A review of dynamic models and stability analysis for a hydro-turbine governing system

Beibei Xu a,b,**,1, Jingjing Zhang a,b,1, Mónica Egusquiza c, Diyi Chen a,b,*, Feng Li a,b, Paul Behrens d,c, Eduard Egusquiza c

a Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Shaanxi, Yangling, 712100, PR China
b Institute of Water Resources and Hydropower Research, Northwest A&F University, Shaanxi, Yangling, 712100, PR China
c Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), Av. Diagonal, 647, ETSEIB, 08028, Barcelona, Spain
d Institute of Water Resources and Hydropower Research, Northwest A&F University, Shaanxi, Yangling, 712100, PR China

ABSTRACT

Hydropower offers highly flexible, low-carbon generation that can be used to balance electricity grids with high levels of wind and solar penetration. This will become increasingly important as the energy transition unfolds. However, hydropower generation faces several problems when used in a flexible, fast manner (on the order of seconds) when in part-load, overload, or transient conditions. Some of these issues may be addressed by an improved understanding of how the load is measured and controlled in a hydro-turbine governing system (HTGS). This paper reviews different subsystem models and stability analysis approaches for HTGS along with their applicability in different operational conditions and design layouts. The review revealed three main challenges facing the increasing flexible use of HTGS on the grid: 1) the combination of the HTGS and shaft model, 2) the control methods of HTGS with intermittent renewable energies, and 3) the uncertain nature of load on the overall performance and stability of the hydropower system. This review can stimulate further research on HTGS models and control methods to improve grid management.

1. Introduction

The wind-solar-hydro mix is already a complementary, low-carbon electricity-generating mix in several regions and offers considerable unexploited potential in many others [1]. As of 2018, total renewable electricity accounted for 25.6% of total global electricity, whereas wind-solar-hydro accounted for 88% of total renewable electricity (hydropower made up 15.9% of total global electricity generation, and wind-solar-hydro accounted for 88% of total renewable electricity). Hydropower offers highly flexible, low-carbon generation that can be used to balance electricity grids with high levels of wind and solar penetration. This will become increasingly important as the energy transition unfolds. However, hydropower generation faces several problems when used in a flexible, fast manner (on the order of seconds) when in part-load, overload, or transient conditions. Some of these issues may be addressed by an improved understanding of how the load is measured and controlled in a hydro-turbine governing system (HTGS). This paper reviews different subsystem models and stability analysis approaches for HTGS along with their applicability in different operational conditions and design layouts. The review revealed three main challenges facing the increasing flexible use of HTGS on the grid: 1) the combination of the HTGS and shaft model, 2) the control methods of HTGS with intermittent renewable energies, and 3) the uncertain nature of load on the overall performance and stability of the hydropower system. This review can stimulate further research on HTGS models and control methods to improve grid management.
research focuses on three main aspects:

(1) **Modeling**: Modeling methods have been developed from modular modeling to unified modeling. The theories and methods for modular modeling are reasonably mature because of the rapid development of dynamic stability for each component. Unified modeling, where interactions between modules are characterized, has seen significant progress in recent years [9].

(2) **Stability analysis**: Stability analysis of HTGS is mainly carried out from the perspective of low-frequency oscillation [10] and the stability margin region [11]. The adopted theories from nonlinear dynamics, such as the Lyapunov theory [12] and bifurcation theory [13], are commonly used to achieve this analysis.

(3) **Control Methods**: Control methods are being improved from traditional control methods to artificial intelligence control methods to achieve a better power supply quality when HTGS is subjected to external disturbance. Traditional control methods, such as Proportional-Integral-Differential (PID) [14], have been widely used in HTGS. However, a lack of adaptability in dealing with the time delay of the guide vane and multiple conditions of HTGS promote the development of artificial intelligence control methods, such as fuzzy control (FC) [15] and fault-tolerant control (FTC) [16].

1.2. Research gap

The research gaps in modeling, stability analysis, and control methods are summarized as follows:

(1) **Modeling**: Most scholars pay attention to the single modular model or simplified unified model, both of which are unable to evaluate the potential flexibility of HTGS effectively in mitigating power variations from intermittent renewable energies. Specifically, the modular or simplified model, as summarized in Table 1, cannot obtain the same qualitative conclusion as a more complex model, resulting in unacceptable accidents. It is often difficult to reproduce accident characteristics because models generally lack sufficient accuracy in representing this complex system, such as the 2003 “8.14” accident in the United States and Canada [17], and the 2006 “9.23” accident in Italy [18].

1.3. Novel contributions

It is necessary and urgent to evaluate the potential flexibility of Hydroelectric Generating Units (HGUs) with the rapid promotion of energy structure reformation. The dynamic model and stability analysis of HTGS are effective tools to assess the potential flexibility of HGUs to balance electricity grids with high levels of wind and solar penetration. Motivated by this reason, this review was conducted to provide an insight into possible solutions and development directions. The novel contributions of this review included: 1) the main achievements in the aspects of modeling, stability analysis, and control methods were summarized, and 2) three challenges and possible development directions for HTGS in mitigating power variations from intermittent renewable energies in the future were identified.

The rest of this paper is organized as follows. An overview of system configuration and stability analysis methods are discussed in Section 2. Section 3 provides an overview of the dynamic models used for different system components, where the characteristics and applicability of these models are also compared in detail. Stability analysis in published papers is presented in Section 4. Section 5 introduces several control methods and discusses the advantages and disadvantages of these methods. Section 6 overviews new challenges and possible development directions. Conclusions close this paper in Section 7.

2. System configuration and stability analysis methods

2.1. System configuration

The HTGS is composed of controlled and control systems. The regulating object contains the hydraulic system, the HGU, and the power grid. The control system includes the measuring, actuating, amplifying, and feedback elements. The operational elements of a typical HTGS are shown in Fig. 2. The governor adjusts the distributor of the hydro-turbine according to the speed deviation of the HGU to balance the power between the HGU and power grid [38]. In general, the subsystem configuration of an HTGS depends on the location of the water source and the geography of the hydropower station. An example of a hydropower plant with an upstream surge tank is given in Fig. 3 [39].

2.2. Stability analysis methods

The stability of HTGS refers to the ability that it remains in an equilibrium state under normal conditions and regains an acceptable equilibrium state after being disturbed. Methods of stability analysis are divided into theoretical analysis [40], numerical simulation [38], and field experiment [41]. For the theoretical analysis, studies are performed using theories such as the Lyapunov theory and bifurcation theory. In terms of numerical simulation, various simulation models cope with the dynamic characteristics. Regarding the field experiment, it is conducted based on the prototype model of HTGS, while field experiments on this issue are relatively rare because the HGU is large-scale, important equipment of the hydropower plant. It is difficult to guarantee its safety, so some commissioning projects are destructive during the field experiment process [42]. Table 4 shows the research status of the stability analysis in published papers. From the above considerations, the commonly used stability analysis methods mainly concentrate on theoretical analysis and numerical simulation, as summarized in

![Fig. 1. The structure of a HTGS in a typical power system [6].](image-url)
Table 1
Critical review summary of the modular model or simplified unified model in published literature.

(2) Stability analysis: The step power disturbance is generally used in theoretical analysis and numerical simulation to assess the stability of HTGS. However, the combination of the continuous power variation of intermittent renewable energies and the dead zone of HTGS make a greater difference in stability analysis than the step power disturbance, leading to difficulties in the potential flexibility evaluation of HTGS. This gap is summarized in Table 2.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Penstock (Elastic or Rigid)</th>
<th>Hydro-turbine (Linear or Nonlinear)</th>
<th>Generator (Model order)</th>
<th>Surge tank</th>
<th>Tail water</th>
<th>Shaft vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[19]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[20]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[21]</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[22]</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[23]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[24]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[25]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[26]</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[27]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[28]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[29]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[30]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[31]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[32]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 2
Critical review summary of the stability analysis in published literature.

(3) Control methods: Control methods are developed based on traditional simplified models, but these models do not consider the effect of shaft vibration on the HTGS. Therefore, these methods are incapable of tracking all of the operational conditions, resulting in risks in power supply reliability. An illustration of this gap is summarized in Table 3.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Step power disturbance</th>
<th>Coupling with intermittent renewable energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[7]</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[33]</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[1]</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[3]</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>[5]</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 5. The processing flow charts of these methods are presented in Fig. 4.

Theoretical analysis and numerical simulation have the advantages of clear principles and concise physical meanings. However, some specific assumptions or simplifications (e.g., ignoring nonlinear factors and high-order components) need to be made using theoretical analysis and a numerical simulation, which may hide some dangerous phenomena that pose a threat to the stable and safe operation of the HTGS.

With the rapid implementation of energy-structure reformation, the requirements of the flexibility of HTGS change from the optimal operational region to the overall operational region. Therefore, it is an urgent and burning issue to combine a field experiment and numerical simulation/theoretical analysis to maintain the safety and stability of HTGS.

3. Dynamic models of HTGS components

3.1. Models of the diversion system

3.1.1. Models of the surge tank

Hydropower plants with long conduits may be subject to water hammer, which may threaten the system’s stability. The classic solution is to introduce an upstream and/or downstream surge tank to minimize water hammer effects [19]. The surge tank, as a critical component of diversion-type hydropower plants [66], has an important function in reducing the amplitude of pressure fluctuations by reflecting the incoming pressure waves and both storing and providing water [20, 21].

3.1.1. Layout of the surge tank. The surge tank is arranged in various forms, such as the upstream and/or downstream side of the powerhouse. Fig. 5 displays four typical layouts of the surge tank.

3.1.1.2. Models of the surge tank. The mathematical equation of a surge tank is [47]:

$$\frac{dQ_t}{dt} = \frac{g A_t}{L} (H - z + fQ_t |Q_t|)$$

where Q_t is the flow; A_t is the constant proportionality factor; L is the length of the conduit; f is the Darcy-Weisbach friction factor; and g is the

![Fig. 2. Operational elements of an HTGS [39]. Q and H are the turbine flow and water head, respectively. U, I, and f are the voltage, current, and frequency of HGUs, respectively.](image-url)
Table 4
Research status of stability analysis methods.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Theoretical analysis</th>
<th>Numerical simulation</th>
<th>Field experiment</th>
<th>Lab experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>[43]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[44]</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[45]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[46]</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[47]</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[48]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[49]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

The equation of continuity for the junction of the tunnel and the surge tank is:

$$Q_s = Q_i + Q_{sw}$$ \hspace{1cm} (2)

where Q_i is the flow into the surge tank, and $Q_{sw} = A_s \frac{dz}{dt}$. Q_{sw} is the turbine flow, and A_s is the surge tank cross-sectional area. This gives:

$$\frac{dz}{dt} = \frac{1}{A_s}(Q_i - Q_{sw})$$ \hspace{1cm} (3)

Equations (1) and (3) are the basic expressions that are suitable for both the upstream and downstream surge tanks. If the hydraulic losses of the surge tank orifice are neglected, normalizing Eq. (3), the transfer function between the flow and head is written as [55]:

$$h_s = \frac{T_j}{q_i}$$ \hspace{1cm} (4)

where h_s and q_i represent the head and the flow of surge tank, and T_j is the time constant of the surge tank.

Table 5
Characteristic review of commonly used methods for stability analysis.

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifurcation theory</td>
<td>Advantages: Reflects the characteristic oscillation of the system</td>
<td>[48]</td>
</tr>
<tr>
<td>Lyapunov theory</td>
<td>Disadvantages: The calculation is complex, with a higher equation order</td>
<td>[49]</td>
</tr>
<tr>
<td>Numerical simulation method</td>
<td>Advantages: Suitable for both linear and nonlinear systems</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>Disadvantages: No generalized functional form for Lyapunov functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disadvantages: Different algorithmic approaches might result in different characterizations. The calculation time increases nonlinearly for high-order systems</td>
<td></td>
</tr>
</tbody>
</table>

The transfer functions of the upstream and downstream surge tanks are described as follows: [68].

$$\frac{h_1}{q_1 - q_i} = \frac{1}{T_{j1}s}$$ \hspace{1cm} (5)

$$\frac{h_2}{q_1 - q_2} = \frac{1}{T_{j2}s}$$ \hspace{1cm} (6)

where h_1 and h_2 are the head of upstream and downstream surge tanks, respectively; q_i is the flow of hydro-turbine; T_{j1} and T_{j2} represent the time constant of upstream/downstream surge tanks, respectively; and q_1 and q_2 are the flow of the upstream and tail race tunnel, respectively.

3.1.1.3. Appropriate configuration of the surge tank. A surge tank must be sized and placed thoughtfully in the larger hydropower system if excessive pressure or over-speeding is to be avoided. In a hydropower plant with a long conduit, the surge tank is generally larger in size and higher in cost. There is a vigorous academic debate about how this is best done. Table 6 shows some international regulations for the
Applications of surge tank model. There have been several applications of a surge tank model. For example, France [74–77] focused on finite difference and finite element methods to study surge tank problems. Bao et al. [66] summarized the conditions for the configuration of surge tanks from the viewpoint of operational stability, regulation assurance, and regulation quality, which guide surge-tank setting. Fang et al. [78] established the HTGS model with a high water head and a long-distance penstock and then investigated the influence of surge-tank parameters on the dynamic performance of the HTGS. Verèide et al. [79] investigated the influence of the surge-tank throttle on the hydraulic transient and the results showed that the throttle enhances water hammer.

3.1.2. Penstock models

The penstock is subject to water hammer during water fluctuation, which brings an undesirable threat to the penstock (e.g., a broken-pipe...
equations by introducing a Lagrange factor and solves equations using water hammer equation based on the characteristic method [83]. It numerically solutions of water hammer.

Table 7

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Upstream surge tank</th>
<th>Downstream surge tank</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former Soviet Union</td>
<td>$\frac{\sum L V}{H_0} > K$</td>
<td>50% SCP or ISO K</td>
<td>16-20</td>
</tr>
<tr>
<td>USA</td>
<td>$T_w = \frac{LV}{gH_0^2} > [T_w]$</td>
<td>$\sum L V > 1800 m^2/s$</td>
<td>[66]</td>
</tr>
<tr>
<td>China</td>
<td>$T_w = \frac{LV}{gH_0^2} > [T_w] {[2.4]}$</td>
<td>$L_w = \frac{5T_v}{\nu_k (8 - \frac{V}{90} \frac{\nu_k^2}{2g} - H_s)}$</td>
<td>[70]</td>
</tr>
<tr>
<td>Japan</td>
<td>$\sum L V / H_0 > 45$</td>
<td>$T_{ws} = \frac{LV}{g(H - H_s)} > 6$</td>
<td>[72]</td>
</tr>
</tbody>
</table>

when $T_w = \frac{LV}{gH_0^2} \geq 1.8 \sim 6.0$ or $\beta_n = 1 + \frac{365N_k f_j}{GD^2 H_0^2} - 1$, the surge tank should be set up. Country β_n Ref. [73]

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

Note: K is the critical value. L and V represent the length of the pressure draft tube and the flow velocity in the penstock, respectively. H0 is the initial working head of the unit. Tw is the water inertia time constant. T_w stands for the allowable value of T_w. Ts is the effective closing time of the guide vane. Li is the length of each segment of the penstock and tail tunnel. Vi is the corresponding velocity of flow in each segment. V is the installation elevation of the hydro-turbine. Further, v0w and v0j are the steady-state flow velocity in the pressurized draft tube and at the inlet of the draft tube. Hp is the design head. Lw is the length of the pressure tail channel. β is an elevated value of unit speed. N_0 and n_0 represent the rated output and rated speed of the unit, respectively. T_s is the shutdown time from a full start to a full shutdown of the unit. Moreover, f stands for the water-hammer influence coefficient. GD2 is the flywheel torque. ISO stands for the isolated operation. ICP represents installed capacity. SCP is the system capacity. H_s is the minimum inundation depth, and T_{ws} is the time constant of the draft tube.

accident). Hence, the transient modeling of the penstock to analyze the water hammer effect to eliminate hidden dangers is an indispensable task. The main calculation methods of water hammer include the analytic method, graphic method, and characteristic method, as shown in Table 7. At present, the analytic method and characteristic method are most widely used and verified.

3.1.2.1. Characteristic method

Wylie and Streeter first proposed the water hammer equation based on the characteristic method [83]. It transforms partial differential equations into ordinary differential equations by introducing a Lagrange factor and solves equations using boundary conditions.

The continuity and momentum equations used to describe the flow characteristic are given as [1084].

$$\begin{align*}
\frac{\partial H}{\partial x} + \frac{1}{g} \frac{\partial v}{\partial x} + \frac{v \partial v}{g} + \frac{f}{2D} = 0 \\
\frac{\partial H}{\partial t} + \frac{\partial H}{\partial x} + \frac{\partial v}{\partial x} + \frac{v}{g} \partial v + v \sin \alpha = 0
\end{align*}
$$

(7)

where H, x, and v are the water head, the distance along the pipeline, and the flow velocity, respectively; g represents the acceleration of gravity; and D, a, and α represent the penstock diameter, wave speed of water hammer, and angle between the penstock and horizontal, respectively.

Transforming Eq. (7) into finite difference equations, one can get:

$$\begin{align*}
C^+ : Q_E = C_s \sin \alpha \\
C^- : Q_p = C_n \sin \alpha
\end{align*}
$$

(8)

where P and R represent two points of the penstock. C_s, C_n, C_{as}, and C_{as} stand for intermediate variables. The expressions of these intermediate variables are:

$$\begin{align*}
C_s = Q_s + \frac{gF_s H_s}{a_s} - \frac{a_t}{2D} Q_s | Q_s | \frac{Q_s}{a_s} \sin \alpha \\
C_n = Q_p - \frac{gF_p H_p}{a_s} + \frac{a_t}{2D} Q_p | Q_p | \frac{Q_p}{a_s} \sin \alpha
\end{align*}
$$

(9)

where Q_s, Q_p, H_s, and H_p represent the flow and head at R and S, respectively. F_s and F_p stand for the cross-sectional area at R and S, respectively.

3.1.2.2. Analytic method

The Laplace transformation of the water hammer equation is carried out using the analytic method, and the expression of water hammer is solved in the frequency domain. The analytic expression of water hammer is then obtained by inverse Laplace transformation. Commonly used water hammer models are rigid and elastic models depending on the length of the penstock. Generally, the rigid model is used in the short-distance penstock, while the elastic model is an equally good choice for the long-distance penstock [55]. The advantages and disadvantages of the rigid and elastic models are shown in Table 8.

3.2. Hydro-turbine models

The hydro-turbine models are divided into linear and nonlinear models according to signal disturbance, as shown in Table 9. The current modeling methods are divided into two categories: the exterior characteristic method based on the exterior characteristic curve and the
Table 8
Penstock models for the hydro-turbine governing system.

<table>
<thead>
<tr>
<th>Models</th>
<th>Equations</th>
<th>Characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid model</td>
<td>(G_0(s) = - T_{a,s})</td>
<td>Advantages: Simple calculation</td>
<td>[95]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and reasonable accuracy</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Inaccuracy when penstock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>length is above 200 m</td>
<td></td>
</tr>
<tr>
<td>First-order elastic</td>
<td>(G_0(s) = - 2 h_0 \tan h)</td>
<td>Advantages: Accurate modeling of any</td>
<td>[86]</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td>penstock length</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5T_s)</td>
<td>Disadvantages: Ignores the first</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oscillation mode between the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mechanical and hydraulic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>systems</td>
<td></td>
</tr>
<tr>
<td>Second-order elastic</td>
<td>(G_0(s) = - T_{a,s}/(1 +)</td>
<td>Advantages: Captures the second</td>
<td>[87]</td>
</tr>
<tr>
<td>elastic model</td>
<td>(0.125T_s^2 s^2)</td>
<td>oscillation mode of hydro-mechanic-electric</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Complex calculations</td>
<td></td>
</tr>
<tr>
<td>Third-order elastic</td>
<td>(G_0(s) = - 2 h_0 T_s^2/48 + T_{a,s}/2)</td>
<td>Advantages: Higher oscillation</td>
<td>[43]</td>
</tr>
<tr>
<td>model</td>
<td>(T_s^2/8 + 1)</td>
<td>modes are captured</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: (Even more) complex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>calculations</td>
<td></td>
</tr>
</tbody>
</table>

Table 9
Hydro-turbine model classification.

<table>
<thead>
<tr>
<th>Models</th>
<th>Signal disturbances</th>
<th>Characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear model</td>
<td>Load disturbance</td>
<td>Advantages: Clear physical meaning;</td>
<td>[13,14]</td>
</tr>
<tr>
<td></td>
<td>(< \pm 10%)</td>
<td>simple structure; convenient to analyze</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>(< \pm 8%)</td>
<td>stability in the frequency domain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>consistent with modern control theory;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>convenient for the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>optimal design of various</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>controllers</td>
<td></td>
</tr>
<tr>
<td>Nonlinear model</td>
<td>Load disturbance</td>
<td>Advantages: Can capture</td>
<td>[52]</td>
</tr>
<tr>
<td></td>
<td>(> \pm 10%)</td>
<td>nonlinearities in HTGS</td>
<td>90-92</td>
</tr>
<tr>
<td></td>
<td>(< \pm 8%)</td>
<td>operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: May be difficult to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>calculate because of complexities in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>modeling</td>
<td></td>
</tr>
</tbody>
</table>

Table 10
Numerical solution approaches for dynamic turbine torque.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior characteristic</td>
<td>Accurate solution under transient</td>
<td>[93]</td>
</tr>
<tr>
<td></td>
<td>conditions</td>
<td></td>
</tr>
<tr>
<td>Internal characteristic</td>
<td>High accuracy</td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td>Disadvantages: Difficult to measure the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parameters of the hydro-turbine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>structure; the calculation very</td>
<td></td>
</tr>
<tr>
<td></td>
<td>complicated</td>
<td></td>
</tr>
</tbody>
</table>

where \(\varepsilon_x = \frac{m_i}{m_n} \), \(\varepsilon_y = \frac{m_i}{m_n} \), \(\varepsilon_d = \frac{m_i}{m_n} \), \(\varepsilon_y = \frac{m_i}{m_n} \), \(\varepsilon_y = \frac{m_i}{m_n} \), and \(\varepsilon_y = \frac{m_i}{m_n} \) are the transfer coefficients of turbine torque and flow, respectively; and \(x \), \(y \), \(h \), \(q \), and \(m_i \) are the relative deviations in speed, the guide-vane opening, head, flow, and torque, respectively.

Considering that the operational point changes frequently, variable transfer coefficients that vary with the speed and head are used to display the nonlinear properties of hydro-turbines [86]. To achieve this goal, Eq. (10) has been modified by some scholars. Several modified formulas have been proposed. For example, Shen [95] gave the nonlinear expressions of six transfer coefficients based on the comprehensive characteristic curve of the hydro-turbine as:

\[
\begin{align*}
 e_x &= e_{xm} (h + 1) \\
 e_y &= e_{ym} \sqrt{h + 1} \\
 e_d &= e_{dm} \frac{1}{h} \sqrt{h + 1} \\
 e_y &= e_{ym} \sqrt{h + 1} + e_{ym} \frac{1}{h} \sqrt{h + 1} \\
\end{align*}
\]

Thus Eq. (10) is rewritten as:

\[
\begin{align*}
 m_i &= e_{xm} \sqrt{h + 1} + e_{xm} \frac{1}{h} \sqrt{h + 1} \\
 q &= e_{ym} \sqrt{h + 1} + e_{ym} \frac{1}{h} \sqrt{h + 1} \\
\end{align*}
\]

Li et al. [96] gave six nonlinear transfer coefficients of the HTGS under the condition of the load increasing (Fig. 6). Based on these transfer coefficient curves, the authors were able to describe the nonlinear dynamic behaviors. This is vital for maintaining stable operation under a sudden load increase.

The transfer coefficients’ approximately calculated results in a non-negligible accumulated error are shown in Fig. 7(a). To address this drawback, Zhang et al. [97] introduced the surface-cluster method to describe transfer coefficients in Fig. 7(b). The torque and flow at operational point \(a \) are expressed as:

\[
\begin{align*}
 m_o &= m_a(x_a, y_a, h_a) + \int_{x_a}^{x_b} e_{om} dx + \int_{y_a}^{y_b} e_{om} dy + \int_{h_a}^{h_b} e_{om} dh \\
 q_o &= q_a(x_a, y_a, h_a) + \int_{x_a}^{x_b} e_{om} dx + \int_{y_a}^{y_b} e_{om} dy + \int_{h_a}^{h_b} e_{om} dh \\
\end{align*}
\]

\[
\begin{align*}
 \frac{dy}{dt} &= \frac{1}{h} - h \frac{2q_o^2}{T_o} \\
 q &= y \sqrt{h} \\
\end{align*}
\]

where \(p_m \) is the hydro-turbine power; \(A_t \) and \(D_t \) are the proportionality and damping coefficient, respectively; \(\eta_{nt} \) represents the no-load flow of...
the hydro-turbine; and f_p is the water head loss coefficient.

The transfer coefficient varies with changes in operational conditions. More attention should be paid to the topic to describe the transfer coefficient in real time.

3.2.2. Internal characteristic method

The internal characteristic method is based on the geometric and structural parameters that obtain the nonlinear characteristics of the hydro-turbine. It takes the expression of head, flow, and torque as boundary conditions of the hydro-turbine. Hence, it has a clear physical meaning. Some assumptions need to be made in the modeling process, and the selection of parameters requires experience in transient calculation. Thus, the method is seldom used in engineering.

The flow and torque characteristics are given by Eq. (14). For more details, see Men and Nan [99]:

$$
\begin{align*}
 f_1 &= (y, n_{11}, Q_{11}) = 0 \\
 f_2 &= (y, n_{11}, M_{11}) = 0
\end{align*}
$$

(15)

where Q_{11} and M_{11} represent the unit flow and torque, respectively, and n_{11} stands for unit speed.

To overcome the disadvantages of the exterior and internal characteristic methods, attention should be paid to combine the two methods to better deal with boundary issues. However, better, more relevant models have not yet been put forward.

Fig. 6. Curves of transfer coefficients [96].

Fig. 7. The hydro-turbine torque curve [97]. (a) The accumulated errors in torque; (b) Surface-cluster method of torque.
3.3. Generator models

The commonly used generator models are the first-order, second-order, third-order, and fifth-order models [95], as shown in Table 11. For a detailed overview of this type of modeling, see Ref. [24]. For simplicity, the first-order model is usually used in the operational condition of a single machine. However, high-order models should be used when multiple units are in operation [100]. Regarding the application of generator models, Fang et al. [78] analyzed the hydraulic transient based on a first-order generator model. Xu et al. [101] studied the dynamic behaviors of HTGS under a shock load with a second-order governor. Sharafuddinov et al. [25] studied the stability of voltage and the rotor angle using the bifurcation theory in a third-order generator system. The lower the model order, the simpler the model that can be obtained, but the less accurate the results will be. However, the more complex the model, the harder the work becomes in both data requirements, computation time, and result interpretation [55].

3.4. Governor models

3.4.1. Development course of the governor

The development of the governor has three periods: the mechanical hydraulic governor, electric hydraulic governor, and microprocessor-based governor, as shown in Table 12. The earliest prime mover governor dates back to the centrifugal governor of the steam engine, invented by James Watt in 1782. Its operational principle is the same as that of the centrifugal governor. By the 1930s, the mechanical hydraulic governor had been refined following a Proportional-Integral (PI) approach. It is widely used in small- and medium-hydropower stations because of good static and dynamic characteristics. With the development of electronic controls, the first successful analog-electrical hydraulic governor appeared in the 1950s using PID regulation [39]. In the mid-1980s, microprocessor-based governors (in Fig. 8) saw rapid development [45].

The PI governor is expressed as [71,98]:

$$G(s) = \frac{T_d}{b_i T_s^2} + \frac{1}{b_r T_s} = k_r + \frac{k_p}{s} + 1$$

(16)

The PID controller is written as [39,103].

$$G_c(s) = \frac{1}{K_p s + K_i s + K_d}$$

(17)

If assume $b_0=0$ and $T_p=0$, Eq. (17) can be rewritten as

$$G(s) = K_p + \frac{K_i}{s} + K_d s$$

(18)

where K_p, K_i, and K_d are the proportional, integral, and differential gain, respectively; b_0 is the permanent droop; T_d and b_r are the buffer time constant and temporary droop, respectively; and T_p and T_s are the time constant of the first-stage hydraulic amplification and the engager real-time constant, respectively.

3.4.2. Application of the governor

Many researchers have discussed the design and application of the governor. For example, Fang et al. [104] applied an improved particle swarm optimization to adjust PID gains and obtained better results in convergence and computational ability. Similarly, Jiang et al. [105] used an improved evolutionary programming method to optimize the online PID parameters, and the results showed that the proposed method had the advantages of a fast response and reduced overshooting. Cheng et al. [106] compared the difference between the intelligent PID and conventional PID, and the results showed that the former had a better dynamic performance. Li et al. applied several techniques, such as fault detection and self-recovery, to a microprocessor-based governor to improve its reliability [107].

Table 11

<table>
<thead>
<tr>
<th>Models</th>
<th>Equations</th>
<th>Characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First order</td>
<td>$\dot{\omega} = \frac{1}{T_d} (m_1 - m_2 - e_1 \omega)$</td>
<td>Advantages: Simple calculation</td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Modeling inaccuracy, especially for transient processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applications: Only considers the moment of inertia of the generator</td>
<td></td>
</tr>
<tr>
<td>Second order</td>
<td>$\dot{\delta} = \omega - 1$</td>
<td>Advantages: Results are positive for the slow response excitation system</td>
<td>[24], [95]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Transient electric potential remains unchanged</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applications: Considers the moment of inertia of the generator, output power, and power angle</td>
<td></td>
</tr>
<tr>
<td>Third order</td>
<td>$\dot{E}_q = \frac{1}{T_m} [E_q - (X_d - X_q) I_q]$</td>
<td>Advantages: Simple structure and considers the dynamics of the excitation system</td>
<td>[24], [95]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Complex calculation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applications: Considers the moment of inertia of the generator, output power, power angle, and the excitation system</td>
<td></td>
</tr>
<tr>
<td>Fifth order</td>
<td>$\dot{E}_q = \frac{1}{T_m} [E_q - E_q]$</td>
<td>Advantages: Accurate modeling of transient processes</td>
<td>[24], [95]</td>
</tr>
</tbody>
</table>

Note

$$E_q = \frac{X_d - X_q}{X_d - X_q} E_q + \frac{X_q - X_d}{X_d - X_q} [E_q + (X_q - X_d) I_q]$$

$$\dot{\omega} = \frac{1}{T_m} (T_r - T_e - D_1 (\delta - 1))$$

$$\dot{\delta} = \omega - 1$$

where ω and δ are the angular speed of the generator and rotor angle, respectively; e_1 is the accommodation coefficient; m_2 is the load disturbance of the generator; m_1 is the output torque of the hydro-turbine; T_m is the mechanical starting time; T_r and T_e are the electromagnetic power of the generator and the electromagnetic torque of the generator, respectively; E_q and E_q are the armature transient voltage of the q-axis and excitation voltage of the generator, respectively; X_d and X_q represent the dq-axes reactance; ω is the d-axis transient reactance; i_d and i_q are the stator current of the d-axis and q-axis, respectively. Moreover, T_{d0} and T_{a0} denote the open-circuit transient and switching sub-transient time constant of the d-axis, respectively. E_{dq} and E_{dq} represent the sub-transient electromotive force of the dq-axes.
Although traditional governors have been widely used in hydro-power stations, they are incapable of achieving optimal control performance in all operational states, especially in transient conditions. To improve regulation quality, more advanced governors using intelligent control methods have been developed. These will be described in Section 5.

3.5. HTGS models

Components of the HTGS exhibit strong nonlinearity, such as the hydro-turbine and governor [108,109], and many uncertain factors exist in structural parameters because of equipment aging and unit vibrations [33]. Modeling HTGS is, therefore, an important and difficult task. Different layouts of the hydropower plant can lead to different expressions of the system model, such as the HTGS model with or without the surge tank. Fig. 9 displays the canonical system model that considers different operational conditions. In general, the HTGS model is the coupling of modular models, which can be divided into linear and nonlinear models. The linear model is widely used in small disturbance conditions, while the nonlinear model is suitable for large disturbance conditions.

Scholars established the HTGS model to study various dynamic phenomena. Most of these studies were implemented under the integer-order framework. For instance, Liu and Liu [110] demonstrated the dynamic stability of a hydropower station with a linear turbine model under steady conditions. Related studies indicated that fluid has the property of memory. However, the integer order calculus has limitations in this respect because HTGS is a complex system with a non-minimum

Table 12

Comparisons of different governors.

<table>
<thead>
<tr>
<th>Types</th>
<th>Regulation law</th>
<th>Characteristics</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical hydraulic</td>
<td>PI</td>
<td>Advantages: Good static and dynamic characteristics</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Low sensitivity; poor automation.</td>
<td></td>
</tr>
<tr>
<td>Electric hydraulic</td>
<td>PID</td>
<td>Advantages: Simple structure, faster speed response</td>
<td>[14]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Excessive oscillation in interconnected systems; does not guarantee a stable closed-loop system for at all operational conditions</td>
<td></td>
</tr>
<tr>
<td>Microprocessor-based</td>
<td>PI, PID, or more complex regulation laws</td>
<td>Advantages: Good reliability, redundancy, flexibility, improved performance, and reliability</td>
<td>[45, 102]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantages: Under special circumstances, it may cause overspeed and overvoltage protection of the unit, resulting in accidental shutdown.</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 8](image_url) Block diagram of the microprocessor-based governor; f_g and f_r are the output frequency of the generator and the frequency measurement, respectively; c_1 and $\triangle y$ are the reference frequency and deviation of the servomotor displacement, respectively; e, y_1, and y are the signal deviation, position of the median servomotor, and primary servomotor, respectively.

![Fig. 9](image_url) Overview of the HTGS model [14].
phase and time variance. Fractional order calculus has the advantages of memory and strong dependence. Hence, to overcome the drawbacks of the integer order calculus, it is necessary to build a fractional-order mathematical model. Xu et al. [63] introduced the fractional-order into the integer order calculus, it is necessary to build a fractional-order memory and strong dependence. Hence, to overcome the drawbacks of phase and time variance. Fractional order calculus has the advantages of

\[D^\alpha x_1 = x_2 \]
\[D^\alpha x_2 = x_3 \]
\[D^\alpha x_3 = a_0 x_1 - a_1 x_2 + y \]
\[D^\alpha \delta = a_0 \omega \]
\[D^\alpha y = \frac{1}{T_y} \left[-k_p (r - \omega) - \frac{k_i}{a_0} \delta - k_d D^\alpha y - (D^\alpha \omega) \right] \]

where \(x_1, x_2, \) and \(x_3 \) are the state variables of the penstock system; \(a_0 \) is the rated speed of the generator; \(a_0, a_1, \) and \(a_2 \) are the intermediate variables related to transfer coefficients; and \(V_i \) is the voltage of infinite power system.

In general, the HTGS regulates hydro-turbine speed to provide stable power to the grid without considering shaft vibration. Nevertheless, the shaft system model controls the vibration performance instead of the speed. In fact, HTGS and the shaft system model interact with each other. Unfortunately, related studies on the unified model have been rare. Hence, this is a hot issue to couple these two models to better understand the properties of a hydropower plant.

4. Stability analysis

As the key to the functioning of a hydropower plant, the HTGS’s stability has considerable influence on the power system. Hence, it is an essential task to study the stability of the HTGS. For example, Yang et al. [111] studied the oscillation characteristics of HTGS under small disturbance, where the distribution of the smallest ratio with hydraulic-mechanical parameters changing is shown in Fig. 10. A larger value of water inertia (\(T_w \)) results in a smaller damping ratio, meaning that HTGS is more stable. When the water column elasticity (\(T_p \)) is approximately equal to 0.4, a smaller damping ratio occurs. Although the influence of \(T_w \) is not monotonic, a larger value of \(T_w \) leads to the system more stable in general.

\[T_{w} [s] \]

\[0.1 \]

\[0.05 \]

\[0.0 \]

\[0.05 \]

\[0.1 \]

\[0.15 \]

\[0.2 \]

\[0.25 \]

\[0.3 \]

\[0.35 \]

\[0.4 \]

\[0.45 \]

\[0.5 \]

\[0.55 \]

\[0.6 \]

\[0.65 \]

\[0.7 \]

\[0.75 \]

\[0.8 \]

\[0.85 \]

\[0.9 \]

\[0.95 \]

\[1 \]

\[\text{Simulation 1.1 up} \]

\[\text{Simulation 2.1 up} \]

\[\text{Simulation 3.1 up} \]

\[\text{Simulation 6.1 up} \]

\[\text{Simulation 3.1 down} \]

\[\text{Simulation 6.1 down} \]

\[\text{Simulation 2.1 down} \]

\[\text{Simulation 1.1 down} \]

\[\text{Frequency (Hz)} \]

\[\text{Time (s)} \]

\[\text{Frequency deviation after the sudden loss of 65 MW of generation in different cases [29].} \]

Pérez-Díaz et al. [29] presented the influence of the hydraulic short-circuit on the load-frequency regulation. Fig. 11 shows the frequency oscillation when the plant was subject to 65 MW loss in a different initial situation. The frequency fluctuation diminished significantly with the number of pump units or Pelton increased because system inertia increases as the number of units increases. Also, shutting down or starting up one pump unit or Pelton was capable of supplying secondary load-frequency regulation, significantly reducing the time for frequency recovery to 50 Hz.

Xu et al. [11] established a fractional order mathematical model of a hydro-turbine governing system, and an universal solution method is proposed about two parameters in a higher-degree equations according to the fractional order stability theorem. Using this method, the stable region of the parameters \(k_d \) and \(k_p \) are investigated with the increase of fractional order and water hammer effect, as shown in Fig. 12.

Yu et al. [20] presented the stability of the HTGS during a small load disturbance process, namely a 5% rated load. The authors simulated the stable region of an interconnected plant (B) and isolated the plant (A), as shown in Fig. 12. The results showed that the stable region and the regulation quality in an isolated condition were poor compared with those in an interconnected condition. In other words, the system stability was enhanced in the interconnected condition.

Similarly, Yang et al. [41] revealed ultra-low frequency oscillations using an experimental investigation and theoretical analysis. The system stability region based on the Routh-Hurwitz stability condition is shown in Fig. 14. If \(K_p \) and \(K_i \) were in the stability region, the system was stable from the viewpoint of the theoretical perspective. The system was unstable when parameters were in the unstable zone. Moreover, the
Mercier et al. [112] proposed two different control methods to study power system stability. One uses electromagnetic torque to control power directly; the other uses rotational speed to control power indirectly. The simulation results under the two control methods are shown in Fig. 15. As Fig. 15(a) shows, the speed collapse occurred at \(t=25 \) s because of a power increase, and the system lost stability. As Fig. 15(b) shows, the speed collapse phenomenon was avoided using rotational speed to control power. This is because the flow had enough time to adjust, thus ensuring system stability.

Guo et al. [60] investigated the operational characteristics of an HTGS with a surge tank using the Hopf bifurcation theory. The stable domain distribution is plotted in Fig. 16(a). \(S_1 \), \(S_3 \), and \(S_6 \) represent different operational states and were selected to simulate the phase space trajectories in detail, as shown in Fig. 16(b)–(d). Finally, the authors concluded that \(K_p \) and \(K_i \) should avoid specific bifurcation points to improve system stability.

5. Control methods

To maintain the quality and reliability of the electricity supply, a governor is used to control the generator speed in order to achieve the objective. This is usually conducted by a governor through a certain control strategy that mainly includes offline control (i.e., offline pre-decisions and real-time matching), online quasi-real-time control, and online real-time control [113]. The offline control needs massive calculations because many factors of system structure, power flow mode, and the fault situation should be considered, leading to a poor ability to adapt to the change in the power grid operational mode. For online quasi-real-time control, the controller collects the operational condition and analyzes expected accidents regularly. It can adapt to changes in the
power grid operational condition, while this method needs 5 min to allow the transient control strategy to cope with accidents. Regarding online real-time control, the control measures and control quantities of the relevant control equipment in the power grid are calculated online when a fault occurs. Then, the real-time controller can be implemented promptly, accurately, and reliably using high-speed communication. This process requires a high calculation speed of stability control, generally within 0.2 s. Because the control algorithm’s technology is limited, the calculation speed cannot scale up to the requirement of an online real control, so the existing control strategy mostly depends on the offline control strategy [114, 115]. Here, different control methods based on the offline control strategy are reviewed, including the classical and modern control methods. Classical control theory has been extensively used in the conventional method of turbine governor design, such as PID control. Similarly, recent investigations have stressed the significance of the modern control theory. The application of modern control techniques in a hydropower plant is an area of considerable interest. Table 13 briefly reviews different control methods.

5.1. The classic control method

The classical PID control is a preferred selection because of its robustness and practicability. It accounts for 84% in studying the control strategies, and if the improved type is considered, it will exceed 90% [42]. Although it is widely used in various fields, this control method has some drawbacks, such as limitations in dealing with complex systems and time-delay systems.

5.2. Modern/artificial intelligence (AI) control method

To overcome the drawbacks of traditional control methods, a series of advanced control methods have attracted scholars’ attention, such as the fractional-order PID control (FOPID), sliding mode control (SMC), predictive control (PC), fuzzy control (FC), and fault-tolerant control (FTC) [124, 125].

5.2.1. FOPID

Podlubny extended the classical integer-order PID control to FOPID by introducing the integrator order λ and differentiator μ [35]. The generalized transfer function of FOPID is given by Ref. [126]:

$$ G(s) = K_p + \frac{K_i}{s^\lambda} + \frac{K_d}{s^{\mu}} $$

(20)

Using the discrete transfer function to calculate the FOPID output, it is expressed as [116]:

$$ u(k) = K_p e(k) + \frac{K_i}{\lambda!} \sum_{j=0}^{k} j! q_j e(k-j) + \frac{K_d}{\mu!} \sum_{j=0}^{k} d_j e(k-j) $$

(21)

Here, q_j and d_j are written as:

$$
\begin{align*}
q_0 &= 1; & q_j &= \frac{\lambda + j - 1}{j} q_{j-1} \\
\end{align*}
$$

(22)

$$
\begin{align*}
d_0 &= 1; & d_j &= 1 - \frac{\mu + 1}{j} q_{j-1} \\
\end{align*}
$$
where \(h_1 \) and \(e \) are the sampling period and control error, respectively.

The FOPID is a topical issue in research given its better adjustability and flexibility. It has been widely applied in different fields, such as nuclear energy, wind energy, and hydro energy [127]. Moreover, related literature has shown that the FOPID method has advantages over the traditional PID method [116]. Apart from the advantages, one of the main challenges is parameter optimization.

5.2.2. Sliding mode control (SMC)

SMC has the advantage of high robustness against disturbances and insensitivity to model errors. This provides designers with more freedom and satisfies special requirements and certain robustness conditions [118,119]. When the load changes, the speed control is conducted to keep the power quality. The speed deviation signal (i.e., the difference between the generator speed, \(x(t) \), and the referenced speed) is transformed into the regulation signal, \(u(t) \), based on SMC rule. Then, the guide-vane opening is changed according to \(u(t) \) to adjust the hydro-turbine flow. Finally, the regulated variable \(x(t) \) is controlled to align with the referenced speed. The SMC law is the switching control \(u_{eq} \) coupled with the equivalent control \(u_{sw} \), namely,

\[
u = u_{sw} + u_{eq}
\]

(see Fig. 17) [54]. Moreover, \(\text{sgn}(s) \) presents the sign function, and \(\text{sgn}(s) = 0 \) when \(s = 0 \), and \(\text{sgn}(s) = -1 \) when \(s < 0 \). Nevertheless, the SMC easily leads to the ‘chattering’ problem owing to the discontinuity in the sign function, resulting in low control accuracy.

5.2.3. Fuzzy control (FC)

FC has the advantages of a simple design and anti-interference ability. It is suitable for uncertain signals/systems. Some hydropower plants have successfully applied FC by replacing the PID controller [15,54,120]. It is also suitable to deal with systems with complexity or high nonlinearity [18]. However, it is difficult to construct fuzzy rules and membership functions, which are often determined by operational experiences and intuitiveness [119]. As shown in Fig. 18, the core control task of FC is to regulate the generator speed \(x(t) \) tracking the referenced speed \(r(t) \) by regulating the guide-vane opening, where the guide-vane opening is controlled using the output signal \(u(t) \). Specifically, the

<table>
<thead>
<tr>
<th>Control methods</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Simple structure, robustness, and easy implementation</td>
<td>Lower control quality under complex conditions</td>
<td>[14,36]</td>
</tr>
<tr>
<td>FOPID</td>
<td>Better adjustability and flexibility and greater freedom in design</td>
<td>Complex parameter optimization problems</td>
<td>[116,117]</td>
</tr>
<tr>
<td>SMC</td>
<td>Robustness against disturbances, insensitivity to model errors, more freedom in design</td>
<td>Chattering phenomena due to discontinuity of the sign function</td>
<td>[54,118,119]</td>
</tr>
<tr>
<td>FC</td>
<td>Strong anti-interference ability, fast response, simple design, and easy implementation</td>
<td>Difficult to construct fuzzy rules and membership functions</td>
<td>[15,54,120]</td>
</tr>
<tr>
<td>FTC</td>
<td>Manage component failures and maintain good control qualities</td>
<td>Greatly influenced by the delay of fault detection and separation, resulting in a serious stability problem</td>
<td>[121,122]</td>
</tr>
<tr>
<td>PC</td>
<td>Easy implementation</td>
<td>Excessive computation but difficulty in achieving fast control and long prediction</td>
<td>[123]</td>
</tr>
</tbody>
</table>

Fig. 16. Dynamic characteristics of the HTGS [60]. (a) stable domain distribution of HTGS; (b) the phase space trajectories of at \(S_1 \); (c) the phase space trajectories at \(S_3 \); (d) the phase space trajectories at \(S_6 \); \(q_t \) and \(Z_F \) are the flow of the penstock and the water-level change of the upstream surge tank, respectively.
signal deviation, \(e_k \), at the time, \(k \), is the deviation between the measured and desired speed, i.e., \(e_k = x_k - r_k \). To minimize the signal deviation, the input signal, \(e_k \), is converted to the regulation signal, \(u_k \), through the FC system. Then, \(u_k \) is used as the input signal of the hydroelectric system to regulate the guide-vane opening to control the generator speed.

5.2.4. Fault-tolerant control

Fault-tolerant control (FTC) can manage any malfunctions and maintain system properties simultaneously [121]. It automatically deals with faults based on: the active or passive fault-tolerant control scheme (AFTCS/PFTCS) [12, 16, 128]. The PFTCS is robust enough for a certain set of presumed faults, while AFTCS reacts actively to system faults using a control accommodation method. Thus, the stability and the final performance of the system are maintained [121]. Fig. 19 demonstrates how AFTCS and PFTCS are achieved. As for AFTCS in Fig. 19(a), the fault signal (f) generated from the Fault Detection and Diagnosis (FDD) module is input into the FTC module to compensate for the actuator fault effect. Then, the control signal (\(\hat{u} \)) is generated through Digital-to-Analog (D/A) converters. The servo mechanism drives the guide-vane opening (y) by the control signal (\(\hat{u} \)) to carry out the demand motion, i.e., adjusting the generator speed \(x(t) \) to minimize the deviation between the output speed and reference speed. Regarding PFTCS in Fig. 19(b), the process of coping with faults in PFTCS is similar to that of AFTCS. It is worth highlighting that the difference between these two methods is the fault-signal-generating process. PFTCS conducts the online system identification first, and then the fault tolerance signal is generated through the parameter adaption mechanism. Finally, the adaptive controller utilizes the output signal (y) from the servo mechanism to control \(x(t) \) from the hydraulic system.

In general, FTC can manage any component failures and to maintain good control qualities. Nevertheless, there are some drawbacks. FTC is influenced by the delay in fault detection and separation, and that delay can cause a serious stability problem [122].

5.2.5. Predictive control

In 1967, Lee and Markus first proposed the concept of predictive control (PC) [129]. Chen and Shaw first developed nonlinear PC using the Lyapunov function [130]. It predicts a system’s future state using a discrete model [123]. Moreover, it is easy to apply and couples with traditional methods; for example, it can be combined with neural networks or the adaptive algorithm. The flowchart of the adaptive PC algorithm and the implementation of the PC method in a hydropower plant are shown in Fig. 20(a) [131] and 20(b) [15], respectively. To successfully implement the PC method, the first step is to collect the mechanical power sequence, \(p_{(k)} \), which is used as the input signal in step 2. In step 2, the predicted mechanical power \(\hat{p}^{(k)} \) is generated by an adaptive neuroidentifier (ANI). Then, according to the difference

![Fig. 17. The sliding mode controller [54]. \(p_1 \) and \(p_2 \) denote the sliding mode surface.](image)

![Fig. 18. FC flowchart of a plant with three turbines [120].](image)
between \(p(k) \) and \(p^*(k) \), the weights are updated based on the cost function \(J_i(k) \) in step 3. The next step is to generate the controller’s output \(u(k) \) by an adaptive neurocontroller (ANC). Based on the updated weights in step 3, the predicted power \(p^*(k+1) \) is produced by ANI under the regulation of \(u(k) \). By computing the deviation between \(p^*(k+1) \) and the reference signal, the weights of ANC are updated utilizing the back-propagation method in step 6. This process is repeated during each sampling period to achieve the target that the controlled process output can track the reference value [15]. The most advantageous aspect of PC is that it can predict the future states and take corresponding control measures to keep the system in a high-quality state. Apart from the merits, the main drawbacks of this method are excessive computation and difficulty achieving fast control and long prediction [123].

5.3. Hybrid control method

Although the single control method has its advantages, each method has its limitations. To overcome them, the hybrid control is a better choice to combine the advantages of each method to achieve a better control performance [54]. For example, Chen et al. [36] proposed a Fuzzy Sliding Mode Control (FSMC) based on FC and SMC (see Fig. 21 (a)) to overcome the chattering effects of SMC. The speed signal of the HTGS was selected as the input signal of the fuzzy system, and then it was handled using the fuzzy rule. The processed signal was converted to a control signal using SMC rule to drive the servo system to adjust the guide-vane opening to control system speed. The simulation results based on PID, SMC, and FSMC are shown in Fig. 21(b). The results clearly showed that FSMC had a better performance in reducing chatting and overshoot in both the unload condition and the uncertain load condition.

To overcome the control problem of the HTGS with elastic water hammer, Li et al. [37] designed a fuzzy-PID controller in Fig. 22(a) and then applied it to a real hydropower plant to evaluate its efficacy in Fig. 22(b). The fuzzy-PID is the combination of the traditional PID and fuzzy logic inference. Based on the input signals, i.e., the speed deviation \(e \) and differential deviation \(e_c \), PID parameters were adjusted utilizing fuzzy inference to regulate the controlled plant to achieve system stability. The results showed that the designed controller (red) improved the overshoot more so than the traditional PID controller (blue) and the nonlinear PID controller (green).

Yi et al. [34] designed a T-S SFPC controller coupled with the state feedback predictive control and the Takagi-Sugeno fuzzy model. The controlled objective is the error between the actual output \(y(k) \) from the controlled process and prediction output \(\hat{Y}(k) \) from the model inference. The control rule is the combination of the feedback predictive control and the T–S fuzzy model. Then, comparisons of PID, MPC, and T-S SFPC method were carried out. The results showed that the fluctuation of the rotor angle \(\delta \) with the SFPC approach was smaller than that of other methods.

Along with the promotion of energy structure reformation towards low-carbon power generation, the structure and operational mode of the power system have become more complex. The demand for a dynamic control system is increasingly urgent. A comprehensive control scheme has been proposed to improve the control performance of the HTGS. The control scheme consists of the fault-tolerant control and the predictive control, as shown in Fig. 19.
controller response speed is now higher. Fortunately, the online quasi-real-time control has attracted more attention. Not limited to online quasi-real-time control, establishing an online real-time controller is the final goal of the continuous improvement, enrichment, updating, and development of power system theory and technical means.

6. Challenges

Under the current energy structure of China, thermal power, gas power, nuclear power, and hydropower can undertake peak and frequency regulation. In the scenario of a power system without hydropower: 1) For traditional thermal units, the minimum operational load is high owing to the limitation of technical means and heating requirements, leading to a lack of flexibility in peak and frequency regulation that makes it difficult to meet the power grid requirements. 2) Regarding nuclear power units, the power regulation rate is about 0.25%–5% of the rated capacity per minute [132]. Its peak and frequent operation have a certain impact on the safety and economy of the units’ operation. 3) For gas-fired units, although they have the advantages of fast start-up and stoppage, flexible operation, and stable and reliable operational performance, their operational cost is high. In addition, the use of thermal and gas power in peak and frequency regulation further leads to an increase in carbon dioxide emissions, which makes it difficult to achieve the strategic goal of sustainable development. Compared with

Fig. 21. FSMC method in a hydropower plant [36]. (a) The diagram of FSMC in the hydro-turbine regulating system (HTRS); (b) Comparisons of different controllers. x_t and x_{td} are the actual and desired speed output. λ is a positive constant.

Fig. 22. The diagram of HTGS with a fuzzy-PID controller [37]. (a) Structure of fuzzy-PID controller; (b) The overshoot of different controllers. h_w is the characteristic coefficient of the penstock.
thermal power, gas power, and nuclear power, hydropower is clean and pollution-free and has a fast ramp rate, low operational cost, and flexible operation which make it the first choice for the peak and frequency regulation of a power system. However, there is also a stability challenge for the HGUs in dealing with uncertain electric loads from power systems.

6.1. Combining the HTGS and shaft model

The shafting vibration is severe in non-optimal conditions, which means that the control effect of the PID governor cannot guarantee the stability of the generator speed. This, in turn, seriously threatens the power generation reliability of the HTGS in non-optimal working conditions. Traditional modeling methods adopt the ideal turbine model based on the linearization characteristics of stable operational points, while this method is dangerously inaccurate for small guide-vane opening conditions. Thus, an accurate model is needed urgently to quantify the interaction mechanism of the HTGS control and shaft vibration. The first challenge is to find appropriate transfer parameters. For example, generator speed is a common parameter for the HTGS and shaft model, but if this parameter only combines the two models, there will be a negligible impact on shaft vibration in the HTGS’s control effect. This is because the generator angular frequency is controlled within 0.2 Hz after passing through the PID controller [5]. The second parameter is the hydraulic force acting on the blade. Forces on the runner blades generate the dynamic torque of the hydro-turbine used in HTGS and the unbalanced hydraulic forces causing the shaft vibration. However, the analytic formula of the hydraulic force is too complex and covers lots of runner parameters, such as the resistance coefficient, , the excitation coefficient, , and the runner diameter, . This is not suitable for large-scale power system simulation. The second challenge is the vortex belt effect in draft tubes [134]. The vortex belt in partial loads has a dramatic influence on the dynamic torque of the hydro-turbine and shaft vibration, which is a complex phenomenon. The dynamic wake vortices, blade passage vortices, tailrace vortices, and clearance vortices of double-row guide-vane cascades are the main causes of runner imbalance and are key factors that cause HTGS instability. The oscillation of hydro-turbine generator units and changes in rotational speed can also lead to sudden changes in sealing clearance force and induce hydraulic imbalances in the runner. Therefore, the coupling mechanism between the adjustment parameters in various conditions and the changes in turbulence state that lead to a hydraulic imbalance in the runner is still unclear. However, the coupling modeling principle is still a work in progress. At present, classical models applying this principle are roughly divided into four categories: the 1D characteristic method + the characteristic curve of hydraulic turbine [135], the equivalent circuit theory + the characteristic curve of hydraulic turbine + 1D hydro acoustic [136], the transient boundary condition + 3D hydro-turbine [137], and the equivalent circuit theory + 3D hydro-turbine + 1D hydro acoustic [138]. However, the transfer parameters and coupling mechanism between the full three-dimensional turbine model and the one-dimensional acoustic model are still immature, and the governor control is not considered in these models. Therefore, developing a general method to combine HTGS and shaft model is an important challenge for reliable generation evaluation of hydraulic turbines in non-optimal conditions. In addition, the control methods are the other challenge because of the high dimensional nonlinearity of the coupling model of the HTGS and shaft.

6.2. Control methods of HTGS with intermittent renewable energies

The main challenges of the HTGS to regulate power variation in intermittent renewable energies include: (1) improving the modeling methods of the HTGS to possibly evaluate its potential feasibility, (2) revising the control methods traditionally or seeking new technologies to eliminate the power-tracking delay and difference, such as variable-speed pumped storage plants. The first challenge is described in subsection 6.1. The second challenge that some researchers have preliminarily studied is summarized in Table 14. Specifically, considering the ongoing complementary projects in China, it has become mandatory to develop more hydropower stations based on an operational strategy of greater flexibility, such as the hybrid wind-hydro power system [139]. Control methods and variable-speed units are currently two effective research directions. The traditional PID controller shows an obvious insufficient regulating capacity problem, as shown in Fig. 23 [30]. This causes the FSGS’s power response to lag behind wind power fluctuation, which further impacts the power supply reliability of the hybrid power system. As Fig. 24 shows, the revised control methods not only predict hydropower compensation for intermittent power fluctuation in advance but also consider complementary regulation of power quality [31]. Variable-speed operational is a well-known solution used to enhance the HTGS’s flexibility. The advantages of variable-speed units are that they mitigate wind power variations [32], and their trends and challenges are well documented in literature [139]. However, this type of technology is not suitable for traditional hydropower stations like the wind-hydro-solar hybrid complementary system in Yalong River. Thus, the method of revising control methods is one of the least costly but most effective directions for these existing HTGSs.

6.3. Uncertain nature of load on the overall performance and stability of the hydropower system

The uncertain nature of the load is mainly from two aspects: 1) uncertain consumption and 2) the uncertain power supply from generation systems. The hydroelectric generating units should be adjusted continuously to suppress power uncertainty in the electric power system. In other words, HGUs should switch from the traditional power supply mode to the regulation mode. For these hydropower stations, the designed output power of HGUs changes from 65% to 100%. HGUs frequently cross the low- and medium-load areas when they operate in regulation mode. During this process, the pressure pulsation and the HGUs’ speed change dramatically, which adds huge security risks to the stable operation of HGUs. To cope with the change in the hydropower operational mode caused by load uncertainty, the current strategy is to optimize the installed capacity of different energies and reserve the capacity of hydropower. Regarding the stable operation of HGUs, the reasonable design of a hydro-turbine runner is an effective method to deal with the variation of HGUs to realize the stable operation of the full load operation of HGUs. This measure has been verified in the Fengman hydropower generating system in China [141]. In addition, the synergism control strategy considering AGC and primary frequency regulation is also an effective method to reduce HGUs’ variation during the adjustment and protection calculation of the transient process. This is an area where demand-side management may take positive response measures.

7. Conclusions

Not all hydropower plant layouts follow the same pattern because each water source has its own structure. Thus, modular models and stability analysis methods have been proposed to cope with these differences. The unified model of the HTGS was established based on the

<table>
<thead>
<tr>
<th>Table 14</th>
<th>Summary of preliminary research.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge</td>
<td>Preliminarily studied research</td>
</tr>
<tr>
<td>Revising control methods to eliminate the power-tracking delay and difference</td>
<td>[30,31]</td>
</tr>
<tr>
<td>Seeking new technologies used to eliminate the power-tracking delay and difference</td>
<td>[32,112,140]</td>
</tr>
</tbody>
</table>
Fig. 23. Power responses of the HTGS under random wind disturbances (R1 to R4) [30]. The power response and pumped-storage power response are shown in solid lines in orange and pink, respectively. The power response represents the pumped-storage demand that needs to be met due to the fluctuation of wind energy, while the pumped-storage power response is the actual response.

Fig. 24. The scenario of a solar-hydro hybrid system [31]. (A) The map of the hybrid system; (B) The diagram of the hybrid system.
coupling of modular models. Selecting a suitable unified model and stability analysis method is the key factor to conduct research. The important prerequisite to make a clear choice is an understanding of the characteristics of each model and the stability analysis method, which enable exploring the potential flexibility of the HTGS in mitigating power variations from intermittent renewable energies. The main achievements of this review paper in modeling, stability analysis, and control methods are summarized as follows:

First, applicable conditions of the penstock model, surge tank model, hydro-turbine model, generator model, and governor model were discussed based on the layouts of hydropower plants. The coupling methods using these modular models were classified. Methods of stability analysis, such as the bifurcation theory and Lyapunov theory, were compared from the perspective of advantages, disadvantages, and applications. Additionally, the merits and demerits of the control methods were summarized.

Second, current achievements in the above three areas were described and discussed. Hence, two challenges and possible future development directions were identified:

(1) The first challenge is how to combine the HTGS and shaft model for reliable generation evaluation of the HTGS in non-optimal conditions, and the vortex-belt effect in draft tubes should also be considered during this process. A possible solution to cope with this challenge is to find appropriate transfer parameters to quantify the interaction mechanism of the HTGS and shaft vibration. Additionally, the control methods based on the coupling model of the HTGS and shaft present another obstacle because of the coupling model’s high dimensional nonlinearity. Thus, a deep-learning intelligent control algorithm is a possible future research direction.

(2) The second challenge is to revise the control methods traditionally or seek new technologies to eliminate the power-tracking delay and difference when the HTGS is used to regulate the power variation of intermittent renewable energies. The possible revised control methods can not only predict hydropower compensation for intermittent power fluctuation in advance but also consider complementary regulation of power quality. Variable-speed technology is another possible solution to enhance the HTGS’s flexibility.

(3) The third challenge is how to cope with the uncertain nature of the load. The possible method to deal with this challenge is to optimize the installed capacity of different energies, to reserve the capacity of hydropower, and to make a synergism control strategy that considers the AGC and primary frequency regulation during the adjustment and protection calculation of a transient process.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Scientific Research Foundation of the Fundamental Research Funds for the Northwest A&F University (Z1090220172), the Natural Science Foundation of Shaanxi Province of China (2019J1P-24), and the Water Conservancy Science and Technology Program of Shaanxi Province (2018skj-9).

References

Renewable and Sustainable Energy Reviews 144 (2021) 110880

21

B. Xu et al.

[47] Shen ZY. Hydro-turbine governing System. 3

[56] Men CS. Study on dynamic characteristics of regulating system based on hydraulic-turbine compound model to combined internal model and external model. Xian: xian University of Technology; 2018 [in Chinese].

[58] Luo HW. Stability and Hopf Bifurcation Study on a class of nonlinear dynamics hydro-governing system model. Lanzhou: Lanzhou Jiaotong University; 2017 [in Chinese].

Tan Y. Development of Neutron station device module of regional stability control system based on online quasi real-time strategy. Changsha: Hunan University; 2003 [in Chinese].

Chen ZH, Yuan BH, Yuan YB, Huang YH, Li XS, Li WW. Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method. Math Comput Simulat 2016;119:18-34.