

Genetic variants in pre-eclampsia: a meta-analysis

Buurma, A.J.; Turner, R.J.; Driessen, J.H.M.; Mooyaart, A.L.; Schoones, J.W.; Bruijn, J.A.; ...; Baelde, H.J.

Citation

Buurma, A. J., Turner, R. J., Driessen, J. H. M., Mooyaart, A. L., Schoones, J. W., Bruijn, J. A., ... Baelde, H. J. (2013). Genetic variants in pre-eclampsia: a meta-analysis. *Human Reproduction Update*, *19*(3), 289-303. doi:10.1093/humupd/dms060

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/98402

Note: To cite this publication please use the final published version (if applicable).

Advanced Access publication on January 8, 2013 doi:10.1093/humupd/dms060

human reproduction update

Genetic variants in pre-eclampsia: a meta-analysis

A.J. Buurma^{1,*}, R.J. Turner¹, J.H.M. Driessen^{2,3}, A.L. Mooyaart¹, J.W. Schoones⁴, J.A. Bruijn¹, K.W.M. Bloemenkamp⁵, O.M. Dekkers⁶, and H.J. Baelde¹

¹Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands ²Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands ³CAPHRI, Maastricht University, Maastricht, the Netherlands ⁴Walaeus Library, Leiden University Medical Center, Leiden, the Netherlands ⁵Department of Obstetrics, Leiden University Medical Center, Leiden, the Netherlands ⁶Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands

*Correspondence address. Department of Pathology, Leiden University Medical Center, LI Q, PO Box 9600, P0-107, 2300 RC Leiden, the Netherlands. Tel: +31-71-5266574; Fax: +31-71-5266952; E-mail: a.j.buurma@lumc.nl

Submitted on September 17, 2012; resubmitted on November 19, 2012; accepted on December 12, 2012

TABLE OF CONTENTS	
Introduction	
• Methods	
Literature search	
Eligibility criteria	
Data extraction	
Statistical analysis	
Results	
Genetic variants involved in co	oagulation and fibrinolysis
Genetic variants involved in th	ie renin—angiotensin system
Genetic variants involved in o	xidative stress
Genetic variants involved in in	iflammation
Genetic variants involved in lip	pid metabolism
Genetic variants involved in o	ther pathways
Discussion	

BACKGROUND: Pre-eclampsia has a clear familial component, suggesting that the condition may be partly attributable to genetic susceptibility. The search for susceptibility genes has led to a drastic increase in the number of published studies associating genetic factors with pre-eclampsia. However, attempts to replicate these findings have yielded inconsistent results. This meta-analysis assessed the pooled effect of each genetic variant that is reproducibly associated with pre-eclampsia.

METHODS: Studies that assessed the association between genes and pre-eclampsia were searched in PubMed, Embase and Web of Science. We selected all genetic variants that were significantly associated with pre-eclampsia in an initial study and were subsequently independently reproduced in at least one additional study. All studies that assessed these reproduced variants were then included. The association between genetic variants and pre-eclampsia was calculated at the allele level, and the main measure of effect was a pooled odds ratio in a random-effects model.

RESULTS: The literature search yielded 2965 articles, of which 542 investigated genetic associations in pre-eclampsia. We identified 22 replicated genetic variants, of which 7 remained significantly associated with pre-eclampsia following meta-analysis. These variants were in or near the following genes: ACE, CTLA4, F2, FV, LPL and SERPINE1.

CONCLUSIONS: This meta-analysis identified seven genetic variants associated with pre-eclampsia. Importantly, many of these variants are also risk factors for developing cardiovascular disease, revealing that pre-eclampsia and cardiovascular disease have shared genetic risk factors. The contribution of the identified genetic variants in the pathogenesis of pre-eclampsia should be the focus of future studies.

Key words: pre-eclampsia / genetic variants / risk factors / cardiovascular disease

Introduction

Pre-eclampsia is a severe pregnancy complication characterized by hypertension and proteinuria after 20 weeks of gestation. Globally, preeclampsia affects 5-8% of pregnancies and contributes significantly to maternal and fetal morbidity and mortality (Steegers *et al.*, 2010). Furthermore, women with pre-eclampsia have an increased risk of developing cardiovascular disease later in life (Bellamy *et al.*, 2007). Because the precise etiology of pre-eclampsia remains unknown, accurate prediction and prevention of the condition are at present difficult.

Pre-eclampsia is believed to result from a complex interplay between genetic components and environmental factors. Evidence for a genetic component comes from family studies, which have shown that pre-eclampsia is relatively common among daughters and sisters of preeclamptic women (Sutherland *et al.*, 1981; Chesley and Cooper, 1986; Arngrimsson *et al.*, 1990; Cincotta and Brennecke, 1998; Esplin *et al.*, 2001; Nilsson *et al.*, 2004). Furthermore, the prevalence of pre-eclampsia differs between various ethnic groups (Steegers *et al.*, 2010). However, the underlying genetics are complex, and it is currently unclear what genes are involved and how individual genetic variants contribute to pre-eclampsia.

Numerous genetic association studies have been performed to elucidate the genetic background of pre-eclampsia. An overview of candidate genes investigated in the setting of pre-eclampsia indicates a sharp increase in the number of published studies regarding genetic associations in pre-eclampsia, with three published studies in 1996 in contrast to 30 published studies in 2004 (Chappell and Morgan, 2006). However, attempts to replicate these studies have yielded inconsistent results. Although this lack of reproducibility can be due simply to population diversity, it is often the result of small sample sizes or false-positive results (loannidis et al., 2001). Because the prior probabilities of genetic associations are low, the number of falsepositive associations that are generated by chance alone is high. The likelihood of finding false-positive associations increases when low prior probabilities are not accounted for in the statistical analysis. Therefore, independently replicating an association is essential for identifying true genetic associations among the large number of false-positives.

The aim of this study was to compile an overview of the genetic variants that are truly associated with pre-eclampsia. Therefore, we performed a meta-analysis to assess the pooled effect of genetic variants that have been reproducibly associated with pre-eclampsia.

Methods

Literature search

The databases PubMed, Embase and Web of Science were searched through February 2012 for studies that evaluated genetic variants in pre-

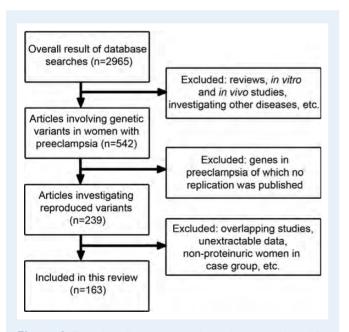
eclampsia. A comprehensive search strategy was developed in collaboration with a trained librarian. The search terms that were used in the search strategy included: 'Preeclampsia', 'Polymorphisms' or 'Genes'. For these terms, all relevant keyword variants were included. The names of specific genes and polymorphisms that were yielded in the first search were added to the search strategy in subsequent searches. The search strategy was optimized for each database (see Supplementary data). Aside from limiting the searches to studies published in English, no other limits or filters were applied in the searches. In addition, references of other narrative and systematic reviews were checked for relevant articles.

Eligibility criteria

We searched for case-control studies that compared genetic variants between patients with pre-eclampsia and healthy women with uncomplicated pregnancies. We only included studies that defined pre-eclampsia as elevated blood pressure (with clear cut-off values for systolic and diastolic blood pressure) accompanied with proteinuria measured in at least a semi-quantitative way, in line with the ISSHP (International Society for the Study of Hypertension in Pregnancy) criteria (Brown et al., 2001). For inclusion, the study had to involve unrelated women. Studies in which the case group contained women with gestational hypertension were excluded, as were studies in which the control group contained subjects who had never been pregnant. All titles and abstracts were reviewed by two observers (A.B. and R.T.), who independently assessed whether the study investigated the relationship between pre-eclampsia and at least one genetic variant. Genetic association studies were screened for whether they contained a positive or negative association between an individual genetic variant and pre-eclampsia (based on the reported P-values, with association defined as significant when P < 0.05). When a genetic variant was found to be significantly associated with pre-eclampsia (either at the allelic or genotypic level, including the recessive and dominant model) in at least two independent studies, that variant was considered to be reproduced. For these reproduced genetic variants, all other genetic studies-irrespective of their P-values-were identified to estimate the pooled effect of the variant on pre-eclampsia in a meta-analysis.

Data extraction

Allele frequencies were extracted and entered into separate databases by two authors independently. These two databases were then compared, and disparities were resolved by consensus. Multiple studies published by the same author(s) were checked for overlapping (i.e. redundant) participant groups, and in cases in which the studies overlapped the study with the smaller dataset was excluded. When insufficient data were provided to calculate an odds ratio, at least two attempts were made to contact the corresponding author. When neither the published report nor the corresponding author provided sufficient data to calculate an odds ratio at the allele level, the study was excluded.


Statistical analysis

The main outcome of the meta-analysis was the pooled odds ratio (calculated at the allele level) for the association between reproduced genetic variants and pre-eclampsia. The frequency of the minor allele was compared between women with pre-eclampsia and healthy control subjects who had an uncomplicated pregnancy. The data were pooled using a random-effects model to account for between-study heterogeneity. To estimate heterogeneity, we used l^2 , which reflects the percentage of total variation across studies that is due to heterogeneity rather than due to chance (Higgins et al., 2003). Bias due to small study size was tested using a stratified analysis for the study size as described previously (Serrano et al., 2006). This analysis was performed only for genetic variants that were significantly associated with pre-eclampsia after the meta-analysis and for which the number of studies that investigated the genetic variant was higher than 10. Publication bias was assessed using the Begg and Egger tests. In addition, we generated funnel plots of all reproduced genetic variants. All analyses were performed using STATA (StataCorp. 2011. Stata Statistical Software, Release 10, College Station, TX, USA; StataC).

Results

The initial literature search yielded 2965 articles, 542 of which were genetic association studies regarding pre-eclampsia (Fig. 1). We identified 22 polymorphisms in 15 genes that were reproducibly associated with pre-eclampsia. Associations between these 22 variants and pre-eclampsia were described in 163 articles, representing 283 studies. These articles were published from 1993 through 2012. The number of studies per genetic variant ranged from 2 to 45, and the number of cases included in these studies ranged from 7 to 808.

In a random-effects meta-analysis, seven genetic variants in or near six genes were significantly associated with pre-eclampsia (Fig. 2a). The remaining 15 reproduced variants were not associated with preeclampsia following meta-analysis (Fig. 2b). The odds ratios of the significant associations with pre-eclampsia ranged from 1.20 to 2.42. The genes with the largest effect had wider confidence intervals, indicating less certainty in the effect estimates. No significant protective effect

Figure I Flow chart illustrating how the studies were selected for the meta-analysis.

was found for any gene. Table I provides an overview of the analyses of all reproduced genetic variants as well as the location and the functional consequences of these genetic variants, and Table II provides the references of the included studies per genetic variant. The characteristics of all included studies, as well as forest plots of the individual reproduced genetic variants, funnel plots for assessment of publication bias and stratified analysis for study size are provided in Supplementary data. The cut-off values for hypertension and proteinuria in Supplementary data, Table II show that some studies included only women with severe pre-eclampsia.

Genetic variants involved in coagulation and fibrinolysis

Five genetic variants in four genes that are related to coagulation and fibrinolysis were associated reproducibly with pre-eclampsia. Of these five variants, four were still associated with pre-eclampsia after the meta-analysis. Two variants in coagulation factor V (FV), rs6025 and rs6020, remained associated with pre-eclampsia in the meta-analysis. The variant rs6025, which is also known as Factor V Leiden, was a frequently studied polymorphism in pre-eclampsia, with 40 studies resulting in a pooled odds ratio of 1.94 (95% CI 1.56-2.45). In a sensitivity analysis, the pooled odds ratio decreased slightly with increasing study size, decreasing from 1.99 in studies with < 100 cases to 1.71 in studies with >200 cases. The variant rs6020 was reported in only two studies, resulting in a pooled odds ratio of 1.94 (95% Cl 1.05-3.60). A variant in methylenetetrahydrofolate reductase (MTHFR), rs1801133, was reported in 45 studies, resulting in a pooled odds ratio of 1.06 (95% CI 0.97-1.16). The variant rs1799963 of the coagulation factor II (F2) gene (also known as prothrombin) was investigated in 30 studies and was associated with pre-eclampsia with an odds ratio of 1.95 (95% CI 1.43-2.66). In a sensitivity analysis, the studies with the largest number of cases yielded the largest effect estimate, with an odds ratio of 3.84 (95% Cl 2.18-6.78). The variant rs1799889 in serpin peptidase inhibitor (SERPINE1, also known as plasminogen activator inhibitor type 1) was associated with preeclampsia in the meta-analysis with an odds ratio of 1.17 (95% CI 1.03-1.33). When subdividing the studies based on the study size, the effect estimate diminished slightly from 1.21 in studies with <100 cases to 1.17 in studies with 100-200 cases and 1.14 in studies with >200 cases.

Genetic variants involved in the renin-angiotensin system

The angiotensin I converting enzyme (ACE) rs4646994 variant has been studied frequently in pre-eclampsia, with 20 studies yielding a pooled odds ratio of 1.20 (95% CI 1.08–1.34). A stratified analysis revealed a diminishing effect as study size increased, with a pooled odds ratio of 1.45 (95% CI 1.21–1.73) for studies with <100 cases, which is in contrast with a pooled OR of 1.05 (95% CI 0.90–1.23) for pooled studies with \geq 200 cases. Both rs699 and rs4762 variants in angiotensinogen (AGT) were studied in 21 and 5 studies, respectively. The variant rs699 was not associated with pre-eclampsia after meta-analysis, with a pooled odds ratio of 1.23 (95% CI 0.98–1.54). The variant rs4762 was also not associated with pre-eclampsia, with an odds ratio of 1.25 (95% CI 0.67–2.30). Another variant in the renin–angiotensin system, rs5186 of angiotensin II receptor type I

В A FV rs6025 MTHFR rs1801133 AGT rs699 AGT rs4762 FV rs6020 AT1R rs5186 NOS3 rs1799983 NOS3 27 bp-VNTR NOS3 rs2070744 F2 rs1799963 SERPINE1 rs1799889 IL10 rs18008 TNF rs1800629 ACE rs4646994 TNF rs1799724 LPL rs1800590 CTLA4 rs231775 APOE rs7412, rs429358 TLR4 rs4986791 LPL rs268 TI R4 rs4986790 VEGF rs3025039 protective effect increased risk 0.1 10 protective effect increased risk 0.1 10 Odds ratio (95% CI) Odds ratio (95% Cl)

Figure 2 Odds ratios (with 95% confidence intervals) for the genetic variants that were reproducibly associated with pre-eclampsia. (**A**) All genetic variants that were reproduced in an independent study and significantly associated with pre-eclampsia following the meta-analysis. (**B**) All genetic variants that were reproduced in an independent study, but were not significantly associated with pre-eclampsia following the meta-analysis. (**B**) All genetic variants that were reproduced in an independent study, but were not significantly associated with pre-eclampsia following the meta-analysis. ACE, angiotensin-converting enzyme; AGT, angiotensinogen; APOE, apolipoprotein E; ATIR; angiotensin II receptor type I; CTLA, cytotoxic T-lymphocyte-associated protein 4; F2, factor 2; FV, factor V; IL10, interleukin 10; LPL, lipoprotein lipase; MTHFR, methylenetetrahydrofolate reductase; NOS3, nitric oxide synthase 3; SERPINE, serine peptidase inhibitor; TLR; toll like receptor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.

(ATIR), was investigated in nine studies and was not associated with pre-eclampsia after meta-analysis.

Genetic variants involved in oxidative stress

Three variants in the nitric oxide synthase 3 (NOS3) gene were reproducibly associated with pre-eclampsia, but none was still associated with pre-eclampsia following the meta-analysis. The 27 bp-VNTR in intron 4 yielded a pooled odds ratio of 1.14 (95% Cl 0.90-1.43), and the rs2070744 and rs1799983 variants yielded pooled odds ratios of 1.08 (95% Cl 0.95-1.23) and 1.19 (95% Cl 1.00-1.42), respectively.

Genetic variants involved in inflammation

The cytotoxic T-lymphocyte-associated protein 4 (*CTLA4*) rs231775 variant was reported in four studies. The meta-analysis revealed an association with pre-eclampsia with a pooled odds ratio of 1.24 (95% CI 1.01-1.52). The rs1800896 variant of interleukin 10 (*IL-10*) was not associated with pre-eclampsia in the meta-analysis (OR 0.91, 95% CI 0.74-1.12). Two variants in the tumor necrosis factor alpha (*TNF-alpha*) gene (rs1800629 and rs1799724) were reproduced in pre-eclampsia but were not associated with pre-eclampsia after the meta-analysis, with odds ratios of 1.17 (95% CI 0.91-1.49) and 0.66 (95% CI 0.33-1.31), respectively.

Genetic variants involved in lipid metabolism

The variants rs1800590 and rs268 in the lipoprotein lipase (*LPL*) gene were reproduced in pre-eclampsia, but only rs268 remained associated with pre-eclampsia following the meta-analysis (OR 2.42, 95% CI 1.25–4.68). The combined rs429358 and rs7412 polymorphisms (E2 allele) in the apolipoprotein E (*APOE*) gene was reported in eight studies, yielding a pooled odds ratio of 0.86 (95% CI 0.66–1.13).

Genetic variants involved in other pathways

Two variants in the toll-like receptor 4 (*TLR4*) gene, rs4986790 and rs4986791, were reported in four and three studies, respectively. Neither variant remained associated with pre-eclampsia following the meta-analysis. The rs3025039 variant in the vascular endothelial growth factor (*VEGF*) gene was reproduced in pre-eclampsia, although the meta-analysis did not reveal a statistically significant association (OR 1.36, 95% Cl 0.64–2.91).

Discussion

In this meta-analysis, seven genetic variants were found to be associated with pre-eclampsia. Meta-analysis for several individual genetic variants in the setting of pre-eclampsia has been performed previously. However, the present study provides the first complete and comprehensive overview of all genetic variants that are reproducibly associated with pre-eclampsia. These data may shed light on the pathogenesis of pre-eclampsia and thereby reveal molecular pathways that can be targeted in the management of this condition. Genetic variants in or near the ACE, CTLA4, F2, FV (two variants), LPL and SERPINE1 genes were associated with pre-eclampsia. The results of this meta-analysis suggest that the following systems may play a role in the pathogenesis of pre-eclampsia: the renin–angiotensin system, coagulation and fibrinolysis, lipid metabolism and inflammation. Functional studies are needed to elucidate the contribution of these variants and pathways to the pathogenesis of pre-eclampsia.

One genetic variant involved in the renin-angiotensin system remained associated with pre-eclampsia following the meta-analysis; the D (deletion) allele of ACE rs4646994. This finding is in line with a previous meta-analysis, which also revealed evidence of small study bias (Serrano et al., 2006). The ACE rs4646994 variant is known to be associated with increased activity of the angiotensin-converting enzyme (Sayed-Tabatabaei et al., 2006), which could

/ariant by gene	Minor allele	Studies (n)	Cases (n)	Controls (n)	OR (95% CI)	l² (%)	<i>P</i> value for funnel plot asymmetry ^a	Location	Function/consequence
ACE									
rs4646994	Deletion	20	2855	4582	1.20 (1.08–1.34)	47	0.044	In an intron	Higher serum ACE levels (Sayed-Tabatabaei <i>et al.</i> , 2006)
AGT									
rs699	С	21	2104	4530	1.23 (0.98–1.54)	81	0.116	In the gene	Higher plasma angiotensinogen levels (Jeunemaitre <i>et al</i> ., 1992)
rs4762	Т	5	497	1395	1.25 (0.67–2.30)	80	0.327	In the gene	Conflicting data (Balam-Ortiz et <i>al.</i> , 2011; Jeunemaitre et <i>al</i> 1992)
APOE									
rs429358, rs7412	E2	7	554	712	0.86 (0.66-1.13)	2	0.881	In the gene	Hyperlipoproteinemia (Utermann, 1987)
ATIR rs5186	С	9	886	1230	1.13 (0.95–1.33)	0	0.022	In the 3′ untranslated region	Increased response to angiotensin II (van Geel <i>et al.</i> 2000)
CTLA4								C C	
rs231775	G	4	353	536	1.24 (1.01–1.52)	3	I	In the gene	Higher T-cell activation and proliferation rates (Sun <i>et al.</i> , 2008)
F2									
rs1799963	A	30	3329	4878	1.95 (1.43–2.66)	8	0.133	In the 3'-untranslated region	Elevated prothrombin levels (Poort <i>et al.</i> , 1996)
FV			o	22.4		<i>(</i>)	0.017		
rs6020	A	2	266	336	1.94 (1.05–3.60)	60	0.317	In the gene	Poor response to activated protein C (Le <i>et al.</i> , 2000)
rs6025	A	40	4373	6446	1.95 (1.56–2.45)	34	0.456	In the gene	Poor response to activated protein C (Bertina <i>et al.</i> , 1994
1L-10 rs1800896	G	8	1075	1360	0.91 (0.74–1.12)	64	0.621	In the promoter	Lower serum IL-10 levels
LPL								region	(Wang et <i>al.</i> , 2011)
rs 800590	G	3	395	579	2.27 (0.62-8.24)	72	0.602	In the 5′ untranslated region	No changes in lipid profiles (Sagoo et <i>al.</i> , 2008)

Table		Continued
-------	--	-----------

Variant by gene	Minor allele	Studies (n)	Cases (n)	Controls (n)	OR (95% CI)	l² (%)	P value for funnel plot asymmetry ^a	Location	Function/consequence
rs268	G	4	530	933	2.42 (1.25–4.68)	21	I	In the gene	Adverse lipid profiles (Sagoo et al., 2008)
MTHFR rs1801133	Т	45	5418	7271	1.06 (0.97–1.16)	45	0.531	In the gene	Elevated plasma homocysteine levels (Frosst et al., 1995)
NOS3 27 bp-VNTR in intron 4	4a	14	1593	2239	1.14 (0.90–1.43)	63	0.071	In an intron	Altered nitrite and nitrate levels (Wang and Wang, 2000)
rs2070744	С	11	1571	2202	1.08 (0.95–1.23)	28	0.484	In the promoter region	Reduced eNOS gene promoter activity (Nakayama et al., 1999)
rs 799983	Т	24	2825	4048	1.19 (1.00–1.42)	68	0.960	In the gene	Reduced nitrate, nitrite and nitric oxide production (Sofowora et al. 2001; Veldman et al., 2002)
SERPINE rs 799889	4G	11	1283	1661	1.17 (1.03–1.33)	10	0.102	In the promoter region	Higher PAI-1 levels (Lin et al., 2009; Rallidis et al., 2010; Ye et al., 1995)
TLR4 rs4986790	G	4	723	614	1.07 (0.48-2.40)	78	0.497	In the gene	Dampened inflammatory response (Kiechl et al., 2002)
rs4986791	Т	3	614	461	1.20 (0.45-3.20)	79	0.602	In the gene	Dampened inflammatory response (Kiechl <i>et al.</i> , 2002)
TNF-alpha rs1800629	A	12	1592	1837	1.17 (0.91–1.49)	55	0.237	In the gene	Higher TNF-alpha gene expression (Kroeger <i>et al.</i> , 1997)
rs1799724	Т	3	390	385	0.66 (0.33–1.31)	85	0.602	Near the gene	, Higher TNF-alpha serum levels (Puthothu et al., 2009)
VEGF rs3025039	Т	3	377	514	1.36 (0.64–2.91)	88	0.602	In the gene	Lower VEGF levels (Al-Habboubi et al., 2011; Ruggiero et al., 2011)

ACE, angiotensin-converting enzyme; AGT, angiotensinogen; APOE, apolipoprotein E; ATIR; angiotensin II receptor type 1; CTLA, cytotoxic T-lymphocyte-associated protein 4; F2, factor 2; FV, factor V; IL10, interleukin 10; LPL, lipoprotein lipase; MTHFR, methylenetetrahydrofolate reductase; NOS3, nitric oxide synthase 3; SERPINE, serine peptidase inhibitor; TLR; toll like receptor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor. ^aBegg test for funnel plot asymmetry, which is suggestive of publication bias. 294

Table II References of the included articles, per genetic variant.

Variant by gene

variance by serie	
ACE	
rs4646994	Aggarwal et al. (2010, 2011), Benedetto et al. (2007), Bouba et al. (2003), Choi et al. (2004), Galao et al. (2004), Gurdol et al. (2004), Heiskanen et al. (2001), Kaur et al. (2005), Kobashi et al. (2005), Li et al. (2007), Mando et al. (2009), Miskovic et al. (2008), Morgan et al. (1999a, b), Procopciuc et al. (2009), Roberts et al. (2004), Salimi et al. (2011a, b), Serrano et al. (2006), Serrano et al. (2006), Uma et al. (2010), Wang et al. (2006)
AGT	
rs699	Aggarwal et al. (2010, 2011), Bashford et al. (2001), Benedetto et al. (2007), Bouba et al. (2003), Choi et al. (2004), Dissanayake et al. (2009), Guo et al. (1997)** Jenkins et al. (2008), Knyrim et al. (2008), Kobashi et al. (1999), Morgan et al. (1999a, b), Procopciuc et al. (2009), Roberts et al. (2004), Tempfer et al. (2004), Wang et al. (2006), Ward et al. (1993), Yoshida et al. (2008), Zhang et al. (2003)
rs4762	Choi et al. (2004), Dissanayake et al. (2009), Knyrim et al. (2008), Procopciuc et al. (2009), Wang et al. (2006)
APOE	
rs429358, rs7412	Belo et al. (2004), Bernard et al. (2007), Chikosi et al. (2000), Francoual et al. (2002), Nagy et al. (1998), Procopciuc et al. (2011), Stiefel et al. (2009)
ATIR	
rs5186	Akbar et al. (2009), Benedetto et al. (2007), Bouba et al. (2003), Li et al. (2007), Morgan et al. (1998), Plummer et al. (2004), Procopciuc et al. (2009), Salimi et al. (2011a, b), Seremak-Mrozikiewicz et al. (2005)
CTLA4	
rs231775	Best et al. (2012), Jaaskelainen et al. (2008), Pendeloski et al. (2011), Samsami et al. (2005)
F2	
rs1799963	Agorastos et al. (2002), Alfirevic et al. (2001), Benedetto et al. (2002), Best et al. (2009), Dalmaz et al. (2006), de Groot et al. (1999), Demir et al. (2006), Dogan et al. (2011), Dusse et al. (2007), Fabbro et al. (2003), Gerhardt et al. (2005), Grandone et al. (1999), Higgins et al. (2000), Hiltunen et al. (2009), Jarvenpaa et al. (2006), Kankova et al. (2000), Karakantza et al. (2008), Kupferminc et al. (1999), Kupferminc et al. (2000a, b) [†] , Kupferminc et al. (2000a, b), Larciprete et al. (2007), Livingston et al. (2001), Malek-Khosravi et al. (2011), Mello et al. (2005), Mendilcioglu et al. (2011), Morrison et al. (2002), O'Shaughnessy et al. (2001), Seremak-Mrozikiewicz et al. (2010), Tempfer et al. (2004), Yalinkaya et al. (2006)
FV	
rs6020	Faisel et al. (2004), Watanabe et al. (2001)
rs6025	Aggarwal et al. (2011), Agorastos et al. (2002), Alfirevic et al. (2001), Benedetto et al. (2002), Best et al. (2009), Currie et al. (2002), Dalmaz et al. (2006), Davalos et al. (2005), de Groot et al. (1999), Demir et al. (2006), Dizon-Townson et al. (1996), Dogan et al. (2011), Fabbro et al. (2003), Faisel et al. (2004), Gerhardt et al. (2005), Grandone et al. (1999), Hiltunen et al. (2009), Jarvenpaa et al. (2006), Kankova et al. (2000), Karakantza et al. (2008), Karimi et al. (2012), Kim et al. (2001a, b), Larciprete et al. (2007), Lindoff et al. (1997), Livingston et al. (2001), Malek-Khosravi et al. (2011), Mello et al. (1999), Mello et al. (2005), Mendilcioglu et al. (2011), Morrison et al. (2002), Murphy et al. (2000), Nagy et al. (1998), Omar et al. (2008), O'Shaughnessy et al. (1999), Prasmusinto et al. (2004), Rigo et al. (2000), Seremak-Mrozikiewicz et al. (2010), Tempfer et al. (2004), von Tempelhoff et al. (2000), Yalinkaya et al. (2006)
IL-10	
rs 1 800896	Daher et al. (2006), de Groot et al. (2004), de Lima et al. (2009), Haggerty et al. (2005), Kamali-Sarvestani et al. (2006), Mirahmadian et al. (2008), Stonek et al. (2008a, b), Vural et al. (2010)
LPL	
rs 800590	Hubel et <i>al.</i> (1999), Kim et <i>al.</i> (2001a, b), Pappa et <i>al.</i> (2011)
rs268	Bernard et al. (2007), Hubel et al. (1999), Kim et al. (2001a, b), Zhang et al. (2006)
MTHFR	
rs1801133	Aggarwal et al. (2011), Also-Rallo et al. (2005), Canto et al. (2008), Chikosi et al. (1999), Dalmaz et al. (2006), Davalos et al. (2005), De Maat et al. (2004), Demir et al. (2006), Dogan et al. (2011), Dusse et al. (2007), Fabbro et al. (2003), Gerhardt et al. (2005), Grandone et al. (1999), Hill et al. (2011), Hiltunen et al. (2009), Jaaskelainen et al. (2006), Jarvenpaa et al. (2006), Kaiser et al. (2001), Kankova et al. (2000), Kim et al. (2011), Hiltunen et al. (2011), Kobashi et al. (2000), Laivuori et al. (2000), Larciprete et al. (2007), Livingston et al. (2001), Mendilcioglu et al. (2011), Morrison et al. (2002), Murphy et al. (2000), Nagy et al. (2007), O'Shaughnessy et al. (1999), Pegoraro et al. (2004), Perez-Mutul et al. (2004), Powers et al. (1999), Prasmusinto et al. (2002)*** Procopciuc et al. (2010), Rajkovic et al. (2000), Rigo et al. (2000), Sohda et al. (1997), Stiefel et al. (2009), Watanabe et al. (2001), Williams et al. (2004), Yilmaz et al. (2004), Yoshida et al. (2008)
NOS3	
27 bp-VNTR in intron 4	Aggarwal et al. (2010), Bashford et al. (2001), Benedetto et al. (2007), Chen et al. (2007), Diaz-Olguin et al. (2011), Fatini et al. (2006), Grandone et al. (2003), Ozturk et al. (2011), Salimi et al. (2011a, b), Sandrim et al. (2008), Sandrim et al. (2010), Serrano et al. (2004), Tempfer et al. (2001), Zdoukopoulos et al. (2011)

Variant by gene	
rs2070744	Aggarwal et al. (2010), Diaz-Olguin et al. (2011), Fatini et al. (2006), Kim et al. (2008), Salimi et al. (2011a, b), Sandrim et al. (2008) Sandrim et al. (2010), Seremak-Mrozikiewicz et al. (2011), Serrano et al. (2004), Tempfer et al. (2004), Zdoukopoulos et al. (2011
rs I 799983	Aggarwal et al. (2010), Best et al. (2010), Chen et al. (2007), Diaz-Olguin et al. (2011), Fatini et al. (2006), Hakli et al. (2003), Kim et al. (2006), Kim et al. (2008), Kobashi et al. (2001), Landau et al. (2004), Nishizawa et al. (2009), Ozturk et al. (2011), Pappa et al. (2011) Sandrim et al. (2008), Sandrim et al. (2010), Serrano et al. (2004), Sharma et al. (2011), Singh et al. (2010), Tempfer et al. (2004), Turan et al. (2010), Yaghmaei et al. (2011), Yoshimura et al. (2000), Yoshimura et al. (2003), Zdoukopoulos et al. (2011)
SERPINE I	
rs 799889	Dalmaz et al. (2006), De Maat et al. (2004), Fabbro et al. (2003), Gerhardt et al. (2005), Hakli et al. (2003), Kankova et al. (2000) Larciprete et al. (2007), Morrison et al. (2002), Pegoraro et al. (2003), Tempfer et al. (2004), Yamada et al. (2000)
TLR4	
rs4986790	Franchim et al. (2011), Molvarec et al. (2008a, b, c), van Rijn et al. (2008), Xie et al. (2010)
rs4986791	Molvarec et al. (2008a, b, c), van Rijn et al. (2008), Xie et al. (2010)
TNF-alpha	
rs 800629	Canto-Cetina et al. (2007), Chen et al. (1996), Daher et al. (2006), de Lima et al. (2009), Dizon-Townson et al. (1998), Freeman et al. (2004), Haggerty et al. (2005), Kaiser et al. (2004), Levesque et al. (2004), Mirahmadian et al. (2008), Molvarec et al. (2008a, b, c) Pazarbasi et al. (2007), Saarela et al. (2005), Stonek et al. (2008a, b), Vural et al. (2010)
rs1799724	Canto-Cetina et al. (2007), Heiskanen et al. (2002), Pazarbasi et al. (2007)
VEGF	
rs3025039	Kim et al. (2008), Papazoglou et al. (2004), Shim et al. (2007)

[†]Similar control group to another article (Kupferminc et al., 2000); this and the subsequent citation (Kupferminc et al., 2000) are considered to be one dataset.

increase the conversion of angiotensin I into angiotensin II, thus affecting the regulation of blood pressure and blood volume.

Pre-eclampsia is associated with an exaggerated maternal inflammatory response. Therefore, various candidate genes involved in inflammation have been studied in the setting of pre-eclampsia; only one genetic variant in *CTLA-4* remained associated with pre-eclampsia after our meta-analysis. No previous meta-analysis of this variant in the setting of pre-eclampsia has been published to date. CTLA-4 plays an important role in the negative regulation of T-cell proliferation and activation. The G allele of *CTLA4* rs231775 is associated with reduced surface expression of CTLA-4, possibly leading to increased T-cell proliferation and activation (Teft *et al.*, 2006; Sun *et al.*, 2008). Carrying the G allele of *CTLA-4* could contribute to the maternal inflammatory response, thereby increasing the risk of developing pre-eclampsia.

With respect to genes involved in lipid metabolism, one variant in *LPL* remained associated with pre-eclampsia following the meta-analysis. No previous meta-analysis of this variant in the setting of pre-eclampsia has been published to date. The G allele of *LPL* rs268 is associated with reduced LPL activity and dyslipidemia (Fisher *et al.*, 1997). Because dyslipidemia can contribute to endothe-lial cell dysfunction, carriers of the G allele may have an increased risk for developing pre-eclampsia (Mayret-Mesquiti *et al.*, 2007).

After meta-analysis, several factors involved in coagulation and fibrinolysis remained associated with pre-eclampsia, which is largely in line with previous meta-analyses (Lin and August, 2005; Dudding *et al.*, 2008). Normal pregnancy is associated with the development of a hypercoagulable, hypofibrinolytic state, which is exaggerated in pre-eclampsia. Thrombophilias can increase the risk of developing preeclampsia via placental thrombosis and effects on both trophoblast growth and differentiation (Isermann *et al.*, 2003). The A allele of *F2* rs1799963 is associated with both higher prothrombin levels and an increased risk of thrombosis (Kyrle *et al.*, 1998; Ceelie *et al.*, 2004). Two variants in *FV* are associated with pre-eclampsia. *FV* rs6025 causes activated protein C resistance and subsequent thrombophilic events. The A allele of *FV* rs6020 is also associated with a weak response to activated protein C (Le *et al.*, 2000) and can therefore cause a predisposition to thrombotic events. The *SERPINE1* gene encodes the plasminogen activator inhibitor I (PAI-1) protein, which is an important inhibitor of fibrinolysis. The 4G allele of *SERPINE1* rs1799889 is associated with elevated plasma levels of PAI-1 (Ye *et al.*, 1995). By increasing the inhibition of fibrinolysis, this genetic variant may contribute to the exaggerated hypercoagulable state that characterizes women with pre-eclampsia.

In accordance to previous meta-analyses, many genetic variants did not remain associated with pre-eclampsia following meta-analysis (Medica *et al.*, 2007; Bombell and McGuire, 2008; Molvarec *et al.*, 2008a, b, c; Xie *et al.*, 2011). Perhaps this is due to the clinical variety of the cases that were included in the studies. Some studies, for instance, included only women with severe pre-eclampsia. It is, however, also likely that there is a true lack of association between pre-eclampsia and these genetic variants. Illustratively, publication bias can lead to the early publication of extreme, promising results, while subsequent (larger) studies often contradict these initial findings (loannidis and Trikalinos, 2005; Healy *et al.*, 2006).

It is important to note that epidemiological studies have revealed a relationship between pre-eclampsia and cardiovascular morbidity and mortality later in life (Jonsdottir *et al.*, 1995; Hannaford *et al.*, 1997;

Irgens et al., 2001; Smith et al., 2001; Rodie et al., 2004). Women who have had pre-eclampsia are more likely to develop cardiovascular disease, and pre-eclampsia and cardiovascular disease share various risk factors, including obesity, hypertension and diabetes (Steegers et al., 2010). Several of the variants that were associated with preeclampsia in this meta-analysis are also identified risk factors for developing cardiovascular disease. For example, the SERPINE1 rs1799889 variant, the FV rs6025 and the F2 rs1799963 variants are all associated with coronary disease (Ye et al., 2006). In addition, carriers of select LPL alleles have an increased risk for developing coronary disease, and the rs268 variant of LPL is associated with adverse lipid profiles (Sagoo et al., 2008). Thus, pre-eclampsia and cardiovascular disease have shared genetic risk factors as well as overlapping environmental risk factors. The presence of genetic variants may contribute to the increased risk of cardiovascular disease among women who have a history of pre-eclampsia. It would be interesting to investigate whether a combination of environmental and genetic risk factors can predict what women with pre-eclampsia will be more likely to develop cardiovascular disease later in life. In this way, preventive strategies that are tailored to the individual patient could be developed.

Our meta-analysis included only genetic variants that were associated with pre-eclampsia and for which independent replication was available. This approach has been described previously (Mooyaart et al., 2011) and aims to reduce the likelihood of reporting false-positive associations. However, by selecting only the genetic variants that are reproducibly associated with pre-eclampsia, genetic variants with smaller effect sizes might have been overlooked. For example, when variants were described in small studies that individually lacked sufficient power to detect modest effects, pooling these studies may have resulted in a significant association. Publication bias is an issue for concern in all meta-analyses. Studies yielding negative results are less likely to be published; as a result, authors might only report those associations that reach statistical significance, thereby omitting non-significant genetic associations. Together, these publication biases could result in an overrepresentation of significant effects. Therefore, the effect estimates that are reported in this study should be interpreted with caution, particularly when associations were based on a small number of studies and/or relatively small groups of participants. In addition, small-study bias may have affected the outcomes of this meta-analysis. Small-study bias is a form of bias in which small studies regarding gene-disease associations report genetic effects that are not found—or are found at a much smaller magnitude-in larger studies. In addition to pre-eclampsia (Serrano et al., 2006), evidence for small-study bias has previously been reported with respect to both neurological and cardiovascular diseases (Keavney et al., 2000; Healy et al., 2006). When many small studies that report false-positive associations are pooled in a meta-analysis, conclusions drawn from that meta-analysis are likely to be unreliable. Therefore, results that are drawn from meta-analyses in which there is evidence of small-study bias should be interpreted with caution. To investigate whether small-study bias played a role in our analyses, we subdivided the studies based on the number of cases and performed a stratified analysis. We found that the ACE rs4646994 variant appeared to be subject to small-study bias. The rs6020 variant in FV was reported in only two studies; therefore, no study size-based analysis was performed for this variant. For the remaining variants, no change-or only a slight change-in effect estimates was observed with increasing study size.

Moreover, it is important to note that in this study, the genes with the largest effects were generally associated with wider confidence intervals, suggesting greater uncertainty in their effect estimates.

Because the precise etiology of pre-eclampsia remains unknown, effective strategies for preventing and treating pre-eclampsia are currently lacking. The identification of genetic variants associated with pre-eclampsia susceptibility can lead to novel biological insights (McCarthy et al., 2008) and result in new targets for the prevention and treatment of pre-eclampsia. However, in order to prevent (smallstudy) bias, genetic association studies should preferably be performed using large (multi-center) cohorts. Furthermore, most genes that were studied in the setting of pre-eclampsia were investigated because they were previously shown to be involved in hypertension or cardiovascular disease. An alternate method for identifying new susceptibility genes is to use a hypothesis-free approach such as genome-wide association studies. In addition, next-generation sequencing-which allows the sequencing of DNA at unprecedented speeds-may identify rare causal variants that are associated with pre-eclampsia. Aside from searching for novel susceptibility genes, future studies should also focus on assessing the relevance of previously detected and reproduced genetic variants.

In summary, this meta-analysis identified seven genetic variants in or near six different genes that are associated with pre-eclampsia. These genetic variants are likely to represent true associations. Moreover, this is the first study to report that pre-eclampsia and cardiovascular disease have genetic risk factors in common. Further studies investigating the relative contribution of these variants and the mechanisms by which they affect the risk of developing pre-eclampsia are warranted.

Supplementary data

Supplementary data are available at http://humupd.oxfordjournals.org/.

Authors' roles

A.J.B.: study concept and design, acquisition of data, data analysis, interpretation of data, drafting the manuscript, final approval of the manuscript. R.J.T.: acquisition of data, final approval of the manuscript. J.H.M.D: acquisition of data, data analysis, final approval of the manuscript. A.L.M.: study concept and design, critically reviewing the manuscript, final approval of the manuscript. J.W.S.: optimize search strategy, perform database searches. J.A.B.: critically reviewing the manuscript, final approval of the manuscript. K.W.M.B.: interpretation of data, critically reviewing the manuscript, final approval of the manuscript. O.M.D.: study concept and design, interpretation of data, critically reviewing the manuscript, final approval of the manuscript. study concept and design, interpretation of data, critically reviewing the manuscript, final approval of the manuscript. J.J.B.:

References

- Aggarwal PK, Jain V, Jha V. Endothelial nitric oxide synthase, angiotensin-converting enzyme and angiotensinogen gene polymorphisms in hypertensive disorders of pregnancy. *Hypertens* Res 2010;**33**:473–477.
- Aggarwal S, Dimri N, Tandon I, Agarwal S. Preeclampsia in North Indian women: the contribution of genetic polymorphisms. J Obstet Gynaecol Res 2011; 37:1335–1341.

- Agorastos T, Karavida A, Lambropoulos A, Constantinidis T, Tzitzimikas S, Chrisafi S, Saravelos H, Vavilis D, Kotsis A, Bontis J. Factor V Leiden and prothrombin G20210A mutations in pregnancies with adverse outcome. *J Matern Fetal Neonatal Med* 2002;**12**:267–273.
- Akbar SA, Khawaja NP, Brown PR, Tayyeb R, Bamfo J, Nicolaides KH. Angiotensin II type I and 2 receptors gene polymorphisms in pre-eclampsia and normal pregnancy in three different populations. Acta Obstet Gynecol Scand 2009; 88:606-611.
- Alfirevic Z, Mousa HA, Martlew V, Briscoe L, Perez-Casal M, Toh CH. Postnatal screening for thrombophilia in women with severe pregnancy complications. *Obstet Gynecol* 2001;**97**:753–759.
- Al-Habboubi HH, Sater MS, Almawi AW, Al-Khateeb GM, Almawi WY. Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population. *Eur Cytokine Netw* 2011;**22**:154–158.
- Also-Rallo E, Lopez-Quesada E, Urreizti R, Vilaseca MA, Lailla JM, Balcells S, Grinberg D. Polymorphisms of genes involved in homocysteine metabolism in preeclampsia and in uncomplicated pregnancies. *Eur J Obstet Gynecol Reprod Biol* 2005;**120**:45–52.
- Arngrimsson R, Bjornsson S, Geirsson RT, Bjornsson H, Walker JJ, Snaedal G. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. Br J Obstet Gynaecol 1990;97:762–769.
- Balam-Ortiz E, Esquivel-Villarreal A, Alfaro-Ruiz L, Carrillo K, Elizalde A, Gil T, Urushihara M, Kobori H, Jimenez-Sanchez G. Variants and haplotypes in angiotensinogen gene are associated with plasmatic angiotensinogen level in Mexican population. Am J Med Sci 2011;342:205–211.
- Bashford MT, Hefler LA, Vertrees TW, Roa BB, Gregg AR. Angiotensinogen and endothelial nitric oxide synthase gene polymorphisms among Hispanic patients with preeclampsia. *Am J Obstet Gynecol* 2001;**184**:1345–1350.
- Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. Br Med J 2007;335:974.
- Belo L, Gaffney D, Caslake M, Santos-Silva A, Pereira-Leite L, Quintanilha A, Rebelo I. Apolipoprotein E and cholesteryl ester transfer protein polymorphisms in normal and preeclamptic pregnancies. *Eur J Obstet Gynecol Reprod Biol* 2004;112:9–15.
- Benedetto C, Marozio L, Salton L, Maula V, Chieppa G, Massobrio M. Factor V Leiden and factor II G20210A in preeclampsia and HELLP syndrome. Acta Obstet Gynecol Scand 2002;81:1095–1100.
- Benedetto C, Marozio L, Ciccone G, Chieppa G, Quaglia M, Matullo G, Bertola L, Guarrera S, Carturan S, Stratta P. Synergistic effect of renin–angiotensin system and nitric oxide synthase genes polymorphisms in pre-eclampsia. Acta Obstet Gynecol Scand 2007;86:678–682.
- Bernard N, Girouard J, Forest JC, Giguere Y. The combination of ApoCIII, hepatic lipase and hormono sensitive lipase gene polymorphisms suggests an association with susceptibility to gestational hypertension. J Hum Genet 2007; 52:244–254.
- Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de RH, van der Velden PA, Reitsma PH. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994;369:64–67.
- Best LG, Dorsam ST, Nadeau M, Burd L, Anderson CM. Genetic thrombophilia variants and risk for preeclampsia among American Indians. *Hypertens Pregnancy* 2009;28:85–94.
- Best LG, Nadeau M, Bercier S, Dauphinais S, Davis J, Davis K, Poitra S, Anderson CM. Genetic variants, endothelial function, and risk of preeclampsia among American Indians. *Hypertens Pregnancy* 2010.
- Best LG, Nadeau M, Davis K, Lamb F, Bercier S, Anderson CM. Genetic variants, immune function, and risk of pre-eclampsia among American Indians. Am J Reprod Immunol 2012;67:152–159.
- Bombell S, McGuire W. Tumour necrosis factor (-308A) polymorphism in pre-eclampsia: meta-analysis of 16 case-control studies. Aust N Z J Obstet Gynaecol 2008;48:547–551.
- Bouba I, Makrydimas G, Kalaitzidis R, Lolis DE, Siamopoulos KC, Georgiou I. Interaction between the polymorphisms of the renin–angiotensin system in preeclampsia. *Eur J Obstet Gynecol Reprod Biol* 2003;**110**:8–11.
- Brown MA, Lindheimer MD, de SM, Van AA, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). *Hypertens Pregnancy* 2001;**20**:IX–XIV.

- Canto P, Canto-Cetina T, Juarez-Velazquez R, Rosas-Vargas H, Rangel-Villalobos H, Canizales-Quinteros S, Velazquez-Wong AC, Villarreal-Molina MT, Fernandez G, Coral-Vazquez R. Methylenetetrahydrofolate reductase C677T and glutathione S-transferase PI A313G are associated with a reduced risk of preeclampsia in Maya–Mestizo women. *Hypertens* Res 2008;**31**:1015–1019.
- Canto-Cetina T, Canizales-Quinteros S, de la Chesnaye E, Coral-Vazquez R, Mendez JP, Canto P. Analysis of C-850T and G-308A polymorphisms of the tumor necrosis factor-alpha gene in Maya–Mestizo women with preeclampsia. *Hypertens Pregnancy* 2007;**26**:283–291.
- Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL. G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3'-end formation. J Thromb Haemost 2004;**2**:119–127.
- Chappell S, Morgan L. Searching for genetic clues to the causes of pre-eclampsia. *Clin Sci (Lond)* 2006;**110**:443–458.
- Chen G, Wilson R, Wang SH, Zheng HZ, Walker JJ, McKillop JH. Tumour necrosis factor-alpha (TNF-alpha) gene polymorphism and expression in pre-eclampsia. *Clin Exp Immunol* 1996;**104**:154–159.
- Chen LK, Huang CH, Yeh HM, Lee CN, Shyu MK, Hsieh FJ, Lai LP, Sun WZ. Polymorphisms in the endothelial nitric oxide synthase gene may be protective against preeclampsia in a Chinese population. *Reprod Sci* 2007;14:175–181.
- Chesley LC, Cooper DW. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclamptic women. *Br J Obstet Gynaecol* 1986;**93**:898–908.
- Chikosi AB, Moodley J, Pegoraro RJ, Lanning PA, Rom L. 5,10-Methylenetetrahydrofolate reductase polymorphism in black South African women with pre-eclampsia. *Br J Obstet Gynaecol* 1999;**106**:1219–1220.
- Chikosi AB, Moodley J, Pegoraro RJ, Lanning PA, Rom L. Apolipoprotein E polymorphism in South African Zulu women with preeclampsia. *Hypertens Pregnancy* 2000;**19**:309–314.
- Choi H, Kang JY, Yoon HS, Han SS, Whang CS, Moon IG, Shin HH, Park JB. Association of angiotensin-converting enzyme and angiotensinogen gene polymorphisms with preeclampsia. J Korean Med Sci 2004;19:253–257.
- Cincotta RB, Brennecke SP. Family history of pre-eclampsia as a predictor for pre-eclampsia in primigravidas. *Int J Gynaecol Obstet* 1998;**60**:23-27.
- Currie L, Peek M, McNiven M, Prosser I, Mansour J, Ridgway J. Is there an increased maternal-infant prevalence of Factor V Leiden in association with severe pre-eclampsia? *BJOG* 2002;**109**:191–196.
- Daher S, Sass N, Oliveira LG, Mattar R. Cytokine genotyping in preeclampsia. Am J Reprod Immunol 2006;55:130–135.
- Dalmaz CA, Santos KG, Botton MR, Tedoldi CL, Roisenberg I. Relationship between polymorphisms in thrombophilic genes and preeclampsia in a Brazilian population. *Blood Cells Mol Dis* 2006;**37**:107–110.
- Davalos IP, Moran MC, Martinez-Abundis E, Gonzalez-Ortiz M, Flores-Martinez SE, Machorro V, Sandoval L, Figuera LE, Mena JP, Oliva JM *et al.* Methylenetetrahydrofolate reductase C677T polymorphism and Factor V Leiden variant in Mexican women with preeclampsia/eclampsia. *Blood Cells Mol Dis* 2005;**35**:66–69.
- de Groot CJ, Bloemenkamp KW, Duvekot EJ, Helmerhorst FM, Bertina RM, Van Der Meer F, De RH, Oei SG, Kanhai HH, Rosendaal FR. Preeclampsia and genetic risk factors for thrombosis: a case-control study. Am J Obstet Gynecol 1999;181:975-980.
- de Groot CJ, Jansen MW, Bertina RM, Schonkeren JJ, Helmerhorst FM, Huizinga TW. Interleukin 10-2849AA genotype protects against pre-eclampsia. *Genes Immun* 2004;**5**:313–314.
- de Lima TH, Sass N, Mattar R, Moron AF, Torloni MR, Franchim CS, Daher S. Cytokine gene polymorphisms in preeclampsia and eclampsia. *Hypertens Res* 2009;**32**:565–569.
- De Maat MP, Jansen MW, Hille ET, Vos HL, Bloemenkamp KW, Buitendijk S, Helmerhorst FM, Wladimiroff JW, Bertina RM, de Groot CJ. Preeclampsia and its interaction with common variants in thrombophilia genes. J Thromb Haemost 2004;2:1588–1593.
- Demir SC, Evruke C, Ozgunen T, Kadayifci O, Altintas U, Kokangul S. The relationship between pregnancy induced hypertension and congenital thrombophilia. *Saudi Med J* 2006;**27**:1161–1166.
- Diaz-Olguin L, Coral-Vazquez RM, Canto-Cetina T, Canizales-Quinteros S, Ramirez RB, Fernandez G, Canto P. Endothelial nitric oxide synthase haplotypes are associated with preeclampsia in Maya mestizo women. *Dis Markers* 2011;**31**:83–89.

- Dissanayake VH, Giles V, Jayasekara RW, Seneviratne HR, Kalsheker N, Broughton PF, Morgan L. A study of three candidate genes for pre-eclampsia in a Sinhalese population from Sri Lanka. *J Obstet Gynaecol Res* 2009;**35**:234–242.
- Dizon-Townson DS, Nelson LM, Easton K, Ward K. The factor V Leiden mutation may predispose women to severe preeclampsia. Am J Obstet Gynecol 1996; 175:902–905.
- Dizon-Townson DS, Major H, Ward K. A promoter mutation in the tumor necrosis factor alpha gene is not associated with preeclampsia. J Reprod Immunol 1998; 38:55–61.
- Dogan OO, Simsek Y, Celen S, Danisman N. Frequency of hereditary thrombophilia, anticoagulant activity, and homocysteine levels in patients with hemolysis, elevated liver functions and low thrombocyte count (HELLP) syndrome. J Obstet Gynaecol Res 2011;37:527–533.
- Dudding T, Heron J, Thakkinstian A, Nurk E, Golding J, Pembrey M, Ring SM, Attia J, Scott RJ. Factor V Leiden is associated with pre-eclampsia but not with fetal growth restriction: a genetic association study and meta-analysis. J Thromb Haemost 2008;6:1869–1875.
- Dusse LM, Carvalho MG, Braganca WF, Paiva SG, Godoi LC, Guimaraes DA, Fernandes AP. Inherited thrombophilias and pre-eclampsia in Brazilian women. *Eur J Obstet Gynecol Reprod Biol* 2007;**134**:20–23.
- Esplin MS, Fausett MB, Fraser A, Kerber R, Mineau G, Carrillo J, Varner MW. Paternal and maternal components of the predisposition to preeclampsia. *N Engl J Med* 2001;**344**:867–872.
- Fabbro D, D'Elia AV, Spizzo R, Driul L, Barillari G, di LC, Marchesoni D, Damante G. Association between plasminogen activator inhibitor I gene polymorphisms and preeclampsia. *Gynecol Obstet Invest* 2003;**56**:17–22.
- Faisel F, Romppanen EL, Hiltunen M, Helisalmi S, Laasanen J, Punnonen K, Salonen JT, Heinonen S. Susceptibility to pre-eclampsia in Finnish women is associated with R485K polymorphism in the factor V gene, not with Leiden mutation. *Eur J Hum Genet* 2004;**12**:187–191.
- Fatini C, Sticchi E, Gensini F, Genuardi M, Tondi F, Gensini GF, Riviello C, Parretti E, Mello G, Abbate R. Endothelial nitric oxide synthase gene influences the risk of pre-eclampsia, the recurrence of negative pregnancy events, and the maternal-fetal flow. J Hypertens 2006;**24**:1823–1829.
- Fisher RM, Humphries SE, Talmud PJ. Common variation in the lipoprotein lipase gene: effects on plasma lipids and risk of atherosclerosis. *Atherosclerosis* 1997; 135:145–159.
- Franchim CS, Sass N, Mattar R, Pendeloski KP, Lin LH, Torloni MR, Daher S. Inflammatory mediators gene polymorphisms in preeclampsia. *Hypertens Pregnancy* 2011;30:338–346.
- Francoual J, Audibert F, Trioche P, Chalas J, Capel L, Lindenbaum A, Labrune P, Frydman R. Is a polymorphism of the apolipoprotein E gene associated with preeclampsia? *Hypertens Pregnancy* 2002;**21**:127–133.
- Freeman DJ, McManus F, Brown EA, Cherry L, Norrie J, Ramsay JE, Clark P, Walker ID, Sattar N, Greer IA. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. *Hypertension* 2004; 44:708–714.
- Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den HM, Kluijtmans LA, van den Heuvel LP. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. *Nat Genet* 1995;10:111–113.
- Galao AO, de Souza LH, da Costa BE, Scheibe RM, Poli de Figueiredo CE. Angiotensin-converting enzyme gene polymorphism in preeclampsia and normal pregnancy. *Am J Obstet Gynecol* 2004;**191**:821–824.
- Gerhardt A, Goecke TW, Beckmann MW, Wagner KJ, Tutschek B, Willers R, Bender HG, Scharf RE, Zotz RB. The G20210A prothrombin-gene mutation and the plasminogen activator inhibitor (PAI-1) 5G/5G genotype are associated with early onset of severe preeclampsia. J Thromb Haemost 2005; 3:686–691.
- Grandone E, Margaglione M, Colaizzo D, Cappucci G, Scianname N, Montanaro S, Paladini D, Martinelli P, Di MG. Prothrombotic genetic risk factors and the occurrence of gestational hypertension with or without proteinuria. *Thromb Haemost* 1999;81:349–352.
- Grandone E, Colaizzo D, Martinelli P, Pavone G, Errico M, Vecchione G, Margaglione M. Does endothelial nitric oxide synthase gene variation play a role in the occurrence of hypertension in pregnancy? *Hypertens Pregnancy* 2003; 22:149–155.

- Guo G, Wilton AN, Fu Y, Qiu H, Brennecke SP, Cooper DW. Angiotensinogen gene variation in a population case–control study of preeclampsia/eclampsia in Australians and Chinese. *Electrophoresis* 1997;**18**:1646–1649.
- Gurdol F, Isbilen E, Yilmaz H, Isbir T, Dirican A. The association between preeclampsia and angiotensin-converting enzyme insertion/deletion polymorphism. *Clin Chim Acta* 2004;**341**:127–131.
- Haggerty CL, Ferrell RE, Hubel CA, Markovic N, Harger G, Ness RB. Association between allelic variants in cytokine genes and preeclampsia. Am J Obstet Gynecol 2005;193:209–215.
- Hakli T, Romppanen EL, Hiltunen M, Helisalmi S, Punnonen K, Heinonen S. Endothelial nitric oxide synthase polymorphism in preeclampsia. *J Soc Gynecol Investig* 2003;**10**:154–157.
- Hannaford P, Ferry S, Hirsch S. Cardiovascular sequelae of toxaemia of pregnancy. Heart 1997;**77**:154–158.
- Healy DG, Abou-Sleiman PM, Casas JP, Ahmadi KR, Lynch T, Gandhi S, Muqit MM, Foltynie T, Barker R, Bhatia KP et al. UCHL-1 is not a Parkinson's disease susceptibility gene. Ann Neurol 2006;59:627–633.
- Heiskanen JT, Pirskanen MM, Hiltunen MJ, Mannermaa AJ, Punnonen KR, Heinonen ST. Insertion-deletion polymorphism in the gene for angiotensin-converting enzyme is associated with obstetric cholestasis but not with preeclampsia. Am J Obstet Gynecol 2001;185:600–603.
- Heiskanen J, Romppanen EL, Hiltunen M, livonen S, Mannermaa A, Punnonen K, Heinonen S. Polymorphism in the tumor necrosis factor-alpha gene in women with preeclampsia. J Assist Reprod Genet 2002;19:220–223.
- Higgins JR, Kaiser T, Moses EK, North R, Brennecke SP. Prothrombin G20210A mutation: is it associated with pre-eclampsia? *Gynecol Obstet Invest* 2000; 50:254–257.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J 2003;327:557–560.
- Hill LD, York TP, Kusanovic JP, Gomez R, Eaves LJ, Romero R, Strauss JF III. Epistasis between COMT and MTHFR in maternal-fetal dyads increases risk for preeclampsia. *PLoS One* 2011;6:e16681.
- Hiltunen LM, Laivuori H, Rautanen A, Kaaja R, Kere J, Krusius T, Paunio M, Rasi V. Blood group AB and factor V Leiden as risk factors for pre-eclampsia: a population-based nested case-control study. *Thromb Res* 2009;**124**:167–173.
- Hubel CA, Roberts JM, Ferrell RE. Association of pre-eclampsia with common coding sequence variations in the lipoprotein lipase gene. *Clin Genet* 1999; 56:289–296.
- Ioannidis JP, Trikalinos TA. Early extreme contradictory estimates may appear in published research: the Proteus phenomenon in molecular genetics research and randomized trials. J Clin Epidemiol 2005;58:543–549.
- Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001;29:306–309.
- Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. *Br Med J* 2001; **323**:1213–1217.
- Isermann B, Sood R, Pawlinski R, Zogg M, Kalloway S, Degen JL, Mackman N, Weiler H. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. *Nat Med* 2003;9:331–337.
- Jaaskelainen E, Keski-Nisula L, Toivonen S, Romppanen EL, Helisalmi S, Punnonen K, Heinonen S. MTHFR C677T polymorphism is not associated with placental abruption or preeclampsia in Finnish women. *Hypertens Pregnancy* 2006; 25:73–80.
- Jaaskelainen E, Toivonen S, Keski-Nisula L, Paattiniemi EL, Helisalmi S, Punnonen K, Heinonen S. CTLA-4 polymorphism 49A-G is associated with placental abruption and preeclampsia in Finnish women. *Clin Chem Lab Med* 2008;46:169–173.
- Jarvenpaa J, Pakkila M, Savolainen ER, Perheentupa A, Jarvela I, Ryynanen M. Evaluation of factor V Leiden, prothrombin and methylenetetrahydrofolate reductase gene mutations in patients with severe pregnancy complications in northern Finland. *Gynecol Obstet Invest* 2006;**62**:28–32.
- Jenkins LD, Powers RW, Cooper M, Gallaher MJ, Markovic N, Ferrell R, Ness RB, Roberts JM. Preeclampsia risk and angiotensinogen polymorphisms M235T and AGT -217 in African American and Caucasian women. *Reprod Sci* 2008; 15:696–701.
- Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM. Molecular basis of human hypertension: role of angiotensinogen. *Cell* 1992;**71**:169–180.

- Jonsdottir LS, Arngrimsson R, Geirsson RT, Sigvaldason H, Sigfusson N. Death rates from ischemic heart disease in women with a history of hypertension in pregnancy. *Acta Obstet Gynecol Scand* 1995;**74**:772–776.
- Kaiser T, Brennecke SP, Moses EK. C677T methylenetetrahydrofolate reductase polymorphism is not a risk factor for pre-eclampsia/eclampsia among Australian women. *Hum Hered* 2001;**51**:20–22.
- Kaiser T, Grehan M, Brennecke SP, Moses EK. Association of the TNF2 allele with eclampsia. *Gynecol Obstet Invest* 2004;**57**:204–209.
- Kamali-Sarvestani E, Kiany S, Gharesi-Fard B, Robati M. Association study of IL-10 and IFN-gamma gene polymorphisms in Iranian women with preeclampsia. *J Reprod Immunol* 2006;**72**:118–126.
- Kankova K, Benes P, Unzeitig V, Izakovicova-Holla L, Znojil V, Vacha J. Lack of association between pregnancy-induced hypertension and familial thrombophilia in a Czech population. *Prenat Neonatal Med* 2000;**5**:223–229.
- Karakantza M, Androutsopoulos G, Mougiou A, Sakellaropoulos G, Kourounis G, Decavalas G. Inheritance and perinatal consequences of inherited thrombophilia in Greece. *Int J Gynecol Obstet* 2008;**100**:124–129.
- Karimi S, Yavarian M, Azinfar A, Rajaei M, Kootenaee MA. Evaluation the frequency of factor V Leiden mutation in pregnant women with preeclampsia syndrome in an Iranian population. *Iran J Reprod Med* 2012;10:59–66.
- Kaur R, Jain V, Khuller M, Gupta I, Sherawat BS. Association of angiotensinconverting enzyme gene polymorphism with pregnancy-induced hypertension. *Acta Obstet Gynecol Scand* 2005;84:929–933.
- Keavney B, McKenzie C, Parish S, Palmer A, Clark S, Youngman L, Delepine M, Lathrop M, Peto R, Collins R. Large-scale test of hypothesised associations between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. International Studies of Infarct Survival (ISIS) Collaborators. *Lancet* 2000; **355**:434–442.
- Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002;347:185-192.
- Kim YJ, Williamson RA, Chen K, Smith JL, Murray JC, Merrill DC. Lipoprotein lipase gene mutations and the genetic susceptibility of preeclampsia. *Hypertension* 2001a; 38:992–996.
- Kim YJ, Williamson RA, Murray JC, Andrews J, Pietscher JJ, Peraud PJ, Merrill DC. Genetic susceptibility to preeclampsia: roles of cytosineto-thymine substitution at nucleotide 677 of the gene for methylenetetrahydrofolate reductase, 68-base pair insertion at nucleotide 844 of the gene for cystathionine beta-synthase, and factor V Leiden mutation. *Am J Obstet Gynecol* 2001b; 184:1211–1217.
- Kim YJ, Park HS, Lee HY, Ha EH, Suh SH, Oh SK, Yoo HS. Reduced L-arginine level and decreased placental eNOS activity in preeclampsia. *Placenta* 2006; 27:438–444.
- Kim YJ, Park BH, Park H, Jung SC, Pang MG, Ryu HM, Lee KS, Eom SM, Park HY. No association of the genetic polymorphisms of endothelial nitric oxide synthase, dimethylarginine dimethylaminohydrolase, and vascular endothelial growth factor with preeclampsia in Korean populations. *Twin Res Hum Genet* 2008; 11:77–83.
- Klai S, Fekih-Mrissa N, El HS, Kaabechi N, Nsiri B, Rachdi R, Gritli N. Association of MTHFR A1298C polymorphism (but not of MTHFR C677T) with elevated homocysteine levels and placental vasculopathies. *Blood Coagul Fibrinolysis* 2011; 22:374–378.
- Knyrim E, Muetze S, Eggermann T, Rudnik-Schoeneborn S, Lindt R, Ortlepp JR, Rath W, Zerres K. Genetic analysis of the angiotensinogen gene in pre-eclampsia: study of german women and review of the literature. *Gynecol Obstet Invest* 2008;**66**:203–208.
- Kobashi G, Hata A, Shido K, Kato EH, Yamada H, Fujimoto S, Kishi R, Kondo K. Association of a variant of the angiotensinogen gene with pure type of hypertension in pregnancy in the Japanese: implication of a racial difference and significance of an age factor. *Am J Med Genet* 1999;**86**:232–236.
- Kobashi G, Yamada H, Asano T, Nagano S, Hata A, Kishi R, Fujimoto S, Kondo K. Absence of association between a common mutation in the methylenetetrahydrofolate reductase gene and preeclampsia in Japanese women. Am J Med Genet 2000;93:122–125.
- Kobashi G, Yamada H, Ohta K, Kato E, Ebina Y, Fujimoto S. Endothelial nitric oxide synthase gene (NOS3) variant and hypertension in pregnancy. *Am J Med Genet* 2001;**103**:241–244.

- Kobashi G, Hata A, Shido K, Ohta K, Yamada H, Kato EH, Minakami H, Tamashiro H, Fujimoto S, Kondo K. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene and preeclampsia in Japanese patients. *Semin Thromb Hemost* 2005;**31**:346–350.
- Kroeger KM, Carville KS, Abraham LJ. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. *Mol Immunol* 1997;**34**:391–399.
- Kupferminc MJ, Eldor A, Steinman N, Many A, Bar-Am A, Jaffa A, Fait G, Lessing JB. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med 1999;340:9–13.
- Kupferminc MJ, Fait G, Many A, Gordon D, Eldor A, Lessing JB. Severe preeclampsia and high frequency of genetic thrombophilic mutations. *Obstet Gynecol* 2000a; 96:45–49.
- Kupferminc MJ, Peri H, Zwang E, Yaron Y, Wolman I, Eldor A. High prevalence of the prothrombin gene mutation in women with intrauterine growth retardation, abruptio placentae and second trimester loss. *Acta Obstet Gynecol Scand* 2000b; **79**:963–967.
- Kyrle PA, Mannhalter C, Beguin S, Stumpflen A, Hirschl M, Weltermann A, Stain M, Brenner B, Speiser W, Pabinger I et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler Thromb Vasc Biol 1998;18:1287–1291.
- Laivuori H, Kaaja R, Ylikorkala O, Hiltunen T, Kontula K. 677 C->T polymorphism of the methylenetetrahydrofolate reductase gene and preeclampsia. *Obstet Gynecol* 2000;**96**:277–280.
- Landau R, Xie HG, Dishy V, Wood AJ, Stein CM, Smiley RM. No association of the Asp298 variant of the endothelial nitric oxide synthase gene with preeclampsia. *Am J Hypertens* 2004;**17**:391–394.
- Larciprete G, Gioia S, Angelucci PA, Brosio F, Barbati G, Angelucci GP, Frigo MG, Baiocco F, Romanini ME, Arduini D et al. Single inherited thrombophilias and adverse pregnancy outcomes. J Obstet Gynaecol Res 2007;33:423–430.
- Le W, Yu JD, Lu L, Tao R, You B, Cai X, Cao WJ, Huang W, He RM, Zhu DL et al. Association of the R485K polymorphism of the factor V gene with poor response to activated protein C and increased risk of coronary artery disease in the Chinese population. *Clin Genet* 2000;**57**:296–303.
- Levesque S, Moutquin JM, Lindsay C, Roy MC, Rousseau F. Implication of an AGT haplotype in a multigene association study with pregnancy hypertension. *Hypertension* 2004;**43**:71–78.
- Li H, Ma Y, Fu Q, Wang L. Angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensin II type I receptor (ATIR) gene polymorphism and its association with preeclampsia in Chinese women. *Hypertens Pregnancy* 2007; **26**:293–301.
- Lin J, August P. Genetic thrombophilias and preeclampsia: a meta-analysis. *Obstet Gynecol* 2005;105:182-192.
- Lin S, Huiya Z, Bo L, Wei W, Yongmei G. The plasminogen activator inhibitor-I (PAI-1) gene -844 A/G and -675 4G/5G promoter polymorphism significantly influences plasma PAI-I levels in women with polycystic ovary syndrome. *Endocrine* 2009;**36**:503–509.
- Lindoff C, Ingemarsson I, Martinsson G, Segelmark M, Thysell H, Astedt B. Preeclampsia is associated with a reduced response to activated protein C. *Am J Obstet Gynecol* 1997;**176**:457–460.
- Livingston JC, Barton JR, Park V, Haddad B, Phillips O, Sibai BM. Maternal and fetal inherited thrombophilias are not related to the development of severe preeclampsia. *Am J Obstet Gynecol* 2001;**185**:153–157.
- Malek-Khosravi S, Rahimi Z, Jalilvand F, Parsian A. Thrombophilic mutations and susceptibility to preeclapmsia in Western Iran. J Thromb Thrombolysis 2011.
- Mando C, Antonazzo P, Tabano S, Zanutto S, Pileri P, Somigliana E, Colleoni F, Martinelli A, Zolin A, Benedetto C et al. Angiotensin-converting enzyme and adducin-1 polymorphisms in women with preeclampsia and gestational hypertension. Reprod Sci 2009;16:819–826.
- Mayret-Mesquiti M, Perez-Mendez O, Rodriguez ME, Fortoul TI, Gorocica P, Bernal-Alcantara D, Montano LF, Alvarado-Vasquez N. Hypertriglyceridemia is linked to reduced nitric oxide synthesis in women with hypertensive disorders of pregnancy. *Hypertens Pregnancy* 2007;**26**:423–431.
- McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. *Nat Rev Genet* 2008;**9**:356–369.
- Medica I, Kastrin A, Peterlin B. Genetic polymorphisms in vasoactive genes and preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2007; 131:115–126.

- Mello G, Parretti E, Martini E, Mecacci F, La TP, Cioni R, Lucchetti R, Fedi S, Gori AM, Pepe G et al. Usefulness of screening for congenital or acquired hemostatic abnormalities in women with previous complicated pregnancies. *Haemostasis* 1999;29:197–203.
- Mello G, Parretti E, Marozio L, Pizzi C, Lojacono A, Frusca T, Facchinetti F, Benedetto C. Thrombophilia is significantly associated with severe preeclampsia: results of a large-scale, case-controlled study. *Hypertension* 2005; 46:1270–1274.
- Mendilcioglu I, Bilgen T, Arikan Y, Keser I, Simsek M, Timuragaoglu A. The association between inherited thrombophilias and pregnancy-related hypertension recurrence. Arch Gynecol Obstet 2011;284:837-841.
- Mirahmadian M, Kalantar F, Heidari G, Safdarian L, Mansouri R, Amirzargar AA. Association of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in Iranian patients with pre-eclampsia. Am J Reprod Immunol 2008;60:179–185.
- Miskovic B, Sertic J, Stavljenic-Rukavina A, Stipoljev F. Association of angiotensin-converting enzyme insertion-deletion polymorphism with preeclampsia. *Coll Antropol* 2008;**32**:339–343.
- Molvarec A, Jermendy A, Kovacs M, Prohaszka Z, Rigo J Jr. Toll-like receptor 4 gene polymorphisms and preeclampsia: lack of association in a Caucasian population. *Hypertens Res* 2008a;**31**:859–864.
- Molvarec A, Jermendy A, Nagy B, Kovacs M, Varkonyi T, Hupuczi P, Prohaszka Z, Rigo J Jr. Association between tumor necrosis factor (TNF)-alpha G-308A gene polymorphism and preeclampsia complicated by severe fetal growth restriction. *Clin Chim Acta* 2008b;**392**:52–57.
- Molvarec A, Jermendy A, Nagy B, Kovacs M, Varkonyi T, Hupuczi P, Prohaszka Z, Rigo J Jr. Association between tumor necrosis factor (TNF)-alpha G-308A gene polymorphism and preeclampsia complicated by severe fetal growth restriction. *Clin Chim Acta* 2008c;**392**:52–57.
- Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ. Genetic associations in diabetic nephropathy: a meta-analysis. *Diabetologia* 2011;**54**:544–553.
- Morgan L, Crawshaw S, Baker PN, Brookfield JF, Broughton PF, Kalsheker N. Distortion of maternal-fetal angiotensin II type I receptor allele transmission in pre-eclampsia. *J Med Genet* 1998;**35**:632–636.
- Morgan L, Crawshaw S, Baker PN, Broughton PF, Kalsheker N. Maternal and fetal angiotensinogen gene allele sharing in pre-eclampsia. Br J Obstet Gynaecol 1999a; 106:244–251.
- Morgan L, Foster F, Hayman R, Crawshaw S, Baker PN, Broughton PF, Kalsheker N. Angiotensin-converting enzyme insertion-deletion polymorphism in normotensive and pre-eclamptic pregnancies. J Hypertens 1999b; 17:765–768.
- Morrison ER, Miedzybrodzka ZH, Campbell DM, Haites NE, Wilson BJ, Watson MS, Greaves M, Vickers MA. Prothrombotic genotypes are not associated with pre-eclampsia and gestational hypertension: results from a large populationbased study and systematic review. *Thromb Haemost* 2002;87:779–785.
- Murphy RP, Donoghue C, Nallen RJ, D'Mello M, Regan C, Whitehead AS, Fitzgerald DJ. Prospective evaluation of the risk conferred by factor V Leiden and thermolabile methylenetetrahydrofolate reductase polymorphisms in pregnancy. Arterioscler Thromb Vasc Biol 2000;20:266–270.
- Nagy B, Rigo J Jr, Fintor L, Karadi I, Toth T. Apolipoprotein E alleles in women with severe pre-eclampsia. J Clin Pathol 1998;51:324–325.
- Nagy B, Hupuczi P, Papp Z. High frequency of methylenetetrahydrofolate reductase 677TT genotype in Hungarian HELLP syndrome patients determined by quantitative real-time PCR. J Hum Hypertens 2007;21:154–158.
- Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, Motoyama T, Saito Y, Ogawa Y, Miyamoto Y et al. T-786–>C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. *Circulation* 1999;**99**:2864–2870.
- Nilsson E, Salonen RH, Cnattingius S, Lichtenstein P. The importance of genetic and environmental effects for pre-eclampsia and gestational hypertension: a family study. *BJOG* 2004;**111**:200–206.
- Nishizawa H, Pryor-Koishi K, Suzuki M, Kato T, Sekiya T, Tada S, Kurahashi H, Udagawa Y. Analysis of nitric oxide metabolism as a placental or maternal factor underlying the etiology of pre-eclampsia. *Gynecol Obstet Invest* 2009; 68:239–247.
- Omar SZ, Qvist R, Khaing SL, Muniandy S, Bhalla S. Thrombophilic mutations in pre-eclampsia and pregnancy-induced hypertension. J Obstet Gynaecol Res 2008; 34:174–178.

- O'Shaughnessy KM, Fu B, Ferraro F, Lewis I, Downing S, Morris NH. Factor V Leiden and thermolabile methylenetetrahydrofolate reductase gene variants in an East Anglian preeclampsia cohort. *Hypertension* 1999;**33**:1338–1341.
- O'Shaughnessy KM, Fu B, Downing S, Morris NH. Thrombophilic polymorphisms in pre-eclampsia: altered frequency of the functional 98C>T polymorphism of glycoprotein IIIa. / Med Genet 2001;**38**:775–777.
- Ozturk E, Balat O, Pehlivan S, Ugur MG, Ozcan C, Sever T, Kul S. Endothelial nitric oxide synthase gene polymorphisms in preeclampsia with or without eclampsia in a Turkish population. *J Obstet Gynaecol Res* 2011.
- Papazoglou D, Galazios G, Koukourakis MI, Panagopoulos I, Kontomanolis EN, Papatheodorou K, Maltezos E. Vascular endothelial growth factor gene polymorphisms and pre-eclampsia. *Mol Hum Reprod* 2004;**10**:321–324.
- Pappa KI, Roubelakis M, Vlachos G, Marinopoulos S, Zissou A, Anagnou NP, Antsaklis A. Variable effects of maternal and paternal-fetal contribution to the risk for preeclampsia combining GSTP1, eNOS, and LPL gene polymorphisms. *J Matern Fetal Neonatal Med* 2011;24:628–635.
- Pazarbasi A, Kasap M, Guzel AI, Kasap H, Onbasioglu M, Ozbakir B, Demirkazik A, Ozgunen FT, Gurtunc E. Polymorphisms in the tumor necrosis factor-alpha gene in Turkish women with pre-eclampsia and eclampsia. *Acta Med Okayama* 2007; 61:153–160.
- Pegoraro RJ, Hira B, Rom L, Moodley J. Plasminogen activator inhibitor type 1 (PAII) and platelet glycoprotein IIIa (PGIIIa) polymorphisms in Black South Africans with pre-eclampsia. Acta Obstet Gynecol Scand 2003;82:313–317.
- Pegoraro RJ, Chikosi A, Rom L, Roberts C, Moodley J. Methylenetetrahydrofolate reductase gene polymorphisms in black South Africans and the association with preeclampsia. Acta Obstet Gynecol Scand 2004;83:449–454.
- Pendeloski KP, Sass N, Torloni MR, Mattar R, Moron AF, Franchim CS, Daher S. Immunoregulatory gene polymorphisms in women with preeclampsia. *Hypertens Res* 2011;**34**:384–388.
- Perez-Mutul J, Gonzalez-Herrera L, Sosa-Cabrera T, Martinez-Olivares R. A mutation in the 5,10-methylenetetrahydrofolate reductase gene is not associated with preeclampsia in women of southeast Mexico. *Arch Med Res* 2004; **35**:231–234.
- Plummer S, Tower C, Alonso P, Morgan L, Baker P, Broughton-Pipkin F, Kalsheker N. Haplotypes of the angiotensin II receptor genes AGTR1 and AGTR2 in women with normotensive pregnancy and women with preeclampsia. *Hum Mutat* 2004;**24**:14–20.
- Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. *Blood* 1996; 88:3698–3703.
- Powers RW, Minich LA, Lykins DL, Ness RB, Crombleholme WR, Roberts JM. Methylenetetrahydrofolate reductase polymorphism, folate, and susceptibility to preeclampsia. J Soc Gynecol Investig 1999;6:74–79.
- Prasmusinto D, Skrablin S, Hofstaetter C, Fimmers R, van dV. The methylenetetrahydrofolate reductase 677 C->T polymorphism and preeclampsia in two populations. *Obstet Gynecol* 2002;**99**:1085–1092.
- Prasmusinto D, Skrablin S, Fimmers R, van dV. Ethnic differences in the association of factor V Leiden mutation and the C677T methylenetetrahydrofolate reductase gene polymorphism with preeclampsia. *Eur J Obstet Gynecol Reprod Biol* 2004; **112**:162–169.
- Procopciuc L, Caracostea G, Iordache G, Olteanu I, Stamatian F. Influence of RAS polymorphisms on the development and perinatal outcome of preeclampsia. Genetic RAS evaluation. *Gineco Ro* 2009;**5**:88–93.
- Procopciuc LM, Caracostea G, Zaharie G, Puscas M, Iordache G, Olteanu I, Stamatian F. Mutant maternal and fetal thrombophilic genotypes as a risk factor for preeclampsia. *Gineco Ro* 2010;**6**:74–81.
- Procopciuc LM, Hazi GM, Caracostea G, Nemeti G, Olteanu I, Stamatian F. Apolipoprotein E polymorphism—a risk factor in Romanian pregnant women with preeclampsia. *Gineco Ro* 2011;**7**:134–140.
- Puthothu B, Bierbaum S, Kopp MV, Forster J, Heinze J, Weckmann M, Krueger M, Heinzmann A. Association of TNF-alpha with severe respiratory syncytial virus infection and bronchial asthma. *Pediatr Allergy Immunol* 2009;20:157–163.
- Rajkovic A, Mahomed K, Rozen R, Malinow MR, King IB, Williams MA. Methylenetetrahydrofolate reductase 677C–>T polymorphism, plasma folate, vitamin B(12) concentrations, and risk of preeclampsia among black African women from Zimbabwe. *Mol Genet Metab* 2000;69:33–39.

- Rallidis LS, Gialeraki A, Merkouri E, Liakos G, Dagres N, Sionis D, Travlou A, Lekakis J, Kremastinos DT. Reduced carriership of 4G allele of plasminogen activator inhibitor-1 4G/5G polymorphism in very young survivors of myocardial infarction. *| Thromb Thrombolysis* 2010;29:497–502.
- Rigo J Jr, Nagy B, Fintor L, Tanyi J, Beke A, Karadi I, Papp Z. Maternal and neonatal outcome of preeclamptic pregnancies: the potential roles of factor V Leiden mutation and 5,10 methylenetetrahydrofolate reductase. *Hypertens Pregnancy* 2000;19:163–172.
- Roberts CB, Rom L, Moodley J, Pegoraro RJ. Hypertension-related gene polymorphisms in pre-eclampsia, eclampsia and gestational hypertension in Black South African women. *J Hypertens* 2004;**22**:945–948.
- Rodie VA, Freeman DJ, Sattar N, Greer IA. Pre-eclampsia and cardiovascular disease: metabolic syndrome of pregnancy? *Atherosclerosis* 2004;**175**:189–202.
- Ruggiero D, Dalmasso C, Nutile T, Sorice R, Dionisi L, Aversano M, Broet P, Leutenegger AL, Bourgain C, Ciullo M. Genetics of VEGF serum variation in human isolated populations of cilento: importance of VEGF polymorphisms. *PLoS One* 2011;6:e16982.
- Saarela T, Hiltunen M, Helisalmi S, Heinonen S, Laakso M. Tumour necrosis factor-alpha gene haplotype is associated with pre-eclampsia. *Mol Hum Reprod* 2005; **11**:437–440.
- Sagoo GS, Tatt I, Salanti G, Butterworth AS, Sarwar N, van Maarle M, Jukema JW, Wiman B, Kastelein JJ, Bennet AM et al. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol 2008; 168:1233–1246.
- Salimi S, Mokhtari M, Yaghmaei M, Jamshidi M, Naghavi A. Association of angiotensin-converting enzyme intron 16 insertion/deletion and angiotensin II type I receptor A1166C gene polymorphisms with preeclampsia in South East of Iran. J Biomed Biotechnol 2011a;2011;941515.
- Salimi S, Naghavi A, Mokhtari M, Noora M, Yaghmaei M. Lack of relationship between endothelial nitric oxide synthase gene 4b/a and T-786C polymorphisms with preeclampsia in southeast of Iran. Arch Gynecol Obstet 2011b.
- Samsami DA, Doroudchi M, Kalantari T, Pezeshki AM, Ghaderi A. Heterozygosity in CTLA-4 gene and severe preeclampsia. *Int J Gynaecol Obstet* 2005;**88**:19–24.
- Sandrim VC, Palei AC, Cavalli RC, Araujo FM, Ramos ES, Duarte G, Tanus-Santos JE. eNOS haplotypes associated with gestational hypertension or preeclampsia. *Pharmacogenomics* 2008;**9**:1467–1473.
- Sandrim VC, Palei AC, Sertorio JT, Cavalli RC, Duarte G, Tanus-Santos JE. Effects of eNOS polymorphisms on nitric oxide formation in healthy pregnancy and in pre-eclampsia. *Mol Hum Reprod* 2010;16:506–510.
- Sayed-Tabatabaei FA, Oostra BA, Isaacs A, van Duijn CM, Witteman JC. ACE polymorphisms. *Circ* Res 2006;**98**:1123–1133.
- Seremak-Mrozikiewicz A, Dubiel M, Drews K, Breborowicz GH, Mrozikiewicz PM. 1166C mutation of angiotensin II type I receptor gene is correlated with umbilical blood flow velocimetry in women with preeclampsia. J Matern Fetal Neonatal Med 2005;17:117–121.
- Seremak-Mrozikiewicz A, Drews K, Wender-Ozegowska E, Mrozikiewicz PM. The significance of genetic polymorphisms of factor V Leiden and prothrombin in the preeclamptic Polish women. J Thromb Thrombolysis 2010;30:97–104.
- Seremak-Mrozikiewicz A, Drews K, Barlik M, Sieroszewski P, Grzeskowiak E, Mrozikiewicz P. The significance of -786T > C polymorphism of endothelial NO synthase (eNOS) gene in severe preeclampsia. J Matern Fetal Neonatal Med 2011;24:432–436.
- Serrano NC, Casas JP, Diaz LA, Paez C, Mesa CM, Cifuentes R, Monterrosa A, Bautista A, Hawe E, Hingorani AD et al. Endothelial NO synthase genotype and risk of preeclampsia: a multicenter case-control study. *Hypertension* 2004; 44:702-707.
- Serrano NC, Diaz LA, Paez MC, Mesa CM, Cifuentes R, Monterrosa A, Gonzalez A, Smeeth L, Hingorani AD, Casas JP. Angiotensin-converting enzyme I/D polymorphism and preeclampsia risk: evidence of small-study bias. *PLoS Med* 2006;**3**:e520.
- Sharma D, Trivedi SS, Bhattacharjee J. Oxidative stress and eNOS (Glu298Asp) gene polymorphism in preeclampsia in Indian population. *Mol Cell Biochem* 2011; 353:189–193.
- Shim JY, Jun JK, Jung BK, Kim SH, Won HS, Lee PR, Kim A. Vascular endothelial growth factor gene +936 C/T polymorphism is associated with preeclampsia in Korean women. Am J Obstet Gynecol 2007;197:271–274.
- Singh A, Sharma D, Raghunandan C, Bhattacharjee J. Role of inflammatory cytokines and eNOS gene polymorphism in pathophysiology of pre-eclampsia. Am J Reprod Immunol 2010;63:244–251.

- Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. *Lancet* 2001; 357:2002–2006.
- Sofowora G, Dishy V, Xie HG, Imamura H, Nishimi Y, Morales CR, Morrow JD, Kim RB, Stein CM, Wood AJ. In-vivo effects of Glu298Asp endothelial nitric oxide synthase polymorphism. *Pharmacogenetics* 2001;11:809–814.
- Sohda S, Arinami T, Hamada H, Yamada N, Hamaguchi H, Kubo T. Methylenetetrahydrofolate reductase polymorphism and pre-eclampsia. J Med Genet 1997;**34**:525–526.
- Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. *Lancet* 2010; **376**:631–644.
- Stiefel P, Miranda ML, Bellido LM, Luna J, Jimenez L, Pamies E, de Frutos PG, Villar J. Genotype of the CYBA promoter -930A/G, polymorphism C677T of the MTHFR and APOE genotype in patients with hypertensive disorders of pregnancy: an observational study. *Med Clin (Barc)* 2009;**133**:657–661.
- Stonek F, Hafner E, Metzenbauer M, Katharina S, Stumpflen I, Schneeberger C, Zeisler H, Husslein P, Philipp K. Absence of an association of tumor necrosis factor (TNF)-alpha G308A, interleukin-6 (IL-6) G174C and interleukin-10 (IL-10) G1082A polymorphism in women with preeclampsia. J Reprod Immunol 2008a;**77**:85–90.
- Stonek F, Metzenbauer M, Hafner E, Philipp K, Tempfer C. Interleukin-10-1082 G/A promoter polymorphism and pregnancy complications: results of a prospective cohort study in 1,616 pregnant women. Acta Obstet Gynecol Scand 2008b; 87:430–433.
- Sun T, Zhou Y, Yang M, Hu Z, Tan W, Han X, Shi Y, Yao J, Guo Y, Yu D et al. Functional genetic variations in cytotoxic T-lymphocyte antigen 4 and susceptibility to multiple types of cancer. Cancer Res 2008;68:7025-7034.
- Sutherland A, Cooper DW, Howie PW, Liston WA, MacGillivray I. The indicence of severe pre-eclampsia amongst mothers and mothers-in-law of pre-eclamptics and controls. Br J Obstet Gynaecol 1981;88:785–791.
- Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol 2006;**24**:65–97.
- Tempfer CB, Dorman K, Deter RL, O'Brien WE, Gregg AR. An endothelial nitric oxide synthase gene polymorphism is associated with preeclampsia. *Hypertens Pregnancy* 2001;20:107–118.
- Tempfer CB, Jirecek S, Riener EK, Zeisler H, Denschlag D, Hefler L, Husslein PW. Polymorphisms of thrombophilic and vasoactive genes and severe preeclampsia: a pilot study. J Soc Gynecol Investig 2004;11:227–231.
- Turan F, Ilhan N, Kaman D, Ates K, Kafkasli A. Glu298Asp polymorphism of the endothelial nitric oxide synthase gene and plasma concentrations of asymmetric dimethylarginine in Turkish pre-eclamptic women without fetal growth retardation. J Obstet Gynaecol Res 2010;36:495–501.
- Uma R, Forsyth SJ, Struthers AD, Fraser CG, Godfrey V, Murphy DJ. Polymorphisms of the angiotensin converting enzyme gene in early-onset and late-onset pre-eclampsia. J Matern Fetal Neonatal Med 2010;23:874–879.
- Utermann G. Apolipoprotein E polymorphism in health and disease. Am Heart J 1987;113:433-440.
- van Geel PP, Pinto YM, Voors AA, Buikema H, Oosterga M, Crijns HJ, van Gilst WH. Angiotensin II type I receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. *Hypertension* 2000;**35**:717–721.
- van Rijn BB, Franx A, Steegers EA, de Groot CJ, Bertina RM, Pasterkamp G, Voorbij HA, Bruinse HW, Roest M. Maternal TLR4 and NOD2 gene variants, pro-inflammatory phenotype and susceptibility to early-onset preeclampsia and HELLP syndrome. *PLoS One* 2008;**3**:e1865.
- Veldman BA, Spiering W, Doevendans PA, Vervoort G, Kroon AA, de Leeuw PW, Smits P. The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J Hypertens 2002;20:2023–2027.
- von Tempelhoff GF, Heilmann L, Spanuth E, Kunzmann E, Hommel G. Incidence of the factor V Leiden-mutation, coagulation inhibitor deficiency, and elevated antiphospholipid-antibodies in patients with preeclampsia or HELLPsyndrome. Hemolysis, elevated liver-enzymes, low platelets. *Thromb Res* 2000; 100:363–365.
- Vural P, Degirmencioglu S, Saral NY, Demirkan A, Akgul C, Yildirim G, Issever H, Eroglu H. Tumor necrosis factor alpha, interleukin-6 and interleukin-10 polymorphisms in preeclampsia. J Obstet Gynaecol Res 2010;36:64–71.
- Wang XL, Wang J. Endothelial nitric oxide synthase gene sequence variations and vascular disease. *Mol Genet Metab* 2000;**70**:241–251.

- Wang L, Feng Y, Zhang Y, Zhou H, Jiang S, Niu T, Wei LJ, Xu X, Wang X. Prolylcarboxypeptidase gene, chronic hypertension, and risk of preeclampsia. *Am J Obstet Gynecol* 2006;**195**:162–171.
- Wang AH, Lam WJ, Han DY, Ding Y, Hu R, Fraser AG, Ferguson LR, Morgan AR. The effect of IL-10 genetic variation and interleukin 10 serum levels on Crohn's disease susceptibility in a New Zealand population. *Hum Immunol* 2011;**72**:431–435.
- Ward K, Hata A, Jeunemaitre X, Helin C, Nelson L, Namikawa C, Farrington PF, Ogasawara M, Suzumori K, Tomoda S. A molecular variant of angiotensinogen associated with preeclampsia. *Nat Genet* 1993;4:59–61.
- Watanabe H, Hamada H, Yamakawa-Kobayashi K, Yoshikawa H, Arinami T. Evidence for an association of the R485K polymorphism in the coagulation factor V gene with severe preeclampsia from screening 35 polymorphisms in 27 candidate genes. *Thromb Haemost* 2001;**86**:1594–1595.
- Williams MA, Sanchez SE, Zhang C, Bazul V. Methylenetetrahydrofolate reductase 677 C->T polymorphism and plasma folate in relation to pre-eclampsia risk among Peruvian women. J Matem Fetal Neonatal Med 2004; 15:337-344.
- Xie F, Hu Y, Speert DP, Turvey SE, Peng G, Money DM, Magee LA, von DP. Toll-like receptor gene polymorphisms and preeclampsia risk: a case-control study and data synthesis. *Hypertens Pregnancy* 2010;**29**:390–398.
- Xie C, Yao MZ, Liu JB, Xiong LK. A meta-analysis of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 in preeclampsia. *Cytokine* 2011;56:550–559.
- Yaghmaei M, Salimi S, Mokhtari M, Naghavi A, Saravani M, Farajian-Mashhadi F. Endothelial nitric oxide synthase gene Glu298Asp polymorphism and risk of preeclampsia in South East of Iran. Afr J Biotechnol 2011;10:10712-10717.
- Yalinkaya A, Erdemoglu M, Akdeniz N, Kale A, Kale E. The relationship between thrombophilic mutations and preeclampsia: a prospective case-control study. *Ann Saudi Med* 2006;**26**:105–109.
- Yamada N, Arinami T, Yamakawa-Kobayashi K, Watanabe H, Sohda S, Hamada H, Kubo T, Hamaguchi H. The 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene is associated with severe preeclampsia. J Hum Genet 2000; 45:138–141.
- Ye S, Green FR, Scarabin PY, Nicaud V, Bara L, Dawson SJ, Humphries SE, Evans A, Luc G, Cambou JP. The 4G/5G genetic polymorphism in the promoter of the

plasminogen activator inhibitor-I (PAI-I) gene is associated with differences in plasma PAI-I activity but not with risk of myocardial infarction in the ECTIM study. Etude CasTemoins de l'nfarctus du Mycocarde. *Thromb Haemost* 1995; **74**:837–841.

- Ye Z, Liu EH, Higgins JP, Keavney BD, Lowe GD, Collins R, Danesh J. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. *Lancet* 2006;**367**:651–658.
- Yilmaz H, Unlucerci Y, Gurdol F, Isbilen E, Isbir T. Association of pre-eclampsia with hyperhomocysteinaemia and methylenetetrahydrofolate reductase gene C677T polymorphism in a Turkish population. Aust N Z J Obstet Gynaecol 2004; 44:423–427.
- Yoshida A, Miura K, Nakayama D, Masuzaki H. Correlation between preeclampsia and prevalence of polymorphism of angiotensinogen, methyleneteterahydrofolate reductase and factor V, prothrombin genes among Japanese women. *Acta Med Nagasakiensia* 2008;**53**:37–41.
- Yoshimura T, Yoshimura M, Tabata A, Shimasaki Y, Nakayama M, Miyamoto Y, Saito Y, Nakao K, Yasue H, Okamura H. Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with severe preeclampsia. J Soc Gynecol Investig 2000;7:238–241.
- Yoshimura T, Chowdhury FA, Yoshimura M, Okamura H. Genetic and environmental contributions to severe preeclampsia: lack of association with the endothelial nitric oxide synthase Glu298Asp variant in a developing country. *Gynecol Obstet Invest* 2003;**56**:10–13.
- Zdoukopoulos N, Doxani C, Messinis IE, Stefanidis I, Zintzaras E. Polymorphisms of the endothelial nitric oxide synthase (NOS3) gene in preeclampsia: a candidate-gene association study. *BMC Pregnancy Childbirth* 2011;11:89.
- Zhang XQ, Varner M, Dizon-Townson D, Song F, Ward K. A molecular variant of angiotensinogen is associated with idiopathic intrauterine growth restriction. *Obstet Gynecol* 2003;**101**:237–242.
- Zhang C, Austin MA, Edwards KL, Farin FM, Li N, Hsu L, Srinouanprachanh SL, Williams MA. Functional variants of the lipoprotein lipase gene and the risk of preeclampsia among non-Hispanic Caucasian women. *Clin Genet* 2006; **69**:33–39.