o1, o2, o3 and o2, o3,

o4 respectively. In order to make the results straightforward and better comparable,

the processing time, cost as well as other variables are set to fixed values according to

Table 5.9; the due dates and previous repair dates are generated randomly in 100 days

(negative values are used for the previous repair dates); vehicle demands are randomly

generated for each problem in a way that the demand never exceeds the total number

of cars in the fleet.

All the experiments are performed with a population size of 100 and a budget of

500000 fitness evaluations. Both crossover and mutation probability are set to 1. For

each problem, 30 optimization trials are performed with each algorithm. 10 cutting

points are used in the multi-point crossover.
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Table 5.11: Problem parameters.

Problem #car #comp #ws ws #car ws #comp

P1 30 4 2
3 o1, o2, o3
4 o2, o3, o4

P2 40 4 2
3 o1, o2, o3
4 o2, o3, o4

P3 40 4 3
3 o1, o2, o3
4 o2, o3, o4
3 o1, o2, o3, o4

When analyzing the performance of different MOEAs, the empirical attainment

function (EAF) is used to visualize the attained parts of the objective space. The

50% attainment surface shows that half of all Pareto optimal solutions will weakly

dominate this surface and it is an estimator of what one would expect to achieve

in 50% of runs [18]. Besides the average performance, the aggregate Pareto front

approximation over 30 runs, i.e., the accumulated non-dominated solutions from 30

runs, has been used as another performance metric as well. Because extreme solutions

are not preferable for the application problems and only one solution will be chosen

to be deployed in workshops, the Pareto front approximation is zoomed in and the

50% attainment surface and the aggregate Pareto front approximation on the knee

regions are plotted. Since relatively loose vehicle demands are considered currently,

all the vehicle demands have been satisfied in all the solutions on the Pareto front

approximations obtained from all algorithms. Therefore, the two-dimension plot can

be shown to observe the results.

The performance of the algorithms has also been examined using the hypervolume

indicator. Table 5.12 shows the aggregate and median hypervolume across 30 runs

on three problems. For each instance, the upper row is the aggregate hypervolume,

the middle row is the median hypervolume and the lower row is the standard devia-

tion; the best hypervolume value has been highlighted in bold. When calculating the

hypervolume indicator, the reference point is used by the maximum extent of the pop-

ulation plus an offset. It can be observed that SMS-EMOA, DI-2 and DI-1 performs

best on P1, P2 and P3 respectively for the aggregate hypervolume; for the median

hypervolume, SMS-EMOA performs best on P1, P3 and DI-1 performs best on P2.

For P1, if all the components are maintained exactly at their due dates, the total

time and cost would be around 360 days and e 36000, and vehicle demands cannot

be guaranteed. Likewise, the total workload and cost would be around 480 days and

e 48000 for P2 and P3 when all the components are maintained exactly at their due
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Figure 5.10: The 50% attainment surface (upper row), aggregate Pareto front approx-
imation of each algorithm (middle row) and aggregate Pareto front approximation of all
algorithms (lower row) of three instances on cost(days) & time(e).

Table 5.12: The aggregate hypervolume (Agg-HV) and median hypervolume (M-HV).

Algorithms
DI-1 DI-2 NSGA-III SMS-EMOA

Problems

P1
Agg-HV 0.87983 0.91007 0.89932 0.91633
M-HV 0.82728 0.83160 0.82506 0.84137
std 0.0609 0.0506 0.0444 0.0563

P2
Agg-HV 0.89830 0.98095 0.93151 0.97677
M-HV 0.78950 0.77907 0.72469 0.72647
std 0.1649 0.1634 0.1259 0.1463

P3
Agg-HV 0.88581 0.88202 0.79875 0.87652
M-HV 0.47185 0.51326 0.43115 0.52816
std 0.2357 0.2244 0.2051 0.2424
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Figure 5.11: A schedule on the Pareto front approximation of DI-2 on P2.

dates. While, we can find many solutions with the workload less than 360 days and

cost less than e 36000 on the Pareto front approximations of all algorithms for P1.

The same applies analogously for P2 and P3. Besides that the workload and cost of

these solutions are already better than performing the operations on the due dates,

all the vehicle demands have been satisfied at the same time.

Figure 5.11 presents a schedule on the Pareto front approximation of DI-2 on P2,

the two objectives (cost and time) of this solution are e 45338 and 428 days, the

customer demands are totally satisfied. Each item is a group operation, the number

above is the car number and the number below is the component number. We can

see that some components are maintained individually and some components of a car

are grouped together for one workshop visit. There is no maintenance of component

c4 in workshop ws1 because this workshop has no ability to maintain component c4,

and the same for component c1 on ws2. It can also be observed that some operations

are overlapping to some extent. For example, the first item on Team4 of ws2 is

an operation of c3 on car 15, its maintenance starts from day 6 and ends on day 9

because the total processing time plus set-up time is three days. However, before the

completion of this task, car 11 (for the operation of c2 and c4) is sent to the same

team and has to wait for one day for maintenance. The reason why car 11 waits in
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the workshop instead of being sent to the workshop one day later is that the failure

probability of c2 or c4 would increase if this car is in use for one more day. There is no

penalty cost for the wait of the car in the workshop because it has been “punished”

by the increased processing time.

5.2.5 Conclusion

The real-world problem of vehicle fleet maintenance scheduling optimization is for-

mulated. The penalty function is defined in order to deal with uncertainties in the

due dates and to prevent too early or too late maintenance. A problem-specific

multi-objective evolutionary algorithm framework is designed based on the compo-

nent grouping strategy. State-of-the-art MOEAs are incorporated with the algorithm

framework to solve the application problem and their behavior is investigated. Al-

though DI-MOEA is used for the first time for a real-world application problem, its

performance is comparable with and for some instances even better than other pop-

ular MOEAs such as NSGA-III and SMS-EMOA. DI-MOEA, especially DI-1, is the

best both for the average performance and the aggregate Pareto front approximation.

For the hypervolume indicator, DI-MOEA and SMS-EMOA are the best on all three

instances. According to the observation of solutions, it has been found that most com-

ponents are maintained earlier than their due dates in the case that their maintenance

times are shifted, the reason is that the penalty costs are too expensive if they are

shifted forward. In order to increase the probability that the maintenance is shifted

forward, the corresponding parameter can be adjusted.

The proposed algorithm framework can work for the generic application in various

similar scenarios, for example, the aircraft maintenance, ship fleet maintenance, and so

on. The problem formulation and the parameters can be flexibly adjusted based on the

real application or by the decision maker. In the real-world applications, it is desirable

to generate schedules that are robust within a reasonable range of disruptions and

uncertainties such as machine breakdowns and processing time variability. Therefore,

dynamic elements will also be taken into account in the next step.
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Preference-based and

Dynamic Vehicle Fleet

Maintenance Scheduling

Optimization

The first version of the multi-objective vehicle fleet maintenance scheduling optimiza-

tion problem has been formulated and solved by the proposed algorithms in the previ-

ous chapter. To make the problem more practical, rigorous and clear, after discussing

with the DM from Honda Research Institute Europe GmbH, the problem is upgraded

from the following aspects:

• There exists a lot of uncertainty when the predicted RUL of each component

is used as its due date, because no matter how accurate the predictive model

is, it is still possible that the component will break on other dates: before the

due date or later. Therefore, instead of only using the predicted RUL, predicted

RUL probability distribution should be used as the foundation to assign the

maintenance time in scheduling optimization.

• The expected number of failures is adopted as an objective to reduce the chances

that the vehicles are broken on the road.

• The teams in workshops don’t need to be specified, each workshop can be treated

as one team.
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• The demand satisfaction is removed from objectives. It is not necessary to

consider it for a more general problem.

To implement these changes, the MOVFMSO problem is reformulated in this sec-

tion. Naturally, the corresponding MOEAs need to be modified to solve the newly

formulated problem. These are all described in Section 6.1. Besides, AP-DI-MOEA

(Automatic Preference based DI-MOEA) is also adopted in Section 6.1 to find solu-

tions with a more fine-grained resolution in the automatically generated preference

region.

To model the complete process of the vehicle fleet maintenance scheduling opti-

mization, a VFMSO simulator is developed in Section 6.2. The VFMSO simulator

starts from simulating driving tasks and available workshops for a vehicle fleet. The

RULs of components are predicted when the vehicles execute the distributed driving

tasks. Afterwards, the proposed MOEAs are applied to optimize the maintenance

schedule, and the workshops can maintain the vehicles based on the optimal schedule.

The process is running in a rolling-horizon fashion and a new maintenance schedule

is generated periodically based on the newly predicted RULs. To do this, a fourth

objective is added into the optimization, which is to minimize the changes between

the new schedule and the previous schedule. Thus, the optimization algorithms are

extended to dynamic MOEAs.

6.1 Preference-base MOEAs for MOVFMSO

This section starts with the new formulation of the multi-objective vehicle fleet main-

tenance scheduling optimization problem in Section 6.1.1. The tailored algorithm to

solve the new optimization problem is described in Section 6.1.2. The performance of

MOEAs and preference-based MOEAs on the problem are reported in Section 6.1.3.

Lastly, Section 6.1.4 concludes the work and outlines directions for future work.

6.1.1 Problem Formulation

For a vehicle fleet running the driving tasks, the components of vehicles are getting

damaged and should be maintained regularly. Some separate workshops are available

for the maintenance of the car fleet, and the repair time and maintenance cost are

known for each component in each workshop. Besides the time and cost for repairing

the car component, a fixed set-up cost and set-up time are considered for each visit of a
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car to a workshop, which correspond to the cost and time required for the preparation

of the maintenance operation.

The updated VFMSO problem addressed in this section is defined as follows:

1. There are n cars C = {C1, C2, · · · , Cn} and m workshops W = {W1,W2,

· · · ,Wm}.

2. Each car Ci comprises li components to be maintained for i = 1, · · · , n.

3. For each component Oij (j = 1, · · · , li), i.e., the jth component of car Ci, there

is a set of workshops capable of repairing it. The set of workshops is represented

by Wij which is a subset of W .

4. The processing time for maintaining component Oij in workshop Wk is prede-

fined and denoted by pijk.

5. The cost for maintaining component Oij in workshop Wk is predefined and de-

noted by qijk.

6. The set-up time of car Ci in workshop Wk is predefined and denoted by xik.

7. The set-up cost of car Ci in workshop Wk is predefined and denoted by yik.

8. The previous repair time of component Oij is recorded and denoted by Lij .

The constraint in this problem is that the maintenance periods of different oper-

ations for the same car should not overlap. It is obviously wrong if two overlapping

maintenance operations of a car are assigned to different workshops because one car

cannot be in two different workshops at the same time. If two overlapping maintenance

operations of a car are assigned to the same workshop, it is not correct either because

these two maintenance operations should be grouped together as one operation in this

case.

Three objectives are taken into consideration, which are the total workload, total

cost and expected number of failures. In a multi-objective optimization problem, the

objectives typically are conflicting, i.e., achieving the optimal value for one objective

requires some compromise on other objectives. In this problem, the fact that faster

maintenance usually is more expensive leads to the conflict between the first two objec-

tives. The expected number of failures counts the times when the vehicles are broken

on the road. Here, the expected value is used because the actual value is unknown

at the time of the optimization due to uncertainties in the predictions. When the

expected number of failures is large, less maintenance tasks are performed, therefore,

the workload and cost can drop.
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Let Tk denote the sum of the times spent for all operations that are processed in

workshop Wk; Mi the sum of all costs spent for all maintenance operations of car Ci;

Fij the number of failures of component Oij . Three objectives can be defined as:

Minimize the total workload: f1 =

m∑
k=1

Tk (6.1)

Minimize the total cost: f2 =

n∑
i=1

Mi (6.2)

Minimize the expected number of failures:

f3 =

n∑
i=1

li∑
j=1

E(Fij). (6.3)

6.1.2 Customized Algorithm

First the execution window is defined for each component based on its predicted RUL

probability distribution which is assumed to be a normal distribution. The execution

window suggests that the maintenance of the component can only start at a time

spot inside the window. The mean (µ) and standard deviation (σ) of the predicted

RUL probability distribution determine the interval of the execution window, which

is defined as: [µ− 2×σ, µ+2×σ]. The interval is chosen relatively long because 95%

of the values are within two standard deviations of the mean, therefore, maintenance

before or after the interval hardly makes sense.

After the determination of the execution window, the maintenance of several com-

ponents can be combined to one visit if their execution windows overlap. Especially,

by grouping the maintenance of multiple components into one maintenance opera-

tion, the set-up cost and set-up time are charged only once for the complete group of

components. This part is the same as described in Section 5.2.3.

Within the execution window of a component, an arbitrary time can be chosen as

the starting time for maintaining the component. However, the maintenance time of

each component should be as close as possible to its real due date to save its useful

time and avoid a car breakdown on the road. Therefore, Monte Carlo simulation

is used to simulate the “real” due dates for each component. To be specific, 1000

samples of the due date are generated in the execution window of each component

according to its predicted RUL probability distribution. Figure 6.1 shows an example

of the execution window evolved from the predicted RUL probability distribution of a

component. After 1000 sampled due dates are generated in the execution window, the
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scheduled maintenance date of the component is compared with these samples one by

one, and each comparison can lead to three situations. Let us use dvij to denote the

vth due date sample of component Oij ; and Dij the scheduled maintenance date of

component Oij . Three possibilities after the comparison are:

Figure 6.1: Execution window of a component.

Case 1 Dij < dvij

The scheduled maintenance date is earlier than the sample (or the “real” due date)

means that the component will be maintained before it is broken. In this case, its

useful life between the maintenance date and the due date will be wasted. Therefore,

a corresponding penalty cost is imposed to reflect the waste. To calculate the penalty

cost, a linear penalty function is suggested based on the following assumptions:

• if a component is maintained when it is new or the previous maintenance has

just completed, the penalty cost would be the full cost of maintaining it, which

is c+ s: the maintenance cost of the component and the set-up cost of the car;

• if a component is maintained at exactly its due date, the penalty cost would be

0.

Assume dvij is “Sampled Due date” in Figure 6.1, and Dij is “Maintenance date

a”, in this case, Dij is earlier than dvij . The penalty cost of “Maintenance date a” for

“Sampled Due date” would be the vertical dotted line above “Maintenance date a”.

Case 2 Dij > dvij

The scheduled maintenance date is later than the sample means that the maintenance

date is too late and the defect occurs on the use. Still, dvij is “Sampled Due date”
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in Figure 6.1, but the scheduled maintenance date Dij is “Maintenance date b”. In

this case, Dij is later than dvij , and the vehicle will break down on the road. In the

algorithm, the number of failures will be increased by one.

Case 3 Dij = dvij

The ideal situation is that the maintenance date is scheduled on the due date. The

component can be maintained exactly at the date that the component is broken. In

this case, there is no penalty or failure.

The averages of the penalty costs and the number of failures from 1000 due date sam-

ples will be used as the penalty cost and expected number of failures for the scheduled

maintenance date of the component. For each operation (the single-component oper-

ation or group operation), its cost consists of three parts: the set-up cost of the car,

the maintenance costs and the penalty costs of all components of the operation. The

penalty cost of components is a part of the total cost, and the expected number of

failures of components is the third objective to be minimized in the multi-objective

optimization.

In Section 5.2.3, the implementation of tailored evolutionary algorithm for the

first formulation of the MOVFMSO problem has been introduced, including how to

represent an individual or solution in the population, how to take these chromosomes

into a process of evolution, how to create variations of solutions in each iteration,

etc. The algorithm can still be used on the updated problem. Next, AP-DI-MOEA

(described in Section 4.2.2) is conducted on the updated MOVFMSO problems to

demonstrate the performance.

6.1.3 Experimental Results

The performance of MOEAs and the preference-based MOEAs are compared on the

VFMSO problems. The two variants of AP-DI-MOEA: AP-DI-1 and AP-DI-2, have

been conducted on two instances with different sizes. On every problem, each algo-

rithm runs 30 times with different seeds, while the same 30 different seeds are used for

all algorithms. All the experiments are performed with a population size of 100. The

budget of 1200000 evaluations has been used and 600000 of them are for the initial

Pareto front; after that, the preference region is updated after every 50000 evaluations.

Figure 6.2 shows Pareto front approximations of a problem with 20 cars and 3

workshops (V1), and each car contains 13 components: one engine, four springs, four
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brakes and four tires [109]. It can be observed that AP-DI-1 and AP-DI-2 can zoom

in the entire Pareto front and find solutions in the preference region, at the same time,

both AP-DI-1 and AP-DI-2 converge better than their corresponding DI-1 and DI-2.

A similar conclusion can be drawn from Pareto fronts approximations of the problem

with 30 cars and 5 workshops (V2) in Figure 6.3.

(a) DI-1 & AP-DI-1. (b) DI-2 & AP-DI-2.

Figure 6.2: Pareto front approximation on VFMSO problems with 20 cars and 3 workshops.

(a) DI-1 & AP-DI-1. (b) DI-2 & AP-DI-2.

Figure 6.3: Pareto front approximation on VFMSO problems with 30 cars and 5 workshops.

In Figure 6.4, the Pareto front approximations from DI-MOEA, AP-DI-MOEA

and NSGA-III on V1 (left) and V2 (right) are put together. The behaviours of DI-1,

DI-2 and NSGA-III are similar on V1, so are the behaviours of AP-DI-1 and AP-DI-2

on this problem. While DI-2 and AP-DI-2 converge better than DI-1 and AP-DI-1 on

V2 problems. The behaviour of NSGA-III is between that of DI-1 and DI-2.

Table 6.1 gives the space and dominance relation of knee points from DI-MOEA
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(a) V1. (b) V2.

Figure 6.4: Pareto front approximation on VFMSO problems by DI-MOEA, AP-DI-MOEA
and NSGA-III.

and solutions from AP-DI-MOEA on these two VFMSO problems. For both problems,

only few knee points from DI-MOEA are in the preference regions of AP-DI-MOEA,

and the main reason is that the Pareto front of AP-DI-MOEA converges better than

that of DI-MOEA, in some cases, the Pareto front of DI-MOEA cannot even reach

the corresponding preference region. More importantly, it can be observed that most

knee points from DI-MOEA, no matter whether in the preference region or outside

of the preference region, are dominated by the solutions from AP-DI-MOEA. This

phenomenon is even more obvious for the application problem with bigger size and

run with the same budget as the smaller one: for V2, 90% of knee points from DI-

MOEA are dominated by the solutions from AP-DI-MOEA.

Table 6.1: Space and dominance relation of knee point from DI-MOEA and AP solutions
on V1 and V2.

Problem V1 V2

Algorithm
DI-1/ DI-2/ DI-1/ DI-2/

AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2
In Incomparable 0 0 0 0

preference Dominated 9 7 9 6
region Dominating 0 0 0 0
Outside Incomparable 4 9 3 3
p-region Dominated 17 14 18 21

Table 6.2 gives the space and dominance relation of knee points from NSGA-III

and AP solutions. For both problems, again, most knee points from NSGA-III are

not in the preference regions of AP-DI-MOEA. Some knee points from NSGA-III are

dominated by AP solutions and most of them are incomparable with AP solutions.
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Table 6.2: Space and dominance relation of knee point from NSGA-III and AP solutions
on V1 and V2.

Problem V1 V2

Algorithm
NSGA-III/ NSGA-III/ NSGA-III/ NSGA-III/
AP-DI-1 AP-DI-2 AP-DI-1 AP-DI-2

In Incomparable 0 0 0 1
preference Dominated 0 1 3 2
region Dominating 0 0 1 1
Outside Incomparable 23 24 21 18
p-region Dominated 7 5 5 8

6.1.4 Conclusion

The multi-objective vehicle fleet maintenance scheduling optimization problems were

updated after further discussion with the decision makers. In the new optimization

problem, the maintenance time of each component was based on the predicted dis-

tribution of its remaining useful time. A new objective, i.e., the expected number of

failures, was adopted to reduce the risk of car breakdown on the road.

The proposed MOEAs and preference-based MOEAs have been conducted on the

updated MOVFMSO problems. The experimental results of AP-DI-MOEA on two ap-

plication problem instances of different scales showed that AP-DI-MOEA can generate

preference regions automatically and it (in both cases) found clearly better and more

concentrated solution sets in the preference region than DI-MOEA. For completeness,

it was also tested against NSGA-III and a better approximation in the preference

region was observed by AP-DI-MOEA.

In the application of maintenance scheduling, it will also be important to integrate

robustness and uncertainty in the problem definition. It is desirable to generate sched-

ules that are robust within a reasonable range of disruptions and uncertainties such

as machine breakdowns and processing time variability.

6.2 Dynamic MOEAs for MOVFMSO

Up to this point, the real-world application problem, i.e., the vehicle fleet maintenance

scheduling optimization, has been formulated; the tailored multi-objective evolution-

ary algorithms have been developed; the basic MOEAs have been extended to the

preference based MOEAs for the VFMSO problems. So far these proposed algorithms

are used to solve the static problems. However, in the real-world scenario, after a

maintenance schedule is released for execution, continuously updating the schedule

is required due to the change of vehicle conditions and the ensuing changes in the
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RUL predictions. The optimization of the maintenance schedule is an ongoing process

running in a rolling-horizon fashion and it is therefore desirable to generate robust

schedules.

According to the literature in robust scheduling methodologies, robustness is mainly

grouped into quality robustness and solution robustness [57]. The quality robustness

refers to the insensitivity of the scheduling performance such as makespan and total

tardiness in the presence of uncertainty. The property that the start and the comple-

tion of each activity should be as close as possible to its previous schedule is known as

the solution robustness and it is usually considered as a stability measurement of the

schedule. When the proposed static algorithm is extended to a dynamic algorithm, a

fourth objective is involved in the algorithm, which is the stability, i.e., the solution

robustness.

To model the complete process of maintaining the vehicle fleet by way of scheduling

optimization, a simulator is developed to observe the performance of dynamic MOEAs.

The VFMSO simulator starts from simulating driving tasks and available workshops

for a vehicle fleet, at the same time, in the simulator, the RUL of components can

be predicted and used as the input information to optimize the maintenance schedule

for the vehicle fleet. During the running of the simulator, the optimization process is

running in a rolling-horizon fashion and the maintenance schedule is updated period-

ically. Accordingly, the optimization algorithm becomes a dynamic algorithm and a

fourth objective is added into the dynamic MOEA, which is to minimize the changes

between the new schedule and the previous schedule.

This section first introduces dynamic optimization for the VFMSO problems in

Section 6.2.1. The RUL prediction is described in Section 6.2.2. Section 6.2.3 discusses

the details of the simulator and Section 6.2.4 shows the experimental results. Finally,

Section 6.2.5 briefly summarises the study, and proposes possible directions for future

work.

6.2.1 Dynamic Optimization

By applying the proposed MOEA and preference-based MOEA, namely DI-MOEA and

AP-DI-MOEA, after achieving a PF approximation, the knee point is picked as the

final optimal schedule to be deployed in workshops. In the real-world application, the

maintenance schedule needs to be updated periodically. To generate a new schedule

for the next stage, the current schedule used for the vehicle fleet and workshops is

also needed. Various disruptions may occur while running a maintenance schedule, for
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example, the car is broken before its scheduled maintenance time, or new repairing

tasks in workshops lead to the delay of the scheduled activities. In the face of various

disruptions, adjustments in the schedule have to be made and this is also the reason

that the maintenance schedule is updated periodically. A new schedule with the new

arrangement of the maintenance activities is generated from the new condition of

the vehicle fleet and workshops. However, the changes on the current schedule lead

to additional costs such as the cost of reallocation of tools and equipment, the cost

of reordering of raw materials, and etc. To reduce these costs, when updating the

maintenance schedule, one important point is to maximize the similarity between the

new schedule and the previous one to increase stability. For this purpose, the stability

criterion is employed as one more objective in the dynamic algorithm. Let dij = 1 if the

maintenance time or workshop of component Oij in the previous optimal maintenance

schedule is different with the assigned maintenance time or workshop of component Oij

in the currently optimized schedule, otherwise dij = 0. The stability of the schedule

can be maximized by minimizing the difference in schedule.

Minimize the schedule difference: f4 =

n∑
i=1

li∑
j=1

dij . (6.4)

The number of components which are assigned to different maintenance times or

workshops from that in the current running schedule is minimized in the dynamic algo-

rithm. Furthermore, since the stability of maintenance activities in the near future is

more important than that of maintenance activities in the distant future, when calcu-

lating the stability objective, different weights are given to the components which are

scheduled to be maintained within one week, within one month and beyond one month.

The dynamic algorithm makes it possible that the maintenance schedule is optimized

under different operational environments including dynamic and changing conditions.

Most importantly, the dynamic algorithm updates the maintenance schedule based on

the latest damage of components because the underlying predicted RUL of each com-

ponent is based on the latest damage. In this way, the maintenance schedule becomes

more accurate.

6.2.2 Remaining Useful Lifetime Prediction

Knowing the RUL is essential to establish an optimal maintenance schedule, and the

RUL prediction provides the system residual life from its current condition and the past

operation profile [106]. Commonly, approaches used in prognostics and predicting RUL
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are classified into three types: physics-based approaches, data-driven approaches, and

hybrid approaches [35]. In this work, the physics-based models are used to estimate

the degradation and failures of four essential components of a vehicle, namely engine,

brake pads, helical springs, and tires. The fatigue and wear mechanisms are established

for these components.

Degradation of Helical Springs

Helical spring is the most common type of spring used in passenger cars. One of the

the main mechanisms that reduces the lifetime of a helical spring is fatigue and it is

often analyzed using the S-N curve which describes the relation between cyclic stress

amplitude and number of cycles to failure. Figure 6.5 shows a typical S-N curve.

The vertical axis shows the stress amplitude, whereas the horizontal axis indicates the

corresponding number of cycles to failure at a given stress amplitude. A stress S is

calculated from force F by the equation: S = K 8×F×Dcoil

π×d3
wire

, where Dcoil and dwire

are the diameter of the mean coil and the wire, respectively. C = Dcoil

dwire
is the spring

index. K = 1+ 0.5
C is the so-called Wahl factor. According to the Paris-Erdogan’s and

Palmgren-Miner laws [97], the damage percentage of a spring can be formulated as:

ds =
∑p

i=1
ni

Ni
× 100%, where ds is the total percentage of life consumed, p is the total

number of the considered stress sources, ni and Ni are the number of cycles with a

stress amplitude and the corresponding number of cycles to failure at this stress with

i = 1, 2, ..., p from p sources. ni

Ni
is the fractional damage received from the ith source.

When ds ≥ 100%, the spring’s lifetime ends and a spring failure occurs.

Degradation of Brake Pads

A wear-out failure arises as a result of cumulative damage related to loads applied over

an extended time. In the process of braking, due to friction between the surfaces of the

friction couple, the zones of contacts are damaged after each braking event, resulting in

worn-out material. The volume of the worn-out material of the ith braking event can

be represented as: △Vbi = Cbrake×Fi×△di, where Cbrake is a constant and presents

the brake pad quality, Fi and △di are the friction force and the relative displacement

between the brake pad and the brake rotor of ith braking event, respectively. If Vb0

is the maximum volume which the brake pad can reduce before a failure might occur,

damage percentage of the brake pad (db) can be estimated by db =
∑n

i=1
△Vbi

Vb0
×100%.

The brake force is converted from the brake torque by dividing torque by the length

of the level arm. For the values of parameters in the physical models, such as Dcoil,
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Figure 6.5: A typical S-N curve.

dwire, Cbrake, Ctire, Cengine (please refer to [109]).

Degradation of Tires

The wear mechanism is also applied to tires because tires’ surfaces are in contact with

the road surface and friction results in worn-out material of the tires. Two horizontal

components of the force that cause the tire worn-out are Fx and Fy. The vertical force

component Fz is only considered for pressure (overinflation, underinflation) damage

of the tires. Similarly, a volume reduction of the tire due to worn-out material is

formulated as: △Vti = Ctire × (|Fx| + |Fy|) × △di, where Ctire is a constant and

represents the tire quality. △di is the relative displacement between the tire surface

and the road surface and it is simply the car travel distance. Again, the damage

percentage of the tire (dt) can be computed by: dt =
∑n

i=1
△Vti

Vt0
× 100%, where Vt0 is

the maximum volume which the tire can reduce before a failure might occur.

Degradation of Car Engine

A rough model is established to estimate the consumption lifetime of the car engine

from the travel distance and the engine rotation speed. The equation is dei = Cengine×
△di × Ri, where Cengine is a constant and represents the engine quality. Here △di
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and Ri are the car travel interval, and the engine rotation speed corresponding to

this travel interval, respectively. The consumed lifetime percentage of the engine is

de =
∑n

i=1 dei × 100%. The engine needs to be maintained if the dei sum up to 1.

RUL Calculation

It is assumed that the physical models are accurate, therefore, the real damage on

components up to now can be diagnosed. The RUL is predicted by extrapolating the

future damage from the distribution of the damage so far. The RUL of a component

can be calculated based on a damage percentage. If the RUL is estimated by a unit of

week, the total damage percentage after the wth week is calculated by: D =
∑w

i=1 Di,

where Di is the sum damage percentage of the ith week. Thus, the RUL after week

w can be estimated by: RUL = 100%−D
D/w , here, 100% means that, at the beginning,

the component is absolutely new. A Gaussian distribution is fitted to the distribution

of the weekly damage percentage and the resulting standard deviation σ is used to

calculate the lower and upper bound of the standard deviation confidence interval of

RUL as following: RUL = 100%−D
D/w+σ and RUL+ = 100%−D

D/w−σ .

6.2.3 VFMSO Simulator

A simulator has been developed to implement and evaluate the complete process of

vehicle fleet maintenance scheduling optimization. In the VFMSO simulator, Car-

Maker1 is adopted to simulate driving scenarios for a taxi fleet in New York City.

The origin and destination coordinates from Green Taxi Company in January 2015

downloaded from NYC Open Data2 are converted into taxi routes using Google API

and are used as the driving tasks. In the CarMaker simulation, extra loads are added

to all passenger seats of the car. For each passenger seat a load between 0 and 100

kg is randomly chosen with an equal probability. 4000 trips have been simulated with

CarMaker. In the VFMSO simulator, each car is assigned to 40 random trips per

day on average, and the maximum number of trips each car can execute per day is

50. These trips are randomly selected from the 4000 simulated trips. The sensor data

of forces, brake torque and engine rotation speed yielded by CarMaker are used to

estimate the damage percentage and the RUL of springs, tires, brake pads and engine

1CarMaker simulation is developed by IPG Automotive for testing driving scenarios of passenger
cars and light-duty vehicles. It provides models for vehicles, roads, drivers and traffic for all simu-
lation tasks in realistic driving scenarios. https://ipg-automotive.com/products-services/simulation-
software/carmaker/#driver

2https://data.cityofnewyork.us/Transportation/2015-Green-Taxi-Trip-Data/gi8d-wdg5/data
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by the physical models as described in Section 6.2.2.

Some parameters can be pre-defined to determine the vehicle fleet maintenance

scheduling optimization problem before running the simulator: the size of the vehicle

fleet, including the number of cars and the number of workshops; the costs and times of

maintaining cars/components in workshops; the range of days of running the simulator;

the frequency of generating a new maintenance schedule. After running the simulator

for the defined period, the following items can be reported by the simulator.

• The number of defects: when a defect occurs, i.e., a component is broken before

the scheduled maintenance date, the number of defects increases by one.

• The total cost: besides the set-up cost and maintenance cost, the waste of com-

ponent lifetime has also been transferred to a cost, and has been included in

the total cost by the simulator, this cost is called “too-early maintenance cost”.

Unlike the penalty cost in the optimization algorithm, the “too-early mainte-

nance cost” in the simulator is the actual value because it is assumed that the

physical models are 100% accurate and the due dates of the components calcu-

lated by them are used as the ground truth. When a component is maintained

based on the maintenance schedule, the simulator can calculate its current dam-

age percentage by the corresponding physical model and the remaining damage

percentage is converted to a cost to reflect the waste of the useful lifetime. The

“too-early maintenance cost” is calculated by the formula: remaining damage

percentage × maintenance cost of the component. Obviously, no “too-early

maintenance cost” arises for components which break before maintenance.

• The total maintenance time: the simulator records all the days that the vehicles

cannot work, either the reason is a scheduled maintenance activity or a defect.

• The number of changed schedules: every time when the maintenance schedule

is updated, the number of components which have a different maintenance date

or workshop is recorded.

• The number of unsatisfied trips: when a car cannot execute its tasks, e.g., it is

being maintained in a workshop, the assigned tasks for this car will be distributed

to other available cars, but the maximum number of tasks a car can execute each

day is 50. The tasks which cannot be satisfied are counted as unsatisfied trips.

• The number of scheduled maintenance activities: when a maintenance activity

is executed based on the maintenance schedule, the number of scheduled main-

tenance activities increases by one.
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These items are the final results after running the simulator for a pre-defined

number of simulated days. It can be seen that, on the one hand, the simulator can

show the results from different perspectives, which include not only the accumulated

optimization objective values over the period of running it, but also the results that

cannot be known by the optimization algorithm, such as the number of defects, the

number of unsatisfied trips. On the other hand, these results are used for the final

evaluation which is based on the “real” results and not on the raw optimization results.

The raw optimization results cannot be used as actual results due to the reason that

the optimizer does not have full knowledge of the future.

Figure 6.6: Daily workflow of the simulator.

Figure 6.6 shows the workflow of the simulator. The flow is executed on a daily

basis. At the beginning of each day, vehicles in workshops are checked and sent back

to work when their maintenance is done, meaning the damage of these components

162



Chapter 6. Preference-based and Dynamic Vehicle Fleet Maintenance
Scheduling Optimization

is set to zero. Next, the damage of each component is investigated and vehicles

are sent to workshops when defects occur, which means the damage percentage of

a component reaches 100%. In the case of a defect, the car is sent to a random

workshop. Afterwards, the maintenance schedule is checked and the vehicles are sent

to the assigned workshops if they are assigned to be maintained on that day. Hereafter,

the driving trips of that day are assigned to the available cars and the damages of

components are updated. Lastly, when it is the day to generate a new maintenance

schedule, the RUL distributions of components are predicted, and the maintenance

schedule is optimized. In the case of generating the first maintenance schedule, only

three objectives are employed. Later on, the stability of the schedule is involved in the

optimization procedure as an extra objective. After obtaining the PF approximation

from each optimization, the knee point on the PF is picked and deployed as the new

schedule to replace the current schedule to maintain the vehicle fleet.

6.2.4 Experiments

To show and observe the impact of different maintenance strategies clearly, the simu-

lator runs under the scenarios with the following combinations of parameters:

• the simulation time: 700 days,

• the size of the vehicle fleet: 20 cars with 2 workshops, 20 cars with 5 workshops,

• the frequency of updating schedule: weekly, monthly,

• the computing budget of optimization: 100000, 500000,

• the optimization algorithm: basic MOEA, preference based MOEA, dynamic

basic MOEA, dynamic preference based MOEA.

The results of the prediction-based optimization algorithms are also compared

with fixed-interval maintenance scheduling. To set the fixed-interval maintenance,

firstly the simulator is run without the maintenance schedule. In this case, each

component breaks until its due date or its damage reaches 100%, then it is maintained

and sent back to perform the driving tasks again. The average mileages are obtained

for 13 components to be maintained, which include engine, 4 brake pads (front left,

front right, rail left and rail right respectively), 4 tires and 4 springs. They are used

as the condition for the maintenance in the fixed-interval maintenance scheduling

approach, i.e., if a component reaches its corresponding average mileage, it is sent for

maintenance.
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Tables 6.3 - 6.5 show the results from the simulator. In these tables, the first column

shows which algorithm has been applied in the maintenance period (700 days in the

experiments). To optimize the maintenance schedule, four different optimization algo-

rithms have been applied and compared. Basic and preference-based algorithms only

take into account three objectives: cost, time and the number of failures. Dynamic ba-

sic and dynamic preference-based algorithms involve the fourth objective (the stability

of the schedule). It means that basic and preference based algorithms handle multi-

objective optimization problems, and dynamic basic and dynamic preference based

algorithms deal with many-objective optimization problems [84]. Many-objective op-

timization focuses on solving optimization problems with four or more objectives and

it forms a special and important case of multi-objective optimization problems. Solv-

ing many-objective optimization problem is more challenging for MOEAs due to the

high computational cost resulting from increased evaluation of the number of points

required for the PF approximation.

The other columns in these tables give the final results according to the simulation.

These results include the number of failures (#defects), the total cost (cost), the total

maintenance time (time), the number of changed schedules (#ch-sch), the number

of unsatisfied trips (#un-trips) and the number of scheduled maintenance activities

(#sch-act). Since the maintenance schedule is based on the average mileage and is not

updated for the fixed-interval maintenance, the number of changed schedules is not

applicable in this case. The parameter setting for each scenario has also been given in

the table, for example, “schedule-update: monthly; #evaluations: 100000” refers to

the scenario when the maintenance schedule is updated monthly and the computing

budget of the optimization algorithm is 100000. All experimental data are the average

results from five runs, in each run a different seed for the simulation is used.

Table 6.3 shows the experimental results from two different scales of the problem:

one is 20 cars and 2 workshops; another is 20 cars and 5 workshops. When there are

more workshops, the maintenance time can get reduced because there is less chance

for vehicles to wait for their maintenance. This results in a decrease of the number

of unsatisfied trips because the waiting time in workshops is now used to execute

trips. Accordingly, the number of maintenance jobs (both the number of scheduled

maintenance activities and the number of defects) increases. So does the maintenance

cost. When comparing the results from these two problems, it can be seen that the

data match this logic.

When comparing the results of dynamic algorithms with four objectives and their

corresponding algorithms without the fourth objective, it can be seen that dynamic
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algorithms can always reduce the number of changed schedules, but this also means

they have to sacrifice the other objectives to some extent. In some industrial scenar-

ios, the stability objective plays a critical role. For example, in the case of aircraft

maintenance, some maintenance activities are conducted during the intervals between

takeoffs and landings, the change on the maintenance schedule may make an impact on

the schedule of this flight and also might disrupt other flights, a rescheduling typically

causes significant communication costs.

Next, with more computing budget for the optimization algorithms (i.e., the num-

ber of objective function evaluations is 500000.), it can be seen that the overall results

after running the simulator get improved for three objective optimization (i.e., for

basic and preference based algorithms.). The results here refer to the objectives that

the algorithms optimize. However, for the dynamic algorithm, the results with more

computing budget are sometimes mutually dominated with the results from using a

smaller computing budget. For example, the number of defects can be reduced with

the larger computing budget, but the total maintenance cost cannot get improved by

more computing budget. This is led by the complexity of many-objective optimization.

When determining the schedule to be deployed from the PF, the knee point is chosen.

However, in four dimensional space, a small variation can lead to a big impact on

the final result, especially on the accumulated results of multiple optimizations. With

monthly schedule updates, the optimization algorithm is executed 22 times during one

simulation run of 700 days.

When the schedule is updated more often, i.e., weekly, a reduction of the defect

number is observed. Apparently, updating the maintenance schedule more frequently

can promote the accuracy of it because the predicted RUL is more accurate. At the

same time, an improvement of the total cost can be seen. The reason for the reduction

of the total cost also comes from the accuracy of the schedule and the resulting decrease

of the penalty cost which arises when the vehicle is maintained before it is broken,

i.e., the cost for too-early maintenance. When updating the maintenance schedule

more often, the maintenance time can not always get improved because the number of

maintenance tasks does not always get decreased, the maintenance tasks may increase

due to the accuracy of the schedule and the resulting increase on the number driving

tasks which have been executed.

When comparing the preference based algorithm and basic algorithm, for both

three objective and four objective optimization, it can be seen that the results of the

preference based algorithm are usually better than its corresponding basic algorithm

for the scenario of five workshops. However, if there are only two workshops, the
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waiting of vehicles for their maintenance results in a performance degradation of the

preference based algorithms. The similar working tasks of the vehicles lead to the

phenomenon that the scheduled maintenance times for some vehicles are close, and

this leads to that the workshops run out of capacity sometimes but become idle at

other times. Therefore, a good solution would be to offer more workshops for the fleet,

at the same time, these workshops can also work for other tasks besides for the fleet.

Lastly, when comparing with the fixed-interval maintenance, there are more de-

fects, maintenance time and unsatisfied trips for the fixed-interval maintenance. Since

most maintenance tasks are caused by defects, the too-early maintenance cost drops

dramatically and this leads to the decrease of the total cost.

Table 6.3: Optimization results of different maintenance scenarios over 5 runs.

20 cars & 2 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act
Fixed-interval 226 474965 6269 NA 212450 52

schedule-update: monthly; #evaluations: 100000;
Basic 46 680666 4282 4509 121000 148
Preference 50 690871 4179 4630 112150 150
Dynamic basic 73 676149 5510 4023 175800 154
Dynamic preference 66 688934 4732 3729 137200 159

schedule-update: monthly; #evaluations: 500000;
Basic 39 675374 3936 4553 101750 150
Preference 40 677331 3903 4526 101950 145
Dynamic basic 68 717046 5262 3777 161300 157
Dynamic preference 42 690131 4669 3240 140750 150

schedule-update: weekly; #evaluations: 100000;
Basic 32 624078 4565 22884 126200 166
Preference 35 646117 4103 23016 109700 168
Dynamic basic 67 633854 5758 19660 185450 150
Dynamic preference 50 628228 4626 18049 140200 161

20 cars & 5 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act
Fixed-interval 330 747104 2996 NA 72750 92

schedule-update: monthly; #evaluations: 100000;
Basic 68 785777 1852 4877 27950 192
Preference 67 748044 1837 5012 25750 184
Dynamic basic 137 849203 2942 4466 62700 218
Dynamic preference 93 789592 2331 4247 42000 217

schedule-update: monthly; #evaluations: 500000;
Basic 55 756278 1725 4901 24850 182
Preference 50 718176 1649 4924 22550 177
Dynamic basic 125 831775 2754 4442 56950 223
Dynamic preference 91 797258 2130 4014 34750 210

schedule-update: weekly; #evaluations: 100000;
Basic 60 695181 1995 23973 35550 206
Preference 56 690720 1951 23982 31250 205
Dynamic basic 114 768697 3122 21715 77950 217
Dynamic preference 91 721193 2296 20397 44100 227
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Besides the parameters which change the experimental environment, the variables

in the optimization algorithm can also be adjusted to emphasize some aspects of the

results. To reduce the number of failures of vehicles, the interval of the execution

window is switched from [µ−2×σ, µ+2×σ] to [µ−3×σ, µ+σ]. Table 6.4 shows the

results of 20 vehicles and 5 workshops. After shifting the execution window forward,

the dramatic drop of the number of defects is achieved and the descent rate reaches

83.21% on average. Simultaneously, this activates the rise of the maintenance cost.

Table 6.4: Adjust execution window to reduce the number of defects.

20 cars & 5 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act

schedule-update: monthly; #evaluations: 100000;
Basic 7 886747 1872 4787 22050 227
Preference 10 840907 1834 4767 21450 223
Dynamic basic 28 1152867 3276 4143 63925 303
Dynamic preference 20 1032917 2399 4102 34350 285

schedule-update: monthly; #evaluations: 500000;
Basic 5 823662 1599 4826 15050 201
Preference 5 822518 1534 4804 12850 190
Dynamic basic 27 1133032 3618 3960 79100 292
Dynamic preference 22 979069 2339 3686 34950 258

schedule-update: weekly; #evaluations: 100000;
Basic 4 823683 1945 23496 25750 248
Preference 4 805841 1815 23472 22100 225
Dynamic basic 22 1070067 3092 20856 62450 287
Dynamic preference 15 864731 2313 19701 42350 231

It is worth noting that the problems with 20 vehicles and 13 components for each

vehicle are already large scale scheduling optimization problems in terms of the domain

of flexible job shop scheduling optimization. Moreover, the MOVFMSO problem is

more complex than FJSS because the MOVFMSO problem needs to assign not only

the workshops and maintenance times (sequences) for the maintenance activities, but

also the combination of components for each activity. To investigate how scalable the

proposed approach is, the questions asked are whether the algorithms can be applied to

even larger fleet and whether consistent results can be achieved when the fleet becomes

significantly larger. To this end, the fleet size has been increased to 50 vehicles and 15

workshops are available, the components to be maintained retain the same. Table 6.5

shows the simulator results and it can be observed that these results are consistent

with the results presented earlier.

From the experimental results, some major insights on how to design schedules

with respect to the objectives can be concluded as follows.

• Providing additional workshops can help reduce the overall maintenance time.
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Table 6.5: Increase Problem Size.

50 cars & 15 workshops
Algorithm #defects cost time #ch-sch #un-trips #sch-act
Fixed-interval 864 1878632 7118 NA 162850 209

schedule-update: monthly; #evaluations: 100000;
Basic 45 2429887 5440 11933 63600 697
Preference 43 2395079 5104 12171 54600 669
Dynamic basic 109 2887019 7571 11598 127200 812
Dynamic preference 71 2751571 6481 11302 89300 792

schedule-update: monthly; #evaluations: 500000;
Basic 35 2320261 5016 12036 63600 635
Preference 32 2254907 4551 12176 42950 626
Dynamic basic 105 2990837 8454 11210 164700 853
Dynamic preference 70 2677516 6392 10971 87850 753

schedule-update: weekly; #evaluations: 100000;
Basic 24 2149010 5267 58736 70350 659
Preference 26 2141242 5047 58929 69100 643
Dynamic basic 102 2750433 6908 56272 107500 782
Dynamic preference 61 2418850 5819 55485 83400 706

• Moving the execution window to the left (earlier time) or updating the schedule

more often can both be used to reduce the number of defects.

• Without introducing stability as an additional objective, schedule tends to be

disrupted by dynamic updates.

• Both the use of the preference based algorithms and increasing the computing

budget have a positive impact on the overall quality. However, the best way

to improve the overall quality of the final results is to increase the number or

capacity of workshops in combination with the preference based algorithms.

• Comparing the fixed-interval maintenance vs. prediction-based scheduling opti-

mization, it can be concluded that fixed-interval maintenance leads to an unsat-

isfactory performance in terms of number of defects, whereas prediction-based

scheduling optimization finds a balanced trade-off satisfying all objectives to high

extents. Therefore, the extra computational effort required to make predictions

and perform optimizations is well justified.

• The results on the large-scale benchmark problem with 50 vehicles indicate that

the proposed algorithms can also handle larger problems and the main conclu-

sions, as summarized in the previous points, remain the same.

168



Chapter 6. Preference-based and Dynamic Vehicle Fleet Maintenance
Scheduling Optimization

6.2.5 Summary and Outlook

Since optimization algorithms are required to regularly update maintenance schedule

in a dynamic environment, the proposed multi-objective evolutionary algorithms are

extended to dynamic many-objective evolutionary algorithms that take stability as

the fourth objective to aim for the robustness of maintenance schedule. The vehicle

fleet maintenance scheduling optimization simulator has been developed, which can

be used as a scalable benchmark for optimizing vehicle fleet maintenance schedules in

an industrially relevant setting. The simulator and benchmark problems have been

inspired by the instances faced by a taxi company with up to 50 cars. The proposed

MOEAs can be compared and tested easily in the simulator in a rolling-horizon fashion.

Parameters and algorithms can be adjusted to imitate various scenarios. Therefore,

although the implementation of the approach is demonstrated in the example of taxi

fleets, the proposed approach can be adapted to different industrial applications, for

example, the maintenance of trucks, vessels, aircraft, etc.

The size of problems in the experiments is up to 50 vehicles and 13 components for

each vehicle. Still, one might imagine the problems of even larger scale, and finding

out the limit of the fleet size that the algorithm can handle would be an interesting

future research. However, for this, high performance computing environments and

parallel computing might be required, especially when it comes to statistical studies.

In this work, to maintain clarity of presentation the dynamically changing element is

so-far restricted, but in the future work additional dynamic elements and uncertainties

should be considered. For example, the uncertainty on the maintenance duration could

be modeled, as in [52], the presence of cost uncertainty in [31], etc.
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Chapter 7

Conclusions

7.1 Summary

This thesis investigated several important aspects of multi-objective optimization and

its application in the domain of scheduling optimization. In particular the thesis stud-

ied flexible job shop scheduling and dynamic prediction-based maintenance scheduling.

Moreover, improvements in multi-objective optimization algorithms were proposed,

such as using diversity indicators in selection; cone orders for faster convergence in

many-objective optimization.

Next, the achievements and new insights discussed in each chapter will be briefly

summarized.

Chapter 2 covered the basics of multi-objective optimization and provided an in-

depth discussion of different ways to define dominance orders, including Pareto dom-

inance, trade-off based dominance, angle dominance, etc. At the end of this chapter

the formal relationships between these orders were highlighted and analysed. In par-

ticular it was clarified that orders defined by trade-off constraints and coefficients can

be mapped to orders defined by cones via angles (or cone-generating vectors), and

vice versa. This offers alternative ways for the decision maker or algorithm designer to

define orders that are formally equivalent in his/her preferred way, which could be, for

example, by means of trade-off bounds or by means of angles and/or cone-generating

vectors.

Chapter 3 answered two research questions. The first question is:
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RQ1 How can a multi-objective evolutionary algorithm (MOEA) be devel-

oped that generates uniformly distributed sets on the Pareto front regardless

of the shape of the Pareto front?

To achieve a uniformly distributed Pareto front approximation regardless of the

shape of the Pareto front and avoid complex algorithm structure and parameter set-

ting, a diversity-indicator based multi-objective evolutionary algorithm (DI-MOEA)

was proposed. DI-MOEA was tested on the state-of-the-art benchmark problems and

showed excellent performance in terms of uniformity and convergence for Pareto fronts

with convex, concave and disconnected shapes. The results also demonstrated that it

is possible to use a diversity indicator (like the geometric mean gap in the proposed

algorithm) that is not Pareto compliant, given that the selection gives priority to the

non-dominated solutions and the diversity indicator is only used to select the most

diverse subset among the non-dominated solutions. It is important to note, that a

diversity indicator is here defined on a set as a whole and not on a single point, as it

is the case for the crowding distance.

The complexities posed by many real-world optimization problems significantly

worsen the performance of optimization algorithms, especially with the increase in the

number of objectives. The following research question was therefore of our interest:

RQ2 How can the performance of MOEAs be improved generally?

Through analysis of Pareto dominance, it has been shown that its performance can

be enhanced by utilizing geometric features of the Pareto order cone. Based on this

technique, a new dominance relation, the edge-rotated cone order, was proposed to

improve the performance of MOEAs. The edge-rotated cone order was implemented

by rotating the edges of the standard Pareto order cone towards the outside. The

edge-rotated cone order was integrated with several state-of-the-art MOEAs, and its

ability to improve the performance of MOEAs has been tested on multi-objective

optimization test problems. Especially on many-objective optimization problems the

edge-rotated cone order led to even better performance.

Chapters 4 investigated the preference based multi-objective evolutionary algo-

rithms in order to answer the third research question:

RQ3 Instead of the whole Pareto front, how can preferred solutions which

are of real interest to the decision maker be obtained?
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From the algorithm perspective, the majority of real-world multi-objective opti-

mization problems suffer from having a large objective space and extent of the Pareto

front, which result in a time consuming optimization process. Only focusing on the

region of interest can reduce the objective space and speed up the convergence of the

optimization algorithms.

Two preference based multi-objective evolutionary algorithms were presented in

Chapter 4. The first algorithm is an a priori method. The DMs can provide a point,

a region, multiple points or multiple regions as their preferences, the proposed algo-

rithm can find solutions around the reference point(s) or in the reference region(s).

Considering that it is difficult for the DMs to set preferences, the second algorithm

is an automatic preference based algorithm which can generate the preference region

automatically after identifying a knee point, narrow down the feasible objective space

progressively, and eventually obtain the preferred solutions. The underlying idea is

that in many cases the knee point provides a good compromised solution where all

objectives achieve a good value. In particular this holds for connected and convex

Pareto fronts, whereas for other shapes of Pareto fronts a default choice for a good

solution on a Pareto front is more difficult to justify.

Chapter 5 discussed the design of novel algorithms for scheduling optimization

problems. Our real-world application problem was a multi-objective vehicle fleet

maintenance scheduling optimization problem (MOVFMSOP). Before solving this spe-

cific problem, one more common scheduling optimization problem in computer science

and operations research, i.e., the multi-objective flexible job shop scheduling problem

(MOFJSP) was investigated to answer the fourth research question:

RQ4 How to solve multi-objective flexible job shop scheduling problems?

A novel multi-objective evolutionary algorithm was developed for the MOFJSP.

Multiple initialization approaches, various crossover operators and local searches were

used in the algorithm. In particular, an algorithm configurator was adopted to tune

the parameter setting in the algorithm. Based on the study of the MOFJSP, the

MOVFMSOP was formulated mathematically and the algorithm was proposed in this

chapter to answer the fifth research question:

RQ5 How to represent and solve a real-world scheduling optimization prob-

lem in the EA world?

To solve this problem, a three-vector chromosome was designed in the algorithm.

The grouping strategy was proposed to determine the feasible grouping structure for
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the grouping vector based on the predicted remaining useful time of components. At

the same time, the starting time vector gave maintenance times for group activities,

and the workshop vector decided which workshop performs each maintenance activity.

Based on the encoding, the corresponding crossover and mutation operators were

designed and applied separately to the three parts of the chromosome. The problem-

specific multi-objective evolutionary algorithm was incorporated with several state-of-

the-art MOEAs to investigate their performance on the MOVFMSOP.

Chapter 6 applied and compared the proposed MOEAs and preference based MOEAs

on the vehicle fleet maintenance scheduling optimization problems to answer the sixth

research question:

RQ6 How to apply and adapt the developed algorithms to the dynamic

prediction-based maintenance scheduling optimization problem?

In this chapter, the complete process of maintaining a vehicle fleet was simulated,

including the simulation of the vehicle fleet and the prediction of remaining useful

life for the fleet. The proposed MOEAs and preference based MOEAs were used in

two ways: static and dynamic algorithms. Different updating frequency, computing

budget, different scale of problems were adopted to show their performance.

In summary, following the discussion of issues on multi-objective optimization, this

thesis proposed the multi-objective evolutionary algorithm, preference-based multi-

objective algorithm, and the method to improve the general multi-objective optimiza-

tion algorithms. Then the real-world vehicle fleet maintenance optimization problem

was formulated as a scalable benchmark in an industrially relevant setting. The pro-

posed algorithms were practically used on the application instances. To be able to

optimize the maintenance schedule in a dynamic environment, the algorithms were

further extended to dynamic algorithms and an additional objective, i.e., stability,

was taken into consideration to retain stability of the schedule.

7.2 Future Work

Many potential lines of research are worthy of attention based on the achieved progress

in the context of this thesis.

DI-MOEA uses the Euclidean distance based geometric mean gap as the diversity

indicator, which is described in Chapter 3. The obvious feature of DI-MOEA is the

uniformity of the achieved solution set. Besides the geometric mean gap, other gap
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indicators, such as minimal gap, arithmetic mean gap [37] or the Riesz S-Energy

[39], can also be used as the quality indicator. Furthermore, other distances, such as

Chebyshev distance, crowding distance, mean ideal distance can replace the Euclidean

distance to measure the distance between solutions in the search process. The features

of the solution sets based on different distances and gaps can be compared. By doing so,

the different strategies can be chosen when solving application problems with different

features.

Regarding the edge-rotated cone, the mechanism that relates the properties of

the problem with the rotation angle should be researched. Further research on its

ability on articulating the preference on multi-objective optimization should be done.

Especially on many-objective optimization, the angle setting of the cone order may

provide a practical way to guide decision makers in choosing their preferences.

The knee point is defined as the point having the shortest distance to the line (the

number of objectives is 2), plane (the number of objectives is 3) or hyperplane (the

number of objectives is larger than 3) formed by the extreme points on the Pareto

front in Chapter 4. However, it can also be defined in other ways, for example, the

point having shortest distance to the Utopia point. Variants of methods to generate

the knee point can be compared. By doing so, it is also possible to define multiple

knee points to handle problems with irregular shapes of the Pareto front.

When optimizing for the flexible job shop scheduling problems in Chapter 5, we

use an algorithm configurator to tune the mutation probabilities in MOEA. It would

be a promising topic to utilize the automated parameter configuration more and the

multi-objective evolutionary optimization can benefit more from the popular field of

machine learning.

In Chapter 6, the optimization is performed periodically to update the maintenance

schedule in the simulator. However, a better solution would be to detect the change

in the dynamic environment and update the maintenance schedule when the change

reaches a threshold. Moreover, since we try to maximize the similarity between the

new schedule and the previous one, the arrangement of maintenance activities in the

current running schedule can be used in the initialization of the population when

updating the schedule. In this way information collected from previous searches can

be utilized and the PF approximation can be found more effectively.
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Bäck. Modeling and prediction of remaining useful lifetime for maintenance
scheduling optimization of a car fleet. International Journal of Performability
Engineering, 15(9), 2019.

[110] Bas van Stein, Hao Wang, and Thomas Bäck. Automatic configuration of deep
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Summary

Multi-objective optimization is an effective technique for finding optimal solutions

that balance several conflicting objectives. It has been applied in many fields of our

world, because practical problems usually have more than one desired goal. For ex-

ample, developing a new vehicle component might involve minimizing weight while

maximizing strength; choosing a portfolio might involve maximizing the expected re-

turn while minimizing the risk. The multi-objective optimization problems solved

in the thesis originated from the CIMPLO (Cross-Industry Predictive Maintenance

Optimization Platform) project. In the CIMPLO project, given a vehicle fleet, each

vehicle comprises a set of components, and each component can be maintained in a

workshop among given workshops with varying processing times and costs. The goal

is to find the best maintenance order, location and time for each component, i.e., to

optimize the maintenance schedule of the vehicle fleet. The maintenance schedule of

the vehicle fleet is optimized to bring business advantages to industries, such as, to

reduce maintenance time, increase safety, and decrease repair expenses. This problem

is strongly NP-hard since the flexible job shop scheduling problem (FJSP) has been

proven to be a strongly NP-hard problem and the vehicle fleet maintenance schedul-

ing optimization (VFMSO) problem can be seen as an extension of the FJSP: the

VFMSO provides a non-specific operation sequence and involves the processing costs

of the operation on machines besides the processing times as in the FJSP. Therefore,

evolutionary algorithms (EAs) have been chosen to solve our real-world application

problem because they have proven to be a particularly suitable metaheuristic method

to solve multi-objective optimization problems.

First of all, a multi-objective evolutionary algorithm (MOEA) is developed for gen-

eral multi-objective optimization problems and it plays an important role in solving

our application problems. The proposed MOEA is called diversity indicator-based

MOEA (DI-MOEA). The main features or advantages of DI-MOEA include: it uses
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a hybrid selection scheme (the µ+ µ generational selection operator and µ+ 1 steady

state selection operator) for combining the advantages of Pareto dominance-based ap-

proaches to ensure fast convergence to the Pareto front (PF) with indicator-based

approaches to ensure convergence to a diverse set; it avoids the use of complex struc-

ture and parameters; it can achieve a uniformly distributed PF approximation; it

requires no priori knowledge of the PF shape and location; the adopted diversity in-

dicator in DI-MOEA (i.e., Euclidean distance based geometric mean gap indicator) is

computationally efficient.

Secondly, to improve the performance of MOEAs, the edge-rotated cone order is

proposed for the purpose of building an ordering which can guide the search towards

the PF better than the Pareto dominance in MOEAs. The edge-rotated cone is de-

signed by rotating the edges of the standard Pareto order cone towards the outside;

therefore, an ordering among Pareto incomparable solutions is established because a

solution can dominate an enlarged region in the objective space. The edge-rotated

cone order is integrated in MOEAs by a hybrid approach which gives consideration to

both convergence and diversity in the evolutionary search process.

To only focus the search on the preferred solutions, the target based MOEAs have

been proposed and implemented as three algorithms: T-NSGA-II, T-SMS-EMOA and

T-R2-EMOA. In these algorithms, different types of target (e.g., point or region),

different shapes of target region (e.g., sphere or square), different positions of target

(e.g., on the PF or not), one or multiple targets can be decided by the decision maker

(DM) and involved as preference information to find preferred solutions without ex-

ploring the whole set of Pareto optimal solutions. Furthermore, to avoid the difficulty

for specifying the preference information by the DM, an automatic preference based

DI-MOEA (AP-DI-MOEA) is proposed to generate the preference region by identi-

fying the knee point because the knee points are assumed to be the most interesting

solutions, naturally preferred solutions and most likely the choice of the DMs. AP-DI-

MOEA divides the computing budget into different parts to first find a rough entire

PF and the knee region, then narrow down the preference region step by step to benefit

its accuracy, and eventually obtain the preferred solutions.

After the proposal of the above algorithms, our goal is to solve the VFMSO prob-

lem. Since our problem is a special extension of the FJSP and the FJSP is very

difficult to solve and not much research has been devoted to solving this problem in

the past. An MOEA to solve the multi-objective FJSP is proposed first, in which

multiple initialization approaches, various domain-specific genetic operators, and dif-

ferent local search strategies are designed and used; the Mixed-Integer Programming
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Efficient Global Optimization (MIP-EGO) configurator is adopted to automatically

find the optimal mutation probabilities. Based on the study on the FJSP, the MOEA

to solve our real-world multi-objective VFMSO problems can then be developed. To

this end, the problem has been formulated, a three-vector chromosome is proposed to

represent a solution and corresponding genetic operators are designed. At the same

time, the special designs for the VFMSO are proposed, such as the combination of

components as one maintenance task, the definition of the execution window for each

component based on its predicted remaining useful lifetime, the simulation of the

penalty costs and the failures for handling uncertainties in the predictions.

Lastly, the static MOEAs and preference based MOEAs are applied to the VFMSO

problems. Since continuously updating the schedule is required in the real-world sce-

nario, the static algorithms are extended to many-objective dynamic MOEAs in which

an extra objective, i.e., the schedule stability, is involved in to minimize the changes

between the new schedule and the previous schedule, and the underlying idea is to

reduce additional costs such as the cost of reallocation of tools and equipment, the

cost of reordering of raw materials and etc.

In summary, this thesis provides advancements to the design of general purpose

multi-objective and many-objective optimization algorithms for finding uniform ap-

proximations to the (preferred region of the) Pareto front, and successfully applied

and customized the algorithms in the domain of flexible job shop scheduling and the

more specific domain of dynamic prediction-based maintenance scheduling.
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Samenvatting

Multi-criteria optimalisatie is een effectieve techniek voor het vinden van optimale

oplossingen die een afweging bieden tussen verschillende, tegenstrijdige criteria. Het

heeft zijn toepassing gevonden in de wereld om ons heen omdat bij het oplossen van

praktische, reële wereld problemen men gewoonlijk te maken heeft met meerdere na te

streven doelen. Bij voorbeeld, bij het ontwikkelen van een onderdeel kan het gewenst

zijn om het gewicht te minimaliseren en de sterkte te maximaliseren; bij het kiezen

van een portfolio bij het beleggen kan men, bijvoorbeeld, eisen dat het verwachte

rendement wordt gemaximaliseerd en het risico geminimaliseerd. Het multi-criteria

optimalisatie probleem dat in dit proefschrift is opgelost is ontleend aan het CIM-

PLO (‘Cross-Industry Predictive Maintenance Optimization Platform’ - industrie-

onafhankelijk/overschrijdend voorspellend onderhoud optimalisatie platform) project.

In het CIMPLO project is het doel om voor een vloot van voertuigen een optimaal

onderhoudsschema op te stellen – elk voertuig bestaat uit een verzameling van com-

ponenten en elke component kan naar keuze in één van de werkplaatsen onderhouden

worden waarbij de kosten en duur van het onderhoud van het onderdeel per werk-

plaats variëren. Het optimaliseren van het onderhoudsschema wordt gedaan om za-

kelijke voordelen te bieden aan de industrieën zoals het verlagen van de duur van het

onderhoud, de veiligheid te verbeteren en het besparen van reparatiekosten. Dit prob-

leem is een sterk NP-moeilijk (‘strongly NP-hard’) probleem, daar voor het flexibele-

job-shop-planningsprobleem (‘flexible job scheduling problem’ FSJP) bewezen is dat

het een sterk NP-moeilijk probleem is en ons voertuigen onderhoudsschema optimal-

isatie probleem (‘Vehicle Fleet Maintenance Optimization’ (VFMSO) probleem) een

uitbreiding is van het FSJP: het VFMSO verschaft een niet-specifieke verwerkingsvol-

gorde en omvat naast de verwerkingskosten van de bewerking op machines ook de

verwerkings-tijden zoals in de FJSP. Dit heeft tot gevolg dat evolutionaire algoritmen

(EA’s) gekozen zijn om dit praktische, reële wereld probleem op te lossen daar deze
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meta-heuristische methode bijzonder geschikt is om multi-criteria problemen op te

lossen.

Ten eerste is een multi-criteria evolutionair algoritme (‘multi-objective evolutionary

algorithm’ MOEA) ontwikkeld voor generieke, multi-criteria optimalisatie problemen.

Dit algoritme speelt een belangrijke rol in het oplossen van ons praktisch probleem.

Het voorgestelde MOEA heet diversiteitsindicator gestoelde MOEA (DI-MOEA). De

belangrijkste eigenschappen (voordelen) van DI-MOEA zijn: het gebruikt een hybride

selectie schema ( de µ+ µ generatie selectie operator en de µ + 1 ‘steady state’ selec-

tie operator) ten einde de voordelen van Pareto dominantie-gebaseerde benaderingen

die een snelle convergentie naar het Pareto frontier (PF) garanderen te combineren

met indicator gebaseerde aanpakken die convergentie naar een verzameling met goede

diversiteit garanderen; het vermijdt het gebruik van complexe structuren en param-

eters; het biedt de mogelijkheid een uniform gedistribueerde benadering van de PF

te genereren; het gebruikt geen a priori kennis van de vorm en locatie van de PF; de

gebruikte diversiteitsindicator (i.e., op de Euclidische afstand gebaseerde meetkundig

gemiddelde gap-indicator) is ook efficiënt te berekenen.

Ten tweede om de prestaties van MOEA’s te verbeteren is een rand-geroteerde

conus orde gëıntroduceerd met als doel een ordeningsrelatie te verkrijgen waarmee

de zoektocht naar de PF te verbeteren in vergelijking met de Pareto dominantie in

MOEA’s. De rand-geroteerde conus wordt verkregen door de randen van de stan-

daard Pareto orde conus naar buiten te draaien; dit heeft als gevolg dat een orde

wordt verkregen waarin meer oplossingen die in de Pareto orde niet vergelijkbaar zijn

vergelijkbaar worden in de nieuwe orde daar een oplossing een groter deel van de

criteria ruimte domineert. De rand-geroteerde conus orde is met zorg ingebed in de

MOEA’s opdat zowel convergentie en diversiteit in het evolutionaire zoekproces de

nodige invloed krijgen.

Om alleen te focussen op voorkeursoplossingen, zijn doel (‘target’) gebaseerde

MOEA’s gëıntroduceerd en gëımplementeerd als drie algoritmen: T-NSGA-II, T-SMS-

EMOA en T-R2-EMOA. In deze algoritmen worden verschillende typen doelen (‘tar-

gets’) gebruikt (b.v., punt of gebied), verschillende vormen voor het doelgebied (b.v.,

cirkelschijf of vierkant), verschillende posities van de ‘target’ (b.v., op de PF of niet);

een doel of meerdere doelen kunnen door de beslisser (‘decision maker’ DM) wor-

den bepaald om gebruikt te worden als voorkeursinformatie waarmee niet naar alle

Pareto optimale oplossingen gezocht hoeft te worden. Om de moeilijkheid voor het

specificeren van de voorkeursinformatie door de DM te ontlopen, is er bovendien een

op automatische voorkeur gebaseerde DIMOEA (AP-DI-MOEA) voorgesteld om het
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voorkeursgebied dat door het kniepunt (‘knee point’) wordt gëındentificeerd te gener-

eren – algemeen wordt aangenomen dat kniepunten de meest begeerde en van nature

voorkeursoplossingen zijn die hoogst waarschijnlijk de keuze zijn van de DM’s. De AP-

DI-EMOA splitst het rekenbudget in twee delen op: het eerste deel wordt gebruikt

om een ruwe benadering van de hele PF te vinden en daarmee het kniepunt gebied

om vervolgens het tweede deel te gebruiken om het voorkeursgebied stap voor stap te

verkleinen voor een grotere precisie om daarna de voorkeursoplossingen te verkrijgen.

Na de introductie van bovengenoemde, generieke algoritmen richten we onze aan-

dacht op het oplossen van het VFMSO probleem. Aangezien ons probleem een uit-

breiding vormt van het FJSP probleem en dit probleem al moeilijk op te lossen is

en bovendien er niet veel onderzoek gewijd is aan dit probleem, gaan we eerst aan

de slag met een MOEA om het multi-criteria FJSP probleem op te lossen. Hier-

bij ontwikkelen en gebruiken wij verscheidene initialisatie benaderingen, verscheidene

domein-specifieke genetische operatoren en verschillende zoek strategieën. Bovendien

is de Mixed-Integer Programming Efficient Global Optimization (MIP-EGO) configu-

rator aangepast om automatisch de optimale mutatiekansen te vinden. Gewapend

met de studie van het FJSP probleem ontwikkelen we het MOEA om onze reële

wereld, multi-criteria VFMSO problemen op te lossen. Hiertoe is een specificatie

van het probleem geformuleerd, een 3-vector chromosoom ontworpen om oplossingen

te representeren en zijn ook de corresponderende genetische operatoren ontwikkeld.

Tegelijker-tijd zijn speciale vernieuwingen voor het VFMSO probleem gemaakt zoals

het combineren van componenten die dan één onderhoudstaak vormen, de definitie

van de uitvoeringsvenster (‘execution window’) voor elke component dat gebaseerd is

op de voorspelde bruikbare resterende levensduur, de simulatie van boetekosten en het

niet omgaan met de onzekerheden in de voorspellingen.

Ten slotte zijn de statische MOEA’s en op voorkeur gebaseerde MOEA’s toegepast

op de VFMSO problemen. Aangezien het noodzakelijk is om het planningsschema

continu bij te werken in het reële wereld scenario, worden de statische algoritmen uit-

gebreid tot dynamische MOEA’s waarin een extra criterium, namelijk de stabiliteit van

het planningsschema wordt gebruikt om het aantal veranderingen tussen het nieuwe

en oude schema zo min mogelijk te laten zijn. Het achterliggende idee voor dit cri-

terium is het reduceren van extra kosten zoals de kosten vanwege hertoewijzing van

gereedschap en apparatuur, de kosten van het nabestellen van grondstoffen etc.

Samengevat biedt dit proefschrift vooruitgang en verbeteringen in het ontwerpen

van generieke multi-criteria en ‘many’-criteria (dwz meer dan 3 criteria) algoritmen

voor het vinden van uniforme benaderingen van de Pareto frontier (of een voorkeurs-
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gebied van de Pareto frontier), en zijn deze algoritmen voor het domein van flexibele-

job-shop-planning en het meer specifieke domein van dynamische, op voorspellingen

gebaseerde onderhoudsplanning op maat gemaakt en met succes toegepast.
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Acronyms

AP-DI-MOEA

Automatic Preference based Diversity Indicator-based Multi-objective Evolu-
tionary Algorithm

DF

Desirability Function

DI-MOEA

Diversity Indicator-based Multi-objective Evolutionary Algorithm

DM

Decision Maker

DRS

Dominance Resistant Solution

EA

Evolutionary Algorithm

EAF

Empirical Attainment Function

EMO

Evolutionary Multi-objective Optimization

EMOA

Evolutionary Multi-objective Optimization Algorithm

EP

Evolutionary Programming

ES

Evolution Strategy
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Acronyms

FJSP

Flexible Job shop Scheduling Problem

GA

Genetic Algorithm

GD

Generational Distance

GI

Gap Indicator

GP

Genetic Programming

HV

Hypervolume

IBEA

Indicator-based Evolutionary Algorithm

IGD

Inverted Generational Distance

JSP

Job shop Scheduling Problem

MIP-EGO

Mixed integer, Parallel - Efficient Global Optimization

MOEA

Multi-objective Evolutionary Algorithm

MOFJSP

Multi-objective Flexible Job shop Scheduling Problem

MOO

Multi-Objective Optimization

MOP

Multi-objective Optimization Problem

MOVFMSO

Multi-objective Vehicle Fleet Maintenance Scheduling Optimization
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Acronyms

NE

Number of Evaluations

NSGA-II

Non-dominated Sorting Genetic Algorithm II

NSGA-III

Non-dominated Sorting Genetic Algorithm III

PF

Pareto Front

ROI

Region of Interest

RUL

Remaining Useful Lifetime

SMS-EMOA

S-Metric Selection Evolutionary Multi-Objective Algorithm

VFMSO

Vehicle Fleet Maintenance Scheduling Optimization
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