Laparoscopic peritoneal lavage for perforated colonic diverticulitis: a systematic review
Toorenvliet, B.R.; Swank, H.; Schoones, J.W.; Hamming, J.F.; Bemelman, W.A.

Citation

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/119051

Note: To cite this publication please use the final published version (if applicable).
Sunday, 29 November 2020

MASTERCLASS

Introduction & course objectives
Michel Adamina, Winterthur, CH

Myths and facts about oral antibiotics, bowel preparation, and timing of IV antibiotics to reduce surgical site infection
Frédéric Ris, Geneva, CH

Management of colorectal GIST – all you should know from diagnosis to handling recurrences
Paris Tekkis, London, UK

Do and don’t in taTME surgery – a decade of experience explained
Roel Hompes, Amsterdam, NL

What your pathologist can do for you: from standard margins recommendations to molecular pathology, liquid biopsies, and the microbiome
Phil Quirk, Leeds, UK

Prehabilitation, patient blood management index – welcome addition or resource wasting
Des Winter, Dublin, IE

Selective use of neoadjuvant and adjuvant radiotherapy for rectal cancer
Chris Cunningham, Oxford, UK

Handling large rectal adenoma and malignant polyps
Willem Bemelman, Amsterdam, NL

All techniques to avoid staple line complications in colorectal surgery
Antonino Spinelli, Milano, IT

Management of pelvic sepsis after colorectal / coloanal anastomosis and oncological outcomes of the GRECCAR 5 trial
Quentin Denost, Bordeaux, FR

Best practices in colostomy construction and repair of parastomal hernia
Eva Angenete, Göteborg, SG

The EBSQ Coloproctology Examination
Michel Adamina, Winterthur, CH

Wrap-up
Michel Adamina, Winterthur, CH

Sunday, 29 November 2020

COURSE OF PROCTOLOGY

Introduction & course objectives
Bruno Roche, Geneva, CH

Complex pelvic fistula revisited: established wisdom and innovative approaches
Alexander Herold, Mannheim, DE

Obstetrical trauma: assessment, timing and options to repair
Patrick Hohlfeld, Lausanne, FR

The painful bottom – Proctalgia beyond the classical abscesses, fissures, and hemorrhoids
Bruno Roche, Geneva, CH

Sexually transmitted diseases in proctology
Karel Skala, Geneva, CH

Anorectal trauma and foreign bodies
Richard Cohen, London, UK

Pilonidal sinus – strategies and outcomes
Frédéric Ris, Geneva, CH

Fecal incontinence: investigations and conservative treatment
Beatrice Salvioni, Milano, IT

Fecal incontinence: neuromodulation and intervention options
Joan Robert-Yap, Geneva, CH

The pelvic floor revealed: transperineal / transvaginal / transanal repairs explained
Bruno Roche, Geneva, CH

The pelvic floor revealed: investigations and pelvic floor therapy
Jacqueline de Jong, Bern, CH

Obstructed defecation and IBS: investigations, differential diagnosis, and treatment strategies
Daniel Poil, Zurich, CH

Obstructed defecation: surgical options
André d’Hoore, Leuven, BE

Wrap-up
Alexander Herold, Mannheim, DE

Monday, 30 November 2020

SCIENTIFIC PROGRAMME

Opening and welcome
Jochen Lange, St. Gallen, CH

Is cancer an infectious disease? role of the microbiome
Philip Quirk, Leeds, UK

Ethical considerations in crisis – lessons from Covid-19
Omar Fatz, London, UK

SATELLITE SYMPOSIUM

Medtronic

Prophylactic mesh in colorectal surgery
René H. Forteiny, Wien, AT

Lars Pahlman lecture: Extending the limits of liver surgery
Markus Büchler, Heidelberg, DE

Multimodal approaches to colorectal liver metastases
Mohammed Abu Hila Brescia, IT

SATELLITE SYMPOSIUM

Ethicon

Urogenital dysfunction in patients treated for rectal cancer – what do we know and what can we do?
Eva Angenete, Göteborg, SG

Hemorrhoids – new options and time-tested solutions
Alexander Herold, Mannheim, DE

Anal pain and emergency proctology: what every surgeon should know & do
Richard Cohen, London, UK

All you need to know about anorectal fistula
Bruno Roche, Geneva, CH

Strategies and outcomes for obstructive cancers of the colon and rectum
Willem Bemelman, Amsterdam, NL

Total neoadjuvant therapy for colon and rectum cancers
Ronan O’Connell, Dublin, IE

Randomized trial evaluating chemoradiotherapy followed by pelvic reirradiation vs chemotherapy alone as preoperative treatment for locally recurrent rectal cancer (GRECCAR 1S)
Quentin Denost, Bordeaux, FR

Timeline of surgery following neoadjuvant radiotherapy – balancing morbidity and efficacy
Torbjorn Holm, Stockholm, SE

Tuesday, 1 December 2020

BREAKFAST SYMPOSIUM

Karl Storz

Lessons learned along the robotic learning curve: a video guide for colorectal surgeons
Jim Khan, Portsmouth, UK

SATELLITE SYMPOSIUM

Intuitive

A journey in global surgery – why getting out of the comfort zone
Raffaele Rosso, Lugano, CH

Enhanced recovery pathways reloaded: a practical guide to success
Roberto Persiani, Roma, IT

Cancer at the extremes of age: are there any differences in handling youngsters and seniors
Des Winter, Dublin, IE

Management pearls for early rectal cancer
Roel Hompes, Amsterdam, NL

Ventral rectopexy: indications, tricks of the trade, and long-term results
Chris Cunningham, Oxford, UK

SATELLITE SYMPOSIUM

Bräun

Total neoadjuvant therapy for colon and rectum cancers
Ronan O’Connell, Dublin, IE

The publication of this advertisement does not constitute endorsement by the society, publisher, or Editors, and is unrelated to the content that follows

Wednesday, 2 December

Place and outcome of total colectomy in the surgical armentarium
Neil Mortensen, Oxford, UK

Kono S anastomosis and over the valve stricturoplasties: hope for better outcomes
André D’Hoore, Leuven, BE

New drugs, old fears: state of the art management of IBD patients
Gerhard Rogler, Zurich, CH

SATELLITE SYMPOSIUM

Takeda

Do resection of the mesentery in Crohn’s & appendectomy in ulcerative colitis after the course of disease
Christanne Buskens, Amsterdam, NL

The septic abdomen: getting out of misery and closing the case
Marja Boermeester, Amsterdam, NL

Management strategies for patients with advanced colorectal cancers
Paris Tekkis, London, UK

Anastomotic leak in colorectal surgery: insights, perspectives, and practical strategies
Antonino Spinelli, Milano, IT

Closing words
Michel Adamina, Winterthur, CH

Information & Registration

www.colorectalsurgery.eu
Laparoscopic peritoneal lavage for perforated colonic diverticulitis: a systematic review

B. R. Toorenvliet*, H. Swank†, J. W. Schoones‡, J. F. Hamming* and W. A. Bemelman†

*Department of Surgery, Leiden University Medical Center, Leiden, †Department of Surgery, Academic Medical Center, Amsterdam and ‡Walaeus Library, Leiden University Medical Center, Leiden, The Netherlands

Abstract

Aim This systematic review aimed to evaluate the efficacy, morbidity and mortality of laparoscopic peritoneal lavage for patients with perforated diverticulitis.

Method We searched PubMed, EMBASE, Web of Science, the Cochrane Library and CINAHL databases, Google Scholar and five major publisher websites without language restriction. All articles which reported the use of laparoscopic peritoneal lavage for patients with perforated diverticulitis were included.

Results Two prospective cohort studies, nine retrospective case series and two case reports reporting 231 patients were selected for data extraction. Most (77%) patients had purulent peritonitis (Hinchey III). Laparoscopic peritoneal lavage successfully controlled abdominal and systemic sepsis in 95.7% of patients. Mortality was 1.7%, morbidity 10.4% and only four (1.7%) of the 231 patients received a colostomy.

Conclusion There have been no publications of high methodological quality on laparoscopic peritoneal lavage for patients with perforated colonic diverticulitis. The published papers do, however, show promising results, with high efficacy, low mortality, low morbidity and a minimal need for a colostomy.

Keywords Diverticulitis, colonic, laparoscopy, peritonitis, peritoneal lavage

Introduction

Peritonitis caused by perforated diverticulitis is a particularly serious condition and is classified according to Hinchey [1] into purulent (Hinchey III) or faecal (Hinchey IV). It is commonly treated by sigmoid resection with or without a colostomy. These operations are characterized by a high mortality [2,3] and morbidity [4]. In many patients, the stoma is never reversed.

Several recent articles have reported laparoscopic peritoneal lavage, drainage and antibiotic treatment as an alternative to acute colonic resection [5–7]. The authors concluded that laparoscopic peritoneal lavage was safe and effective treatment, with a low mortality, low morbidity and without the need for a stoma.

This systematic review evaluates the efficacy, mortality and morbidity of laparoscopic peritoneal lavage for patients presenting with perforated colonic diverticulitis.

Method

The following databases were searched: PubMed, EMBASE (OVID version), Web of Science, the Cochrane library, CINAHL databases, Google Scholar and the ScienceDirect (Elsevier), LWW-journals@OVID (Lippincott Williams & Wilkins), HighWire (Society journals), SpringerLink and Wiley/Blackwell publisher website search engines. All searches were performed without language restriction. Two combinations of key words were constructed. These were applied to all databases taking into account the terminological differences between them. The first one consisted of a combination of diverticulitis AND laparoscopy AND lavage. The second consisted of the combination of diverticulitis AND peritonitis AND laparoscopy. Two reviewers (BT and HS) independently screened titles and abstracts for their relevance. All articles that reported the use of laparoscopic peritoneal lavage for patients with perforated diverticulitis were included except for commentaries and correspondence. The bibliographies of all included articles were then searched for relevant references. References citing all included articles were finally retrieved. Data extraction...
and quality assessment were independently conducted by two reviewers (BT and HS). Disagreements were reconciled by discussion.

Results

The search produced 411 publications, of which 28 were considered relevant to the topic (Fig. 1). Three articles [8–10] and three abstracts [11–13] were excluded because of the double publication of results as were nine publications including comments and correspondence [14–22]. Thirteen remaining articles were selected for further data analysis.

Quality assessment

There were no randomized controlled trials. There were two prospective cohort studies [5,7], nine retrospective case series [6,23–30] and two case reports [31,32]. In the selected papers, different variables on patient characteristics and ‘materials and methods’ were reported. All publications gave figures on conversion, failure of lavage, mortality, morbidity and the number of colostomies and secondary resections performed. Confirmation of diverticular colonic disease was usually acquired by colonoscopy or a double contrast barium- or water-soluble contrast enema. Only five studies reported on the length of patient follow up [5,6,23–25] (Table 1). A meta-analysis could not be performed, but a summary of the data is presented below, with pooled estimates and averages where possible.

Patient characteristics

The thirteen included publications reported 231 patients with acute colonic diverticulitis who were treated by laparoscopic peritoneal lavage. The majority (77%) had purulent peritonitis (Hinchey III). The male:female ratio was 1.7:1. Four articles stated the ASA grades in a total

Table 1 Quality assessment of the included articles.

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>N</th>
<th>Study design</th>
<th>Study type</th>
<th>Confirmation of diverticular disease</th>
<th>Length of follow up in months</th>
</tr>
</thead>
<tbody>
<tr>
<td>O'Sullivan, 1996</td>
<td>Ireland</td>
<td>8</td>
<td>Case series</td>
<td>Retrospective</td>
<td>C/BE</td>
<td>12–48</td>
</tr>
<tr>
<td>Aouad, 1997</td>
<td>France</td>
<td>1</td>
<td>Case report</td>
<td>Retrospective</td>
<td>GE</td>
<td>NR</td>
</tr>
<tr>
<td>Faranda, 2000</td>
<td>France</td>
<td>18</td>
<td>Case series</td>
<td>Retrospective</td>
<td>BE</td>
<td>(4)</td>
</tr>
<tr>
<td>Da Rold, 2004</td>
<td>Italy</td>
<td>7</td>
<td>Case series</td>
<td>Retrospective</td>
<td>NR</td>
<td>6–70 (38)</td>
</tr>
<tr>
<td>Taylor, 2006</td>
<td>Australia</td>
<td>14</td>
<td>Case series</td>
<td>Retrospective</td>
<td>C</td>
<td>NR</td>
</tr>
<tr>
<td>Mutter, 2006</td>
<td>France</td>
<td>10</td>
<td>Case series</td>
<td>Retrospective</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Galleano, 2007</td>
<td>Italy</td>
<td>4</td>
<td>Case series</td>
<td>Retrospective</td>
<td>GE</td>
<td>NR</td>
</tr>
<tr>
<td>Lippi, 2007</td>
<td>Italy</td>
<td>5</td>
<td>Case series</td>
<td>Retrospective</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Myers, 2008</td>
<td>Ireland</td>
<td>92</td>
<td>Cohort study</td>
<td>Prospective</td>
<td>C/BE</td>
<td>12–84 (36)</td>
</tr>
<tr>
<td>Franklin, 2008</td>
<td>USA</td>
<td>40</td>
<td>Case series</td>
<td>Retrospective</td>
<td>NR</td>
<td>1–168 (96)</td>
</tr>
<tr>
<td>Jaffer, 2008</td>
<td>UK</td>
<td>1</td>
<td>Case report</td>
<td>Retrospective</td>
<td>BE</td>
<td>NR</td>
</tr>
<tr>
<td>Bretagnol, 2008</td>
<td>France</td>
<td>24</td>
<td>Cohort study</td>
<td>Prospective</td>
<td>C</td>
<td>NR</td>
</tr>
<tr>
<td>Favuzza, 2009</td>
<td>USA</td>
<td>7</td>
<td>Case series</td>
<td>Retrospective</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Values in parentheses are mean follow-up periods.
NR, not reported; C, colonoscopy; BE, barium enema; GE, gastrografin enema.
of 86 patients [6,7,24,28] Of these, 24 were classified as ASA grade 1, 42 as grade 2, 15 as grade 3 and 5 as grade 4. Forty-six of 189 (24%) patients were reported to have had a previous history of colonic diverticular disease in six studies [5–7,24,26,32], and eight reported that 173/187 (93%) patients had generalized peritonitis [5,6,23–26,30,31]. Abdominal computed tomography prior to surgery was mandatory in four studies [6,25,27,30], was never used in one [24], and not reported in eight. Eleven articles reported the presence of free abdominal air, which was present in 156/225 (69%) patients (Table 2).

Treatment

Between two and five trocars were used for the laparoscopic procedure and the volume of irrigant used varied from 3 to 25 l. Warmed saline solution was generally used, but in one institute, the additional diluted iodine and heparin were administered [6]. In some institutions, adhesions were left intact [5,7,27] while others divided adhesions and searched for the perforation which was either glued or sutured [6,24,25]. Nearly all patients were given one or two drains (closed suction or nonsuction) at the end of the procedure. The mean operating time was 70 min (range 40–150 min) for 69 patients from four studies [6,24,25,28]. All patients received antibiotics which were usually given intravenously pre- and postoperatively and changed to oral medication after 4–7 days. Eleven articles reported the mean hospital stay which was 8.5 days (range: 4–35 days) [5,7,23–28,30–32].

Outcome

Table 3 provides an overview of the pooled data on conversion, failure of lavage, mortality, morbidity, the number of colostomies and secondary resections. Eighty-seven (38%) of the 231 patients underwent delayed elective resection of the diseased portion of the colon usually laparoscopically. Recurrent diverticulitis was reported in 5/128 patients who did not undergo secondary resection. Follow-up periods were given as a mean in four studies with a weighted mean total of 48 months for 153 patients [5,6,24,25].

Discussion

Patients with acute colonic diverticulitis present with differing severity of disease. The Hinchey classification is often used to categorize these patients and some subsequent modifications have been published since it was described [1,33,34]. The recommended treatment for patients with purulent or faecal peritonitis (Hinchey III and IV) is an urgent sigmoid resection [35]. In this situation, a Hartmann’s procedure is favoured by most surgeons although colonic resection with a primary anastomosis with or without a defunctioning colostomy is also feasible [36,37]. Regardless of the selected strategy, emergency operations for patients with acute perforated diverticulitis are associated with substantial morbidity (up to 44%) [4] and mortality. In a recent prospective analysis of 200 patients who underwent emergency resection for acute diverticulitis, the mortality was 27% [2], whilst another recent publication on the

<table>
<thead>
<tr>
<th>Author, year</th>
<th>N</th>
<th>Hinchey classification</th>
<th>Age</th>
<th>Generalized peritonitis</th>
<th>Free air</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Sullivan, 1996</td>
<td>8</td>
<td>0 0 8 0</td>
<td>57</td>
<td>7 1</td>
<td></td>
</tr>
<tr>
<td>Aouad, 1997</td>
<td>1</td>
<td>0 0 1 0</td>
<td>37</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>Faranda, 2000</td>
<td>18</td>
<td>0 0 16 2</td>
<td>54</td>
<td>11 12</td>
<td></td>
</tr>
<tr>
<td>Da Rold, 2004</td>
<td>7</td>
<td>1 1 5 0</td>
<td>65</td>
<td>7 7</td>
<td></td>
</tr>
<tr>
<td>Taylor, 2006</td>
<td>14</td>
<td>0 2 10 2</td>
<td>57</td>
<td>9 10</td>
<td></td>
</tr>
<tr>
<td>Mutter, 2006</td>
<td>10</td>
<td>0 10 0</td>
<td>60</td>
<td>3 10</td>
<td></td>
</tr>
<tr>
<td>Galleano, 2007</td>
<td>4</td>
<td>2 2 2 0</td>
<td>68</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>Lippi, 2007</td>
<td>5</td>
<td>2 3 0</td>
<td>80</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Myers, 2008</td>
<td>92</td>
<td>25 67 0</td>
<td>63</td>
<td>92 92</td>
<td></td>
</tr>
<tr>
<td>Franklin, 2008</td>
<td>40</td>
<td>5 32 3</td>
<td>60</td>
<td>14 40</td>
<td></td>
</tr>
<tr>
<td>Jaffer, 2008</td>
<td>1</td>
<td>1 0 0</td>
<td>50</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Bretagnol, 2008</td>
<td>24</td>
<td>5 1 1 0</td>
<td>56</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Favuzza, 2009</td>
<td>7</td>
<td>1 0 6 0</td>
<td>49</td>
<td>6 0</td>
<td></td>
</tr>
<tr>
<td>Total/Mean/Range</td>
<td>231</td>
<td>1 44 178 8 60</td>
<td>173 156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR, not reported; Local, local peritonitis in all patients; Local/Gen, local or generalized peritonitis in all patients.
incidence of perforated diverticulitis in the UK reported a mortality of 24% [3]. Furthermore, reversal of Hartmann’s procedure is not performed in 25–70% of the patients [38–42], thus compromising the quality of life and leading to increasing costs. This may be attributable to the fact that reversal is associated with a high morbidity and even mortality [43].

This systematic review identified 231 patients with acute colonic diverticulitis who were treated by laparoscopic peritoneal lavage, drainage and antibiotics. Abdominal and systemic sepsis was successfully controlled using this minimal invasive strategy in 95.7% of the patients, with minimum mortality (1.7%), morbidity (10.4%) and incidence stoma formation (1.7%). A delayed elective laparoscopic resection was feasible in most patients, but, significantly, those who did not undergo subsequent resection had a long recurrence free follow-up period.

Laparoscopic peritoneal lavage seems to provide adequate control of the acute inflammatory episode in most patients, but it failed to do so in 10 (4.3%) of the 231 patients [26,30]. Two of these required a Hartmann’s resection for faecal peritonitis and two underwent open resection and primary anastomosis for purulent peritonitis. Four of five patients with pelvic abscess formation inadequately treated by laparoscopic peritoneal lavage underwent radiological drainage and one had a Hartmann’s resection [5,7,30]. One other patient had an early recurrence necessitating surgery 3 weeks later [27]. The overall mortality (1.7%) was low. Two patients died of multiorgan failure, one because of pulmonary embolism and one because of cardiogenic shock.

At present, in most institutions, a delayed elective laparoscopic resection is advised after resolution of an attack of acute diverticulitis. The current practice of elective resection after two episodes of acute diverticulitis has, however, recently been challenged [44] and was not applied in the institute that reported most of the patients treated by laparoscopic peritoneal lavage reported in this review. In this study, no patient underwent a subsequent elective resection and excellent results were obtained during long-term follow up [5].

The studies published on this topic have mostly been retrospective, nonconsecutive and of low methodological quality. Inclusion and publication bias may partially have been responsible for the favourable results. The pooling of data from heterogeneous studies, as has been done in this review, can also lead to bias.

The thirteen selected articles indicate that laparoscopic peritoneal lavage, for patients with peritonitis caused by perforated diverticulitis, is an effective and safe treatment that may be preferable to colonic resection. There appears to be a general consensus, however, that laparoscopic peritoneal lavage should not be used for patients with Hinchey grade IV diverticulitis [5,7,23,24,26,27]. Other patients who may not benefit from laparoscopic peritoneal lavage include those with pelvic abscess formation. This is consistent with the observation that half of the patients who had a failure of lavage had a pelvic abscess.

There have been different reactions to this new approach. Some remain skeptical [21], whilst others indicate a preparedness to change practice [18] or to reconsider current management of complicated

<table>
<thead>
<tr>
<th>Author, year</th>
<th>N</th>
<th>Conversion to laparotomy</th>
<th>Lavage failure</th>
<th>Mortality</th>
<th>Morbidity</th>
<th>Stoma</th>
<th>Secondary resection</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Sullivan, 1996</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aoud, 1997</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Faranda, 2000</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Da Rold, 2004</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Taylor, 2006</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0*</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Mutter, 2006</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Galleano, 2007</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Lippi, 2007</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Myers, 2008</td>
<td>92</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Franklin, 2008</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Jaffer, 2008</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bretagnol, 2008</td>
<td>24</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Favuzza, 2009</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>231</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>24</td>
<td>4</td>
<td>87</td>
</tr>
<tr>
<td>Percentage</td>
<td>0.4</td>
<td>4.3</td>
<td>1.7</td>
<td>10.4</td>
<td>1.7</td>
<td>37.7</td>
<td></td>
</tr>
</tbody>
</table>

*no major morbidity.
Laparoscopic lavage for diverticulitis

B. R. Toorenvliet et al.

References

Laparoscopic lavage for diverticulitis

