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Abstract

An essential and so far unresolved factor influencing the evolution of cancer and the clinical management of
patients is intratumour clonal and phenotypic heterogeneity. However, the de novo identification of tumour sub-
populations is so far both a challenging and an unresolved task. Here we present the first systematic approach for
the de novo discovery of clinically detrimental molecular tumour subpopulations. In this proof-of-principle study,
spatially resolved, tumour-specific mass spectra were acquired, using matrix-assisted laser desorption/ionization
(MALDI) imaging mass spectrometry, from tissues of 63 gastric carcinoma and 32 breast carcinoma patients. The
mass spectra, representing the proteomic heterogeneity within tumour areas, were grouped by a corroborated sta-
tistical clustering algorithm in order to obtain segmentation maps of molecularly distinct regions. These regions
were presumed to represent different phenotypic tumour subpopulations. This was confirmed by linking the pres-
ence of these tumour subpopulations to the patients' clinical data. This revealed several of the detected tumour
subpopulations to be associated with a different overall survival of the gastric cancer patients (p = 0.025) and
the presence of locoregional metastases in patients with breast cancer (p = 0.036). The procedure presented is
generic and opens novel options in cancer research, as it reveals microscopically indistinct tumour subpopulations
that have an adverse impact on clinical outcome. This enables their further molecular characterization for deeper
insights into the biological processes of cancer, which may finally lead to new targeted therapies.

Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
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Introduction as “tumour subpopulations’) that drive tumour progres-
sion and determine the disease outcome of the patient
[7]. The identification of these clinically relevant tumour

subpopulations is thus of utmost importance for under-

Intratumour heterogeneity is an important factor influ-
encing the evolution of cancer and the clinical manage-

ment of patients [1-3]. It has been postulated to result
from either clonal evolution, based on genetic instability
and microenvironmental stresses, or multilineage dif-
ferentiation of cancer stem cells [4,5]. Although these
cancer cell populations can be histologically indistin-
guishable at the microscopical level [6], they are thought
to have unique molecular phenotypes (here referred to
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standing cancer development and the role of intratumour
heterogeneity in the management of cancer patients [8].

While histological heterogeneity has long been
known since the early days of cancer pathology, molec-
ular tumour heterogeneity has mainly been described
at a genetic, chromosomal or transcriptomal level
[9]. For proteins, the clinical implications of tumour
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heterogeneity have mainly been investigated by tar-
geted assays using antibodies. This requires a priori
knowledge of the protein to be studied and is therefore
unsuited to discovery-based research of novel tumour
subpopulations [10]. Hence, the de novo identification
of tumour subpopulations with unequal proteomes
requires an unlabelled and spatially resolved in situ
read-out of the molecular information of the tumour.

An emerging technology that fulfils these require-
ments is matrix-assisted laser desorption/ionization
(MALDI) imaging mass spectrometry (" MALDI imag-
ing’) [11,12]. It combines mass spectrometry with
microscopy of tissues, which enables the unlabelled
imaging of different molecular classes (proteins, pep-
tides, lipids, metabolites) in their histological context
and thus the allocation of molecular profiles to specific
cell types, such as tumour, preneoplastic or inflamma-
tory cells [13—15]. The spatially resolved data facilitate
the investigation of intrasample molecular details, such
as tumour/normal interface zones or intratumour hetero-
geneity [16,17]. In the latter, it has been convincingly
demonstrated that MALDI imaging in combination
with statistical tools constitutes a unique tool to reveal
tumour subpopulations that are a priori not distinguish-
able by conventional histopathological methods, but
which are molecularly distinct [16,18—20]. However,
none of the hitherto performed studies has investigated
which of the identified specific subpopulations drives
the disease outcome in patients, such as locoregional
and distant metastasis, or survival.

This study will show for the first time how MALDI
imaging of tumour tissues in combination with advanced
statistical clustering methods can be used to identify
phenotypically and molecularly distinct tumour sub-
populations with clinical relevance in breast and gastric
cancer.

Materials and methods

Study population and tissues

All samples were fresh-frozen tissues stored in lig-
uid nitrogen until measurement. They were obtained
from patients who underwent primary surgical resec-
tion at the Klinikum Rechts der Isar, Munich, Germany.
All gastric cancer patients were matched to the stage
of their primary tumor (pT=2) based on the cancer
staging system of the Union for International Cancer
Control (UICC), and to Lauren’s classification (intesti-
nal type). Follow-up data was available for all gas-
tric cancer patients; median overall survival time was
33.1 (range 0-53.4) months. Breast cancer samples
were all from invasive ductal carcinoma and patients
with nodal metastases were matched to the amount of
regional lymph nodes involved (UICC-pN=1). This
study was approved by the Institutional Review Board
and the Ethics Committee of the Faculty of Medicine
of the Technische Universitidt Miinchen, with informed
consent from all subjects and patients. The clinicopatho-
logical data of both patient series are listed in Table 1.

Copyright © 2014 Pathological Society of Great Britain and Ireland.
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Table 1. Clinicopathological parameters for the patient series
Gastric carcinoma Breast carcinoma

Number of patients 63 32
Primary tumour extension

pT1 0 i3

pT2 63 13

pT3 0 2

pT4 0 4
Regional lymph nodes metastasis

pNO 18 1

pN1 24 21

pN2 16 0

pN3 5 0
Resection status

RO 53 28

R1 9 1

Rx 1 3
Distant metastasis

Mo 54 32

M1 9 0
MALDI imaging parameters

Resolution (um) 70 70

Mass range (Da) 2500-25 000 2000-25 000

MALDI imaging experiments — in situ proteomic
data from cancer tissues

MALDI imaging experiments were conducted as
described previously [21]. The mass spectrometric data
were acquired using an Ultraflex Il MALDI-TOF/TOF
instrument (Bruker Daltonics, Bremen, Germany) in
positive linear mode, in which proteins were detected
in the mass range as given in Table 1 and a lateral
resolution of 70 pm. Following the MALDI imaging
experiments, the tissue sections were stained with
haematoxylin and eosin (H&E), scanned using a dig-
ital slide-scanning system (Mirax Desk, Carl Zeiss
Microlmaging, Gottingen, Germany) and co-registered
to the MALDI imaging results to align mass spectro-
metric data with the histological features of the tissue
sections.

Data preprocessing - selection of tumour-specific
protein profiles

The alignment of mass spectral data and histology
allows for a histology-guided extraction (virtual
microdissection) of tumour cell-specific spectral data,
which was done using FlexImaging software (Bruker
Daltonics). This results in an XML file which contains
a list of all mass spectra belonging to the user-defined
region of interest. All subsequent data processing
was performed using MATLAB R2011a, including
the bioinformatics and image processing toolboxes
(MathWorks, Natick, MA, USA).

The spectra referenced in the XML files were read into
the MATLAB environment, where they underwent total
ion count normalization and recalibration on common
peaks, which were defined to be peaks present in at least
85% of all samples [22]. Peak picking was performed
on the global basepeak mass spectrum after smoothing,
resampling and baseline subtraction, and was performed
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Figure 1. Methodological concept of this study. Intratumour clonal heterogeneity influences cancer evolution and the clinical outcome
of patients (A). It is caused by micro-environmental selective stresses or multilineage differentiation of cancer stem cells, which can
generate 'passenger’ clones (grey circles), having no effect on the malignant development, or tumour 'driver' clones (coloured circles). The
latter usually result in clinically measurable effects, such as tumour progression (clinical parameter T), metastasis (clinical parameter N) or
follow-up data after surgery (eg survival time). (B) MALDI imaging mass spectrometry was used to obtain spatially resolved proteomic data
(in the form of mass spectra) from primary tumour specimens. We hypothesize that statistical correlation of the patients' clinical data with
the molecular diversity detected by a corroborated, unsupervised segmentation of the mass spectra can enable the identification of these

tumour-driving subpopulations.

using an adapted version of the LIMPIC package [23].
The basepeak spectrum displays the maximum intensity
detected in the entire imaging dataset for every peak
and is more effective for detecting peaks with localized
expressions [23].

Peak areas were extracted from all spectra and this
reduced representation of a mass spectrum-reduction
takes place by only considering the data of detected
peaks- was then placed, based on its original coordinate
information, as a pixel into a project-specific data cube.
The project data cube contained the MALDI imaging
data of all samples, in which spatial offsets were used to
place every sample’s data into the same spatial domain
(Figure 2A), with the corresponding mass spectral data
in the z dimension.

Unsupervised identification of heterogeneity

For a priori identification of intratumour biomolecular
heterogeneity, we made use of the multivariate nature
of MALDI imaging data (here simultaneous detection
of many proteins). A number of multivariate statis-
tical methods exist that enable the identification of

Copyright © 2014 Pathological Society of Great Britain and Ireland.
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regions with distinct protein signatures. However, these
different algorithms optimize different functions; conse-
quently their results can differ. We therefore developed a
method for the corroborated identification of molecular
heterogeneity, previously termed ’agreement analysis’
[24], which consists of the independent application and
subsequent combination of five multivariate data anal-
ysis (MVA) methods, including principal component
analysis (PCA), maximum autocorrelation factorization
(MAF), Fuzzy C-means, probabilistic latent semantic
analysis (PLSA) and non-negative matrix factorization
(NNMF). Each of these methods projects the origi-
nal multivariate data into a new, usually reduced, data
space, with new variables, called components, and trans-
formed original values, called scores. While NNMF,
PLSA and Fuzzy C-means require the user to predefine
the number of expected components (k) — which here
is considered equal to the number of expected tumour
subpopulations — PCA and MAF do not require such a
prior selection. Instead, the top 2 X k components were
selected and the negative and positive scores treated
separately. The agreement analysis then works as
follows.

J Pathol 2015; 235: 3—13
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Figure 2. Intratumour heterogeneity in intestinal-type gastric cancer: 63 tissues were measured by MALDI imaging and the mass spectral
data (m/z) of all samples were spatially arranged in the MATLAB environment (A). The agreement analysis was performed for different k
values (2-10), which revealed substantial tumour heterogeneity, as shown in the segmentation image for k =4 (B). Higher-magnification
images of patient 19 demonstrate the histomorphological homogeneity within the measured tumour area (left panels), despite its clear
molecular heterogeneity, represented by clusters 1 and 2 (far right panel) (C).

After defining k, all components returned by the
MVA methods are compared pairwise by calculating
the Pearson correlation coefficient. Components that
show the highest spatial correlation were then nor-
malized to their maximum score and summed by a
per-pixel score addition. In this way, consensus com-
ponents are obtained. The degree of agreement of a
consensus component is indicated by the sum of the
correlation coefficients between the five multivariate
methods, and hence is in the range 0—4. In this study,
consensus components with a score<1 were excluded
from further analyses. It is important to note that more
than k consensus components may be returned if cor-
related components are found by a subset of the MVA
methods.

Copyright © 2014 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk

Finally, a segmentation image is achieved by assign-
ing each pixel to the consensus component with the high-
est score at that location. This image shows molecularly
different regions (clusters) in different colours. In this
manner tumour subpopulations, represented by clusters
with distinct and robust mass spectral profiles, could be
identified.

Statistical analysis - comparison with clinical
endpoints

The statistical analysis required linking the clinical
data of the samples to the presence of specific clusters
(tumour subpopulations) within a sample. To do so,
a sample was assigned to a cluster if the cluster was

J Pathol 2015; 235: 3—13
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sufficiently present in that sample; formalized, if the
cluster held a higher fraction of pixels than would be
possible by chance alone, i.e. >1/kx100% pixels. A
single patient sample may be assigned to more than one
cluster if it contains significant tumour heterogeneity.
Conversely, each cluster could be linked to the clinical
data of the multiple samples associated with it, which
then allowed comparison of each cluster’s clinical
importance. The clinical data can also be used to ret-
rospectively investigate the pixel fraction threshold, eg
to elucidate the minimum presence of a cluster to affect
the patients’ clinical outcome, as described in Protocol
S2 (see supplementary material).

The statistical comparisons between the clusters’ clin-
ical data were performed within the R statistical environ-
ment (R Foundation for Statistical Computing, Vienna,
Austria), in which p<0.05 was considered statistically
significant. Differences in survival times of the clus-
ters were assessed by Kaplan—Meier analysis and the
log-rank test. Multivariate survival analyses to assess the
independent prognostic value of the clusters were done
by Cox regression, with p values calculated by the Wald
test. Correlations of the clusters with metastatic status
were assessed by Fisher’s exact test.

The phylogenetic reconstruction of the protein signals
distinguishing tumour subpopulations was performed in
MATLAB, using the neighbour-joining algorithm with
Euclidean distance metric between the representative
spectra of the clusters. In order to avoid a bias towards
the most intense peaks, the representative spectra of each
cluster were normalized according to their base peak.
The most discriminative mass signal for a branching
point with respect to its child nodes was determined by
comparing the representative spectra of both child nodes
for the highest-intensity difference. The representative
spectrum of each inner node was iteratively calculated
by averaging the spectra of all clusters that are leaf nodes
of that node.

Protein identification

Direct tissue analysis using MALDI imaging detects
intact proteins as well as protein fragments. In a first
step, peaks of interest highlighted by the statistical anal-
ysis were compared with those previously reported in
the literature and summarized in two recently reported
MALDI imaging identification databases [25,26]. This
was followed by extensive LC—MS/MS characterization
of tissue extracts using top-down tandem mass spec-
trometry, using HCD and ETD on an Orbitrap Elite mass
spectrometer coupled to a Proxeon EASY-nLC 1000
system. Detailed information can be found in Protocol
S1 (see supplementary material).

Results

The central hypotheses of this study were: (a) the pri-
mary tumour consisted of a collection of subpopulations
that reflected the evolution of the tumour, in which the

Copyright © 2014 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk

presence of subpopulations with specific characteristics
could ultimately lead to increased proliferation, metasta-
sis or resistance to chemo- or radiotherapy (Figure 1A);
(b) the molecular intratumour heterogeneity revealed by
MALDI imaging depicted, however incompletely, a rep-
resentation of these tumour subpopulations. We then
used the clinical data of the patients to identify which
subpopulations were associated with specific pheno-
types (Figure 1B). In this section, we provide examples
in two different cancer types, namely breast and gas-
tric cancer, for the capability of the approach presented
here to identify tumour subpopulations that are associ-
ated with the disease outcome of patients.

Identification of survival-associated tumour
subpopulations in primary gastric cancer

First, we applied our approach to identify tumour sub-
populations associated with prognosis in intestinal-type
gastric cancer. Tissue sections from 63 patients were
measured by MALDI imaging with a lateral resolu-
tion of 70 pm to detect mass spectral profiles. After
the experiments, the tissues were stained with H&E
and histopathologically annotated. Virtual microdissec-
tion was then performed to obtain spatially resolved
mass spectra from histologically uniform tumour areas.
The resulting 54 833 mass spectra were arranged in a
project-specific data cube (Figure 2A) and segmented
using the agreement analysis on the 82 detected mass
spectral signals to reveal molecularly distinct subpopu-
lations within the tumour areas.

As the number of subpopulations present in a tumour
is unknown, the molecular segmentation was run with
different values for the number of expected tumour
subpopulations (k), in the range 2—10. It should be
noted that the clustering was performed simultaneously
on all samples, as it was assumed that phenotypically
important tumour subpopulations would display simi-
lar molecular characteristics in all patient samples. For
instance, the results for k =4 in Figure 2B show that the
agreement analysis was able to reveal molecularly dis-
tinct regions within histomorphologically homogeneous
tumour areas in about one-third of the 63 samples. One
example at higher magnification is shown in Figure 2C.

In order to determine the clinical importance of each
tumour subpopulation, the results of the molecular seg-
mentation had to be linked to the clinical data of the
patients. A tumour subpopulation was associated with
the clinical data of a patient if it contributed more pix-
els to that sample than would be found by chance alone;
eg sample 19 in Figure 2C contained tumour subpopula-
tions numbers 1 and 2, as each of them held >25% (for
k =4) of the pixels of that sample.

The tumour subpopulations could then be statis-
tically compared according to their associated clini-
cal data; here, for the difference in their overall sur-
vival. Statistically significant differences in overall sur-
vival were found for k=6 and k=9 between tumour
subpopulations 1 versus 4 (p=0.025) and 1 versus
7 (p=0.044), respectively. Moreover, the presence of

J Pathol 2015; 235: 3—13
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Figure 3. Assessment of clinical relevance of the identified tumour subpopulations according to their associated clinical data. Kaplan-Meier
analysis revealed that the presence of certain tumour subpopulations (clusters) is indicative of overall survival in gastric cancer patients
(B). While the survival difference between clusters 1 and 3 for k =4 was close to significant, the difference between the topologically same
clusters 1 and 4 for k = 6 was significant (B, upper panel). Moreover, these clusters turned out to be independent prognostic factors compared
to the metastatic status (pN) (B, lower panel). The topological (A) and clinical consistency of these tumour subpopulations indicates their
robustness towards a changing k, which is further examined in Figure 4. Phylogenetic analyses show the relationship between all clusters,
which are represented by leaf nodes (C). Internal nodes indicate the most decisive m/z signal between two child nodes. Here, three signals,
m/z 3445 (DEFA-1), 4156 and 14021 (histone H2A), were consistently found to be major contributors for distinguishing good from poor

survivor subpopulations.

these tumour subpopulations in a sample was predic-
tive of survival independently of regional lymph node
metastases (Figure 3B; see also supplementary mate-
rial, Table S1). Good and poor survivor groups at trend
level could also be observed when k was defined as 4,
7 or 8, between clusters 1 versus 3 (p=0.068), 1 ver-
sus 6 (p=0.068) and 1 versus 5 (p=0.058), respec-
tively. Figure 3B, C depicts the Kaplan—Meier graphs
for k=4 and k=6 and the corresponding phylogenetic
reconstruction between the clusters. The latter summa-
rizes the molecular relationship between the tumour sub-
populations and highlights the most discriminating mass
signals at each branching node. Tumour subpopulations
indicative of poor and good survival were consistently

Copyright © 2014 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk

found (k=4 and k=06) to be characterized by higher
levels of m/z 3445 and 4156, and a significant change
in m/z 14021 (Figure 3C); m/z 3445 and 14021 could
be identified as DEFA-1 and histone H2A, respectively
(see supplementary material, Protocol S1).

Figure 3 also shows that a significant prognostic effect
only became visible after increasing k to differentiate
smaller tumour subpopulations. An example of such a
subdivision of a tumour population into two finer sub-
populations is illustrated in Figure 3A. To further study
the effect of the refinement of tumour populations on
their clinical phenotypes, the survival analysis was per-
formed on all subpopulations detected for k=2-10.
A dendrogram-like overview illustrates the results for

J Pathol 2015; 235: 3—13
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Figure 4. Graph-based analysis for the assessment of tumour diversity and its prognostic value in gastric cancer. Ellipses represent tumour
subpopulations (clusters), which can be identified through their ID (nomenclature: first digit = k, second digit = cluster) or border colour.
The size of an ellipse is proportional to its incidence among patients and its survival hazard ratio is colour-coded as fill colour (both
were normalized level-wise). The vertical dimension shows the effect of a changing k, the parameter that controls the number of tumour
subpopulations expected, which leads to subdivisions of existing clusters into new clusters. The strength of topological correlation (0-1)
between clusters in consecutive segmentation images is represented by the thickness of arrows between ellipses. Clusters that are less split
into new clusters by increasing k are considered molecularly robust, such as cluster 1. It can also be observed that, although an increasing
k leads to an increasing diversification, three main groups with different survival behaviour could be observed, which can be traced back

to the levels k=3-4.

each detected tumour subpopulation, i.e. its clinical
importance in terms of prognostic value and its inci-
dence amongst patients, and its parent tumour subpop-
ulations (Figure 4). The parent subpopulation is defined
as the one that has the highest spatial congruence in
the previous segmentation map (k — 1). Therefore, cor-
relation coefficients between consecutive segmentation
maps were calculated (to identify related clusters, only
positive correlations were considered), which are repre-
sented as arrows between the tumour subpopulations in
Figure 4. Consequently, parent tumour subpopulations
are considered molecularly robust if they are insensitive
to being subdivided in a subsequent k. In this case, trac-
ing the correlations from k=10 backwards shows that

Copyright © 2014 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk

several tumour subpopulations (clusters 1, 2, 4, 5 and 6
of k=10 in Figure 4) exhibit a high robustness across
the different levels, including those with poor and good
overall survival. With an increasing number of expected
clusters (k), a steady diversification could be observed,
finally revealing three major groupings of tumour sub-
populations associated with a poor, medium and good
survival, which can be traced back to the levels k= 3/4
(Figure 4).

To test the general applicability of the technique,
we then tested whether the approach of using clinical
endpoints to identify tumour driver subpopulations —
here demonstrated for patient survival — could also be
applied to detect those associated with metastasis, which

J Pathol 2015; 235: 3—13
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is a strong determinant for patient disease outcome and
also thought to derive from clonal diversity.

Metastasis-associated subpopulations in primary
breast cancer

Tissue sections from 32 breast cancer patients were mea-
sured by MALDI imaging with a lateral resolution of
70 pm. Proteomic data from histologically uniform areas
was obtained via virtual microdissection and arranged
in a project-specific data cube (Figure 5A). Of the 32
patients, 21 showed lymph node metastasis (pN1) and
11 were metastasis-free (pNO). To investigate associa-
tions between subpopulations in the primary tumours
and their metastatic status, the 48 426 tumour-specific
mass spectra (mass range, m/z 2000—25 000; 62 protein
signals) were submitted to agreement analysis, with k in
the range 2—10.

The classification image in Figure 5B displays the
result of the agreement analysis for k=5. The anal-
ysis revealed molecularly distinct regions within his-
tologically homogeneous tumour areas. For example,
the tumour area of patient 22 was found to be mainly
composed of the molecularly distinct subpopulations 1
and 4 (Figure 5C). A statistically significant association
(p =0.036) was found between tumour subpopulation 4
and the metastatic samples (pN1; bar plot in Figure 5D).
This tumour subpopulation was topologically robust and
consistently associated with metastatic samples, as indi-
cated by the graph-based analysis from k=35 onwards
(see supplementary material, Figure S1). The molec-
ular characteristics of this tumour subpopulation were
assessed by phylogenetic analysis (Figure 5D), which
revealed that it was characterized by the presence of m/z
11368 and an absence of m/z 8419 and 14021; m/z 11368
and 14021 could be identified as acetylated histone H4
and histone H2A, respectively (see supplementary mate-
rial, Protocol S1).

Discussion

The de novo identification of phenotypic tumour sub-
populations in patient tissue and their molecular fea-
tures is both a challenging and an unresolved task.
In this proof-of-concept study we linked the clini-
cal information of patients to the molecularly dis-
tinct regions detected by MALDI imaging (in this
paper referred to as ’tumour subpopulations’). This
was done under the assumption that a tumour resec-
tion specimen — constituting a snapshot of intratumour
heterogeneity at a certain time point of tumour progres-
sion — may still contain molecular information indica-
tive of the subsequent disease outcome of the patient
(Figure 1).

The analysis of 63 intestinal-type gastric cancer
patients revealed extensive heterogeneity within and
between individual tumour samples (Figure 2). Linking
this heterogeneity to the clinical data revealed several

Copyright © 2014 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk
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of the regions to be associated with a different and
independent overall survival, and thus a different dis-
ease outcome for the patients (Figure 3). Especially
tumour subpopulation 1 (any k) indicated a significantly
unfavourable prognosis for the patient. Moreover, a
proteomic similarity of this 'malicious’ tumour subpop-
ulation with a lymph node metastasis could be observed
in one sample (see supplementary material, Figure S2).

The general applicability of this multi-factorial
approach was confirmed by analysing another indepen-
dent sample cohort for a different clinical endpoint;
32 primary breast cancer tissues were investigated for
tumour subpopulations associated with the presence of
regional lymph node metastasis. In comparison to the
gastric cancer cohort, the breast cancer dataset exhibited
less molecular heterogeneity. This is in line with previ-
ous reports that gastric cancer is a more heterogeneous
disease than breast cancer [27-29]. In breast cancer it is
important to differentiate the tumours by their molecular
subtype (luminal, basal and Her2-positive), as these can
strongly influence prognosis or metastasis [30]. As our
sample cohort was mainly (90%) composed of luminal
type (oestrogen receptor-positive) breast cancers, no
correlation could be found between a cluster and a
certain subtype (see supplementary material, Table S3).
Still, one subpopulation was found to be significantly
associated with the metastatic status of the patients. This
is in concordance with the hypothesis that clones with
metastatic potential are already present in the primary
tumour [7].

The minimum amount of tumour subpopulation that
is necessary to affect the clinical outcome of the patients
was then investigated by optimizing the pixel contribu-
tion threshold to be associated with the clinical data, as
described in Protocol S2 (see supplementary material).
The results show that optimized thresholds can increase
the statistical sensitivity between the presence of clusters
and the clinical endpoints, and that significant effects
were already detectable at thresholds of 10—14% in both
cancer datasets. However, since single tissue sections are
unlikely to represent the real proportions of the tumour
subpopulations with respect to the entire tumour, these
numbers have to be considered project-specific, and are
thus not generalizable.

Another important parameter is the number of
expected tumour subpopulations, k. As this number is
a priori unknown [31], we propose a clinicobiological
solution inspired by the trunk—branch model of intratu-
mour heterogeneity [32]. Instead of seeking an optimal
k, our graph-based solution looks at the changes of
the decomposition over a varying k (Figure 4; see also
supplementary material, Figure S1), which enables the
diversification in relationship with the clinical data to be
investigated. In gastric cancer a high molecular diversity
was found, in which clusters could be constantly subdi-
vided into new robust subclusters (eg cluster 4 of k=6
into clusters 4 and 6 of k=7 in Figure 4). However,
the clinical implications were less complex, as overall
three survivor groups could be distinguished (poor,
medium and good survival). This reflects the fact that
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Figure 5. Tumour heterogeneity and metastatic status in 32 breast cancer samples. MALDI imaging mass spectral data (m/z) from
histologically uniform regions of 21 metastasized and 11 non-metastasized breast cancer tissues was obtained (A). Agreement analysis
was performed for different k values (2-10) and the results for k=5 are shown (B). A higher-magnification example for patient 22 proves
the histological homogeneity within the measured tumour area, despite the detected molecular heterogeneity represented by tumour
subpopulations 1 and 4 (C). (D) Tumour subpopulation 4 was found to be significantly correlated with the metastatic status of the patients
(p=0.036) (bar plot) and characterized by changes in m/z 11368 (acetylated histone H4), 8419 and 14021 (histone H2A) (phylogenetic

plot).

not every subpopulation will affect the disease’s course.
Additionally, it is likely that the available clinical data
and number of samples were not able to fully resolve the
molecular complexity in terms of prognostic effects (eg
clusters 5 and 6 of k =6 in Figure 3B). The analysis of a
larger patient series and extended clinical follow-up are
expected to lead to the detection of additional clinically
relevant tumour subpopulations.

It is important to note that we have not yet established
whether the tumour subpopulations detected by MALDI
imaging represent different tumour clones that can be
distinguished by mutations or other heritable proper-
ties. Instead, we take advantage of the fact that cellu-
lar selection operates on phenotypes [33] by measuring
phenotypic information in form of mass spectral pro-
tein profiles. It should be noted that these phenotypic
subpopulations were identified across the whole sample

Copyright © 2014 Pathological Society of Great Britain and Ireland.
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk

cohort, which implies that the proteomic patterns spe-
cific to these cell populations occurred in many tumour
samples. This in turn suggests that these are likely gen-
eral proteomic adaptations.

Phylogenetic analysis in both studies highlighted five
major contributors to the proteomic pattern of the clin-
ically most important tumour subpopulations: m/z 3445
(DEFA-1), 4156, 8416 and 11368 (acetylated histone
H4) and 14021 (histone H2A) (Figures 3C, 5D; see
also supplementary material, Protocol S1). All of them
have already been detected in various cancer-focused
MALDI imaging studies [34,35]. In particular, DEFA-1,
which is an antimicrobial peptide expressed by neu-
trophils and also found in gastric cancer cells [36,37],
was already reported to correlate with a poor prognosis
of early-stage gastric cancer patients, hence confirming
our results here [38,39]; m/z 4156 and 8416 could not be
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named. Interestingly, m/z 4156 has only been detected
in two other MALDI imaging studies on oesophageal
adenocarcinoma, reporting its role in carcinogenesis
and drug resistance [40,41]. However a prognostic
value has not yet been found, not even in our previous
study on the identification of prognostic markers in
gastric cancer [38]. This omission was not due to the
different data analysis platforms (ClinProTools versus
MATLAB:; see supplementary material, Figure S3), but
rather due to the variable proportion of the phenotypic
subpopulations in the different patient tissues.

The small number of cells analysed in each pixel,
coupled with the absence of explicit protein purifica-
tion or separation steps when MALDI is directly applied
to tissue sections, means that MALDI imaging mainly
detects abundant proteins [25]. Nonetheless, many stud-
ies using MALDI imaging and recently also a multi-
centre validation gave evidence for the robustness and
meaningfulness of such protein signatures for repre-
senting clinically relevant information [42]. From our
results we conclude that patterns of these abundant
molecules constitute robust surrogate signals for differ-
ent biochemical processes, which enable a separation
of phenotypic tumour subpopulations with indistin-
guishable histology. In a next step, these regions can
be microdissected and analysed using more sensitive,
extraction-based approaches, such as high-throughput
nucleic acid sequencing and state-of-the-art MS-based
proteomics, which can delve deeply into the proteome
and metabolome, as shown by Mann and coworkers
[43]. In this way we expect to gain deeper insights into
the underlying biological processes and changes of the
tumour subpopulations on a genetic, metabolic and pro-
teomic level, which might finally result in novel targeted
therapies. Accordingly, we propose the approach pre-
sented here as the first step in a pipeline for the de novo
identification and characterization of phenotypic tumour
subpopulations, which we think is applicable to any kind
of cancer tissue that exhibits substantial heterogeneity.
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Figure S5. Top-down fragmentation spectra of two m/z species of around 4151.35 (+0.7 Da) by both ETD and HCD.
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