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Chapter 1

There is an increasing number of chemicals that enters the society, including drugs, 
environmental chemicals and cosmetics, combined also referred as the chemical 
exposome. Likewise there is an increased hazard for chemically-induced health 
effects. Chemicals can interfere with biological systems and induce compound 
specific responses, either related to the pharmacological on- or off-target effects. 
ln particular compounds with (in)direct electrophilic reactivity are of direct harm 
to cells. Such compounds will interfere with normal cellular physiological processes 
and activate adaptive cellular stress responses that try to repair the cellular injury. 
Understanding the fundamental relationship between activation of these cellular 
stress responses and ultimate onset of cytotoxicity can be used for constructing 
mechanism-based biomarkers.

CLASSIFICATION AND USE OF BIOMARKERS

To establish whether exposure to a certain chemical or drug did or did not occur, 
or what the unwanted consequences are from exposure to a chemical or drug, 
appropriate biomarkers are needed. The broad definition of a biomarker, as stated 
by the World Health Organization (WHO), is: a biomarker is almost any measurement 
reflecting an interaction between a biological system and an environmental agent, 
which may be chemical, physical or biological (WHO, 1993). A more specific definition 
of a biomarker given by the WHO is: a biomarker is any substance, structure or 
process that can be measured in the body or its products and influence or predict 
the incidence or outcome of disease (WHO, 2001). The role of a biomarker can be 
interpreted as a “fingerprint” left behind in the body after exposure (with the analogy 
of the body as a “crime scene”). Many different classification systems of biomarkers 
are described in literature based on the information they provide or their intended 
use. Although classification of biomarkers in certain categories might be useful, one 
has to keep in mind that biomarkers might fit in different categories, depending on 
the knowledge we have regarding their link to the chemical exposure or disease 
mechanisms, as well as their intended use in a particular situation.

Manno et al. (2010), describes a classification system where biomarkers are divided 
in three different groups depending on their toxicological significance: biomarkers 
of susceptibility, biomarkers of exposure and biomarkers of effect (Manno et al. 
2010). Another method of classification is described by Baker et al. (2005), who 
classifies biomarkers concerning their applications, for example: disease biomarkers 
and toxicity biomarkers (Baker 2005). Furthermore, with advancement in technology 
and knowledge of biological pathways and disease mechanisms, came the use of 
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1biomarker panels, constructed of multiple biomarkers e.g. multiple genes or proteins 
representing a specific stress pathway, like for example inflammation. Based on this, 
Robinson et al. (2013), introduced the concept of “actionable” biomarkers, biomarkers 
that can be used to guide clinical management of disease and could even be used 
to diagnose diseases in their early, asymptomatic state (Robinson et al. 2013) (Figure 
1). Two types of “actionable” biomarkers described by Robinson et al. (2013), are 
mechanistic biomarkers, which play a role in the mechanism of the disease, and 
descriptive biomarkers, which are not directly involved in the mechanism of disease, 
but are rather products of the disease or the damage induced by the disease. Antoine 
et al. (2013), describe a mechanistic biomarker for early and sensitive detection 
of acetaminophen-induced acute liver injury. They described a plasma derived 
biomarker panel consisting of miR-122, a microRNA highly specific for the liver, high 
mobility group box 1 (HMGB1) a marker of necrosis, and caspase-cleaved keratin-18 
(K18) a marker of necrosis and apoptosis (Antoine et al. 2013). This biomarker panel 
proved to be more sensitive than the measurement of alanine transaminase (ALT) a 
well-established biomarker for assessing the health status of the liver. This indicates 
that mechanistic biomarkers existing of several proteins and microRNAs related to 
certain stress response pathways, can provide information concerning the molecular 
mechanisms of action of a chemical upon exposure. In the field of pharmacology, there 
is great need for mechanistic biomarkers, as these markers might have the ability to 
predict the response of a drug and thereby provide information which can be used 
to develop personal-based medicine approaches (Amadoz et al. 2015). However, it 
might be clear that for the construction of these (mechanistic) biomarker panels a 
greater understanding is needed regarding the different players (proteins, genes, 
microRNAs) of the different stress response pathways, as well as their interactions 
and changes over time (dynamics of the stress response pathway). Therefore, guided 
by the advancement in omics techniques, much research is targeted on unraveling 
the mechanisms of stress response pathways such as the DNA-damage response, 
unfolded protein response, and oxidative stress response. Moreover, microRNAs are 
promising small non-coding RNAs that could serve as biomarkers for small injury 
and can also modulate cellular biology including toxic responses. Since oxidative 
stress and microRNAs are central in this thesis, below these topics will be specifically 
addressed in some detail.
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Chapter 1

Figure 1. Use of actionable biomarkers over time. 

THE OXIDATIVE STRESS RESPONSE PATHWAY

In a cell there is a continuous production of reactive oxygen (ROS) and nitrogen 
species (RNS) (Finkel and Holbrook 2000). ROS and RNS are generated as a result of 
internal metabolism, for example aerobic respiration in mitochondria, and exposure 
to exogenous toxicants (Filomeni et al. 2015; Ma 2013; Turrens 2003). A controlled 
production of ROS and RNS has been described in literature to contribute to the 
regulation of various physiological processes in the cell like proliferation, autophagy 
and inflammation (Finkel 2011). However, uncontrolled production of ROS and RNS, 
called oxidative stress, can result in inflammatory responses and eventually lead to 
pathological conditions like cancer and neurodegenerative disorders (Prasad et al. 
2017).

To overcome oxidative stress, a cell has several mechanisms to protect itself against 
oxidative stress. One of the most important mechanisms against oxidative stress 
is the Nrf2 pathway (Figure 2), named after its transcription factor, nuclear factor 
erythroid 2-related factor 2 (Nrf2). Not surprisingly, the Nrf2 pathway plays a role 
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1in many diseases including cancer and neurodegenerative diseases like Alzheimer’s 
disease (Bryan et al. 2013; Deshmukh et al. 2017). It is reported that in many different 
tumor cells Nrf2 is overexpressed, consequently making these cells less vulnerable 
for chemotherapy (Kensler and Wakabayashi 2010; Ren et al. 2011; Tang et al. 2011; 
Wang et al. 2008).

Figure 2. The Nrf2 pathway: the “cyclic sequential attachment and regeneration” 
model. 

Canonical activation of the Nrf2 pathway
In basal conditions, Nrf2 is bound in the cytoplasm to two Kelch-like ECH-associated 
protein 1 proteins (Keap1) (Keum and Choi 2014; Zipper and Mulcahy 2002). Nrf2 
consist of seven functional domains (Neh1 – Neh7). Of these domains Neh2 contains 
seven lysine residues, which plays a role in the ubiquitination of Nrf2 (Itoh et al. 
1999; Zhang et al. 2004), which facilitates the destruction of Nrf2 via the ubiquitin-
26S proteasomal pathway (Kobayashi et al. 2004). Furthermore, the Neh2 domain 
contains two binding sites which interact with Keap1. These are the ETGE and DLG 
motives (McMahon et al. 2006).

Keap1 is an adaptor for Cullin-3 (Cul3)-based E3 ubiquitin ligase, which facilitates 
poly-ubiquitin conjugation to Nrf2, and therefore degradation by the proteasome 
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(Kobayashi et al. 2004). Keap1 consists of three functional domains. A broad complex/
tramtrack/bric-a-brac (BTB) domain, which binds to Cul3 and is required for the 
dimerization of Keap1 (Zipper and Mulcahy 2002). An intervening region (IVR), and 
a kelch/double glycine repeat (DGR) domain, which interacts with the Neh2 domain 
of Nrf2 (Canning et al. 2015). Furthermore, human Keap1 contains 27 cysteine 
residues (Zhang and Hannink 2003). These cysteine residues can interact with ROS 
and electrophilic compounds, leading to Nrf2 pathway activation. Interestingly, 
chemicals show different affinity for the different cysteine groups (Takaya et al. 2012).

In literature, different models can be found describing how, upon activation, Nrf2 
enters the nucleus to bind to the antioxidant response element (ARE) and starts 
the transcription of different antioxidants. Early models described total dissociation 
of Nrf2 from Keap1, but latest understanding suggest models like the ‘two-site 
recognition hinge-and-latch’ and abended the idea of total dissociation of Nrf2 from 
Keap1. The two-site recognition hinge-and-latch model, is named after the Nrf2 
motives ETGE (hinge) and DLG (latch) (Tong et al. 2006b). Keap1 has a higher affinity 
for the hinge than for the latch (Tong et al. 2006a). Subsequently, Keap1 binds first to 
the ETGE domain and after the connection is established to the DLG domain.

Covalent binding of ROS or reactive metabolites to one of the cysteine groups of 
Keap1 is thought to induce a conformational change in the IVR domain of Keap1, 
decreasing the binding from Keap1 with Cul3 and dissociation of the DLG domain 
(Cleasby et al. 2014). The ETGE domain, which has a tighter interaction than the DLG 
domain, does not dissociate from Keap1 (Suzuki and Yamamoto 2015; Tong et al. 
2007). Moreover, because of the dissociation of the DLG domain, Nrf2 is not targeted 
for degradation. As a consequence, de novo synthesized Nrf2 is able to translocate 
to the nucleus. In the nucleus Nrf2 will bind to the ARE, together with members 
of the masculoaponeurotic fibrosarcoma (Maf ) proteins (MafF, MafG and MafK), 
which facilitates binding to the ARE. Binding to the ARE results in the transcription 
of different cytoprotective genes involved in e.g. glutathione metabolism, 
phase 2 drug-metabolizing enzymes and antioxidant response proteins as, for 
example, sulfiredoxin1 (Srxn1), hemeoxygenase 1 (Hmox1), and NAD(P)H-quinone 
oxidoreductase 1 (Nqo1) (Hayes et al. 2010; Zhang and Gordon 2004).

In parallel with the above described inhibition of ubiquitination of Nrf2, binding 
of an electrophilic compound can trigger the ubiquitination of Keap1 by the Cul3-
Rbx1 complex decreasing the levels of Keap1, resulting in the movement of de 
novo synthesized Nrf2 into the nucleus (Hong et al. 2005). Unlike degradation of 
ubiquitinated Nrf2, Keap1 degradation is independent of the proteasome pathway 
(Zhang et al. 2005).
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1Different mechanisms of Nrf2 pathway termination are described in literature. Sun et 
al. (2007), suggest a mechanism whereby Nrf2 is transported back to the cytoplasm 
by Keap1, which has a nuclear export sequence (Sun et al. 2007). Furthermore, 
transcription regulator protein Bach1 can bind to the ARE and is therefore able to 
compete with Nrf2 (Tkachev et al. 2011). Kaspar and Jaiswal (2010), describes that 
Nrf2 regulates its own degradation through increasing Cul3-Rbx1 expression upon 
binding to the ARE and thereby inducing promoter activity of Cul3-Rbx1 genes 
(Kaspar and Jaiswal 2010).

Interactions with other adaptive pathways: non-canonical Nrf2 
pathway activation
Numerous studies describe the interaction of the Nrf2 pathway with other adaptive 
stress response pathways like, for example, the DNA-damage response, the unfolded 
protein response and the NF-κB-signaling pathway.

Interaction with the DNA damage response
Faraonio et al. (2006), showed that p53, a key player in the DNA damage response, 
negatively regulates Nrf2-mediated gene transcription (Faraonio et al. 2006). 
However, the KRR motif in p21, a downstream target of p53, is able to bind to 
the DLG and ETGE motifs within Nrf2, blocking the binding of Nrf2 with Keap1. 
Consequently, ubiquitination cannot take place, which in turn leads to activation of 
the Nrf2 pathway (Chen et al. 2009).

Interaction with the unfolded protein response
Oxidative stress can result in endoplasmic reticulum stress (ERS) (Digaleh et al. 2013). 
ERS might in turn lead to activation of the unfolded protein response (UPR). The 
UPR roughly exists of three major branches, which consists of three transmembrane 
sensors: transcription factor 6 (ATF6), inositol-requiring enzyme-1α (IRE1) and 
protein kinase-like ER kinase (PERK) (Hetz 2012). PERK-dependent phosphorylation 
promotes the dissociation of Nrf2 from keap1, and therefore activation of the Nrf2 
pathway (Cullinan et al. 2003; Zhu et al. 2015).

κB-signaling pathway
Wardyn et al. (2015), described the crosstalk between NF-κB and Nrf2, with increased 
activity of NF-κB in the absence of Nrf2 (Wardyn et al. 2015). Furthermore, ROS can 
oxidize cysteine residues in the DNA binding domain of NF-κB (Hirota et al. 1999). 
Moreover, IκB kinase β (IKKβ) is a substrate analogue of Keap1 (Kim et al. 2010). 
Jiang et al. (2013), found that, like Nrf2, IKKβ has a ETGE motif (Jiang et al. 2013). 
This makes it possible for IKKβ to bind to Keap1, and therefore to compete with 
Nrf2. Consequently, Keap1 is responsible for IKKβ ubiquitination and therefore 
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degradation, and therefore downregulation of NF-κB (Lee et al. 2009). Furthermore, 
AP-1 factors as c-Fos and Jun-D are also known to bind to the ARE. Binding of these 
factors blocks the binding side of the ARE for Nrf2 resulting in a decrease of its 
downstream targets (Li and Jaiswal 1992; Venugopal and Jaiswal 1996; Wilkinson 
et al. 1998). Recently it became clear that besides genes and proteins another class 
of signaling molecules play an important role in the regulation of stress response 
pathways: microRNAs.

MICRORNAS

MicroRNAs (miRNAs or miRs) are small (~22-nt) non-coding RNAs (Starega-Roslan et 
al. 2010). MicroRNAs regulate gene expression at the post-transcriptional level and 
are involved in many biological processes. MicroRNA target sites are typically located 
on the 3’untranslated region of their target mRNAs. These target sites only needs to 
be partially complementary to the microRNA (Lam et al. 2015), which leads to target 
mRNA translational repression or degradation (Djuranovic et al. 2012; Filipowicz et 
al. 2008). A single microRNA can have about 100 target sites (Brennecke et al. 2005), 
and mRNAs can be targeted by more than one single microRNA (Peter 2010; Wu et 
al. 2010).

MicroRNAs are involved in many physiological processes including the immune 
response, metabolism, and development (Hou et al. 2011). Furthermore, microRNAs 
are involved in toxicological responses (Mendell and Olson 2012) including 
activation/inhibition of stress response pathways (Bartoszewska et al. 2013). 
Therefore microRNAs also play a role in diseases like, for example, (various types 
of ) cancer (Meng et al. 2016) and other pathologies like acute myocardial infarction 
(Devaux et al. 2012). Moreover, some microRNAs exists which are highly “tissue 
specific”, meaning they are abundantly present in a certain tissue type, as for 
example miR-122 is tissue specific for the liver. Measurement of these microRNAs 
might provide information regarding the organs which are damaged upon chemical 
exposure, because of their high concentration in the bloodstream after tissue 
damage occurred (Laterza et al. 2009). Altogether, these features make microRNAs 
interesting candidates for biomarkers for exposure and disease.

Understanding the fundamental relationship between activation of cellular stress 
responses and ultimate onset of cytotoxicity is of critical importance. As described 
above, knowledge of stress pathway behavior on protein, gene, and microRNA level 
can be applied in the construction of a mechanistic biomarker fingerprint.
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General introduction and aim of the thesis

1THESIS OUTLINE

The focus of the described research in this thesis is on the oxidative stress response 
(Nrf2 pathway). The aim of the research presented in this thesis is to obtain more 
information concerning microRNAs which are involved in the Nrf2 pathway to 
determine and evaluate the application of microRNAs for the construction of novel 
mechanistic biomarkers. Furthermore, we aimed to obtain a better understanding 
with respect to the dynamics of the Nrf2 pathway to repeated xenobiotic exposure. 
In Chapter 2, microRNAs are introduced and their utility as biomarkers of chemical 
exposure and disease (effect) is reviewed in respect to the current knowledge of 
this upcoming field. As shown in Chapter 2, exposure to chemicals can lead to 
overexpression of certain microRNAs. In Chapter 3, to investigate the effect of 
overexpression of microRNAs on the Nrf2 pathway response in general and in 
combination with chemical exposure, a microRNA mimic screen was performed. In 
this screen overexpression of microRNAs was induced by using synthetic microRNA 
mimics. Since repeated exposure may drive adaptation programs and may lead 
to different responses between single and repeated exposures, in Chapter 4 the 
effect of a second exposure on the dynamics of the Nrf2 pathway activation was 
conducted. In Chapter 5 results of a study are shown where a panel of structurally 
different phenolic compounds were used to demonstrate the proof-of-concept that 
Nrf2 pathway reporters can successfully be applied as biomarkers to characterize 
the specific pro-oxidant responses of chemicals. Finally, in Chapter 6 the findings 
of the studies described in this thesis are discussed and an overview is provided 
concerning future perspectives and implications of the included studies. 
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