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Abstract
Community detection is a well-established method for studying the meso-scale 
structure of social networks. Applying a community detection algorithm results in 
a division of a network into communities that is often used to inspect and reason 
about community membership of specific nodes. This micro-level interpretation step 
of community structure is a crucial step in typical social science research. However, 
the methodological caveat in this step is that virtually all modern community detec-
tion methods are non-deterministic and based on randomization and approximated 
results. This needs to be explicitly taken into consideration when reasoning about 
community membership of individual nodes. To do so, we propose a metric of com-
munity membership consistency, that provides node-level insights in how reliable 
the placement of that node into a community really is. In addition, it enables us to 
distinguish the community core members of a community. The usefulness of the 
proposed metrics is demonstrated on corporate board interlock networks, in which 
weighted links represent shared senior level directors between firms. Results suggest 
that the community structure of global business groups is centered around persistent 
communities consisting of core countries tied by geographical and cultural proxim-
ity. In addition, we identify fringe countries that appear to associate with a number 
of different global business communities.
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Introduction

Community detection has established itself as method for detecting groups in 
social systems, unveiling the meso-level structure of networked environments. The 
obtained division of a network in communities is often used in the social sciences to 
understand how individual nodes in the network belong to particular communities 
and how strong or durable such an affiliation is.

Unfortunately, a general problem with community detection methods is the inher-
ent uncertainty as a result of randomization and approximation. This hinders inter-
pretation of community membership on the node level. Therefore, we propose a 
solution to this methodological challenge and demonstrate how this leads to mean-
ingful insights. To illustrate our approach, we consider networks of interlocking 
directorates, where weighted ties represent shared directors between firms. These 
so-called board interlock networks have been extensively studied in corporate gov-
ernance and social network analysis literature [1–7]. The community structure of 
these board interlock networks has been shown to provide valuable insights related 
to global business elites and transnationalization [8, 9].

Multiple community detection methods and algorithms have been developed over 
the past decades, each returning a different division of the network into communities 
[10–13]. Several methods are based on the notion of optimizing a quality score, such 
as modularity [14]. This score indicates for a given network divided into communi-
ties, also called a clustering, how well this was done; often in some way favoring 
many links within a community, and few links between communities. This is in line 
with theoretical as well as intuitive understandings of the concept of community. As 
this process of optimization is analytically intractable, popular algorithms available 
in standard network analysis tooling, such as Louvain [10] and the Leiden algorithm 
[11], use heuristics to find a high-quality clustering. Typically, these heuristic algo-
rithms, upon multiple runs, return different divisions of the network into communi-
ties. These solutions may all be optimal or near-optimal solutions with a high quality 
score. However, the solutions may differ substantially in terms of which node is in 
which community. This is in some contexts referred to as the degeneracy of multiple 
solutions [15]. While this is a direct result of the randomness and heuristics involved 
in the underlying algorithms, it hinders scholars from meaningfully interpreting 
community detection results, especially when this interpretation takes place at the 
level of individual nodes.

A method that has been proposed to solve this problem, is consensus cluster-
ing [16]. In this method, multiple runs of a community detection algorithm help 
determine the most consistent clustering of the network into communities. This 
approach mitigates the uncertainty of one community detection solution, obtain-
ing in the clustering for which there is the most ‘consensus’ across many runs of 
the algorithm. An accelerated version of the algorithm was introduced in Ref. 
[17]. While interesting for providing a stable meso-level view of the network, 
there may still be substantial differences in terms of which nodes are consistently 
placed in the same community across multiple runs of the algorithm. Regardless, 
the final outcome of the consensus clustering algorithm is an assignment of all 
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nodes to a particular community, in essence treating each node as being an equal 
member of its community. This makes it challenging to reason about individual 
nodes and their community membership, as we do not know whether this particu-
lar node was consistently in the same community. However, it is exactly this type 
of community membership information that is often needed to obtain actionable 
insights in real-world networked systems [18–20], including the board interlock 
networks considered in this paper, as we will discuss later.

The problem of proper interpretation of the community detection outcomes 
becomes even more pronounced when scholars move to a comparative approach 
and compare different community detection solutions. After all, the differences, 
such a comparison uncovers, may very well be because particular nodes did not 
“fit” very well in one particular community. Examples of such comparative stud-
ies include replications, but also longitudinal studies in which we ultimately want 
to understand whether a node that moves from one to another community is actu-
ally doing so as a result of substantive change in the underlying system.

The discrepancy between the technical solution to the problem of community 
consensus at the meso-level and reliable community membership inference at the 
micro-level, is the topic of this study. The latter is crucial for proper interpreta-
tion of the community detection results. To close this gap, we propose a metric 
for nodes called community membership consistency. This metric assesses the 
extent to which a node’s community assignment is consistent across different runs 
of the community detection algorithm. Ultimately, in addition to the actual node’s 
community membership based on consensus clustering, it allows one to quan-
tify how consistent this node’s community membership actually is. Moreover, the 
consistency score can be used to distinguish between community core and fringe 
members.

Several related consistency metrics have been proposed in previous works, but 
often with a goal different than interpreting an individual node’s community mem-
bership. For example, these are metrics with the aim of defining new centrality 
measures based on the consensus between different runs of a community detec-
tion algorithm [21, 22], or with the goal of proposing a method to find more stable 
communities [23]. The concept of community cores or ‘building blocks’ has been 
explored in previous work as well. In Ref. [23], the consensus matrix is used to 
define cores that are (almost) always placed in the same community. The authors 
of [24] take an information-theoretic approach, optimizing for building blocks that 
maximizes the mutual information of community assignment, conditioned on the 
building blocks. A similar study looked at invariant groups of nodes in communities 
and investigated their properties [25]. In Ref. [26], the outcomes of a number of runs 
of community detection are used for semi-supervised learning, expanding a seed 
set of nodes based on a similarity measure computed from the consensus matrix. 
A recent study [27] proposes a method for computing the consensus and dissensus 
between the degenerate partitions, by aligning the different clusterings and describ-
ing the posterior distribution based on a stochastic block model.

Compared to the works discussed above, our approach differs in the sense that it 
focuses on enabling the interpretation of results in an actual computational social 
science context. This means that we aim for interpretable metrics that provide an 
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understanding of community membership at the level of an individual node, as well as 
community core formation of multiple nodes.

In this paper, we use board interlock networks as an illustrative example for the pro-
posed metric. Board interlocks, where two firms share at least one board member, are 
widely studied to understand the network structure in corporate governance and cor-
porate elites. These corporate networks allow scholars to investigate how corporations 
and the individuals involved exert power over others, gain access to information and 
in general interact within the global economy. Exploring corporate network structures 
using network analysis techniques has greatly improved our understanding of the global 
corporate system [2, 3, 6, 8]. Network studies have aided in unraveling the spread of 
corporate practices [4], the formation of a corporate elite [3, 5], and the formation of 
business groups and elite transnationalization [8]. We extend on this line of research 
by studying the consistency of the community structure of the board interlock network 
at the node level. We will investigate and compare the community detection results at 
three levels of granularity: at the level of firms, at the aggregated level of cities, and at 
the aggregated level of countries, similar to how this is done in previous work [6, 8, 9]. 
We focus on the last level of aggregation when zooming in on individual nodes in the 
network, describing their community membership in relation to their consistency score. 
For this particular network, we look in detail at community cores and fringes, allowing 
us to assess which countries form consistent clusters of power, and which countries are 
at the fringe of these power centers.

The rest of the paper is structured as follows. In Sect. 2, we explain our methodol-
ogy and the concepts needed to define the proposed metrics of community membership 
consistency and community cores. In Sect. 3, we present our results of applying these 
measures to board interlock network data, both on a high level for all three networks, 
and in a more detailed manner for the country level network. Section 4 discusses the 
implications of the results for the research field as well as directions for future work, 
whereas finally Sect. 5 concludes the paper and summarizes the main findings.

Methods

In this section, we describe our methodology, of which the input is a network, and the 
output is a division into communities together with interpretable node consistency 
scores, that can subsequently be used for identifying community cores. The approach 
builds on consensus clustering (Sect. 2.1), after which a number of edge- and node-spe-
cific measures are derived in Sect. 2.2 to compute the proposed measure of community 
membership consistency in Sect. 2.3. Finally, the approach to derive community cores 
is explained in Sect. 2.4.

Consensus clustering

As discussed in Sect.  1, a key problem in modern community detection methods 
is the instability of results across multiple runs of a particular community detec-
tion algorithm. To overcome this problem and obtain a stable partitioning, we apply 
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consensus clustering [16] to the input network. In this method, a community detec-
tion algorithm is applied n times to a network represented as a weighted adjacency 
matrix A, but with different initial random states. This means that we obtain multiple 
clusterings of the network from which a so-called ‘consensus matrix’ can be con-
structed. For each combination of nodes i and j, the value of the consensus matrix 
cij denotes the fraction of clusterings in which i and j are placed in the same com-
munity. As a next step, all values in the consensus matrix below a threshold � are 
set to zero. Then the filtered consensus matrix is regarded as a weight matrix of a 
new network, which is used as input to a next iteration of community detection and 
thresholding. This process is repeated until convergence of the clustering, that is, the 
clustering does not change in subsequent iterations. It was found empirically that in 
most cases, only one to three iterations are needed to obtain convergence.

Because the method above works independent of the community detection algo-
rithm that is used, it can easily be extended to more complex network data. While 
we work with undirected weighted networks in the remainder of this paper, includ-
ing for example directionality or a multilayer structure is possible as long as the 
employed community detection algorithm properly handles these aspects, for exam-
ple using the methodology proposed in Ref. [28].

In this work, we exemplify our approach using the Leiden algorithm [11] for 
community detection. The Leiden algorithm optimizes the modularity score, similar 
to the well-known Louvain algorithm [10]. Modularity is defined as:

Here, Aij is the adjacency matrix, mc is the number of edges in community c, Ci 
is the community assignment of node i and ki is the degree of node i. The param-
eter � controls the resolution at which communities are detected, which we leave 
untouched at a value of 1. Whereas the Louvain algorithm heuristically optimizes 
the modularity score by merging clusters and moving nodes, the Leiden algorithm 
also includes improvements for overcoming the problem of badly connected clusters 
that may result from the original Louvain algorithm.

As an example, Fig. 1 shows the result of running the Leiden algorithm for 100 
iterations. It finds five different clusterings in these 100 runs (Fig. 1a–e), with modu-
larity values Q that are very close (or equal) to each other. The value of p indi-
cates the percentage of runs resulting in that particular clustering. For this exam-
ple, the consensus clustering happens to coincide with the most common clustering 
(Fig.  1d). Although this is not the case in general, in Ref. [16] as well as in our 
experiments in Sect. 3, it is empirically shown that with a proper choice of a thresh-
old value, the quality of the consensus clustering is similar to the individual runs of 
community detection, but has a more stable character. Therefore, in the remainder 
of this work, we choose the threshold value � that corresponds to the division of the 
network into communities with the largest modularity value.

Note that the algorithmic runtime and memory usage of the consensus clustering 
is also the determining factor in our methodology. This can, in theory, get close to 
quadratic in the number of nodes, because the full consensus matrix is calculated. 

Q =
1

2m

∑

ij

(
Aij − �

kikj

2m

)
�(Ci,Cj).
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In subsequent steps, we will only need the elements from the consensus matrix that 
correspond to edges in the network. Therefore, the fast consensus clustering method 
from [17] can be used, which uses a reduced consensus matrix, making the com-
plexity of consensus clustering and thus our method linear in the number of edges.

Edge consistency

Consensus clustering results in a stable partitioning, but no insight in how reliable 
this partitioning really is. We therefore take a closer look at the consensus matrix, 
as calculated in the first iteration of the consensus clustering algorithm. For each 
combination of nodes i and j, the consensus value cij is a value between 0 and 1 that 
denotes how often those two nodes were clustered together. This allows us to define 
the node pair consistency sij for each node pair i, j as follows:

This consistency value can be considered a dispersion metric of the consensus val-
ues, equivalent to the mean absolute difference. The value is multiplied by 2 to scale 
the consistency value to a more easily interpretable range between 0 and 1. If sij is 
equal to maximum value 1, then this means that the combination of nodes always 
lies either within one community or in two separate communities, i.e., those two 
nodes are very consistently placed with respect to each other. A value of 0 denotes 
maximum disagreement between the clusterings: half of the clusterings groups the 
nodes together and the other half assigns the two nodes to different communities. 
Note that the consistency score above is defined for all possible node pairs, includ-
ing those that are not connected by an edge in the network. If nodes pairs are con-
nected with an edge, we will henceforward refer to the corresponding consistency 
score as the edge consistency.

sij = 2|cij − 0.5|

Fig. 1   Five divisions into communities (a)–(e) of a toy network (from [22]), listing p, the percentage of 
iterations resulting in this clustering over 100 runs and corresponding modularity quality score Q. The 
consensus clustering in f 
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Community membership consistency

Next, we must move from the measure of edge consistency discussed above to a 
node-specific consistency score. Note that this step from an edge-centered metric 
to a node-centered metric is not trivial. We propose to consider the distribution of 
edge consistency scores for the edges attached to this node, to assess whether this 
node is consistently put in the same community as its neighbors. Between differ-
ent clusterings, a node might move to a different community together with some 
of its neighbors. This means that the consistency of edges to those neighbors will 
be high, whereas it will be low for the edges to neighbors that do not move. Recall 
that our objective is to develop a metric for community membership consistency for 
each node in our network. We do not want to assign a high consistency value to a 
node that moves together with its neighbors, even though it has some high consist-
ency edges. This disqualifies the use of the mean of edge consistency scores over 
all edges attached to a node, as suitable node-specific score. As we will see later in 
experiments, the distribution of edge consistency values is very skewed, so that the 
mean value is usually high, while there are clearly some outliers with a very low 
value.

To illustrate, see node 7 in the example network of Fig.  1. Node 7 is almost 
always clustered together with node 6, so if we would take the mean of edge consist-
encies from node 7, it would be pulled up by this highly consistent edge. Intuitively, 
however, we would not assign node 7 a high consistency because, between the dif-
ferent clusterings, it moves communities together with node 6.

As we are interested in the effect of the low edge consistencies on the node’s con-
sistency, we introduce a threshold method. For a node i and a chosen threshold � we 
define the community membership consistency s�

i
 of a node as:

Here, �ij denotes the existence of an edge between node i and j, i.e., whether Aij > 0 . 
The community membership consistency s�

i
 essentially denotes the fraction of the 

edges connected to the node with an edge-consistency larger than � . Thus, the 
threshold parameter � denotes how often nodes should be clustered consistently so 
that we find it trustworthy enough to derive conclusions from it. This may depend on 
the number of partitions we find in the first place, and the modularity landscape they 
form. To choose a meaningful value for the threshold, we consider possible values 
that follow from the distribution of edge consistencies. Ideally, we choose a thresh-
old that is high enough to distinguish inconsistent nodes, but not too high as this 
may lead to many inconsistent nodes due to small disturbances in the community 
assignments. In general, a higher threshold leads to lower values of node consist-
ency. As an example, see Fig. 2 where community membership consistency is plot-
ted for all possible threshold values in this toy example (see Fig. 1). The different 
threshold values in this small example correspond to the unique values of edge con-
sistency in the network. Compared to the mean consistency over the node’s edges, 

s�
i
=

∑
j �ij�sij≥�∑

j �ij
.



	 Journal of Computational Social Science

1 3

community membership consistency has a less skewed distribution. We observe the 
same difference in larger networks, as we will see in Sect. 3.

Community cores

Similar to how this is done in Ref. [23], we can use the community membership 
consistency scores to reason about groups of nodes that are consistent members of 
a community. This allows us to define community cores, that is, set of nodes that 
are consistently placed together in the same community. If a node is almost always 
placed in the same community as all of its neighbors, it will have a consistency 
value of exactly 1. We call these nodes the hard community core. Note that the hard 
community core could be disconnected, as groups of nodes can be moved to a differ-
ent community together.

It is also useful to distinguish in a less strict way, community core nodes that have 
a high community membership consistency. For this, we choose a threshold � close 
to 1. Similarly, fringe members are nodes that have a very low community member-
ship consistency, for which we choose another, typically much lower, threshold � . 
The values of these thresholds can be chosen empirically, possibly considering the 
robustness of the community cores around these threshold values.

Experiments

We start by describing the board interlock network data used to evaluate the method 
in Sect. 3.1, after which the experimental setup is discussed in Sect. 3.2. We inspect 
the results of the consensus clustering in Sect. 3.3, before evaluating the node con-
sistency scores in Sect. 3.4. An interpretation of the results is given in Sect. 3.5.

Fig. 2   Community membership consistency, depicted by node color intensity, for all possible thresholds 
in an example network. Edge consistency, depicted by edge thickness
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Data

We apply the method on board interlock data derived from a 2015 snapshot of 
the ORBIS database [29]. This database contains global firm-level information, 
including positions of directors at these firms as well as the firm’s location city, 
country and operating revenue. We use the latter as an indicator of company size, 
and consider only firms above a certain threshold revenue, as a previous study has 
shown that the quality of this data is high for large firms [30]. From this database, 
we created the following three network datasets by projecting the raw data on 
positions of directors at firms to a firm-by-firm board interlock network: 

1.	 Firm network: all board interlocks between firms with an operating revenue of at 
least $50M.

2.	 City network: all board interlocks between firms with an operating revenue of at 
least $5M, aggregated at the city level, similar to the network used in Ref. [9];

3.	 Country network: all board interlocks between firms with an operating revenue 
of at least $5M, aggregated at the country level, similar to the network used in 
Ref. [8];

From each network, we only considered the largest connected component (which 
in all cases captured over 95% of all edges), and we do not consider self-loops 
(which correspond to the number of shared directors within one country or city). 
Basic descriptive statistics of these datasets are shown in Table 1. All networks 
are undirected, weighted networks. Next to the number of nodes and edges, we 
show the mean degree, indicating to how many other nodes a node is connected 
on average. Lastly, the mean weighted degree denotes the mean value of the 
weighted degree, i.e. the sum of weights of all edges adjacent to a node.

Experimental setup

For the threshold in the calculation of community membership consistency, as 
described in Sect. 2.3, we choose edge consistency threshold � = 0.9 based on the 
edge consistency distribution. For the community cores and fringes, as described 
in Sect.  2.4, we choose core and fringe threshold parameters of, respectively 
� = 0.9 , and � = 0.5.

Table 1   Descriptive statistics 
of the networks used. Density 
denotes the average number of 
edges per node

Network Nodes Edges Mean degree Mean 
weighted 
degree

Countries 170 2554 30.0 3312.4
Cities 24,747 859,665 69.5 1238.3
Firms 73,167 271,169 7.4 11.3
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Our method has been implemented in Python and is available as a python pack-
age nwtools.1 Scripts and notebooks to generate the plots in this paper can be found 
online.2

Modularity landscape and consensus clustering

We describe the results from the consensus clustering, as described in Sect. 2.1, and 
investigate the degeneracy of the modularity landscapes for our networks, to show 
the necessity of a node community consistency score.

Figure 3 shows the modularity value of the initial clusterings, obtained with the 
Leiden algorithm, for the different networks, together with the modularity values for 
consensus clustering with different thresholds. For all three networks, we proceed 
with threshold � = 0.5 as this gives the highest modularity values. The resulting 
modularity value is plotted, together with the modularity values of the initial cluster-
ings, in Fig. 4. For all three networks, the range of modularity values of the different 
clusterings is very small, confirming the degeneracy in the modularity landscape. As 
can be expected, the consensus clustering does not always have the highest possible 
modularity value, but is similar to the modularity values of the original clusterings.

More details on the solutions of the modularity optimization are given in 
Table 2, where we calculate the normalized mutual information (NMI) between the 

Fig. 3   The (sorted) modularity values of the individual clusterings (blue line) and of the consensus clus-
tering for different thresholds (red dots)

Fig. 4   The (sorted) modularity values of the individual clusterings (blue line) and of the consensus clus-
tering for � = 0.5 (red line)

1  https://​doi.​org/​10.​5281/​zenodo.​32476​81.
2  https://​www.​github.​com/​resea​rch-​Dafne/​consi​stency-​paper.

https://doi.org/10.5281/zenodo.3247681
https://www.github.com/research-Dafne/consistency-paper
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consensus clustering and the individual clusterings, and among the individual clus-
terings. NMI is a similarity measure and in this context thus tells us how diverse 
the set of clusterings is in terms of similarity between clusterings. Although there 
are many different clusterings, the mean NMI between clusterings is high for all 
three networks. The mean NMI between the consensus clustering and the individual 
clusterings is even higher. This suggests that the effects of the degeneracy for the 
overall clustering of these networks are not so pronounced, because the clusterings 
are all quite similar. This means we can safely take the consensus clustering as refer-
ence clustering when looking at community membership consistency in Sect. 3.4. 
However, the degeneracy can still affect individual nodes, as we will see later in the 
results. The large variety of high-quality clusters shows the need to obtain insights 
in the effects on the individual nodes.

Community membership consistency

Here, we investigate the node-level consistency scores, as proposed in Sect. 2.3 and 
compare the values to other node-specific measures. Figure  5 plots the weighted 
degree of each node against its community membership consistency, and denote 
the Spearman rank correlation between these values. These results suggest that the 
community membership consistency may be less informative for low-degree nodes, 
because there are fewer possible values of community membership consistency. In 
the most extreme case, nodes that have only one neighbor will have a community 
membership consistency of either 0 or 1. An interesting observation is that com-
munity membership consistency is negatively correlated with weighted degree. Note 
that based on the colors in the plot, there is indeed a high density of nodes in the 
upper left part bins, having a low-weighted degree and high-consistency score.

In fact, the unweighted node degree also shows a negative Spearman corre-
lation with community membership consistency (e.g. for the country network, 
� = − 0.38, p = 0 ). Note that, as can be seen in the plot, there are many low-degree 
nodes that have very high consistency. Thus, if a node has low community member-
ship consistency, it is more likely to have a higher degree. High-degree nodes are 
often viewed as interesting because of their central position in the network, but these 

Table 2   Results of modularity 
optimization for the three 
networks

We report the number of unique partitions, the mean modularity 
score of those partition, the modularity of the consensus cluster-
ing, the mean normalized mutual information (NMI) of all pairs of 
clusterings, and the mean NMI between the consensus clustering and 
individual clusterings

Network Countries Cities Firms

Unique partitions 64 100 100
Mean modularity 0.276 0.707 0.907
Consensus modularity 0.276 0.707 0.908
Mean NMI 0.866 0.972 0.856
Mean consensus NMI 0.931 0.980 0.882
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results suggest we need to be careful in drawing conclusions about their positions in 
communities.

Results

We now turn to a descriptive analysis of the community detection outcomes, using 
the node consistency scores for meaningful interpretation. A geographic representa-
tion of the country network is presented in Fig. 6. Here, the community membership 
consistency scores are visualized by means of the transparency of the corresponding 
node color. The color itself is based on the community assignment according to the 
consensus clustering. This allows us to easily identify the community of a node as 
well as the extent to which it is a consistent community member. Descriptive statis-
tics on the composition of each community’s hard community core, community core 
and fringe are shown in Table 3. It also lists for each community the three heaviest 
nodes (nodes with the highest sum of weighted edges connected to it).

Community I, which is the second largest community, gravitates around Asia, 
with as its community core members China, Japan, South Korea, Singapore and 
Malaysia. Interestingly, this community also contains as core members well known 
offshore financial centres, such as the Cayman Islands, and British Virgin Islands, 
corroborating previous work [6]. The community core has 24 members. This 
includes a sizeable number of relatively small Asian economies, such as Bhutan, 
Mongolia, and Laos. There are five countries that score under 0.5 on consistency, 
including Mauritius, Papua New Guinea, Nepal and Sri Lanka. While both Nepal 
and Bhutan are members of this community, Nepal is a fringe member and Bhutan a 
community core member. The node consistency score helps us to see this important 
difference between these economies’ membership of the Asian community. These 
findings corroborate previous work that finds a coherent Asian community in the 
board interlock network [8], but adds to this work by showing which smaller econo-
mies are fringe or core members.

Fig. 5   Two-dimensional histogram of community membership consistency scores s(0.9)
i

 and weighted 
degree in the country, city and firm networks, listing the Spearman correlation ( � ) between the two. 
Color denotes the number of nodes in the bin (cell)
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Community VI is of interest as it shows full consistency. The eight members of 
this Nordic-Baltic community are always positioned together. Earlier work already 
found that this cluster of countries is strongly interconnected [8]. However, with the 
overview of consistency scores, we can now conclude that all of the eight economies 
have a similar fit. The same goes for community VII, with as its only members three 
Pacific island states: Tonga, Vanuatu and Samoa. These three small economies are 
oriented upon themselves.

Community V brings together the major economies on the South American con-
tinent, but in a relatively inconsistent manner. Under half of its members are part 
of the community core, and the large economic players, such as Argentina (0.56), 
Mexico (0.66) and Brazil (0.65), are all outside the community core. This suggests 
low levels of economic integration through corporate board interlocks, corroborat-
ing previous findings on this matter (see for example [31]). A more detailed analysis 
would aim to reveal if the orientation of these core Latin economies are markedly 
different, for instance such that Mexico is more oriented to North America and Bra-
zil to Europe.

If we move on to community IV, we see 23 members, and a community core of 
16 (hard community core of 13). It contains the key economies in the middle and 
near east, such as Saudi Arabia, Egypt, but also Iran and Lebanon. A few African 
economies are included in this community as well, but given their low consistency 
score, we cannot consider Burkina Faso, Mali, or Niger meaningful members. Benin 
and Madagascar score zero consistency, which means that they are not integrated in 
this community at all. It is of interest to see economies that are strongly opposed in 
the geopolitical and military realm, such as Iran and Saudi Arabia, in one commu-
nity together with Iraq and Syria. This suggests that the political and military divi-
sions have not washed away the economic integration, although it should be noted 
that these connections may run through countries not involved in these conflicts. 
Interestingly, Sudan is placed with the Middle East cluster, whereas its geographical 
counterpart and military rival South Sudan is placed in the Asian community. Also, 

Fig. 6   Consensus communities for the countries. The transparency of the color denotes the community 
membership consistency s(0.9)

i



	 Journal of Computational Social Science

1 3

Ta
bl

e 
3  

D
es

cr
ip

tiv
es

 o
f t

he
 c

om
m

un
iti

es
 in

 th
e 

co
un

try
 n

et
w

or
k

C
om

m
un

ity
I

II
II

I
IV

V
V

I
V

II

N
um

be
r o

f c
ou

nt
rie

s
42

51
28

23
15

8
3

M
ea

n 
co

ns
ist

en
cy

0.
81

0.
95

0.
88

0.
80

0.
72

1.
00

1
H

ar
d 

co
m

m
un

ity
 c

or
e 

m
em

be
rs

14
18

12
13

4
8

3
H

ar
d 

co
m

m
un

ity
 c

or
e 

(r
el

at
iv

e)
33

%
35

%
43

%
57

%
27

%
10

0%
10

0%
C

om
m

un
ity

 c
or

e
24

45
17

16
7

8
3

C
om

m
un

ity
 c

or
e 

(r
el

at
iv

e)
57

%
88

%
61

%
70

%
47

%
10

0%
10

0%
Fr

in
ge

 m
em

be
rs

5
1

1
5

2
0

0
H

ea
vi

es
t n

od
es

C
N

 S
G

 M
Y

FR
 IT

 E
S

G
B

 U
S 

IE
A

E 
SA

 E
G

B
R

 C
O

 C
L

SE
 N

O
 F

I
W

S 
TO

 V
U



1 3

Journal of Computational Social Science	

it is notable that the largest economy in the region, Israel, is part of another commu-
nity, namely community IV.

Community III centres around North America (USA and Canada) and also con-
tains Ireland, the United Kingdom, and South Africa. It reflects to some extent the 
old British Empire (see also [6]). However, the consistency scores hint at a rather 
interesting dynamic as the main economies UK (0.86) and the USA (0.84) in this 
community are not in the hard community core. Also, it is remarkable that Australia 
and New Zealand are not in this community but rather placed as non-core members 
in community zero. Previous work found that the Anglophone cluster was a strong 
backbone of the transnational network of board interlocks. Our more detailed analy-
sis shows that to the extent that this community is still discernible, it may be moving 
towards disintegration.

This leaves community II, where the European economies are located. With 51 
members, it is the largest community we find. Given the high level of European eco-
nomic integration and the relatively small geographic size of many of the European 
countries, this may come as no surprise. Like other communities, we see that the 
hard community core members are typically smaller economies, such as Moldova, 
Albania, and Kosovo. We also see that some small non-European economies, such 
as Cameroon, Congo, and Algeria, are firmly positioned in this community, sig-
nalling a European rather than an Asian or North American orientation. There are 
hardly fringe members in this community, and only Azerbaijan (with a consistency 
of 0.17) should not be considered as a member of this community from a substantive 
point of view. Of some interest is that the Netherlands is positioned in this Euro-
pean community, and not in the transatlantic Anglophone community as previous 
research found [8].

This descriptive analysis of the community detection results illustrates the use-
fulness and importance of considering node-level consistency scores for a proper 
interpretation of the outcomes. An important observation is that economies with 
the highest consistency scores are typically smaller economies, while the larger and 
more dominant community members are typically in the community core with at 
least 0.9 consistency score. This coincides with the negative correlation we found 
between weighted node degree (number of connections of a country) and consist-
ency. We saw that almost all communities had some members with rather low con-
sistency scores. This information allows us to refrain from any meaningful interpre-
tation of these countries’ particular results. The empirical outcome that Azerbaijan 
is positioned in the European community (consistency of 0.17) or Guatemala in 
the Latin community (consistency of 0.11) has no substantive meaning. This is an 
example of how considering the node consistency scores makes one prone to serious 
errors in the interpretation of the community detection results.

Discussion

The goal of this study was to offer a way to draw reliable conclusions from commu-
nity detection. For this purpose, we introduced community membership consistency, 
based on the consensus matrix from different runs of a modularity maximization 
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algorithm. We showed the value of this method for board interlock networks, where 
indeed there are central nodes for which we cannot rely on their placement in the 
community by the consensus clustering method.

It is important to note that modularity optimization is only one of many commu-
nity detection methods available, and it has known limits, other than the degeneracy 
problem [32, 33]. However, many other popular community detection algorithms, 
such as Infomap [12] and OSLOM [13], are also non-deterministic or depend on 
node ordering, and may also result in different solutions upon multiple runs, essen-
tially suffering from the same limitations. Our proposed method is thus equally 
applicable to those algorithms.

As noted in Sect. 1, the proposed measure is similar to community (in)consist-
ency as defined by [21, 22], which uses the sum of squares of the distances to the 
consensus matrix for each node. The definition used in that work differs from our 
definition in a few aspects. First, it computes the node-level score from the consist-
ency values of all node pairs, in contrast to our approach where we only look at the 
direct neighborhood of a node. Second, it aggregates the node pair scores using the 
mean, somewhat mitigating the skewedness of the distribution of node pair consist-
ency by defining it using a square function instead of absolute value. Community 
inconsistency is then shown to be informative as a centrality metric. It thus serves a 
different goal than our community membership consistency, which is used to define 
community cores and fringe members and get a better understanding of node-spe-
cific community membership.

The community membership consistency score heavily depends on the modular-
ity landscape formed by the initial clusterings, which is shaped by the topology of 
the network. Explorations of the shape of the modularity landscape have been done 
in previous research. For example, in Ref. [34], the solution landscape is investi-
gated by clustering the resulting solutions. Other work [35] shows that low-degree 
nodes are most influential on the number of suboptimal partitions. This contradicts 
with our finding that community membership consistency is negatively correlated 
with (weighted) degree.

Future work can investigate the relationship between community membership 
consistency and node properties such as degree. It can further explore the gener-
alizibility of our method to different types of networks. Note that the community 
membership consistency is highly dependent on the node degree, so it is possible 
that the method has limitations in very sparse networks. It may be interesting to 
study effects of the network structure on the interpretability of the results, as well as 
the choice of threshold �.

The extent to which the degeneracy leads to diversity in the clusterings, depends 
of course on the optimization algorithm, as was also shown by [15]. To calculate 
and use consistency in a sensible way, one could argue that a large diversity of clus-
terings is positive, as long as they are all close to the optimum. However, this is not 
what optimization algorithms are designed for and it is unclear to which extent dif-
ferent algorithms explore the modularity space. We have observed that the Leiden 
algorithm, which we use in this paper, results in a more diverse set of outcomes than 
its predecessor, the Louvain algorithm. In Ref. [24], a generative model is used so 
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that it is possible to sample from the posterior distribution over clusterings. It would 
be interesting to combine this approach with our proposed consistency metric.

Additionally, it should be noted that in the example of corporate networks, and in 
general for our approach, the multilayer aspect of networks could be considered, tak-
ing into account the different types of links, in our case, e.g., both board interlocks 
and ownership links between firms [36]. However, when applying the proposed 
community membership consistency method to community detection methods for 
more complex network models, such as multilayer networks, the interpretation also 
becomes more challenging. It would make it for example difficult to do a systematic 
interpretation from a domain perspective as we did in Sect. 3. This warrants further 
investigation in future work. Even more generally, it could be investigated how our 
approach could be used in other complex networks models, such as temporal net-
works and higher-order networks [37].

Another direction of future research is the interpretability of nodes with low con-
sistency and the relationship between consistency and community dynamics. When 
a node has low consistency, applied researchers may be interested into why the node 
is not a stable member of the community. Of course this can be done from a domain 
perspective, attempting to see if there is substantive change going on in the system. 
Interestingly, unstable nodes could also be a sign that communities are simply not 
well separable. While this may suggest different things, one explanation may be that 
we are in fact dealing with overlapping communities. This could in particular be 
the case for high degree nodes. In future work, it might be interesting to see to what 
extent unstable nodes are in fact members of overlapping communities as found 
by an overlapping community detection method [38]. Yet another explanation for 
unstable nodes that may be valuable to investigate further, is whether inconsisten-
cies in the obtained clustering are a sign of instability in the network itself, and are 
thus related to changes in the network structure over time. Investigating this further 
would obviously require dynamic network data.

Conclusion

Community detection algorithms are widely used to understand the meso-scale 
structure of networks. This work contributed to quantitatively drawing micro-level 
conclusions about the community membership of individual nodes. To achieve 
this, we proposed community member consistency, which is a node-specific met-
ric to indicate reliability alongside a division into communities using consensus 
clustering.

We applied this metric on the global board interlock network, and showed that 
we can distinguish between community core members and fringe members. We 
showed that the non-core members are sometimes high-degree nodes, and that the 
consistency metric prevents us from viewing these nodes as central in the commu-
nity. We found a negative correlation between community membership consistency 
and node degree, suggesting that it is more likely for a high-degree node to jump 
communities.
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The proposed measure may prove useful in other social science contexts where 
community detection results are used to gain insight about the role of individual 
nodes within a community. Future work may investigate the generalizability of the 
method for different types of networks, and the relationship of consistency scores 
with higher-order structural properties of the network. Finally, the metric could be 
used to reliably infer movements of nodes between communities in a dynamically 
evolving network.
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