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The nonlinear response of driven complex materials—disordered
magnets, amorphous media, and crumpled sheets—features intri-
cate transition pathways where the system repeatedly hops be-
tween metastable states. Such pathways encode memory effects
and may allow information processing, yet tools are lacking to
experimentally observe and control these pathways, and their full
breadth has not been explored. Here we introduce compression
of corrugated elastic sheets to precisely observe and manipulate
their full, multistep pathways, which are reproducible, robust,
and controlled by geometry. We show how manipulation of the
boundaries allows us to elicit multiple targeted pathways from
a single sample. In all cases, each state in the pathway can be
encoded by the binary state of material bits called hysterons, and
the strength of their interactions plays a crucial role. In particular,
as function of increasing interaction strength, we observe Preisach
pathways, expected in systems of independently switching hys-
terons; scrambled pathways that evidence hitherto unexplored
interactions between these material bits; and accumulator path-
ways which leverage these interactions to perform an elementary
computation. Our work opens a route to probe, manipulate, and
understand complex pathways, impacting future applications in
soft robotics and information processing in materials.

memory | mechanical metamaterial | mechanical instability

The response of complex media to external driving is in-
termittent, featuring smooth reversible episodes, associated

with a single (meta)stable state of the system, punctuated by
sharp irreversible steps between states that together form a
multistep pathway (1–7). These steps are typically hysteretic and
for several systems, such as amorphous media, can be associ-
ated with local rearrangements that act as two-state degrees of
freedom. The ensuing complex pathways are often modeled by
collections of hysteretic, two-state elements called hysterons (8).
These two-state hysteretic elements switch up and down between
internal states s = 0 and s = 1 when a driving field U passes
through the upper and lower switching fields U+ or U− (with
U+ > U−); the state of the hysteron forU− ≤ U ≤ U+ depends
on its driving history. One can think of these as material bits
(9–12) that collectively label the (meso)state of the physical
system. Properties such as memory are then determined by the
sequences of bit switches as function of a global driving U,
which can be encoded in so-called transition graphs (t graphs),
whose nodes represent the mesostates and edges represent their
transitions (13, 14).

Collections of n uncoupled hysterons form the Preisach model
(8), which has been studied extensively in the context of complex
hysteresis and memory effects. The absence of coupling implies
that hysteron i changes state at switching fields U+

i and U−
i ,

independent of the state of the other hysterons. As a result,
the sequence of bit switches in response to sweeping U is given
by the ordering of the 2n switching fields. This restricts the
type of pathways that are possible, with the t graphs featuring a
hierarchical structure of loops within loops and exhibiting return
point memory (RPM), the widespread ability of complex systems
to remember their extremal driving, i.e., to return to a previous
state when the driving revisits an extremum (15–19).

However, interactions between hysterons can break the
no-passing (NP) property that underlies RPM (5, 18). Recent
simulations of models of interacting hysterons, as well as amor-
phous media, have presented examples for complex pathways and
transition graphs featuring, e.g., avalanches, transient memories,
and multiperiodic orbits, which cannot be captured by models
of noninteracting hysterons (5, 20–22). Unfortunately, distin-
guishing, observing, and manipulating individual hysterons and
their interactions is experimentally challenging for most complex
systems. Moreover, we lack a conceptual framework that orga-
nizes the distinct impacts that hysteron interactions have on the
phenomenology. Hence, both the connection between hysteron
models and experimentally observable pathways and the rele-
vance of hysteron interactions for driven complex media remain
unclear.

Here we introduce mechanical compression of curved, cor-
rugated elastic sheets to directly observe mechanical hysterons,
their interactions, and their concomitant nontrivial pathways
(Fig. 1). We experimentally observe that the driving value where
a given hysteron switches is modified by the states of the other
hysterons, thus evidencing interactions between hysterons. To
organize the resulting phenomenology, we distinguish between
two characteristics of the pathways that are impacted by hys-
teron interactions. Most strikingly, interactions can modify the
topology of the transition graph, and we identify the first three
steps in a hierarchy of increasingly complex t graphs and give
concrete examples of each. In addition, we show that even for
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Fig. 1. Robust pathways in a cyclically compressed corrugated sheet. (A) Our samples are corrugated elastic cylindrical shells of height H, thickness t, radius
of curvature R, and N sinusoidal corrugations of pitch p and amplitude A0. For sample A, shown here, N = 3 and {H, t, R, p, A0} = {35, 0.2, 1.0, 8, 3} mm. (B)
Compression U, force F, and bottom plate tilt angle α. (C) Upon compression at α = 0 mrad, sample A reaches four different mesostates, associated with
sudden snapping of distinct regions Ωi (colored strips; Movie S1). (D) The force F exhibits three sharp jumps during compression (red) and decompression
(blue). (E) Each force jump is associated with a sudden deformation, evidenced by spikes in Δ2

i , the sum of the squared differences between subsequent
digital images restricted to Ωi (Materials and Methods). (F) Schematic representation of a hysteron, its two states (here gray corresponds to state 1, white
corresponds to state 0, and dashed corresponds to the hysteretic range where the state is either 0 or 1 depending on the history), and the switching fields
U±, where U− < U < U+ is the hysteretic range. (G) Evolution of hysteron state during a compression cycle. (H) Our samples behave as collections of
parallel hysterons with distinct thresholds. (I) Force–displacement curve corresponding to increasing compression cycles (Inset). The mechanical response
of the system features connected hysteresis loops and multiple pathways. (J) The transition graph of sample A at α = 0 mrad contains four states (nodes)
labeled by the state of each hysteron. Red (blue) arrows correspond to up (down) transitions at (de)compression Uc as indicated in mm.

a given t-graph topology, interactions can have a more subtle
effect depending on the precise ordering of the switching fields.
The strict hierarchy of t-graph topologies and the more subtle
effects of the relative ordering are experimentally observable and
testable and provide a conceptual tool to organize the plethora
of pathways observed in driven frustrated matter. Together, our
work shows how hysteron interactions bring sequences of bit
flips that encode forms of information processing within reach,
creating opportunities for soft robotics (23–26) and information
processing in materials (9–11, 27).

Results and Discussion
Mechanical Hysterons with Robust Pathways. In our design, the
corrugations lead to spatially localized instabilities upon com-
pression which act as mechanical hysterons, the overall curvature
prevents global buckling of the sheet, and the open cylindrical
structure allows us to limit the number of grooves and facilitates
both observation and manufacture. Our experimental protocol
involves sweeping the axial compression of a groovy sheet while
filming the sample and measuring the compressive force F (Fig. 1
A–E, Materials and Methods, and Movies S1–S3). We observe that
our samples exhibit sequences of well-defined steps, seen as sharp
jumps in the force F, and find that each event is associated with a
localized (un)snapping event in a vertical groove, similar to those
seen in tape springs (28) (Fig. 1 C–E, Materials and Methods, and
Movies S1–S3). These transitions are hysteretic, and we observe
that each groove can be in two distinct states—snapped and
unsnapped—so that each groove acts as a mechanical hysteron.
We refer to the hysteron transitions as “up” (from the unsnapped
to the snapped state) and “down” (snapped to unsnapped) and
denote the corresponding compression thresholds by the switch-
ing fields U+ and U− (Fig. 1 F–H).

Repeated compression loops yield highly reproducible path-
ways with virtually identical force curves and sequences of hys-
teron flipping, evidencing the irrelevance of creep, plasticity, or
aging (SI Appendix). A wide range of groovy cylinders responds
similarly to cyclical compression (Materials and Methods), and
while we focus on systems with three grooves/hysterons, which is
the minimal number for scrambled pathways (defined in Tunable
Pathways and Strong Interactions), we have observed similar phe-
nomena in larger systems (SI Appendix). As we will show below,
modifications of the sheet’s shape and boundary conditions allow
us to geometrically tune the properties and interactions of their
hysterons, making this system a viable platform to study repro-
ducible, directly observable, and tunable pathways.

Pathways and Transition Graphs. We map the full pathway by
submitting the sample to a series of well-chosen compres-
sion/decompression cycles (Fig. 1I). Different driving cycles
induce different pathways, which together form an intricate
web of linked hysteresis loops (15, 16) which connect distinct
states. These states and their transitions can be collected into
a t graph, a directed graph that captures the response to any
sequence of increases and decreases of the global driving field U
(4, 5, 13, 14, 20, 29, 30). To experimentally map the t graph we
systematically visit all states and determine all transitions, while
tracking the state of each hysteron si , where si = 1 (0) refers
to a snapped (unsnapped) state. A state S is characterized by
the hysteron states {s1, s2, . . . }. For each collective state—with
the exception of the ground state {0 . . . 0} and saturated state
{1 . . . 1} —increased or decreased compression yields up and
down transitions at critical switching fields U+

i (S) and U−
i (S).

To determine all transitions, we first determine the main loop,
the sequence of transitions that, under monotonic compression

2 of 7 PNAS
https://doi.org/10.1073/pnas.2111436118

Bense and van Hecke
Complex pathways and memory in compressed corrugated sheets

D
ow

nl
oa

de
d 

at
 L

E
ID

S
 U

N
IV

E
R

S
 M

E
D

IS
C

H
 C

E
N

T
R

U
M

, W
A

LA
E

U
S

 L
IB

R
A

R
Y

 o
n 

Ja
nu

ar
y 

17
, 2

02
2 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111436118/-/DCSupplemental
https://doi.org/10.1073/pnas.2111436118


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

A

B

Fig. 2. Tunable transition graphs. (A) Tilting the bottom boundary of sample A elicits six Preisach t graphs and one scrambled t graph (dashed box), where
scrambled transitions are shown by double arrows. The red (blue) lists indicate the order of the up (down) transitions of the main loop P+ (P−). The angle
α increases monotonically from A(i) to A(vii). (B) t-graph type as function of α. The two unlabeled dots near α = 5 mrad refer to ambiguous cases where
the critical switching fields U+

1 and U+
3 are so close that the difference between types ii and iii is not experimentally significant.

or decompression, connect the ground state and saturated state
(14). We then check whether there are states for which there are
undetermined transitions and determine these, and whenever
we obtain a state that has not been previously visited we also
determine its transitions, repeating these operations until no
new states are found. Collecting all states and transitions we
obtain the t graph in which the nodes represent the mesostates,
and the directed edges, labeled by the values of their respective
switching fields, represent the transitions (Fig. 1J). We stress that
in our systems, all states that we consider are mutually reachable
because there always is a specific driving protocol whereby any
state is reachable from any other state (14).

For the simple case shown in Fig. 1 I and J, starting out at the
uncompressed state {000} and monitoring the force and images,
we find that continued compression yields a sequence {000}→
{001}→{011}→{111}; decompression starting at the saturated
state yields a sequence {111}→{011}→{001}→{000}. For this
specific example, a simple compression/decompression cycle
(Fig. 1D) is enough to obtain the full set of transitions. A more
complex protocol (Fig. 1 I, Inset) yields a force response with
three linked hysteresis loops (Fig. 1I) that illustrates the different
pathways the system can follow and hence the importance of the
loading history. The corresponding t graph also features three
subloops embedded in the main loop and is spanned by four
nodes and six edges; the material bits simply switch on and off
when the driving is swept up and down.

Tunable Pathways. A wide variety of more complex t graphs can
be observed by tilting one of the boundaries of the sample
(Figs. 1B and 2 A and B and Materials and Methods). Due to
the spatial separation of each hysteron, applying such global
gradients in the driving modifies the relation between global and
local compression, leading to the smooth tuning of the switching
fields U±

i (Fig. 3A and SI Appendix). As the relative order of
the switching fields determines the order in which hysterons
flip, tilting allows us to visit different states and/or sequences,
thus modifying the topology of the t graphs. By sweeping α,
we observe seven distinct responses in sample A (Fig. 2A). We
characterize the order of the switching fields of the main loop by
the corresponding sequence of hysteron flips, P+ and P− (Fig.
2A). For example, in the main loop of sample A in regime ii,
the second hysteron flips first ({000}→{010}), followed by the
third hysteron ({010}→{011}) and finally the first one ({011}→
{111}), yielding P+ = [2, 3, 1]. Similarly, during decompression,
the first hysteron unflips first ({111}→{011}), then the second
({011}→{001}), and finally hysteron number three ({001}→
{000}), leading to P− = [1, 2, 3]. Many of the t graphs exist

on a large angle span, while others can only be observed for
a limited range of tilt angles α (Fig. 2B). We note that during
the tilting process, two switching fields can become extremely
close, such that their respective (un)snapping events become
indistinguishable [e.g., in Fig. 2B the two data points between
A(ii) and A(iii) refer to such a case]. This degeneracy may cause
an avalanche. However, we can distinguish degeneracy-driven
avalanches from true avalanches by their response to changes
in the tilt angle: degeneracy-driven avalanches quickly disappear
when the angle is modified, while true avalanches persist over a
significant range of α.

We note that in most cases, the difference between neighboring
t graphs is associated with a single permutation of the upper or

1410 12 1816

0.25

0.27

0.29

0.31

A B

C D

0-4 -2 62 4

A(i)
A(ii)

0.30

0.34

0.38

0.42A(ii)

[2,3,1]

Fig. 3. Change of pathway and interactions. (A) The boundary tilt modifies
the relation between local and global compression U and can reorder the
switching fields as indicated. (B) The switching fields vary smoothly with
α, and the t graph A(i) is replaced by A(ii) when U+

2 (000) and U+
3 (000)

swap order. (C) Interactions cause the state of a given hysteron to modify the
switching fields of another hysteron; here hysteron 1 going 0 → 1 increases
U+

2 . (D) The measured difference between U+
2 (000) and U+

2 (100) indicates
hysteron interactions as in C.
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lower transitions; for example, compare graph A(i), where P+ =
[3, 2, 1], to A(ii), where P+ = [2, 3, 1], corresponding to a swap
of the snapping order of hysterons 2 and 3. Such permutation is
consistent with the notion that tilting smoothly tunes the switch-
ing fields. Plots of the switching fields directly evidence their
smooth variation with the tilt angle α and show that the ranges of
α where each t graph occurs are consistent with the crossing of
two switching fields; for example, the change from graph A(i)
to A(ii) corresponds to the crossing of U+

2 and U+
3 (Fig. 3B

and SI Appendix). We have obtained a similar range of t graphs
for a sample C which contains four hysterons (SI Appendix). We
conclude that global driving gradients are a powerful tool to
systematically elicit a multitude of t graphs from a single sample.

Classification: Preisach and Scrambled t Graphs. Different pathways
can be classified according to the topology of their t graphs, and in
this paper we introduce the first three steps of complex pathways
that arise when interactions become increasingly important. A
close inspection of the topology of the t graphs of sample A
reveals the first two distinct classes of graphs: Preisach graphs
A(i), A(ii), A(iii), A(v), A(vi), and A(vii) and scrambled graphs
A(iv).

To understand this distinction, consider the relation between
the flipping of the individual hysterons and the state transitions.
For n hysterons with states si , forming a collective state S, the up
(down) transitions are set by the hysteron in state s = 0 (s = 1)
which has the lowest up (highest down) switching field:

U+(S) = min
i0

u+
i0
(S) , [1]

U−(S) = max
ii

u−
i1
(S) . [2]

Here i0 (i1) runs over the hysterons that are in state 0 (1), U±(S)
are the global switching fields for the collective states S, and u±

i

are the state-dependent switching fields of individual hysterons.
In absence of hysteron interactions, the switching fields of all

hysterons are independent of the state of the other hysterons
(u±

i (S) = u±
i ), and the topology of the t graph is thus fully

determined by the ordering of the up and down switching fields
of individual hysterons. We refer to t graphs whose topology is
consistent with a unique ordering of the upper and lower switch-
ing fields of the hysterons, and which do not contain avalanches,
as Preisach graphs [recall that collections of noninteracting hys-
terons are referred to as the Preisach model (30)]. We note that
the topology of a Preisach graph is fully determined by the order
of the transitions of the main loop, encoded in P+ and P−. We
stress here that t graphs with a Preisach topology do not require
the strict absence of interactions but only that interactions do not
introduce differences between the ordering of the transitions in
the main loop and the rest of the t graph.

Strikingly, we also observe a scrambled graph which features
pairs of transitions that are not consistent with a unique, state-
independent ordering of the switching fields—we call these
transitions scrambled. In particular, t graph A(iv) contains the
pair of transitions {111}→ {101} and {110}→ {010}, which is
not compatible with a unique, state-independent ordering of the
switching fields U−

2 > U−
1 ; rather these transitions imply that

U−
2 (111)> U−

1 (111) and U−
2 (110)< U−

1 (110) respectively
(Fig. 2A). Such state-dependent ordering of the switching
fields is incompatible with a Preisach graph and demonstrates
a dependence of the switching field of one hysteron on the
state of another hysteron, thus directly evidencing hysteron
interactions. We note here that scrambled pairs of transitions
have recently been observed in numerical simulations, e.g., the
scrambled pair of transitions {000}→{100} and {001}→{011}
in figure 5b of ref. 20 and the scrambled pair of transitions
{1101}→{1100} and {1111}→{0111} in figure 2 of ref. 21; see
also ref. 22. Intuitively, scrambling implies that bit-flip sequences

depend on the starting state, allowing for a far larger space of
potential t graphs than Preisach graphs. Additional evidence of
interactions can be obtained from the state dependence of the
switching fields; for example, we observe a systematic difference
of U+

2 (000) and U+
2 (100) (Fig. 3 C and D and SI Appendix). We

note that the sign of the interactions is not constant throughout
the samples—ferromagnetic and antiferromagnetic generically
both occur, and different pairs of hysterons can feature different
signs of interactions. Moreover, interactions are not reciprocal,
and the sign and strength of interactions for the upper and
lower switching fields may also be different. We stress here
that the interaction strength necessary to obtain scrambling is
directly proportional to the differences between the switching
fields of different hysterons. Hence, as tilting allows us to make
these differences arbitrarily small near crossings, our strategy
is eminently suited to observe non-Preisach behavior, even
if hysteron interactions are weak. We conclude that hysteron
interactions can yield types of pathways and t graphs.

Strong Interactions. To further study the effect of interactions
between hysterons we require samples with stronger coupling. To
create these, we note that for typical parameters and R � 5 cm,
the (un)snapping of one hysteron triggers the (un)snapping of
all hysterons, which we interpret as strong interactions, while for
smaller R the snapping events occur in sequence. Indeed, radius
of curvature serves as a proxy for the strength of interactions—
the larger the radius, the stronger the interactions. We thus
introduce sample B with R = 2 cm (the radius of curvature for
sample A was 1 cm) and three grooves. We have verified that
in comparison to sample A, the interactions as measured by
the dependence of the switching fields on the state are indeed
stronger (SI Appendix). We orient the sample and apply a shim
to the boundaries so that the crossings of the switching fields as
function of α are optimally separated.

We find that as a function of the tilt angle α, sample B yields
nine distinct t graphs, occurring on well-separated ranges of α
(Fig. 4). We distinguish a number of distinct features. First, t
graphs B(i), B(ii), B(iii), and B(ix ) are all Preisach graphs.
Second, t graphs B(iv) and B(v) feature an avalanche {100}→
{111} over a significant range of tilt angles α. While we cannot
rule out that this avalanche is caused by inertial effects or degen-
eracies, we note the avalanche occurs over a significant range of
α and that hysteron interactions can also cause such avalanches;
if U+

3 (110)< U+
2 (100)< U+

3 (100), state {100} transitions to
{110} at U = U+

2 (100), and since state {110} is unstable at
this value of U, it transitions to a stable state {111}. Third, t
graphs B(v), B(vi), B(vii), and B(viii) all contain scrambled
transitions—see Table 1 for the pairs of scrambled transitions.
Hence, manipulating the overall geometry of our corrugated
sheets allows us to increase the magnitude of interactions to
obtain a variety of robust, non-Preisach pathways.

Breaking of l-RPM and Accumulator Pathway. To further classify the
t graphs’ topologies, we consider the recent definition of loop-
RPM (l-RPM) (14, 30). l-RPM requires that all loops within the
t graph are absorbing. In essence, a loop is defined by a pair of
nodes Sm and SM , where the system evolves from Sm to SM

(and vice versa) by a series of up (down) transitions, and the
intermediate states are defined as the up (down) boundaries;

Table 1. Pairs of scrambled transitions (t1, t2) in sample B

t graph t1 t2

B(v) {111} → {101} {011} → {010}
B(vi) {111} → {101} {011} → {010}
B(vi) {000} → {001} {100} → {110}
B(vii) {000} → {001} {100} → {110}
B(viii) {000} → {001} {100} → {110}
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Fig. 4. t graphs of sample B. (A) Tilting sample B ({H, t, R, p, A0} = {20, 0.2, 2.0, 10, 3}) mm and N = 3 corrugations) elicits nine distinct t graphs. (B) t-graph
type as a function of α.

l-RPM then requires states Sm (SM ) to be accessible by a se-
quence of down (up) transitions from any up (down) boundary.
All t graphs of sample A and all t graphs of sample B—with
the exception of B(viii), which we will discuss in detail in this
section—are consistent with l-RPM.

We now focus on sample B in regime viii. To see that its t
graph violates l-RPM, consider the loop with Sm = {000} and
SM = {011}. State {010} is then part of its down-boundary, but
starting from this state and increasing the driving never reaches
SM = {011}: hence, this loop is not absorbing, and the t graph
violates l-RPM. Hence, in this sample, hysteron interactions are
sufficiently strong to observe a next step in the hierarchy of
t-graph complexities that yields t graphs with topologies that
violate l-RPM.

We stress here that it is known that ferromagnetic interactions,
where one hysteron switching from zero to one promotes the
switching of others from zero to one and vice versa, preserve
l-RPM (18). Hence, our observation of weak and strong RPM
breaking indicates the presence of antiferromagnetic interactions
in our system, which clearly can cause a wide range of t graphs (4,
20–22).

To understand the new qualitative feature corresponding to
this specific case we compare the response to cyclic driving in
regime (vii), where the t graphs have l-RPM, and regime (viii),
focusing on the loop that connects states Sm = {000} and SM =
{011} (Fig. 5 A–D). For cyclic driving, specified by Um and UM ,
and a specific starting state S, the system must reach a periodic or-
bit since there are a finite number of states (14). The system may
require τ cycles before reaching its final orbit, and this orbit may
be subharmonic with perioditicity T—simple cycles or absorbing
states correspond to T = 1 (14, 20, 21). In regime vii, once the
state {011} is reached, cycling U between Um(> U−

2 (010)) and
UM (< U+

1 (011)), the system follows the same {011} to {010}
loop repeatedly (Fig. 5 A and B). In contrast, applying a similar
driving to the sample for α in regime viii yields state {011} at
first maximal driving, but the second and subsequent maxima
produce state {110} (Fig. 5 C and D). Hence, the transition
{010}→ {110} erases the memory of the {011} state and brings
the system to a new subloop. The system thus reaches a simple
periodic orbit (T = 1) after a training of τ = 2 driving cycles. We
refer to orbits where τ > 1 and T = 1 as accumulators: during a
transient of τ cycles, the system visits unique states from which
the number of driving cycles can be deduced; after more driving
cycles, the system visits the same orbit, which encodes that the
number of driving cycles is larger or equal than τ . Such orbits can
be seen as a concrete realization of a long training time pathway
with τ = 2, as presented numerically in ref. 20. This behavior,
where the sample remembers how often it is driven to a certain
maximum, is different from classical forms of memory (29),
and we suggest that t graphs containing accumulator orbits may

underpin this behavior, although we note that here we specifically
focus on the subcase where T = 1. We stress that the observed
accumulator behavior can also be seen as an elementary form of
information processing: counting to two. From this standpoint,
we suggest that our observation of accumulator behavior is a
first step toward the realization of systems with complex t graphs
that encode information processing. We moreover stress that this
accumulator behavior (31) can be observed on a robust range of
tilt angles (Fig. 4B). Finally, we note that in our system, where all
states are mutually reachable, the existence of an accumulator
orbit necessitates the breaking of l-RPM (14).*

We conclude that our system allows us to observe three classes
of topologically distinct t graphs. The first class consists of
Preisach t graphs which are topologically equivalent to those
of the Preisach model. The second class consists of t graphs
that contain scrambled transitions, yet satisfy l-RPM. The third
class consists of t graphs that violate l-RPM, and in our specific
example the t graph encodes accumulator behavior, which may
underpin transient memories (20). This classification, which
is experimentally accessible, organizes the impact of hysteron
interactions on the pathways.

Ordering of the Switching Fields. The topological properties char-
acterize that the system can reach certain states but do not
restrict the corresponding values of the driving. However, as we
demonstrate in this section, the precise ordering of the switching
fields may impact the pathways, even if it does not impact the
t graphs’ topology. Hence, the ordering of the switching fields
provides a secondary characterization of pathways.

An important example of a property that involves a precise
statement on the values of the switching fields is ordinary RPM,
which requires that when the driving strength revisits a previous
extremal value, the system revisits a previous extremal state (15,
16, 18, 29, 30). RPM implies l-RPM, as all extremal states are
absorbing states when RPM is valid (14). The reverse, however,
is not true: RPM implies conditions on the relative ordering of
the switching fields beyond those captured by the topology of the
t graph: a system can be l-RPM without strictly satisfying RPM.

To illustrate the importance of the ordering of the switching
fields, consider a scenario where state {011} can be reached by up
transitions from either {001} or {010} (Fig. 6A). First, increase U
to a value UM so that state {011} is reached, then decrease U to
Um so that state {010} is reached. Now consider the response to
increasing U back up again to UM . If the system satisfies RPM, it
must then revisit state {011} (and not remain stuck at {010}),

*If not all states are mutually reachable, one can construct more complex t graphs
that contain multiple maximal loops that cannot be parts of a single main loop.
Orbits between multiple maximal loops can then feature arbitrary long transients and
subharmonic behavior, even when the system has l-RPM. For more details, see ref. 14.
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which implies the following condition on the ordering of the
switching fields:U+

2 (001)≥ U+
3 (010). For a Preisach system, the

sequence of transitions on the main loop implies that U+
2 > U+

3 ,
so that this condition is satisfied. However, in the presence of
hysteron interactions, the sequence of transitions on the main
loop only implies that U+

2 (000)> U+
3 (000) and U+

2 (001)>
U+

3 (000) but does not imply that U+
2 (001)≥ U+

3 (010); indeed,
for the same t-graph topology, RPM can be satisfied or violated,
depending on the ordering of the switching fields.

A specific example of such a t graph that satisfies l-RPM but
violates RPM is sample B in regime vii (Fig. 6). Here U+

2 (001)≈
1.47 mm and U+

3 (010)≈ 1.50 mm. Hence, when we cycle the
system (starting from {010}) between UM = 1.476 mm and
Um = 1.210 mm, the system reaches state {011} in the first cycle
but then remains stuck in the {010} state; reaching {011} again
requires raising U beyond U+

3 (010) (Fig. 6C). Hence, sample
B(vii) does not satisfy ordinary RPM, because the condition
U+

2 (001)≥ U+
3 (010) is violated.

This is an example of the violation of the NP property. The
topology of the t graph (Fig. 6B) implies the following ordering of
the states: {000} ≺ {001} ≺ {011} and {000} ≺ {010} ≺ {011}
(14). If NP were to hold, two orbits starting out at different states,
e.g., {000} and {010}, must preserve this ordering (equalities
allowed) when they occur at the same driving. However, starting
from these states and ramping the driving to, e.g., UM = 1.476
mm, the orbit {000}→{001}→{011} passes the other orbit that
remains stuck at {010}.

This example of NP and RPM violation, which does not affect
the t graph’s topology, exemplifies the role of the precise ordering
of the switching fields. We note that similar effects can also occur

A

C

B

D

Fig. 5. Accumulator behavior. (A) Repeated compression cycles yield re-
peated loops between the same extremal states (indicated by color) in
regime B(vii), consistent with RPM. Peaks of | dF

dt (t)| indicate transitions. (B)
Corresponding pathway. (C) Repeated compression cycles in regime B(viii)
evidence accumulator behavior which violates RPM. (D) Corresponding
pathway where the first and subsequent extremal states are different.

A

B

C

Fig. 6. Breaking RPM. (A) While a strict RPM (Left) implies l-RPM (Right),
l-RPM does not imply strict RPM. (B) B (vii) is a scrambled t graph with
l-RPM. However, as U+

2 (001) < U+
3 (010) (indicated in mm), this pathway

can violate RPM and satisfy l-RPM. (C) Cycles between UM, with U+
2 (001) <

UM < U+
3 (010) (we take UM = 1.476 mm) and Um > U−

2 (010) (we take
Um = 1.210 mm), leave the system in state {010}, despite UM being larger
than the critical up transition value of state {001}, thus breaking strict RPM.
In the last cycle we increase U beyond U+

3 (010) = 1.50 mm and reach state
{011}. Peaks of | dF

dt (t)| indicate transitions.

in more complex t graphs; for example, in the accumulator t
graph, some cyclic driving protocols can remain stuck at {011}
only when U+

2 (001)< U+
1 (010). We finally stress that while both

topology changes, such as scrambling, and secondary effects, such
as RPM breaking, relate to ordering of switching fields, they are
distinct. For example, scrambling requires specific differences in
the ordering of two switching fields in two states and changes
the topology of the t graph; secondary ordering effects do not
impact the topology of the t graph and can be associated with
single inequalities. Hence, by clearly distinguishing topologi-
cal and nontopological impact of hysteron interactions, transi-
tion graphs and pathways can precisely be characterized and
classified.

Concluding Remarks
We presented a system with experimentally accessible mechan-
ical hysterons which allows us to study emergent complex path-
ways. Our work shows that hysteron interactions yield a plethora
of t graphs, properties, and distinct flavors of RPM. In particular,
our study elucidates that a complete classification of pathways
combines a characterization of the t graphs’ topology, as well
as aspects of the exact ordering of the switching fields. For the
topology, we have observed the first three steps in a hierarchy of
increasing complexity as Preisach t graphs, scrambled t graphs,
and t graphs that break l-RPM. We discussed how the accumu-
lator t graph is a concrete example of transient memory and
may underpin recent observations of transient memory in models
of interacting hysterons (20). We demonstrated the secondary
effects due to state-dependent switching fields by the specific
example in which strict RPM is broken, irrespective of the t
graphs’ topology. We introduced spatial gradients as a general
experimental strategy to modify the pathways, which moreover
shows that specific behaviors are not only a property of specific
samples but can be tuned geometrically via their boundaries.
Finally, we stress that the t-graph hierarchy and the secondary
effects of state-dependent switching fields are experimentally
observable and testable.

Our work emphasizes the proliferation of complex t graphs in
complex media. Studies that explore t graphs in such frustrated
systems have just started to emerge and mostly focus on numerics
(5, 20–22), and we hope our work motivates further studies by ex-
periments as well (see also refs. 12, 32). At present, we have little
information about the statistics of different classes of t graphs,
the levels of complexity that can be reached and observed, and
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their relations to physical properties of the underlying system, all
of which provide fertile ground for further study.

Our work further suggests the investigation of the utility of
complex t graphs in rationally designed metamaterials. Finding
strategies to arbitrarily control hysteron properties and their
interactions, beyond the boundary control method introduced
here, may open up a large design space for the rational design
of pathways and t graphs. Formally, the t graphs have the same
structure as the directed graphs that encode computations by
finite state machines (33). Hence, we suggest that a fruitful per-
spective on t graphs in complex matter starts from their informa-
tion processing capabilities. We note that while our systems are
purely elastic and thus microscopically reversible, one imagines
that material plasticity will lead to evolution of such pathways,
which perhaps can be used to train materials to exhibit targeted
pathways. Together, such control, design, and learning strategies
can be explored, in particular in systems with many hysterons,
to achieve mechanical systems which, in response to external
driving, process complex information.

Materials and Methods
Sample Fabrication and Experimental Protocol. The fabrication of corrugated
sheets starts by spin coating a liquid mixture of a two components silicone
elastomer (Zhermack Elite double 32 Fast, Young’s modulus E ≈ 1 MPa,
Poisson’s ratio ν ≈ 0.5) on a surface with sinusoidal corrugations with pitch
p and amplitude A0. Rotation is maintained until complete curing of the
polymer (≈ 20 min). The sheet is then peeled and rolled in an open cylinder;
top and bottom ends are dipped in a liquid layer of the same polymer
mixture to set the cylindrical shape and fix the boundary conditions. The
resulting sample is characterized by its height H, thickness t, radius of
curvature R, pitch p, number of corrugations N, and amplitude A0. We
have observed similar local and sequential snap-through behavior in over
10 samples, with the only limitation appearing to be that the corrugation
amplitude A0 is not too small and R is not too large—a natural scale to
compare these to is the pitch p. Paint is splattered on the samples to enhance
contrast and ease visualization.

The mechanical response of our samples is probed in a uniaxial testing de-
vice (Instron 3366) which controls the axial compression U better than 10 μm;
we use a 5N sensor which accurately measures the force down to 10 mN with

an accuracy of 10−4 N. We define U = 0 where the force during compression
reaches the small value F(U0) = 20 mN. We use compression speeds of
1 mm/min and have checked that further lowering the compression speed by
an order of magnitude does not affect the phenomenology, thus ensuring
we operate in the quasistatic regime. We focus on the compression range
(strain less than 5%) where grooves can snap but where no additional
instabilities are observed.

We image the deformation of the groovy sheet during compression at a
frame rate of 3Hz or faster, using a charge-coupled device camera (Basler
acA2040-90um) mounted with a 50 mm objective. We calculate the mean
squared differences in each local region Ωi of the normalized digital image
as

∑
k,l∈Ωi

Δ2
i k, l := (At+Δt

k,l − At
k,l)

2, where k and l label the pixels, t is time,

and Δt the time interval (Δt = 100 ms in Fig. 1E). Each region Ωi targets a
part of a single groove, chosen such that events in neighboring regions do
not create secondary peaks.

The sample rests on a Thorlabs tilt stage that allows us to control the
tilt angle α with an accuracy of 3.10−5 rad. We incrementally change α

with steps ranging from 3.10−4 rad to 2.10−3 rad and for each tilt angle α

measure the full t graph and the mechanical response. All transition graphs
presented in this paper were obtained multiple times over the course of
several weeks, and all angles were visited several times to ensure a good re-
producibility (SI Appendix, Fig. S1 C and D). By exploring the reproducibility
of the boundary between different t graphs, when two switching fields are
essentially degenerate, we estimate our accuracy of the boundaries to be
better than ±2.10−4 rad.

To determine the switching fields, each transition is probed between two
and four times, and we report mean switching fields which have an SD
typically smaller than the symbol size. We estimate small viscous relaxation
effects to affect the switching field by at most 4% (SI Appendix, Fig. S1B),
thus requiring larger differences to evidence interactions.

Data Availability. Excel files, Python codes, raw images, and movies (AVI
files) have been deposited in Figshare (https://figshare.com/projects/Complex
_pathways_and_memory_in_compressed_corrugated_sheets_/127250).
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