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ABSTRACT

A new acquisition function is proposed for solving robust optimiza-
tion problems via Bayesian Optimization. The proposed acquisition
function reflects the need for the robust instead of the nominal opti-
mum, and is based on the intuition of utilizing the higher moments
of the improvement. The efficacy of Bayesian Optimization based
on this acquisition function is demonstrated on four test problems,
each affected by three different levels of noise. Our findings sug-
gest the promising nature of the proposed acquisition function as
it yields a better robust optimal value of the function in 6/12 test
scenarios when compared with the baseline.

CCS CONCEPTS

« Computing methodologies — Search with partial observations.
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1 INTRODUCTION

Real-world scenarios of robust design optimization (RDO) can en-
compass some of the most complicated optimization setups due
to many shapes and forms of uncertainty [1, 3], variety of fitness
landscapes and high dimensionality [2]. The famous Bayesian Op-
timization (BO) algorithm [1] has been adapted to efficiently solve
RDO problems, and is referred to as Robust Bayesian Optimization
(RDO) [4] in this paper. The performance of the RBO algorithm
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is greatly determined by the acquisition function (AF) which bal-
ances the trade-off of exploration and exploitation. Following the
intuition of utilizing the higher moment of the improvement [5],
we propose a new AF to solve RDO problems. The proposed AF
is based on the moment-generating function of the improvement
(MGFI) [5], and is compatible with RBO algorithm [4] to solve RDO
problems.

2 ROBUST BAYESIAN OPTIMIZATION

We aim to minimize a continuous black-box function, ie., f: S C
RP — R, where uncertainty—denoted by A—is presenting on the
decision variables. To formulate robustness, we employ the so-
called minimax principle which tries to minimize the maximum
possible realization of the objective with respect to the uncertainty
set U C R [3]. Effectively, this refers to minimizing the following
objective function: g(x) = I&lg{)}( f(x+Ax).

The MGFI [5] is an AF to solve nominal optimization prob-
lems via BO [1], and utilizes the best-so-far observed value of the
function—denoted by fini,—to formulate the improvement. How-
ever, to adapt the MGFI to the robust scenario, this reference value
becomes meaningless as it does not convey enough information
on the best robust optimal value (ROV) achieved thus far. There-
fore, one should consider the current ROV predicted by the Krig-

ing model, namely rg = minmax 7(f(x + Ay), as a substitute
xeSAx€U

for fmin. Note that K refers to the Kriging model. Furthermore,
one should consider the non-trivial problem of defining the im-
provement over rgc since for each point x, the minimax principle
considers effectively the worst improvement that can be realized
by a stochastic process {Y(x + Ax): Ax € U} over rg, which is an
optimization task under uncertainty itself and thereby difficult to
solve. Practically, we consider a point xmax which corresponds to
the worst predicted value concerning the uncertainty set U, i.e.,

Xmax = X + arg max ‘7(f(x + Ax), and take the random response
A€U
Y (Xmax) at this point to define the improvement, namely the robust

improvement as: 7 (Xmax) = max{0, rgc — Y (Xmax)} [4]. Together,
these two modifications allow us to adapt the nominal MGFI [5] to
the robust MGFI, which is denoted by RMGFI. For more details on
the RBO and the MGF], please refer to [4] and [5] respectively.

3 EXPERIMENTAL SETUP

To gauge the ability of the proposed AF, we compare it against the
baseline, namely the robust expected improvement criterion (REIC)
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Figure 1: Mean Absolute Difference to the globally robust optimal
function value based on the proposed RMGFI and the baseline REIC.

proposed in [4]. The comparison involves four test problems in total,
all taken from the existing literature [4]. Three of these problems,
namely the “Three”, the “Eight” and the “Ten-Dimensional” prob-
lems are taken from [4], in addition to a two-dimensional “Branin”
function. The comparison also involves three noise levels based
on 5, 10 and 20 % deviation in the nominal values of the decision
variables, giving rise to a total of 12 test scenarios for comparison.
In addition to the baseline comparison, we alter the configuration
of the initial temperature to comprehend the role it plays in the
performance of the proposed AF. To this end, we only choose the
“Branin” and the “Three-Dimensional” problems alongside three
different configuration for the initial temperature. The results origi-
nating from the baseline comparison and the variation of the initial
temperature are presented in the next section.

4 RESULTS

Graphs pertaining to the baseline comparison are presented in fig-
ure 1. Note that each column of plots in this figure corresponds to a
specific noise level, whereas the rows distinguish between different
problem instances. Each subplot in this figure presents two curves
based on the two AFs. Each of these curves indicates the mean abso-
lute difference (MAD) to the globally robust optimal function value
(GROFV) based on 25 independent runs. From figure 1, we observe
that in 6/12 cases, the RMGFI yields a better optimal function value
whereas the implementation with the REIC performs superior in
5/12 cases. In particular, the REIC exceeds the RMGFI for all three
test scenarios related to the “Branin” function whereas the RMGFI
is better on the “Three-Dimensional” problem. Additionally, it can
be observed that both acquisition functions perform competitively
on the third noise level. Note that in the test scenarios of the “Eight”
and the “Ten-Dimensional” problems concerning the first noise
level, the RMGFI undershoots the GROFV. Next, the results based
on the variation of the initial temperature are presented in Table 1.
In this table, the first column reads the optimization problem at
hand, whereas the next three columns describe the noise level, ini-
tial temperature, and the MAD to the GROFV accompanied with
the SE. An important observation from Table 1 suggests that for
the “Branin” function, the best performance is achieved for the
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Table 1: Mean Absolute Difference (MAD) to the globally robust op-
timal function value based on three different settings of the initial
temperature.

Problem | Noise Level | Initial Tempera.. MAD

1 8.08 + 1.44
8.87 £ 1.59
831 £1.438
7.78 £ 2.23
8.46 + 2.22
7.81 +2.18
5.88 £0.85
6.20 £ 1.01
6.09 £ 1.01
6.58 £ 1.09
5.66 = 0.90
5.83 £0.95
5.61 +0.79
5.27 £ 0.55
5.75£0.75
21.01 £ 2.02
20.15 £ 1.81
19.63 + 1.91
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low initial temperature. On the other hand, the higher settings for
the initial temperature giver rise to a better performance on the
“Three-Dimensional” problem.

5 CONCLUSION AND OUTLOOK

In this paper, we presented and evaluated a new AF to efficiently
solve RDO problems via BO. The observations from the previous
section suggest the promising nature of the proposed AF as it yields
a better GROFV when compared with the baseline. Additionally, it
can be observed that the choice of initial temperature is problem-
dependent, which could be solved via hyper-parameter optimiza-
tion. The limitations of the current study suggest that future re-
search is necessary to validate these findings on more complex
problems.
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