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Chapter 3

Probes from cosmology1

In this chapter, we consider two earliest messengers from cosmology: BBN and CMB, and
study the impact of short-lived FIPs on corresponding observables. In the case of BBN,
we concentrate on short-lived particles that decay hadronically, and derive analytically the
bound on lifetimes that comes from the impact of mesons on the p↔ n conversion in the
primordial plasma, see Sec. 3.1. In the case of CMB, we study the impact of short-lived
FIPs on the effective number of degrees of freedom, Neff, and in particular show that
even if decaying mostly into neutrinos they may decrease Neff, see Sec. 3.2. Finally, we
apply the findings to the case of a particular model – HNLs, for which we first study their
cosmological population (Sec. 3.3.4), and then derive constraints from BBN (Sec. 3.3.3.1)
and CMB (Sec. 3.3.4).

3.1 BBN and hadronically decaying particles

In this section, we discuss bounds from BBN on hadronically decaying particles. We will
first discuss the current measurements of the primordial abundance of helium, then derive
the bounds from BBN on hadronically decaying particles, and then comment until which
lifetimes the bound extends.

3.1.1 Measurements of 4He abundance

Over the last 6 years five works determined the primordial 4He abundance from stellar
measurements [171–175]. The formal statistical errors of Yp are at the level of 1 − 3%,
however, the scatter between different groups is larger, see Fig. 1.

All these works determine astrophysical Helium abundance through measurements
of recombination emission lines of 4He and H in the metal-poor extragalactic ionized
regions, then linearly extrapolating the measurements to zero metallicity. Given the high
precision of the results, it is important to take into account various smaller effects: including

1Results of this chapter are presented in papers [37, 170]. The main contribution of Maksym Ovchynnikov
is analytic and numeric estimates of the BBN and CMB bounds.
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Figure 1: Measurements of Yp of recent works [171–175]. The green shaded region is
the PDG recommended value [52] (with ±1σ). The gray dashed line denotes the SBBN
prediction Ȳp = 0.247 from [45]. The red dashed-dotted line is the maximal admissible
value Yp,max on which we base our analysis.

4He fluorescent emission, different ion temperatures, spatial temperature fluctuations, and
others [176, 177]. Additionally, while it is true that the metallicity and Helium abundance
are positively correlated, the linear extrapolation to zero-metallicity may be prone to
systematic uncertainties.

The value of Yp predicted within the framework of SBBN is Ȳp = 0.24709± 0.00019

(see, e.g., [45]). The effect of mesons leads to an increase of Yp as compared to the SBBN
value. Therefore, in order to get a conservative upper bound we assume that the maximally
allowed Yp is given by the 1σ deviation from the maximal value predicted by [171–175],
which is Yp,max = 0.2573. Note that this upper value significantly deviates from the
PDG-recommended value [52] Yp,max = 0.248 at 1σ. This translates to the bound

∆Yp
Ȳp

< 4.35% (3.1.1)

3.1.2 Bound on hadronically decaying particles

Sufficiently heavy FIPs can decay into mesons h = π,K, etc. Charged pions drive the
p↔ n conversion via processes [178]

π− + p→ n+ π0/γ, π+ + n→ p+ π0 (3.1.2)

The cross section of these reactions is much larger than the cross section of weak interactions
driven conversion processes:

〈σπp↔nv〉
〈σWeak

p↔nv〉
' 1

G2
Fm

2
pT

2
∼ 1016

(
1 MeV
T

)2

, (3.1.3)

Large cross section, absence of threshold and isotopic symmetry of these processes mean
that if pions are present in the plasma in the amounts at least comparable with that of
baryons, they drive the number densities of protons and neutrons to equal values, nn/np '
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〈σπp→nv〉/〈σπn→pv〉 ' 1.2 The effect of kaons is qualitatively similar, but leads to a slightly
different neutron-to-proton ratio (Appendix 3.B.1).

The impact of this effect on primordial 4He abundance depends on how long mesons
remain present in the plasma in significant amounts. Once mesons are created, they
can (i) scatter and lose energy; (ii) decay; (iii) participate in p ↔ n conversion. The
corresponding rates are very different: at MeV temperatures and below, Γhscat � Γhdecay �
Γhp↔n (see [179]).

The instantaneous number density of mesons is an interplay between their production
(via decays of FIPs) and their decays:

ninst
h = nFIP(T ) · BrN→h

ΓFIP,dec

Γh,dec
= nN(T ) · BrN→h

τh
τN
. (3.1.4)

Here, BrFIP→h is the branching of FIPs into mesons. nFIP(T ) is the number density of
FIPs:

nFIP(T ) =

(
adec

a(T )

)3

· ndec
FIP · e

− t(T )
τN , (3.1.5)

where ndec
FIP is the FIP’s number density at decoupling (i.e. when their interaction with

plasma has been completely stopped), and a(T ) (adec) is the scale factor at temperature T
(correspondingly, at FIP decoupling).

The number of p↔ n reactions per nucleon occurring after time t� τFIP (or below
some corresponding temperature T (t)) is thus

Nh
p↔n(T ) =

∑

h

∞∫

t(T )

dt ninst
h (T ) · 〈σhp↔nv〉 ≈

(adec

a

)3 ndec
FIP

nB
·e−

t(T )
τFIP ·BrFIP→h ·Pconv, (3.1.6)

where nB is the baryon number density, the sum goes over meson species and Pconv is the
probability for a single meson to interact with nucleons before decaying:

Pconv '
nB · 〈σhp↔nv〉

Γhdecay
. (3.1.7)

At O(1 MeV) temperatures, Pconv ∼ 10−2 − 10−1, see Appendix 3.B.

2For each of the processes (3.1.2), there are no inverse reactions. Indeed, π0 decays very fast, whereas γs
quickly lose their energy. Therefore, the conversion (3.1.2) is highly non-equilibrium, and the corresponding
value of nn/np is not given by the usual Boltzmann exponent.
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The meson driven conversion keeps the value nn/np ' 1 roughly until a temperature
T0 when the number of reactions per nucleon drops below one,

Nh
p↔n(T0) ' 1, (3.1.8)

and weak SBBN reactions start to relax the n/p ratio down to its SBBN value, see
Fig. 2 (left panel).

However, if T0 is close enough to the freeze-out of weak p↔ n processes, occurring
roughly at Tn ' 0.8 MeV, the relaxation is not complete (Fig. 2, right panel). This leads
to a positive correction ∆(nn/np) as compared to the SBBN case, which translates to an
increase of the 4He abundance ∆Yp.
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Figure 2: Left panel: temperature evolution of the neutron abundance Xn = nn/(nn + np)
in the presence of pions from decays of an HNL with mass mN = 400 MeV and lifetime
τN = 0.03 s. Below T ' 100 MeV, pions drive the neutron abundance to Xn ≈ 0.5. At
temperatures T0 ' 1.3 MeV (the blue vertical dashed line) pions disappear, and Xn starts
relaxing towards its SBBN value but does not reach it. After the neutron decoupling (the
gray vertical line) Xn evolves mainly due to the neutron decays. Right panel: a relation
between the temperature T0 (defined by Eq. (3.1.8)) and corrections to the 4He abundance,
as compared to the SBBN central value Ȳp ≈ 0.247. It corresponds to the case of when only
charged pions are present in plasma. The gray horizontal line corresponds to maximally
allowed correction ∆Yp/Ȳp = 4.35% that we adopt in this work (see Appendix 3.1.1). The
intersection of gray and colored lines defines the temperature Tmin

0 .

In this way, the upper bound on the 4He abundance Yp,max is translated to the lower
bound T0 ≥ Tmin

0 . Together with the relations (3.1.6)–(3.1.8), this allow us to find an upper
limit on the FIP lifetime τFIP:

τFIP .
t(Tmin

0 )

ln

[∑
h

(
adec
a0

)3
ndec

FIPPconvBrN→h
nγ(Tmin

0 )ηB

] . (3.1.9)
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Here, nγ is the number density of photons, ηB is the baryon-to-photon ratio, and t(T ) is
time-temperature relation. t(T ) is given by the Standard Model relation: t(T ) = M∗

2T 2 , with
M∗ = MPl

1.66
√
g∗

the reduced Planck mass, where g∗(T ) ' 10.6 for T ' 1− 2 MeV.3

Let us rewrite the logarithmic factor in (3.1.9) as

(
adec

a0

)3
nFIP,dec

nγ(Tmin
0 )

=
nFIP,dec

nγ(Tdec)
· ζ, (3.1.10)

where ζ =
(
adecTdec
a0Tmin

0

)3

is the “entropy dilution” factor. For example, if FIPs were in
thermal equilibrium and decoupled while being ultrarelativistic, Tdec � mFIP, we have
nFIP,dec/nγ(Tdec) ≈ O(1). The dilution factor ζ is a product of the SBBN value times the
value induced by FIPs during their evolution:

ζ =

(
aSBBN

dec Tdec

aSBBN
0 Tmin

0

)3

×
(
aSBBN

0 Tmin
0

a0Tmin
0

)3

≡ ζSBBN × ζFIP, (3.1.11)

where we used that adec ≈ aSBBN
dec ; this approximation is valid since at temperatures Tdec

there are many SM particles, and FIPs only contribute a small fraction to the total energy
density of the Universe. In SBBN at temperatures T & 1 MeV, all particles are at local
equilibrium, which defines the dynamics of the scale factor and hence the value of ζSBBN:

ζSBBN ≈
g∗(T

min
0 )

g∗(Tdec)
' 1

8
, (3.1.12)

where we used that aSBBN(T ) ∝ g
−1/3
∗ (T ) · T−1. Decays of heavy FIPs violate the thermal

equilibrium at O(1 MeV), and the scaling (3.1.12) changes. For GeV-scale particles with
lifetimes τFIP ∼ 0.01 s − 0.1 s that were in thermal equilibrium, the factor ζFIP reaches
O(0.1), see Appendix 3.3.1 using HNLs as an example.

The simple analytic estimate leads to the model-independent bound on FIPs that decay
hadronically:

τFIP .
0.023

(
1.5 MeV
Tmin
0

)2

s

1 + 0.07 ln

[
Pconv
0.1

BrFIP→h
0.4

2nFIP,dec
3nγ(Tdec)

· 24
(
adecTdec
a0Tmin

0

)3
] . (3.1.13)

The presence of mesons increases the 4He abundance. Therefore, in order to fix
Tmin

0 (mFIP), we need to adopt an upper bound on the primordial 4He abundance, Yp,max, that
is consistent with measurements [52]. The smallest error bars come from measuring Yp in

3This is indeed the case for short-lived FIPs with τFIP � 0.1 s.
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low-metallicity interstellar regions and extrapolating its value to zero metallicity (pioneered
in [180]). Several groups [171–175] have determined Yp using this method, albeit with
different data and assumptions. The resulting scatter between results is larger than the
reported error bars. We treat this difference as an additional systematic uncertainty and
adopt the maximal value Yp,max = 0.2573 (see Appendix 3.1.1). The maximally allowed
relative deviation is therefore

∆Yp/Yp,SBBN ≈ 4.35%. (3.1.14)

To relate ∆Yp and Tmin
0 , we study how the nn/np ratio is relaxed below T0. The relaxation

occurs solely via the SBBN reaction,

dXn

dt
= ΓSBBN

p→n(1−Xn)− ΓSBBN
n→pXn, Xn =

nn
nn + np

, (3.1.15)

albeit with the altered initial condition Xn(T0) = Xh
n ' 1/2. (ΓSBBN

p↔n(t) are SBBN rates,
see [45]). Non-SBBN value of Xn(T0) is the dominant effect of short-lived HNLs on Yp.
At temperatures T . T0, for HNLs with lifetimes τN . 0.02 s, all other quantities that are
relevant for BBN dynamics – ηB, time-temperature relation, the nuclear reactions chain
– remain the same as in SBBN, which is because most of HNLs are no longer left in the
plasma at these temperatures (see also Appendix 3.B.1). As a result, a value of Xn(T0) is
translated into ∆Yp via

∆Yp
Yp,SBBN

=
∆Xn(TBBN)

Xn,SBBN(TBBN)
, (3.1.16)

where TBBN ≈ 84 keV is the temperature of the onset of nuclear reactions in SBBN [45].
To obtain the bound (3.1.13), we considered exclusively meson-driven p↔ n processes

for T > Tmin
0 and only weak SBBN processes for T < Tmin

0 . We also solved numerically
the equation (3.1.15) for the neutron abundance in the presence of both mesons-driven and
SBBN p↔ n conversion rates in Appendix 3.B.1 using HNLs as an example model, and
obtained results being in perfect agreement with the bound (3.3.24). We have also repeated
our analysis for the case of the GeV-mass scalar that mixes with the Higgs and found an
excellent agreement with [181, 182].

We conclude that BBN may constrain hadronically decaying FIPs with lifetimes as
small as τFIP ' 0.02 s.

3.1.3 Limits of applicability of the bound

Eq. (3.1.13) defines the lower bound on FIP lifetimes that may be constrained from the
meson-driven 4He overproduction. Our simplified approach is limited by lifetimes for
which FIPs or their decay products survive until the onset of nuclear reactions. In this case,
the dynamics of nuclear reactions gets changed by
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1. meson-driven p↔ n conversion and nuclear dissociation processes;

2. change of time-temperature relation by FIPs;

3. change of ηB during nuclear reaction;

4. photo-dissociation processes by high-energetic photons originating from EM decays
of FIPs.

Among these effects, the effect which firstly manifests with the increase of the lifetime is
the meson-driven nuclear dissociation. Indeed, a change of ηB and t(T ) requires a FIP to
contribute to the energy density significantly, while the effect of mesons only requires the
amount of meson-driven reactions to be comparable with nB . As for the photo-dissociation,
it becomes relevant only from lifetimes of order τFIP & 104 s, which is the time scale
at which photons with energies large enough to dissociate deuterium no longer instantly
disappear because of the annihilation γ + γSM plasma → e+ + e− (see, e.g., [182]). Let us
now estimate the upper bound on the FIP lifetimes at which the simple analysis presented
above is valid. The 4He threshold-less dissociation processes with mesons are (see [178])

π− +4 He→ T + n, π− +4 He→ D + 2n, π− +4 He→ p+ 3n (3.1.17)

To estimate the lifetimes at which the processes (3.1.17) can be neglected, we compare the
number density of mesons available for the dissociation with the number density of 4He
nuclei:

nhHe diss(TBBN)� nHe(TBBN), (3.1.18)

c.f. Eq. (3.1.8). Here, nπHe diss is defined via

nπHe diss(TBBN) = nFIP · BrFIP→π− · PHe diss, (3.1.19)

Here,

nFIP(T ) =

(
aSBBN(tdec)

aSBBN(T )

)3

ndec
FIP · ζFIP · e−t/τFIP (3.1.20)

is the FIP’s number density, and P4He diss is the probability for a single meson to dissociate
4He nuclei before decaying:

PHe diss =
〈σπHe dissv〉nHe

Γπdecay
' 8.3 · 10−2 · 4 · nHe

nB

(
T

1 MeV

)3

, (3.1.21)

where we used the total cross-section of the dissociation processes (3.1.17), 〈σπHe dissv〉 '
6.5 · FHeπ− mb (a factor FHeπ− ' 3.5 accounts for the Coulomb attraction, Eq. (3.B.3)).

In our estimates, we use TBBN = 84 keV, assuming that all free nucleons become
bounded in 4He nuclei at this temperature. We also do not take into account that after the
dissociation of Helium the abundance of lighter elements will be also increased significantly.
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Further, to make a conservative upper bound estimate, we will assume that the FIPs were
in thermal equilibrium and then decoupled while being UR, such that their abundance
is maximally possible. In this case, ζFIP ' 10−2 − 10−1 for FIPs with lifetimes τFIP ∼
102 s, in dependence on the FIP mass.4 Requiring nHe ' nB/4 in (3.1.18), and using
Eqs. (3.1.19), (3.1.21), we arrive at the upper bound on HNL lifetimes for which our
analysis is applicable, τFIP . 50 s.

For FIPs that decay hadronically and have lifetimes τN . 104 s, the presence of mesons
from their decays may lead to an increase of primordial 4He abundance.

Indeed, nuclear reactions are efficient until temperatures T ' few keV. Therefore,
once mesons disappear from the plasma (and nuclear dissociation processes stop), neutrons
and protons get bounded into 4He. Since the meson-driven p↔ n conversion keeps n/p
ratio at the level of O(1), the resulting abundance may be still larger than the SBBN value.

In order to derive corrections to the nuclear abundances, we need to estimate the impact
of effects of long-lived FIPs on BBN, which is complicated to perform analytically. Namely,
the BBN reaction chain is non-equilibrium. In addition, the impact of FIPs on ηB and
t(T ) cannot be estimated as a perturbation, since FIP may be abundant non-relativistic
particles which dominate the energy density of the Universe. Therefore, numeric solution
of equations for nuclear abundances and Friedmann equations in presence of decaying FIPs
is required. We do this for long-lived HNLs in Sec. 3.3.3.1.

3.2 CMB

As we have discussed in the Introduction (remind Sec. 1.3.2), the main impact of FIPs with
lifetimes τFIP � trecombination on CMB comes from their change of Yp and Neff.

The value of Neff is given by

Neff ≡
8

7

(
11

4

)4/3(
ρrad − ργ

ργ

)
, (3.2.1)

where ρrad and ργ are the total radiation and photon energy densities respectively. We
define the change in this quantity as ∆Neff = Neff − NSM

eff , where within the Standard
Model NSM

eff ' 3.044 [183–187]. Any deviation from the SM value is regulated by weak
interactions between neutrinos and electromagnetic (EM) particles, which are efficient
enough at temperatures T � 1 MeV to keep these species in equilibrium with each other.
At lower temperatures, the interactions gradually go out of equilibrium and the energy
exchange between the two sectors will stop. Decaying FIPs can affect this delicate process

4As the bound is sensitive logarithmically to this product, its precise value is not so important.

86



in different ways, depending on whether they inject most of their energy into EM particles
or neutrinos.

The impact of FIPs predominantly decaying into EM particles has been extensively
studied in the literature, see e.g. [64, 182, 188–191]. Such particles heat up the EM plasma
and consequently decrease Neff, independently of whether the decay happens during or
after neutrino decoupling.

For FIPs that mostly decay into neutrinos, we naively expect that Neff would increase.
This is indeed true for lifetimes τFIP � tdec

ν ∼ 0.1 − 1 s, where tdec
ν is the time of

neutrino decoupling, see e.g. [192]. However, there are controversial results for the
lifetimes τFIP ∼ tdec

ν .

Neutrinos are still in partial equilibrium and try to equilibrate with the injected neutrinos
at such time scale. This scenario has been considered before in [193–195] that arrived
at different conclusions about the impact on Neff. Namely, the work [193] studied a
reheating scenario in which all the SM particles are absent before FIPs start decaying.
In such a framework, all neutrinos have high energies, which means that they mainly
thermalize via neutrino-EM interactions andNeff naturally decreases. References [194, 195]
considered HNLs with massesmN < mπ and lifetimes τN . 1 s. Such HNLs are in thermal
equilibrium in the early Universe, but decouple as the Universe expands and eventually
decay mainly into high-energy neutrinos at MeV temperatures. These two works drew
different conclusions aboutNeff: [194] reported ∆Neff > 0 for the whole studied mass range,
whereas [195] presented in their Fig. 3 that ∆Neff < 0 for masses 60 MeV . mN < mπ

and lifetimes τN � 1 s. The sign of ∆Neff is not emphasized in these two papers; [195] did
not comment on the contradiction with [194] on this issue and no physical discussion of
this phenomenon was provided5.

In this section, we aim to clarify the behavior of Neff in the presence of FIPs that decay
mainly into neutrinos and have lifetimes τFIP ∼ tdec

ν . Here we will assume that a thermal
bath of SM particles is already present in the primordial Universe. We will first construct a
simple model in Sec. 3.2.1 that provides us with a qualitative understanding of how such
particles impact Neff, the findings of which we then confirm by using the Boltzmann code
pyBBN [64].

5A more recent work [196] considered long-lived (i.e., decaying after e+e− annihilation) HNLs that could
decay both into EM particles and neutrinos. In this case, Neff could both increase and decrease, as at such late
times the injected energy densities from HNL decays can dominate over the SM densities of both the EM
and neutrino sectors. Another recent paper [197], which appeared after our work was submitted, claims that
∆Neff ≥ 0 for all cases in which FIPs decay mostly into neutrinos. We comment on it in Appendix 3.D.
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Our analysis shows that short-lived FIPs that inject most of their energy into neutrinos
may decrease Neff. This is because during the equilibration process, the injected
high-energy neutrinos redistribute their energy among the neutrino and EM plasma.

If the energy of the injected neutrinos is sufficiently large, the energy transfer to the EM
sector occurs faster than the equilibration with the neutrino sector. This means that the EM
plasma heats up more than the neutrino plasma, which eventually leads to ∆Neff < 0. We
will find that this mechanism is especially relevant for FIPs with masses larger than a few
tens of MeV. We will then apply these general considerations to the well-motivated case of
HNLs. Complementary details and simulation results are included in the appendix 3.2.1.2.

3.2.1 Impact of short-lived FIPs on Neff

We focus on FIPs with masses� 1 MeV that decay when neutrinos are still in (partial)
equilibrium. Such FIPs can decay into high-energy neutrinos with energies much higher
than those in the primordial plasma, that then participate in interactions with thermal
neutrinos and electrons/positrons.

We will find that even if most of the FIP energy is injected into neutrinos, these interactions
may still cause a decrease in Neff. This feature appears since the injected high-energy
neutrinos get quickly converted into electrons/positrons and drag thermal neutrinos residing
in the plasma along with them. During this process, neutrino-neutrino interactions lead to
the presence of residual non-thermal distortions in the distribution functions of neutrinos
(neutrino spectral distortions) that keep the balance of ν ↔ EM interactions shifted to the
right till long after the injection (i.e., more energy is transferred from the neutrino plasma
to the electromagnetic plasma than vice versa). The energy transfer from neutrinos to EM
particles accumulated over time can then be sizeable enough, such that ∆Neff becomes
negative. This effect diminishes with larger FIP lifetime, as neutrino-EM interactions go out
of equilibrium and neutrinos can no longer be converted into electrons/positrons. Therefore,
FIPs that decay into neutrinos after neutrino decoupling will lead to ∆Neff > 0. In what
follows, we will consider FIPs that can decay into both neutrinos and EM particles, and
construct a simple model that provides a semi-analytic description of the aforementioned
effect. At the end of this section, we will also highlight and further elaborate on the central
role of neutrino spectral distortions in the dynamics of Neff.

3.2.1.1 Analytic considerations

We assume that the amount of injected non-equilibrium neutrinos is only a small fraction of
the thermal neutrinos in the plasma. The evolution of the injected neutrinos is then mainly
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governed by the following reactions:

νnon-eq + νtherm → νnon-eq + νnon-eq (3.2.2)

νnon-eq + ν therm → e+ + e− (3.2.3)

νnon-eq + e± → νnon-eq + e± , (3.2.4)

where ‘non-eq’ and ‘therm’ refer to neutrinos with non-equilibrium and thermal energies
respectively.

Through the thermalization reactions (3.2.2)-(3.2.4), non-equilibrium neutrinos ther-
malize and quickly redistribute their energy among the neutrino and EM plasma.

The energy loss rate of these non-equilibrium neutrinos is higher than the interaction
rates of thermal particles [49]:

Γnon-eq

Γtherm
∼ G2

FT
4Einj

ν

G2
FT

5
=
Einj
ν

T
� 1 , (3.2.5)

where Einj
ν is the average energy of the injected non-equilibrium neutrinos. Note that

reactions between thermal particles also exchange energy between the neutrino and EM
sectors, but this energy exchange is subdominant as far as Eq. (3.2.5) holds.

The amount of energy that ends up in the EM plasma has three contributions: 1) the
direct decay of FIPs into EM particles, 2) the energy transfer of non-equilibrium neutrinos
to EM particles during thermalization and 3) the energy transfer from thermal neutrinos to
EM particles as a consequence of them being dragged by non-equilibrium neutrinos during
thermalization (reactions (3.2.2) and (3.2.3)). The first process injects a fraction ξEM of the
total FIP energy into the EM plasma, while the latter two increase this fraction to:

ξEM,eff(E
inj
ν , T ) = ξEM + ξν × ε(Einj

ν , T ) , (3.2.6)

where ξν = 1− ξEM is the energy fraction that FIPs directly inject into the neutrino sector
and ε = εnon-eq + εthermal is the effective fraction of ξν that went to the EM plasma during
the thermalization. The latter quantity can be split in a contribution from non-equilibrium
neutrinos (εnon-eq = Enon-eq→EM

ν /E inj
ν ) and an effective contribution from thermal neutrinos

(εthermal = E thermal→EM
ν /E inj

ν ).
Now, based on Eq. (3.2.6), if ε > 0.5, then ξEM,eff > 0.5. This means that more than

half of the FIP energy eventually ends up in the EM plasma (i.e., EM plasma heats up
more than the neutrino plasma), which results in ∆Neff < 0 independently of the value
of ξEM

6. This simplified energy redistribution picture only holds if the non-equilibrium

6Note that it is not a requirement that ε must be larger than 0.5 in order for ∆Neff to be negative. It only
signifies the independence from ξEM.
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neutrino energy is much larger than the average energy of thermal neutrinos. Once these
two energies become similar in magnitude, backreactions cannot be neglected anymore and
the evolution can only be accurately described with a system of Boltzmann equations.

Because of much faster thermalization rate of EM plasma than of neutrinos and growth
of the interaction rate with neutrino energy, neutrinos may store a huge amount of their
energy ε in EM plasma during the thermalization. We may estimate it analytically.

We can make a simple estimate of ε as a function of the injected neutrino energy Einj
ν

and temperature T . We start with describing the thermalization process of a single injected
neutrino, which causes a cascade of non-equilibrium neutrinos. Such a cascade can result
after the injected neutrino participates in the processes (3.2.2)−(3.2.4). We assume that in
the processes (3.2.2) and (3.2.4) each non-equilibrium neutrino in the final state carries half
of the energy of the non-equilibrium neutrino in the initial state. Thus, roughly speaking,
the thermalization occurs during Ntherm ' log2(E inj

ν /3.15T ) interactions. In addition, the
process (3.2.2) doubles the number of non-equilibrium neutrinos, while (3.2.3) makes
neutrinos disappear and (3.2.4) leaves the number unchanged. Therefore, after the k-th step
in the cascade, the average number of non-equilibrium neutrinos is given by:

N (k)
ν = N (k−1)

ν (2Pνν→νν + Pνe→νe) = N (0)
ν (2Pνν→νν + Pνe→νe)

k , (3.2.7)

with N (0)
ν = 1, and the total non-equilibrium energy is:

E(k)
ν = E(k−1)

ν

(
Pνν→νν +

1

2
Pνe→νe

)
= E inj

ν

(
Pνν→νν +

1

2
Pνe→νe

)k
, (3.2.8)

where Pνν→νν , Pνν→ee, andPνe→νe are the average probabilities of the processes (3.2.2)-
(3.2.4), respectively, and their sum equals unity. We define these probabilities as Pi =

Γi/Γ
tot
ν , where Γi is the interaction rate of each process and Γtot

ν is the total neutrino inter-
action rate. The relevant reactions and their corresponding matrix elements are summarized
in appendix D of [64]. Assuming a Fermi-Dirac distribution for neutrinos and averaging
over neutrino flavours, we find:

Pνν→νν ≈ 0.76, Pνν→ee ≈ 0.05, Pνe→νe ≈ 0.19 . (3.2.9)

Finally, the value of εnon-eq that accounts for the energy transfer from non-equilibrium
neutrinos to the EM plasma is given by:

εnon-eq =
1

E inj
ν

Ntherm∑

k=0

(
Pνe→νe

2
+ Pνν→ee

)
E(k)
ν . (3.2.10)
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In addition to the transferred non-equilibrium energy, the non-equilibrium neutrinos cat-
alyze the energy transfer from thermal neutrinos to the EM plasma via the processes (3.2.2)
and (3.2.3). In other words, during the thermalization process non-equilibrium neutrinos
drag thermal neutrinos along with them, which leads to part of the energy stored in the
thermal neutrino sector to end up in the EM sector. We assume that each reaction (3.2.2)
transfers an energy amount of 3.15T from the thermal neutrino sector to non-equilibrium
neutrinos, which then via (3.2.3) ends up in the EM plasma. Moreover, each reaction (3.2.3)
contributes to another energy transfer of 3.15T from thermal neutrinos to the EM plasma.
The effective contribution coming from this transfer is therefore:

εthermal =
3.15T

E inj
ν

N therm→EM
ν =

3.15T

E inj
ν

Pνν→ee

(
Ntherm∑

k=0

N (k)
ν +

[
Pνν→νν +

Ntherm∑

k=1

(2Pνν→νν)
(k)

])
,

(3.2.11)
where the first term in the round brackets is the contribution from the process (3.2.3) and
the terms in the square brackets are the contribution from the process (3.2.2). Note that the
factor of 2 in the second sum accounts for the doubling of non-equilibrium neutrinos in the
process (3.2.2). We find that εthermal is at least 5 times smaller than εnon-eq, which makes this
a sub-dominant effect.

As the Universe expands and the temperature decreases, weak reaction rates start to
compete with the Hubble rate H . The energy transfer from neutrinos to the EM plasma
therefore becomes less and less efficient, and ε tends to zero. In order to incorporate
this effect, we multiply the probabilities in (3.2.9) with a factor min[Γi/H, 1], where
Γi = Γi(E

inj
ν /2

k) is the interaction rate of any of the processes (3.2.2)−(3.2.4). The
resulting energy fraction of neutrinos that is transferred to the EM plasma ε = εnon-eq+εthermal

is shown in Fig. 3 for a number of injected neutrino energies E inj
ν .

The analytic model tells us that ε can exceed 0.5 for Einj
ν & 60 MeV. This means

that when FIPs decay into neutrinos with such energies at temperatures of a few MeV,
the majority of the injected neutrino energy will end up in the EM plasma during the
thermalization. This then leads to a decrease ofNeff, independently of how much energy
the FIPs inject into the EM sector.

Now that we are able to estimate ε, we can compute the correction to Neff for some
benchmark FIP scenario. It is worth noting here again that ε only depends on the energy of
the injected neutrino and the temperature at which the injection happens. This means that ε
is an independent quantity of the FIP model considered, in contrast to ξEM and ξν , which
do depend on the choice of the model. As an illustrative example, we assume that ξEM = 0,
i.e., the FIP injects all of its energy into neutrinos (ξν = 1). Given that in our simple model
neutrinos thermalize very quickly, we assume that they have a thermal-like distribution with
a temperature Tν and follow the approach in [184, 198] to obtain the time evolution of Tν
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Figure 3: Estimate of the fraction of injected neutrino energy ε (both thermal and non-
equilibrium) that gets transferred to the EM plasma during thermalization (see text for
details). The three curves indicate the value of ε when a neutrino of energy Einj

ν is injected
at a temperature Tinj. At high temperatures of order of Tinj ' E inj

ν , the injected neutrinos
are thermal-like, and hence ε is small. Once the temperature decreases, we enter the
regime E inj

ν � 3.15Tinj and neutrinos transfer a significant amount of their energy to the
EM plasma while thermalising. With further decrease of Tinj, weak reactions go out of
equilibrium and the energy transfer becomes less and less efficient, which results in a quick
drop-off of ε.

and TEM in the presence of decaying FIPs (see Appendix 3.C, where we provide the relevant
equations). In this benchmark example, we consider a generic FIP of mass 500 MeV that
can decay only into three neutrinos and show ∆Neff as a function of its lifetime in Fig. 5.
In order to compare the accuracy of our simple model, we also include in this figure the
evolution of ∆Neff as obtained from the publicly available Boltzmann code pyBBN7 [64].
The grey band in this figure indicates the current sensitivity of Neff by Planck, which at 2σ

7https://github.com/ckald/pyBBN
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reads8 NCMB
eff = 2.89 ± 0.62 [199, 200]. We see that Neff can significantly decrease as a

result of the thermalization of the injected neutrinos. This decrease of Neff would only be
further amplified if the FIPs were also to inject some of their energy into the EM plasma.

3.2.1.2 Effect of Residual Non-equilibrium Neutrino Distortions

The simple model described in Sec. 3.2.1 relies on the assumption that the remaining
fraction 1− ε of the injected neutrino energy is perfectly thermal. In reality, this may
not be the case and the full thermalization would occur during a much larger number of
interactions than Ntherm ' log2(E inj

ν /3.15T ).

Therefore, this simple model underestimates the energy fraction that goes into the EM
plasma9. The remaining non-equilibrium neutrinos will manifest themselves as residual
non-thermal spectral distortions in the distribution function of neutrinos. These spectral
distortions keep the energy exchange balance of ν ↔ EM reactions shifted to the right
till long after FIP decay. As a result, more neutrino energy will be transferred to the EM
plasma and Neff can further decrease. There is a subtlety here that the remaining 1 − ε
non-equilibrium neutrinos are only slightly hotter than the thermal neutrinos, and we cannot
describe their thermalization as an instant process: The corresponding rate is comparable to
the thermal energy exchange rate. As such, the energy transfer process is extended in time,
and a proper study of this effect requires solving the Boltzmann equation for the neutrino
distribution function.

To study the impact of neutrino spectral distortions on the ν → EM energy balance shift,
we consider a simple scenario where high-energy neutrinos are instantly injected into the
primordial plasma. We make use of the publicly available Boltzmann code pyBBN10 [64] to
simulate this process and to track the evolution of the neutrino distribution functions. Within
this setup, neutrinos with energy Einj

ν = 70 MeV are instantly injected at T = 3 MeV. They
amount for a fixed percentage of the total neutrino energy density and are equally distributed
over the three neutrino flavours. All Standard Model interactions as specified in [64]
are included, but with neutrino oscillations turned off (without any loss of generality).
In order to highlight the importance of neutrino spectral distortions, we perform this
procedure a second time, but with neutrino spectral distortions turned off. In that case,
the neutrino distribution function is given by a Fermi-Dirac distribution with temperature

Tνα =
(

240ρνα
7π2gνα

)1/4

, where ρνα and gνα = 2 are the energy density (of both neutrinos and
anti-neutrinos) and number of degrees of freedom of neutrino flavour α respectively.

8This value is obtained from the Planck 2018 baseline TTTEEE+lowE analysis, where Neff, YP and the
six base parameters in ΛCDM are varied.

9Once the energy of the non-equilibrium neutrinos is close to the average thermal energy of 3.15T , they
lose roughly ∆Eν = (Eν − 3.15T )/2 of energy per scattering. Therefore, the number of scatterings required
to diminish Eν down to 3.15T is larger.

10https://github.com/ckald/pyBBN
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Figure 4: Evolution of the neutrino and EM plasma after the instant injection of neutrinos
with energyE inj

ν = 70 MeV at T = 3 MeV. Left panel: The ratio of electron neutrino energy
density to electromagnetic energy density, relative to the SM prediction. Three fractions of
the injected energy density are considered: ρinj

νe/ρ
tot
ν = {0.2%, 1%, 5%}. The solid lines are

obtained by taking into account the full non-equilibrium spectrum of neutrinos, whereas the
dashed lines correspond to the evolution assuming that neutrinos always have a thermal-like
spectrum with temperature Tν ∝ ρ

1/4
ν . Right panel: Evolution of the neutrino temperature

(dashed) and effective EM plasma temperature (solid) for which the energy transfer rate in
Eq. (3.2.13) vanishes. An injected fraction of ρinj

νe/ρ
tot
ν = 5% is considered here. The solid

and dashed lines indicate when non-equilibrium and thermal-like neutrino distributions are
used respectively.

The evolution of the ratio ρνe/ρEM (relative to the one in the SM) is shown in the
left panel of Fig. 4 for different amounts of injected neutrino energy. In agreement with
the story in Sec. 3.2.1, we observe a fast drop-off in the ratio right after the injection,
which signifies the quick transfer of energy from the neutrino plasma to the EM plasma.
After reaching the SM value (which naively corresponds to an equilibrium state), the ratio
continues decreasing. This is the effect of the extended thermalization due to neutrino
spectral distortions, as caused by the remaining fraction 1− ε of non-equilibrium neutrinos.
Eventually, the ratio will be smaller than the SM value and ∆Neff becomes negative. In this
plot, the dashed lines correspond to the same simulations but with a thermal-like distribution
for the neutrinos. It is clear that without spectral distortions, the energy transfer from the
neutrino sector to the EM sector is much less efficient.

Another way to look at this shift in the energy transfer balance from the neutrino
plasma to the EM plasma is to ask the question: Which temperature TEM,eff is the EM
plasma trying to reach after the injection? As we will see, depending on whether neutrinos
have a non-equilibrium or a thermal-like distribution, this temperature can be either larger
than or equal to the neutrino temperature11. In the former case, it means that the EM plasma

11In all cases, with ‘neutrino temperature’ we refer to the quantity Tν =
(

240ρν
7π2gν

)1/4
, where gν = 2 and

ρν is the energy density of both neutrinos and anti-neutrinos.

94



temperature can exceed the neutrino temperature (and thus ∆Neff can be negative), while in
the latter case ∆Neff cannot be negative.

In more technical terms, the exchange of energy between neutrinos and EM particles is
regulated by the Boltzmann collision integral Icoll, which encodes all interactions between
the species. For neutrinos that participate in reactions of the form ν + 2 ↔ 3 + 4, the
collision integral is given by [201]:

Iν =
1

2gνEν

∑

reactions

∫ 4∏

i=2

(
d3pi

(2π)32Ei

)
|M|2×

× [(1− fν)(1− f2)f3f4 − fνf2(1− f3)(1− f4)]×
× (2π)4δ4(Pν + P2 − P3 − P4) , (3.2.12)

where fi and Pi are the distribution function and four momentum of species i respec-
tively, and |M|2 is the unaveraged squared matrix element summed over degrees of freedom
of initial and final states. The energy transfer rate between the neutrino and EM plasma can
be written as:

Γ(TEM) =

∫
d3pν
(2π)3

Icoll(TEM)Eν , (3.2.13)

where we consider Icoll to be a function of the EM plasma temperature TEM. There
exists a temperature TEM,eff for which this rate is equal to 0. This corresponds to the
temperature the EM plasma tends to during thermalization, since then the system would
be in equilibrium. In the case where neutrinos would have a thermal-like spectrum with
temperature Tν , the rate vanishes when TEM,eff = Tν . On the other hand, when a non-
equilibrium neutrino spectrum is considered, we find that TEM,eff > Tν when Γ = 0. In the
former case Neff cannot decrease, while in the latter case the EM plasma temperature can
exceed Tν and Neff can thus decrease. We show the evolution of TEM,eff and Tν as obtained
from the instant neutrino injection simulations in the right panel of Fig. 4.

The conclusion here is that neutrino spectral distortions play a central role in transfer-
ring energy from the neutrino sector to the EM sector. When considering short-lived FIPs
that can decay into neutrinos, the impact of these distortions on the evolution of Neff should
not be neglected.

Comparing the analytic model with the numeric simulations, we find that when using
the Boltzmann equation Neff decreases more than predicted by our semi-analytic model.

The remaining fraction 1− ε of the injected neutrinos is not perfectly thermal, manifest-
ing themselves as residual spectral distortions in the distribution function of neutrinos
that further lead to a transfer of energy from the neutrino sector to the EM sector.

We see that in some cases the inclusion of this effect can make the difference between
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being excluded by current data or not. We elaborate more on the effect of spectral distortions
in Appendix 3.2.1.2. In short, the semi-analytic model is useful in providing a qualitative
understanding of the behavior of Neff in the presence of decaying FIPs. On the other
hand, if the aim is to obtain accurate predictions for Neff (relevant for setting bounds
and forecasting), it is crucial to use the Boltzmann equation to track the evolution of the
neutrino distribution functions. As such, we will use pyBBN in the remainder of this paper
to simulate the impact of FIPs on Neff.

10−2 10−1 100

τχ [s]
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−0.5

0.0
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∆
N

eff

mχ = 70 MeV (Analytic)

mχ = 70 MeV (pyBBN)

mχ = 500 MeV (Analytic)

mχ = 500 MeV (pyBBN)

Figure 5: ∆Neff as a function of the lifetime of a FIP χ that can only decay into neutrinos
through χ → νe + νµ + νµ. The initial FIP abundance is assumed to be nχ/s = 0.01
at T = 1 GeV, where s is the total entropy density of a universe consisting of photons,
neutrinos and electrons/positrons. The solid lines are the result of our semi-analytic model,
while the dotted lines are obtained with the Boltzmann code pyBBN. The grey band is
the current sensitivity by Planck (see text for details). The golden curves roughly indicate
the lowest FIP mass for which Neff can decrease due to the thermalization of the injected
neutrinos. The stronger decrease of the blue, dotted curve as compared to the solid curve
highlights the significance of residual neutrino spectral distortions in the evolution of Neff

(see Appendix 3.2.1.2 for more details).
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As a final point, we can make a rough model-independent estimate for which neutrino
energies the decrease of Neff happens. In the particular FIP scenario considered here, we
find that this effect occurs for masses higher than ∼70 MeV (see Fig. 5). Given that in
this case the neutrinos are created via 3-body decays, this would correspond to an average
injected neutrino energy of roughly Einj

ν ∼ mFIP/3 ∼ 25 MeV.

As long as a FIP injects most of its energy into neutrinos around neutrino decoupling,
Neff could decrease if neutrinos with energies of at least Einj

ν ∼ 25 MeV are produced.

3.2.2 Summary

In this work, we have studied how heavy, unstable FIMPs that can decay into neutrinos
impact the number of relativistic species Neff in the Early Universe. A particularly in-
teresting effect that could occur with these particles, is when they inject most of their
energy into neutrinos but still decrease Neff. This could happen if FIMPs decay when
neutrinos are still in (partial) equilibrium (τFIMP ∼ O(0.1) s) and is a direct consequence
of the thermalization process of the injected high-energy neutrinos (see Sec. 3.2.1 for a
semi-analytical treatment of this effect). Here we identify neutrino spectral distortions as
the driving power behind this effect, since they lead to an efficient transfer of energy from
the neutrino plasma to the electromagnetic plasma (see Figs. 5 and 4). Some of the injected
neutrino energy gets quickly transferred to the EM plasma, while the remaining will stay as
residual spectral distortions in the neutrino distribution functions. These spectral distortions
keep the energy transfer balance of ν ↔ EM reactions shifted to the right till long after
FIMP decay. In order to accurately account for this effect, it is therefore important to solve
the Boltzmann equation and track the evolution of the neutrino distribution functions. Using
a thermal-like distribution for neutrinos as an approximation can lead to incorrect results,
e.g., that Neff can never decrease when FIMPs inject most of their energy into neutrinos.

From our simulations, done with the publicly available Boltzmann code pyBBN [64],
we find that this mechanism is especially relevant for FIMPs that can decay into neutrinos
with average energies Einj

ν & 25 MeV. In case such neutrinos are created via 2- or 3-body
decays, this roughly corresponds to FIMP massesm2-body

FIMP & 50 MeV andm3-body
FIMP & 70 MeV

respectively. This is in agreement with the results presented in [193]. As such, this effect
may be relevant for many classes of FIMPs12, including Higgs-like dark scalars [38], dark
photons [202], neutralinos in supersymmetric models with broken R-parity [203], vector
portals coupled to anomaly-free currents [151] and short-lived neutrinophilic scalars [204].

12While pyBBN is mainly built to simulate the cosmological history in the presence of Heavy Neutral
Leptons, it can in principle be modified to include many other classes of FIMPs.
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3.3 Case study: HNLs

In this section, we consider applications of the findings of previous sections to the case
of HNLs. In what follows, we will consider two quasi-degenerate HNLs [205, 206], as
motivated by the Neutrino Minimal Standard Model (or νMSM) [see e.g. 207–209])

HNLs alter the cosmological history through their contribution to the total energy
density of the Universe and their decay into SM particles. HNLs that decay well before the
decoupling of active neutrinos, i.e. at temperatures T � 1 MeV, will leave no traceable
impact. On the other hand, if HNLs live long enough, they could alter several physical
quantities, such asNeff and the primordial abundances of light elements [192, 194, 195, 210–
212]. Indeed, strong limits have been set on their mass and lifetime by considering
their impact on Big Bang Nucleosynthesis and the Cosmic Microwave Background, see
e.g. [37, 64, 196] for recent works on this subject.

The influence of HNLs on BBN and CMB depends on their abundance, and we will
first discuss how HNLs are produced in the primordial plasma (Sec. 3.3.1). In Sec. 3.3.3.1,
we derive the bounds from BBN, while in Sec. 3.3.4 we consider the impact of HNLs on
CMB.

3.3.1 Thermal history of HNLs

At large temperatures, the interaction rate of HNLs with SM particles is temperature-
suppressed, although the particle densities are high.

Indeed, in the plasma without lepton asymmetry at temperatures T & 1 GeV the effective
mixing angle is given by [213, 214]

U2
m(T ) ≈ U2

[
1 + 9.6 · 10−24

(
T

1 MeV

)6 ( mN
150 MeV

)−2
]2 , (3.3.1)

see Appendix 3.A. As a result, the interaction rate of HNLs with SM particles Γint
N ∝

G2
FT

5U2
m is suppressed at both high and low temperatures and reaches its maximum at the

temperature
Tmax ≈ 12(mN/1 GeV)1/3 GeV (3.3.2)

(see Fig. 6).

The HNLs were in thermal equilibrium if during some period T− < T < T+ the
interaction rate Γint

N (T ) exceeded the Hubble expansion rate. For heavy HNLs with
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masses mN & 50 MeV, this happens for mixing angles larger than

U2 & U2
min ≈ 3 · 10−12

(
1 GeV
mN

)
(3.3.3)

Namely, using the condition Γint
N (Tmax) = 3H(Tmax), and approximating the interac-

tion rate as Γint
N ≈ 10U2

mG
2
FT

5, we find the minimal value on the mixing angle at which
HNLs may enter the equilibrium, Eq. (3.3.3).

Notice that if HNLs are responsible for the generation of neutrino masses, there exists
another lower bound on the mixing angle – the seesaw bound. At least one HNL with mass
mN should have mixing angle above this bound to be responsible for the generation of
the atmospheric neutrino mass difference, c.f. [82]. The bound depends on details of the
given HNL model – mixing pattern and neutrino mass hierarchy (see, e.g., [77, 208]). For
simplicity, as the scale of the see-saw bound we will use the toy-model estimate

U2 & U2
see−saw ' 5 · 10−11

(
1 GeV
mN

)
(3.3.4)

The true see-saw bound may differ from the toy model estimate by within an order of
magnitude.

The resulting parameter space of HNLs is shown in Fig. 6.
It is convenient to parametrize the population of HNLs in terms of the abundance,

defined by
YN =

(nN
s

)
T=T−

, (3.3.5)

where nN is the number density of HNLs and s = g∗
2π2

45
T 3 is the entropy density.

3.3.1.1 HNLs with mixing angles below Umin

Let us now calculate the abundance of HNLs that never enter thermal equilibrium, i.e. of
those with U2 . U2

min. The temperature evolution of the HNL abundance, YN , may be
found with the help of a simple equation

dYN
dt

= −ΓN,int(YN − YN,eq), (3.3.6)

where YN,eq(T ) is the abundance of HNLs at equilibrium, YN is defined as the value of
YN(T � Tmax), and ΓN,int is the total rate of processes A + N → X . At temperatures
T � mN , we may approximate the rate ΓN,int by an expression

ΓN,int ≈ bG2
FT

5 · U2
m(T ), (3.3.7)
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Figure 6: Left panel: The reaction rate of the HNL with SM particles, Γint
N , compared to

the Hubble rate, H(T ). T+ and T− are the temperatures at which HNLs enter and exit
the thermal equilibrium. For illustration, we used HNL mass mN = 1 GeV, and mixing
angles U2 = U2

min and U2 = 50U2
min, see Eq. (3.3.3). Right panel: the parameter space of

HNLs that mix purely with νe. The blue domain roughly denotes the parameter space of
HNLs that may explain neutrino oscillations, see Eq. (3.3.4). The red domain defines the
parameter space for which HNLs never enter thermal equilibrium, see Eq. (3.3.3). The
dashed scale τN = 0.02 s denotes the shortest lifetime that may be constrained by BBN
(the effect of the meson-driven p↔ n conversion as discussed in Sec. 3.1), while the scale
τN = 200 s defines the onset of nuclear reactions

where b(T ) is a factor depending on the number of SM species present in the primordial
plasma. Also, if T � ΛQCD, we may use g∗ ≈ 86.25 [215], and the equilibrium abundance
is YN,eq ≈ 0.01 for Dirac HNLs and 0.005 for Majorana HNLs.

Using matrix elements for processes N + A→ B + C from [64], we find b ≈ 10 for
Dirac HNLs (correspondingly, b ≈ 20 for Majorana HNLs) at T & 1 GeV. The value of
b for Majorana HNLs is a factor 5 larger than that is used in [196], b ≈ 3.6 (Majorana
neutrinos are considered). A reason is that [196] uses rates from [216], where temperatures
below 20 MeV are considered (see Eq. (6.8) from [216]), and hence A,B,C may be e±, ν
only, which is a huge underestimate.

Using (3.3.1), Eq. (3.3.12) may be integrated to obtain the final abundance of HNLs
YN :

YN∫

0

dYN
YN − YN,eq

= −
∞∫

0

dT
ΓN,int(EN)

TH(T )
≈ −2.8 · 107 b√

a

mN

1 GeV
U2 ⇒ (3.3.8)

YN = YN,eq

(
1− e−6·1011

mN
1 GeVU

2
)

(3.3.9)
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Using U2 � U2
min, we find that the abundance of HNLs that never entered thermal

equilibrium is given by

YN ≈ 2.8 · 107 · YN,eq · 6 · 1011 mN

1 GeV
U2 ≈ 5.7 · 1010 mN

1 GeV
U2 (3.3.10)

3.3.1.2 HNLs with mixing angles above Umin

Let us now consider HNLs with mixing angles above Umin. It is important (i) whether HNLs
froze out while being ultra-relativistic (UR regime, mN � T−, no exponential Boltzmann
suppression for the number density) or non-relativistic (NR regime, mN � T−) and (ii)
the value of g∗ at the moment of the decoupling (depending on decoupling temperature
it can change rapidly - see left Fig. 7). Using nN = 3

4
2 ζ(3)
π2 T

2 for the UR regime or

nN ∼
(
mN
T−

)3/2

e−mN/T− for the NR regime, we get the abundance in these two limits:

YN '





0.6

g∗(T−)
, UR regime

α(mN , τN)

(
mN

T−

)3/2

e−mN/T− , NR regime
(3.3.11)

The coefficient α(mN , τN) in Eq. (3.3.11) appears since the decoupling is not an instanta-
neous process; in dependence on the mass and lifetime it can vary by a factor of O(10).

To improve these estimates, we find the abundance numerically. We assume the
Boltzmann approximation for the distribution function of the plasma particles and the
equilibrium shape of the energy distribution of HNLs (such that, in particular, 〈EN〉 is
3.15T for T � mN ). In this case, the equation for the evolution of the abundance of HNLs
has the form (see, e.g., [217])

dYN
dt

= −ΓN,int(YN − YN,eq), (3.3.12)

where ΓN,int is given by

ΓN,int =
∑

A,B,C

gNgA
8π4

∞∫

smin

p2
AN

√
sσN+A→B+CK1

(√
s

T

)
ds (3.3.13)

In ΓN,int, the threshold invariant mass is smin = min[(mN +mA)2, (mB +mC)2], and

p2
AN =

s

4

(
1− (mN −mA)2

s

)(
1− (mN +mA)2

s

)
(3.3.14)
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The values of abundances YN for particular lifetimes are shown in Fig. 8 (right panel).

For masses 0.2 GeV . mN . 2 GeV and lifetimes above 0.001 s, HNLs decouple at
temperatures T � mN , i.e. being ultra-relativistic and above the QCD transition. Their
abundance YN is therefore universal and almost constant, owing to the temperature
dependence of g∗ (left panel) for T & 200 MeV. For masses O(100) MeV and for
large lifetimes τN & 0.1 s, HNLs still decouple while being ultra-relativistic. With the
decrease of τN , YN first grows by a factor of few (due to rapid decrease of g∗), and with
further decrease it becomes strongly suppressed.

Eq. (3.3.11) means that for UR regime later decoupling (i.e. larger mixing angles)
leads to larger HNL abundance. In Fig. 6 (the right panel), we summarize the HNL
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Figure 7: Left panel: temperature dependence of g∗ in SM (reproduced from [215]). The
drop around T = 200 MeV is caused by the entropy dilution at the QCD transition. Right
panel: HNL lifetime as a function of mass for mixing with different flavors. The dashed
gray lines show the scaling of the lifetime with mass. The lifetimes is shown for U2 = 1
and scales as U−2.

parameter space explored by the current study. It shows the domain in which HNLs never
entered thermal equilibrium as well as the regime in which HNLs decouple while being
non-relativistic. We see that these two regimes are separated by the broad parameter space
for which HNLs enter thermal equilibrium and decouple while being UR. A dashed line in
the middle of this region is the seesaw bound (3.3.4).

The temperature of freeze-out (T−) is roughly defined via

Γint
N (T−) ' 3H(T−), (3.3.15)

see left panel in Fig. 6 (this equation has two solutions, the larger one defines T+). The
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factor of two estimate for T− reads

T− ' Tν,dec ×





1

U2/3

1

n
1/3
int

(
g∗(T−)

10.75

)1/6

, UR regime

1

U2

1

nint

(
100 MeV
mN

)2(
g∗(T−)

10.75

)1/2

NR regime,

(3.3.16)

where Tν,dec ≈ 1.4 MeV is the decoupling temperature of active neutrinos, nint = ΓN,int/G
2
FT

5

is a factor that varies from ' 2 at T ' O(1 MeV) to ' 9 at O(1 GeV) temperatures. The
different dependence on U2 and on mN in two regimes is due to the change of centre-of-
mass energy (Ecm ∼ T for UR and Ecm ≈ mN in the NR regimes). The values of T− for
different masses are shown in Fig. 8 (left). Instead of the mixing angles we use the lifetime
τN ∝ U−2 (Fig. 7, left) that is more intuitive when studying the influence on BBN.

For masses around mN ' 200 MeV and lifetimes τN ∼ 0.1 s the HNL freeze-out
occurs around the hadronization epoch. During this epoch, g∗ drops by a factor ∼
3 [215] while T− ' mN , and therefore the abundance of HNLs can be higher than for
relativistic decoupling.

For smaller masses, the decoupling temperature rapidly drops (see Fig. 8, left panel),
which results in the Boltzmann suppression of the abundance. This effect is translated into
a factor of few “kink” below the mass mN ' 200 MeV in the final plots (Figs. 12).
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Figure 8: Left panel: the behavior of the decoupling temperature T−, defined via
ΓN,int(T−) = 3H(T−), versus the HNL mass for particular lifetimes. The black dashed
line defines the parameter space T− = mN , which roughly indicates the transition from
relativistic to non-relativistic regime of HNL decoupling. The gray horizontal band shows
a temperature when the hadronization of quarks takes place, and therefore the effective
number of relativistic degrees of freedom, g∗, drops sharply (remind Fig. 7). Right panel:
HNL abundances versus the HNL mass for particular values of the lifetime.
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3.3.1.3 Evolution after decoupling

After the freeze-out, the comoving number density of HNLs changes only due to HNL
decays. The physical number density thus evolves as

nN(T ) = nN(Tdec) ·
(
a(Tdec)

a(T )

)3

· e−t/τN (3.3.17)

Decays of HNLs inject energy into the primordial plasma. This effect changes the time-
temperature relation and the scale factor evolution as compared to SBBN. The HNL decays
provide additional dilution of any decoupled relics (including themselves) in comparison to
the SBBN case:

ζ =

(
aSBBN

aSBBN + N

)3

< 1, (3.3.18)

where a−1
SBBN(T ) ∝ g

1/3
∗ T is the scale factor in SBBN, and the scale factors are evaluated at

times t� τN . To calculate ζ, we solve the Friedmann equation under an assumption that
neutrinos are in perfect equilibrium and neglecting the mass of electrons:

H2(t) =
1

M2
Pl

8π

3

[
ρrad +mN · nN(T )

]
,

4
ρrad

T

dT

dt
=
mNnN(t)

τN
− 4H(t) · ρrad,

(3.3.19)

where the number density of HNLs is given by Eq. (3.3.17). This is a reasonable assumption,
since most of the HNLs with lifetimes τN � 0.1 s decay much earlier than neutrinos
decouple.

Effects of meson-driven conversion force us to trace the number density of HNLs even
at times t� τN :

nN(t� τN) = nN(T−) ·
(
aSBBN(T−)

aSBBN(T )

)3

· ζ · e−t(T )/τN ≈ 0.4YN · g∗,SBBN T
3 · ζ · e−t(T )/τN ,

(3.3.20)
where t(T ) is the same as in SBBN.13 Because of the suppression, the effect of this
population on the expansion of the Universe may be neglected. However, this exponential
tail still may produce mesons in amounts sufficient to change the dynamics of the n/p ratio.

The values of the HNL abundance and the dilution factor versus its mass and lifetime
are given in Fig. 9.

13At times t� τN , the time-temperature relation differs from SBBN only by the value of Neff. However,
the latter may change only if neutrinos are not in perfect equilibrium, and hence t(T ) is the same as in SBBN
for lifetimes τN � 0.1 s.
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Figure 9: Left panel: Dilution factor (3.3.18) for short-lived HNLs mixing with νe. Right
panel: HNL abundance times dilution factor as a function of mass for particular values of
the lifetime. Details of the calculation of the abundances and ζ are given in [218]. Dilution
factor is calculated, when most of HNLs has decayed and do not contribute to entropy
density. Note, that we define abundance at the moment of decoupling, hence it does not
change with decays.
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Figure 10: Branching ratios of HNL decays into mesons h = π−, K−, K0
L. Secondary

decays are also included (see text for details).

3.3.2 Hadronic decays of HNLs

In this work, we consider a pair of HNLs, degenerate in mass and having similar mixing
angles. Two such HNLs form a single quasi-Dirac fermion [205, 219]. The abundance
of a meson h produced from such HNLs is proportional to the quantity YN · BrN→h. The
mass dependence of BrN→h for different mesons h and mixing patterns is shown in Fig. 10.
We are interested only in the abundances of light mesons (pions and kaons) and for HNL
masses well above pion/kaon thresholds we should account for “secondary mesons”. This
is discussed below, mainly following [39]. Decays into pions. In the case of the pure e/µ

mixings, the charged pion production threshold corresponds to mN = mπ + ml, where
l = e/µ. For τ mixing, the similar charged current-mediated channel opens up only at
mN = mτ +mπ ' 1.9 GeV. However, for all types of mixings charged pions may appear
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as secondary particles in decays of neutral mesons,

N → h0 + να, h0 → π± +X, where h0 = ρ0, η0, η′, ω0, φ (3.3.21)

Therefore, for τ mixing charged pions may appear at masses mN ≥ mη0 . We use the
branching ratios Brη0→π±X ≈ 0.27, Brρ0,±→π±X ≈ 1 [52].

Above mN ' 1 GeV, decays of HNLs into pions cannot be approximated by single
meson decays. Indeed, decays of GeV mass range HNLs are similar to decays of τ lep-
ton [39], whereas for the latter hadronic decays are dominated by multi-pion channels [52].
We estimate the width of multi-pion decays as the difference between the total width into
quarks and the width into single mesons:

ΓN→nπ = ΓN→quarks −
∑

h=π,K,ρ,...

ΓN→hX (3.3.22)

For multiplicitiesN of decays of HNLs into charged pions N → π± (i.e., the amount of π±

per multi-hadronic decay of HNLs), we will use multiplicities for multihadronic decays of
τ leptons. Namely, NN→π+ = Nτ+→π+ ≈ 1.35, NN→π− = Nτ+→π− ≈ 0.34. The effective
branching into π− from multi-pion decays is

Brmulti-pion
N→π− = NN→π− ·

ΓN→nπ
ΓN

, Brmulti-pion
N̄→π− = NN̄→π− ·

ΓN→nπ
ΓN

(3.3.23)

Since the bound on the meson driven p↔ n conversion is only logarithmically sensitive to
the value of BrN→π± , our results depend on these assumptions weakly.

Decays into kaons. Below mN = mφ, charged kaons may appear only through the mixing
with e/µ in the process N → K−l. This decay is Cabibbo suppressed [39] and almost two
orders of magnitude smaller than into pions. Neutral kaons appear only in the final states
with three or more particles (such as N → K0 + K̄0 + να and N → K+ + K̄0 + `−, etc).

HNLs heavier than φ meson may produce both charged and neutral kaons via decays
N → φν, φ → KK. We assume that K0 contains equal admixtures of K0

L and K0
S , i.e.

BrN→K0
L

= BrN→K0/2. We use the branching ratios Brφ→K− ≈ 0.5, Brφ→K0
L
≈ 0.34 [52].

3.3.3 Bounds from BBN and CMB

3.3.3.1 BBN

Let us first consider the bound from BBN. From the previous section we conclude that in
dependence on the mixing patter, decays into charged pions become possible for HNLs
with masses from mN = mπ +me (for the pure e mixing) to mN = mη ≈ 547 MeV (for
the pure τ mixing), see [39, 220] or Sec. 3.3.2.

HNLs with minimal lifetimes that may be constrained by BBN, τN ' O(0.02 s), are
produced thermally, remind Fig. 6. For such HNLs, in Eq. (3.1.13) nN,dec/nγ(Tdec) ≈ 3/2.
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The dilution factor (adecTdec/a0T0)3 is of 0.1− 0.6 for HNL masses mπ . mN . 3 GeV
(we will use 1

3
for normalization below), see Appendix 3.3.1.

Using values of BrN→h, Pconv and the scale factors ratio (which may be found in
Appendix 3.B and sections 3.3.2 3.3.1), we conclude that the logarithm term in (3.1.13)
is O(1) for HNLs in the mass range mN = O(1 GeV) and affects the overall bound very
weakly. Therefore, the bound depends only on Tmin

0 .
The maximal admissible correction (3.1.14) is reached for Tmin

0 = 1.50 MeV, almost
independently on HNL mass (see Fig. 2 and Appendix 3.B.1).

Plugging Tmin
0 = 1.50 MeV into (3.1.13), we obtain our final limit from the analytic

estimates
τN . 0.023 s. (3.3.24)

Numeric calculations from Appendix 3.B.1 confirm this result, predicting constraints at
the level of 0.019− 0.021 s.

Let us now comment on the maximal lifetimes for which our bounds are applicable.
In Sec. 3.1.3, we restricted the applicability of our bounds by lifetimes τFIP ' O(50 s) –
which is an estimate derived under the assumption of absence of effects of FIPs during
the nuclear reaction chain. To push the bound to larger lifetimes, we solve numerically
the system of equations for abundances of d, t,3 He,4 He,7 Li,7 Be in presence of mesons
from decaying HNLs. We incorporate the change of the time-temperature relation and the
dynamics of ηB via the Friedmann equations with HNLs. We use the nuclear rates and
reactions chain from [48]. Further description of our numeric approach may be found in
Appendix 3.B.2. The example of the temperature behavior of the nuclear abundances in
presence of HNLs is shown in Fig. 11.

Using the numeric approach, we conclude that long-lived HNLs with lifetimes τN .
104 s increase nuclear abundances of all elements. The behavior of abundances with
HNL lifetime for a particular mass mN = 200 MeV is shown in Fig. 11.

For larger lifetimes, we need to include the effect of photo-dissociation. Therefore,
using numeric approach, we have extended the domain of applicability of BBN bounds on
HNLs to lifetimes τN = 104 s.

3.3.3.2 Results

We demonstrated that HNLs with semi-leptonic decay channels significantly affect the
primordial 4He abundance, as mesons from their decays drive the p↔ n conversion rates
away from their SBBN values (c.f. [178, 181, 182]). In order to avoid 4He overproduction,
mesons should disappear from the primordial plasma by T = Tmin

0 ' 1.50 MeV. The
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Figure 11: Left panel: the temperature behavior of the nuclear abundances in presence of
HNLs (the solid lines), as well as their behavior in SBBN (the dashed lines). Right panel:
the behavior of the change of nuclear abundances δXi ≡ (Xi − X(SBBN)

i )/X
(SBBN)
i with

HNL lifetime. In both figures, an HNL with mass mN = 200 MeV and pure e mixing is
considered.

neutron abundance will then have enough time to relax down to its SBBN value before the
onset of deuteron formation. These requirements severely constrain the parameter space of
the HNLs with 0.023 s ≤ τN ≤ 104 s for masses mN > 140 MeV.

The final bounds for different mixing patterns are shown in Figs. 13 and 12. Our
constraints can be generalized to other HNL models, see e.g. [221].

Confronted with the bounds from accelerator searches, we ruled out HNLs with mass
below 500 MeV (for electron mixing) and 350 MeV (for muon mixing). Moreover, tighter
bound means that future searches at Intensity Frontier (specifically, SHiP experiment [80])
can reach the BBN bottom line and completely rule out HNLs with the masses up to
750 MeV, which was not the case before [see e.g. 67, 222].

The comparison with the previous results [64, 194, 195] is shown in Fig. 13 (right
panel). Our bound (3.3.24) is a factor of ∼ 5 stronger than the previous result [194]. The
recent reanalysis [64] did not take into account the effects of mesons, therefore their results
are a factor 2− 3 less conservative.

The clear qualitative effect discussed in this paper not only leads to a tighter bound on
HNL lifetime and provides an reachable goal for experimental searches, but also allows for
an analytic description, unusual in the realm of BBN predictions driven by sophisticated
numerical codes.

3.3.4 Bound from CMB

Let us now discuss the influence of HNLs on the physics at the CMB epoch. We do not
consider masses higher than mN ' 1 GeV, since there is no adequate description of HNL
decay widths due to theoretical uncertainties [39], while it is crucial to know them for the
calculation of Neff. Indeed, this makes it complicated to compute ξν (and thus ∆Neff), as it
depends on the branching ratios of the different multi-meson decay channels. For instance,
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Figure 12: Bounds for HNLs mixed with a particular flavor. The blue area is excluded
by our present analysis combined with [218] (for HNL masses below the charged pion
production threshold). The dark gray area denotes the excluded HNL parameter space from
previous searches [82], including the latest NA62 search [223]. The red and greed dashed
lines show the sensitivity of several future intensity frontier experiments with the highest
sensitivity in the regions of interest – SHiP [80, 224] and DUNE [225–227] (see [67]).
Finally, the black dashed line denotes the seesaw bound applicable if two degenerate in
mass HNLs are responsible for neutrino oscillations (as in the νMSM) [77, 82]. Our bounds
are applicable up to lifetimes τN = 104 s, from which EM decay products of HNLs may
lead to nuclear photodissociation, see text for details.
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Figure 13: Left panel: BBN bounds on HNL lifetime for different mixing patterns. The
gray region is excluded as a result of this work (for masses below pion threshold we use the
results of [218]). The magenta shaded region corresponds to the domain excluded in [196].
Right panel: comparison of the results of this work (thick blue line) with the results of the
previous works [64, 194, 195] (purple lines) assuming mixing with electron flavor only.
Notice that other works have adopted different values for the maximally admissible 4He
abundance when deriving their bounds: Yp,max = 0.2696 in [194, 195] and Yp,max = 0.253
in [64] as compared to Yp,max = 0.2573 in this work (see text for details).

the decay N → 3π0 + ν injects more energy into the EM plasma and diminishes ξν , while
N → 3π± + `∓ may inject more energy into neutrinos and compensate for this decrease.
Therefore, both such channels should be accounted for.

We make use of pyBBN [64] to simulate their impact on the cosmological history, in
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particular on Neff. We examine the region of parameter space in which HNLs inject most of
their energy into neutrinos, but where ∆Neff is negative, illustrating the effect described
in the previous section. Finally, we derive bounds from the CMB and comment on the
possible role of HNLs in alleviating the Hubble tension.

3.3.4.1 Behavior of Neff

HNLs inject (eventually) all of their energy either into the neutrino or electromagnetic
plasma. The fraction of the HNL energy that is injected into each of these two sectors is
mass-dependent and shows a significant shift to the EM plasma once HNLs can decay
into neutral pions (∼135 MeV), see Fig. 16.
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∆
N
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Figure 14: ∆Neff as a function of HNL lifetime for a number of benchmark masses. Mixing
with electron neutrinos only is considered here. The curves illustrate three cases of how
HNLs can affect Neff: 1) they can decay mostly into neutrinos and simply increase Neff

(30 MeV curve), 2) they can decay mostly into neutrinos and either decrease or increase
Neff depending on their lifetime (110 MeV curve), and 3) they can decay mostly into EM
particles and simply decrease Neff (200 MeV curve). HNLs with masses mN & 70 MeV
that decay mainly into neutrinos around neutrino decoupling, show an initial decrease of
∆Neff as a result of the thermalization of the injected high-energy neutrinos. The grey band
is the current sensitivity by Planck.

This plot shows that HNLs below the pion mass decay mainly into neutrinos and,
therefore,

One would naively expect that in the mass range mN < mπ Neff increases. However,
we find that HNLs are able to decrease Neff for masses already above ∼70 MeV, while
for smaller masses an increase of Neff is observed.
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The origin of this sign change in ∆Neff at mN & 70 MeV (rather than mN > mπ

as one would guess from Fig. 16) lies in the energy transfer from the neutrino plasma to
the electromagnetic plasma that is induced by the injected non-equilibrium neutrinos, as
discussed earlier in Sec. 3.2.1. We run pyBBN simulations to examine in which region
of parameter space this sign change happens14. We show ∆Neff as a function of the HNL
lifetime in Fig. 14 for a number of benchmark masses. The grey band in this figure indicates
the current sensitivity by Planck. Included in this figure is an HNL of mass 110 MeV, which
decreases Neff for lifetimes below τN . 0.6 s and increases Neff for longer lifetimes. Such
a lifetime (τN ∼ 0.6 s) roughly corresponds to the time of neutrino decoupling, beyond
which thermalization between the neutrino and EM plasma is not efficient anymore and the
injected neutrinos remain in the neutrino sector. This exemplifies the ability of HNLs below
the pion mass to diminish Neff, even when neutrinos are on the verge of being completely
decoupled. With the current sensitivity of Planck, however, this initial decrease of ∆Neff

for this mass falls within the error range and is thus not observable. Nevertheless, a number
of upcoming and proposed CMB missions, such as the Simons Observatory [228] and
CMB-S4 [229], could provide a determination of Neff around the percent-level and probe
this effect.

We depict the region of HNL parameter space where ∆Neff changes sign in the top
panel of Fig. 15. This is shown for the case of pure mixing with tau neutrinos only,
as the parameter space where HNLs mix purely with electron and muon neutrinos is
excluded in the lower mass range (where ∆Neff can be positive) by BBN, the CMB and
experimental searches [37, 64, 221]. In these latter two cases, ∆Neff can only be negative
in the unconstrained parameter space. This top panel shows that there is a large region of
HNL parameter space, where these particles inject most of their energy into neutrinos and
still decrease Neff. The behavior of negative ∆Neff continues for short-lived HNLs with
masses mN > 1 GeV, since the neutrino energy increases with the HNL mass. On the
other hand, for HNLs with lifetimes τN � 1 s, it depends on how much energy they inject
into the neutrino plasma. Indeed, such HNLs decay long after neutrino decoupling, when
non-equilibrium effects are not important anymore and the injected neutrinos remain in the
neutrino sector. This means that the sign of ∆Neff is simply determined by the value of
ξν . As a result, for masses where ξν > 0.5 (see Fig. 16) this would mean that eventually
∆Neff > 0 and vice versa (see Fig. 17 for an illustration).

We summarize pyBBN predictions for Neff in the form of fitting functions for the three
pure HNL mixing cases. This may provide a quick way to predict the impact of HNLs on
several cosmological probes through the change in Neff . They read:

14We note that pyBBN predicts a SM value for Neff of 3.026, rather than 3.044. This is because the code
does not include higher-order QED corrections that account for a ∆Neff = 0.01 increase [183–187], while
the remaining is due to numerical inaccuracy. This, however, is only a minor difference and does not change
any of the results presented in this work.

111



101 102 103

mN [MeV]

10−2

10−1

100

101

τ N
[s

]

∆Neff > 0

∆Neff < 0

ξν > 0.5 ξν < 0.5 ξν > 0.5

101 102 103

mN [MeV]

B
B

NC
M

B

∆Neff = 0

+0.4

+0.4
0

−0.4

−0.4

Figure 15: How HNLs change ∆Neff as a function of their mass and lifetime. Mixing
with tau neutrinos only is considered here. Left panel: Regions of the HNL parameter
space that predict an increase (blue) or decrease (red) of Neff with respect to the SM value.
The horizontal lines at the bottom of the plot indicate the mass ranges where HNLs inject
most of their energy into neutrinos (ξν > 0.5) or the EM plasma (ξν < 0.5). In the
former case, HNLs can still decrease Neff as a result of the efficient transfer of energy
from neutrinos to EM particles. Right panel: Regions of the HNL parameter space that are
excluded by BBN abundance measurements (green) and CMB observations (yellow). The
∆Neff = {0,±0.4} contours give an indication of by how much HNLs can change Neff at
the most in the unconstrained region. The BBN bound is from [64] and uses a central value
for the primordial helium abundance of YP = 0.245 [230] with an error of 4.35% (see [37]
for a discussion on how this error is obtained). For masses higher than the eta-meson mass
(∼550 MeV), the meson effect from [37] is included in the analysis. The CMB constraint is
obtained using the approach as detailed in [64] (see Sec. 3.3.5 for more details on the CMB
bound). This panel also shows that there is only a relatively small unconstrained region of
parameter space left that can increase Neff and where HNLs could play a role in alleviating
the Hubble tension.

∆NFit
eff

∣∣∣
e−mixing

= −9.78τNe
5.72τN

1 + 1.28·105

m2.42
N

(3.3.25)

∆NFit
eff

∣∣∣
µ−mixing

= −7.49τNe
12.1τN

1 + 2.41·106

m2.87
N

(3.3.26)

∆NFit
eff

∣∣∣
τ−mixing

= −8.72τNe
13.9τN

1 + 3.49·103

m1.51
N

, (3.3.27)

where mN is the HNL mass in MeV and τN is the HNL lifetime in seconds. The
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change in Neff is with respect to the SM value of NSM
eff = 3.026. The fitting functions are

tested for masses 100 MeV ≤ mN ≤ 1 GeV and lifetimes 0.02 s ≤ τN ≤ 0.05 s, and have
a maximum deviation from the simulated data of roughly ∼3%.
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Figure 16: The fraction of HNL mass that is injected into the neutrino plasma. Contribu-
tions to this fraction from unstable HNL decay products (mesons and muons) are included
and we assume that the kinetic energy of all created charged particles goes into the EM
plasma. For mN & 135 MeV, HNLs can decay into neutral pions, which in their turn
decay into two photons. This causes the sudden decrease of ξν around that mass. At higher
masses, ξν keeps increasing in the case of τ -mixing, which is due to the absence of HNL
decays into charged mesons (such decays are possible in the other two mixing cases).

3.3.5 Bounds from CMB

The CMB anisotropies are mainly sensitive to Neff through its impact on the damping
tail [54, 230–232]. For example, a larger number of relativistic degrees of freedom causes a
stronger suppression of the power spectrum at high multipoles, as temperature anisotropies
below the scale of the photon diffusion length are more damped by the increased expansion
rate. This effect is, however, degenerate if the primordial helium abundance YP is also
considered as a free parameter [54]. YP is related to the number density of free electrons15,
ne ∝ (1− YP), which in its turn enters in the CMB damping scale. A larger YP leads to a
lower electron density, a larger electron-photon interaction rate, a larger photon diffusion
length and thus a stronger damping.

We extend the CMB constraint on HNLs for masses up to 1 GeV using the same
approach as detailed in [64, 233] and show the result in the bottom panel of Fig. 15. Also
included in this panel are the contours where ∆Neff = ±0.4, which give an indication of
by how much HNLs can change Neff at the most, given the current constraints imposed

15This relation between ne and YP is obtained by imposing charge neutrality on the primordial plasma.
Therefore, YP is allowed to change even if the total baryon density is fixed.
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by BBN and the CMB. The CMB bound is only stronger than the BBN bound in the
lower mass range, as this is where Neff strongly increases. HNLs with short lifetimes
and masses around O(10) MeV decouple while being non-relativistic and thus have a
suppressed number density. They can therefore survive beyond the decoupling of SM weak
reactions, without significantly affecting the primordial abundances. However, since the
HNL energy density here falls off as (scale factor)−3, the HNLs could eventually dominate
the total energy density of the Universe. As can be seen in Fig. 16, HNLs in this lower
mass range inject most of their energy into neutrinos, which remains in the neutrino sector
after neutrino decoupling. The result is then a significant increase in Neff, which can be
constrained with the CMB. On the other hand, for masses higher than ∼70 MeV, Neff

starts decreasing. This decrease is relatively small in magnitude, especially in the region
that is not constrained by BBN, where Neff − NCMB

eff . 0.4. In addition, the error in the
determination of YP by the CMB is larger than the one by BBN [199, 233]. These two
properties make the CMB a weaker probe of HNLs in the higher mass range.

Currently, CMB is a weaker probe of HNLs than BBN in the mass rangemN & 40 MeV.
However, as mentioned before, future CMB experiments could improve upon this result.

3.3.6 Implications for the Hubble Parameter

An increase or decrease of Neff subsequently also changes the Hubble parameter. As such,
HNLs could play a role in alleviating the longstanding tension between local determinations
of the current day Hubble rate H0 and the one as inferred from the CMB16 [235, 236].
The usual approach involves increasing Neff, while keeping the angular scale of the sound
horizon θs = rs/DA fixed, see e.g. [237–239]. Here, rs is the comoving sound horizon and
DA is the comoving angular diameter distance to the surface of last scattering. Both of
these quantities depend on the Hubble parameter:

rs(z∗) =

∫ ∞

z∗

cs(z)dz

H(z)
(3.3.28)

DA(z∗) =

∫ z∗

0

dz

H(z)
, (3.3.29)

where z∗ is the redshift of the last-scattering surface and cs(z) is the speed of sound of
the baryon-photon fluid in the early Universe. The Hubble rate in Eq. (3.3.28) depends
mainly on the radiation (photons and neutrinos) and matter energy densities, while the one
in Eq. (3.3.29) is the late-time Hubble rate and depends mostly on the dark energy and

16This question has been considered before in [234]. Importantly, this study used the results of [194],
where the assumption was made that any change in the primordial helium abundance is due to ∆Neff. In
contrast, here we find that neutrino spectral distortions are the driving power behind ∆Neff for short-lived
HNLs. As a consequence, the results presented in our work and in [234] are rather different.

114



0.1 1.0
mN [GeV]

10−2

100

102

104

106

108

1010

τ N
[s

]

−2−1 0 1 5 30 60

∆Neff

Figure 17: Semi-analytic estimate of ∆Neff as a function of HNL mass and lifetime in the
case of pure tau mixing. This plot is obtained using the method described in Sec. 3.2.1 (and
is therefore only accurate up to a factor 3− 4 for short lifetimes, when neutrinos are still in
partial equilibrium). Nevertheless, it allows for a qualitative understanding of the behavior
of ∆Neff at lifetimes larger than considered in the main analysis (Fig. 15). Importantly, for
lifetimes well beyond the time of neutrino decoupling (O(1) s), non-equilibrium effects are
absent and the sign of ∆Neff is thus completely determined by the fraction of HNL energy
ξν that is injected into the neutrino plasma, see Fig. 16. We see that HNLs with low masses
and long lifetimes can still considerably affect Neff, while in the higher mass range ∆Neff

tends to 0. This is because low-mass HNLs are more abundantly produced in this region of
parameter space [196], where their mixing angles are relatively large.

matter energy densities. This means that increasing Neff only results in a larger early-time
Hubble rate and a smaller rs. In order to keep θs fixed, the comoving angular diameter
distance must satisfy DA = rs/θs, which then also decreases if rs decreases. Looking at
Eq. (3.3.29), such a decrease can be accomplished by increasing the dark energy density
ωΛ, or equivalently, H0 (as ΩΛ = 1− Ωm). Since local measurements find a larger value of
H0 than the one inferred from the CMB within the Standard Model, this approach provides
a way to reduce the Hubble tension.

This method, however, does not take into account the increased Silk damping induced
by a larger Neff [54, 230–232]. Therefore, a price must be paid when alleviating the Hubble
tension in this way: An increase of Neff leads to a larger disagreement with the CMB
itself. Given our CMB constraint in Fig. 15, we see that HNLs can increase Neff by at
most ∆Neff ≈ 0.4. This gives us an indication of the extent to which unconstrained HNLs
could increase H0 and ameliorate the Hubble tension. We estimate the corresponding H0

by running Monte Python [240, 241] with the Planck 2018 baseline TTTEEE+lowE
analysis. Fixing the primordial helium abundance to17 YP = 0.25, we obtain18 H0 =

17This is approximately the value of YP along the ∆Neff = +0.4 curve on the left in the bottom panel of
Fig. 15.

18All errors in H0 reported here are at 68% CL.

115



70.5± 0.7 km s−1Mpc−1. This value can be compared to the one as obtained from, e.g., a
distance ladder approach, which gives H local

0 = 73.0± 1.4 km s−1Mpc−1 [242]. Given the
Hubble rate obtained within ΛCDM (H0 = 67.3 ± 0.6 km s−1Mpc−1 [199]), we see that
HNLs which are not excluded by BBN, the CMB and terrestrial experiments can moderately
alleviate the Hubble tension.
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Appendix

3.A Thermal dependence of mixing angle of HNLs

3.A.1 Neutrino self-energy

Consider hot dense plasma with 4-velocity uµ, u2 = 1, temperature T � me and zero
lepton asymmetry. Neutrinos in this plasma may interact elastically with electron-positron
pairs:

ν + e± → ν + e± (3.A.1)

If the 4-momentum of the neutrino does not change in these processes, they contribute to
the self-energy of neutrinos Σ, see Fig. 18. In explicit form, the self-energy is

e+ e+

ν νW ν

e−e−

νW

+

Figure 18: Diagrams of the contribution of the processes (3.A.1) to the self-energy of
neutrinos.

Σ ∼ 2

∫
d3k

(2π)3
fFD(k)Σk, (3.A.2)

where
fFD(k) =

1

exp (k · u) + 1
(3.A.3)

is the distribution function of electrons and positrons (with u being the 4-velocity of the
plasma), while Σk is (σ denotes the equality up to sign)

Σk ∼
1

2k

√
2GF

2

[
γµ(1− γ5)u(k)Dµν(p− k)ū(k)γν(1− γ5)−

− γµ(1− γ5)v(k)Dµν(p+ k)v̄(k)γν(1− γ5)

]
, (3.A.4)
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with Dµν being the W boson propagator

Dµν(p± k) = −
gµν − (p±k)µ(p±k)ν

m2
W

(p± k)2 −m2
W

(3.A.5)

The minus sign in (3.A.4) appears because of the Pauli principle – the processes (3.A.1)
differ only by exchanged in- and out- charged fermions lines.

Let us simplify estimates:

1. The self-energy (3.A.4) vanishes in the leading order on GFE
2 (i.e., approximating

the propagator by −gµν/m−2
W ). We need to keep the next order corrections:

Dµν(p± k) =
gµν
m2
W

− 1

m4
W

[
gµν(p± k)2 + (p± k)µ(p± k)ν

]
+ . . . (3.A.6)

The (p± k)µ(p± k)ν/m
2
W terms in the numerator either areO(me/mW ) suppressed

(this can be shown by acting them on electron-positron spinors u(k)/v(k)), or cancel
when plugging in Eq. (3.A.4), so only the term gµν(p± k)2/m4

W matters. Averaging
over incoming electron/positron polarizations, vv̄, uū→ /k/2, we get

Σk ∼
√

2GF

8km2
W

[(p+ k)2 − (p− k)2]γµ(1− γ5)/kγµ(1− γ5) =

=

√
2GF (p · k)

2km2
W

γµ(1− γ5)/kγµ(1− γ5) ∼ 2
√

2GF (p · k)

km2
W

/k(1− γ5), (3.A.7)

where in the last step we used the identity γµ(1− γ5)/kγµ(1− γ5) = −4/k(1− γ5).

2. Let us integrate Σk over the momenta of e±. We have

1

ne

∫
d3k

(2π)3
(p · k)

/k

k
fFD(k) =

pαγβ

ne

∫
d3k

(2π)3

kαkβ
k

fFD(k) = pαγβ(Agαβ +Buαuβ),

(3.A.8)
where ne = 3ζ(3)T 3/4π2 is the number density of electrons and positrons, the
coefficients A,B can be obtained considering the integral at rest frame of the plasma
(uα = δα0 ):

B = −4A =
4〈Ee〉

3
(3.A.9)

Therefore, we get

Σ =
16
√

2〈Ee〉neGF

3m2
W

(
(p · u)/u− 1

4
/p

)
(1− γ5) (3.A.10)

Restoring the overall sign and making a completely similar calculation that involves the
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contribution of neutrinos themselves to the self-energy, we get

Σ(p) = −16
√

2〈Ee〉neGF

3m2
W

[
1 +

m2
W

2m2
Z

](
(p · u)/u− 1

4
/p

)
(1− γ5) (3.A.11)

This expression agrees with [243] (Eq. (12)) at the rest frame of the plasma, uµ = (1, 0, 0, 0)

(see also Eq. (20) in [213]).19

At rest frame of the plasma, neglecting the neutrino mass, using the relation 〈Ee〉 =

7π4T/180ζ(3), for the correction to the neutrino energy we have

∆Eν(p) =
1

2p
Tr[Σu(p)ū(p)] = −14

√
2π2GFT

4p

45m2
W

(
1 +

m2
W

2m2
Z

)
(3.A.12)

This expression agrees with [213, 243].
The self-energy modifies the neutrino propagator: after the resummation we get

Dν(p) =
1

/p

∞∑

n=0

(
−Σ

1

/p

)n
=

1

/p+ A/c(1− γ5)
(3.A.13)

3.A.2 Derivation of U2
m

Now, consider the general matrix elementM of the interaction of an HNL N with SM
particles. It couples to the neutrino via the term Lmixing = mNθN̄ν, where mN is the mass
of the HNL and θ � 1 is the mixing angle. Therefore,M takes the form

M = θmNN̄(p)Dν(p)γ
µ(1− γ5) . . . , (3.A.14)

where . . . is the interaction dependent part and γµ(1− γ5) comes from the neutrino vertex.
Let us use the series representation of the neutrino propagator (3.A.13). With the help of
the identity [

/c(1− γ5)
/p

p2

]n
γµ(1− γ5) =

[
2/c

/p

p2

]n
γµ(1− γ5) (3.A.15)

we get

M = θmNN̄(p)
1

/p+ 2A/c
γµ(1−γ5) · · · = θmNN̄(p)

/p+ 2A/c

p2 + 4A(p · c) + 4A2c2
γµ(1−γ5) . . . ,

(3.A.16)
where in the last equality we multiplied the numerator and denominator of the propagator
by /p+ 2A/c. Finally, using the dispersion relation for HNLs (p2 = m2

N ), the Dirac equation
N̄/p = mNN̄ and neglecting the 4A2 term in comparison to 4A (valid everywhere for

19The expression (3.A.11) is larger from Eq. (12) in [243] by a factor of two, but this is most likely due to
a misprint, as Eqs. (21) from [213] and (13) from [243] require twice larger value.
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T � mW ), we obtain

M = θMN̄(p)

[
1 + 2A

(
(p · u)

mN
/u− 1

4

)]
γµ(1− γ5) . . . , (3.A.17)

where we introduced the effective mixing angle θM :

θM =
θ

1 + 4A
(

(p·u)2

m2
N
− 1

4

) ≈ θ

1 + 2.2 · 10−8
(

T
1 GeV

)4 (
γ2
N − 1

4

) , (3.A.18)

with γN = EN/mN . For practical purposes, the second term in the numerator,

X̂ = 1 + 2A

(
(p · u)

mN
/u− 1

4

)
, (3.A.19)

may be neglected, see a discussion below.

In the UR limit γN ≈ pN/mN ≈ 3.15T/mN � 1, and we get

θM(T ) ≈ θ

1 + a
(

T
1 GeV

)6
(

1 GeV
mN

)2 , a = 2.2 · 10−7 (3.A.20)

The value of a fully coincides with that from the literature (see, e.g., [196]).

Role of the numerator. Let us now consider the operator in the square brackets from
Eq. (3.A.17):

X̂ = 1 + 2A

(
(p · u)

mN
/u− 1

4

)
(3.A.21)

Using (p · u)/u ' EN in the plasma rest frame and approximating EN ≈ 3.15T , we find
that the second term of the operator cannot be neglected (& 1) for temperatures

T & 31
( mN

1 GeV

)1/5

(3.A.22)

In contrast, the second term in the denominator of (3.A.20) becomes non-negligible at

T & 12.9
( mN

1 GeV

)1/3

(3.A.23)

So there is a temperature domain in which the θM is affected by the plasma effects, whereas
the numerator can be neglected. However, the numerator prevents the matrix element from
huge suppression at large temperatures: the asymptotics of the suppression of the product
X̂ · θM is mN/EN .
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3.B Changes in p↔ n rates due to the presence of mesons

In this section, we provide details on our estimate of the effect of mesons on BBN.

Pions. The threshold-less processes with charged pions are

π− + p→ n+ π0/γ, π+ + n→ p+ π0. (3.B.1)

The cross-sections at threshold are [179]

〈σπ−p→nv〉 ≈ 4.3 · 10−23F π
c (T ) m3/s,

〈σπ−p→nv〉
〈σπ+

n→pv〉
≈ 0.9 F π

c (T ), (3.B.2)

where F h
c is the Sommerfeld enhancement of the cross-section due to presence of two

oppositely charged particles in the in-state:

F h
c =

x

1 + e−x
, where x =

2παEM

ve
, (3.B.3)

where ve ≈
√

T
mh

+
√

T
mp

is the relative velocity between a nucleon and a meson. Fc is of
order of one at T ' 1 MeV.

Kaons. The threshold-less n↔ p conversions driven by kaons are

K− + p→ Σ±/0/Λ + π∓/0/π0 → n+ 2π,

K− + n→ Σ−/0/Λ + π0/−/π− → n+ 2π,

K̄0
L + p→ Σ0/+/Λ + π+/0/π+ → n+ 2π,

K̄0
L + n→ Σ±/0/Λ + π∓/0/π0 → p+ 2π,

(3.B.4)

where Λ,Σ are the lightest strange hadronic resonances [178].
Their effect is similar to the one of pions, but with small differences: (i) cross-sections

of above reactions are higher than the cross-sections of (3.1.2)20, (ii) there is no isotopic
symmetry - K+ mesons do not contribute to p↔ n conversion, since there are no threshold-
less processes n+K+ → p+X . Indeed, the process n+K+ → p+K0 has the threshold
Q ≈ 2.8 MeV, while the threshold-less processes going through s-quark resonances, similar
to (3.B.4), would require resonances with negative strangeness and positive baryon number,
that do not exist, (iii) neutral kaons do not lose the energy before decaying (however, we
follow [178] and approximate the cross-sections by threshold values).

The threshold cross-sections are

〈σK−p→nv〉 ≈ 9.6 · 10−22FK
c (T ) m3/s,

〈σK−p→nv〉
〈σK−n→pv〉

≈ 2.46 FK
c (T ), (3.B.5)

20The reason is that these reactions have higher available phase space and go through hadronic resonances.
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〈σK0

p→nv〉 ≈ 1.95 · 10−22 m3/s,
〈σK

0
L

p→nv〉
〈σK

0
L

n→pv〉
≈ 0.41. (3.B.6)

Conversion probabilities. A probability for a meson h to convert p↔ n before decaying
is given by

P h
conv ≈

〈σhp↔nv〉nB
Γhdecay

, (3.B.7)

where Γhdecay is the decay width and nB is the baryon number density. The decay widths of
mesons are [52]

Γπ
±

decay ≈ 3.8 · 107 s−1, ΓK
−

decay ≈ 8.3 · 107 s−1, Γ
K0
L

decay ≈ 2 · 107 s−1 (3.B.8)

Using (3.B.2), (3.B.5), (3.B.8), for the p→ n conversion probabilities we obtain

P π−

conv(T ) ≈ 2.5 · 10−2

(
T

1 MeV

)3

, PK−

conv(T ) ≈ 2.8 · 10−1

(
T

1 MeV

)3

,

P
K0
L

conv(T ) ≈ 1.6 · 10−1

(
T

1 MeV

)3

(3.B.9)

The largeness of the probabilities is caused by the fact that the decay of mesons proceeds
through weak interactions, while the p↔ n conversion is mediated by strong interactions.
In particular, at T & 2 MeV kaons participate in the conversion faster than they decay.

3.B.1 Numeric study

To verify the analytic estimate (3.3.24), we numerically solve equation for the neutron
abundance Xn, where we include both weak conversion p↔ n processes and the meson
driven processes (3.B.1)-(3.B.4). The system of equations has the form




Xn
dt

=
(
dXn
dt

)
SM +

(
dXn
dt

)
π

+
(
dXn
dt

)
K−

+
(
dXn
dt

)
K0
L
,

dnπ−
dt

= nN
BrN→π−

τN
− Γπ

−
decaynπ− − 〈σπ

−
p→nv〉(1−Xn)nBnπ− ,

dnπ+
dt

= nN
BrN→π+

τN
− Γπ

+

decaynπ+ − 〈σπ+

n→pv〉XnnBnπ+ ,
dnK−
dt

= nN
BrN→K−

τN
− ΓK

−
decaynK− − 〈σK

−
p→nv〉(1−Xn)nBnK− − 〈σK−n→pv〉XnnBnK− ,

dn
K0
L

dt
= nN

Br
N→K0

L

τN
− Γ

K0
L

decaynK0
L
− 〈σK

0
L

p→nv〉(1−Xn)nBnK0
L
− 〈σK

0
L

n→pv〉XnnBnK0
L

(3.B.10)
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Here the quantities
(
dXn

dt

)

π

= (1−Xn)nπ−〈σπ
−

p→nv〉 −Xnnπ+〈σπ+

n→pv〉,

and
(
dXn

dt

)

K

= (1−Xn)nK〈σKp→nv〉 −XnnK〈σKn→pv〉

(3.B.11)

are the rates of change of Xn due to different mesons (K = K−/K0
L); nB is the baryon

number density nB = ηBnγ . In equations for the number density of mesons nh, the first
term comes from HNLs, the second due to decays of mesons and the last term is due
to p ↔ n conversion. The time-temperature relation and the scale factor dynamics are
provided by the solution of Eq. (3.3.19), and the HNL number density may be obtained
using Eq. (3.3.17).

During times teq ' (Γhdecay)
−1 ∼ 10−8 s, which are small in comparison to any other

time scale in the system, the solution for nh reaches the dynamical equilibrium:

nπ− =
nN · BrN→π−

τN(Γπ
−

decay + 〈σπ−p→nv〉(1−Xn)nB)
, nπ+ =

nN · BrN→π+

τN(Γπ
+

decay + 〈σπ+

n→pv〉(1−Xn)nB)
,

(3.B.12)

nK =
nN · BrN→K

τN(ΓKdecay + 〈σKp→nv〉(1−Xn)nB + 〈σKn→pv〉XnnB)
, (3.B.13)

where K = K−/K0
L.

Therefore, we solve a single equation

Xn

dt
=

(
dXn

dt

)

SM
+

(
dXn

dt

)

π

+

(
dXn

dt

)

K−
+

(
dXn

dt

)

K0
L

. (3.B.14)

where we use meson number densities given by Eqs. (3.B.12) and (3.B.13) in the meson-
driven conversion rates (3.B.11). The results are shown in Fig. 19. Our main result is the
right panel of Fig. 19 – it shows that the value Tmin

0 ' 1.50 MeV and that its variation as a
function of the HNL mass is within ±1%.

With the help of Eqs. (3.B.2), (3.B.5), we obtain the value of the neutron abundance
driven solely by a given meson h. As long as T & T0 (see Eq. (3.1.9) and left panel of
Fig. 19), the weak interaction processes may be completely neglected, and the resulting Xn

are given by

Xπ±

n =
〈σπ−p→nv〉 · nπ−

〈σπ−p→nv〉 · nπ− + 〈σπ+

n→pv〉 · nπ+

≈ 0.9F π
c (T )

1 + 0.9F π
c (T )

,

XK−

n ≈ 2.46FK
c

2.46FK
c + 1

, X
K0
L

n ≈ 0.32 (3.B.15)
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Figure 19: Left panel: the behavior of the p → n (solid lines) and n → p (dashed lines)
conversion rates in the case of pion and kaon driven conversions and SBBN. We consider
HNLs mixing with e flavor, mass mN = 1 GeV and lifetime τN = 0.02 s as an example.
Middle panel: the temperature dependence of the neutron abundance Xn assuming that its
evolution is completely dominated by the meson driven p↔ n conversions. We consider
HNLs mixing with e flavor and different masses: mN = 200 MeV (only pions are present),
mN = 700 MeV (pions and charged kaons are present),mN = 1.5 GeV (pions, charged and
neutral kaons are present). The dashed gray line denotes the value of the neutron abundance
at equilibrium in SBBN. Right panel: the HNL mass dependence of the temperature Tmin

0 .

The values of Xπ−/K−
n grow with the decrease of the temperature due to the growth of the

Coulomb factor Fc, which enhances the rate of the p→ n process.
The quantities (3.B.15) provide us the qualitative estimate of the value of Xn in

presence of different mesons, Fig. 19. Below the kaon production threshold, Xh
n = Xπ±

n .
At larger masses, in order to findXh

n we need to set the whole right hand-side of Eq. (3.B.10)
to zero. Below the K0

L production threshold (which occurs at mN = mφ), the value of Xh
n

grows, since charged kaons tend Xn to higher values than Xπ−
n . Above the neutral kaon

production threshold, the ratio BrN→K−/BrN→π− increases (Fig. 10) and Xh
n grows further.

However, kaons K0
L, that are present in small amounts, somewhat diminish this growth.

The value of Xh
n(mN) provide us the mass dependence of Tmin

0 (mN), which is the
smallest temperature allowed by observations (c.f. Fig. 2). We show it in Fig. 19 (right
panel).

Let us now comment on the approximations of this approach. If HNLs disappear
from the plasma before neutrinos froze out, the evolution of the neutron abundance and
subsequent nuclear reactions proceed exactly as in SBBN case (albeit with modified initial
value of Xn at T = Tmin

0 ).
Indeed, the onset of nuclear reactions is determined by the dynamical balance between

reactions of deuterium synthesis and dissociation. This balance depends on the value of ηB .
The latter gets diluted by the factor ζ due to decays of HNLs, see Section 3.3.1. However,
we fix ηB at the beginning of nuclear reactions to be the same as measured by CMB. This of
course means that ηB has been ζ−1 times higher before decays of HNLs, but no observables
can probe the value of ηB in this epoch.

Another ingredient that affects dynamics of nuclear reactions is the time-temperature
relation, traditionally encoded in the value of Neff. If HNLs have τN ' 0.02 s, neutrinos
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are in equilibrium during the decay of the most of HNLs, and therefore they do not change
neither Neff nor weak p ↔ n conversion, see detailed analysis in [170]. As a result, the
evolution of primordial plasma below Tmin

0 is governed by the SBBN equations, and our
prediction of the upper bound on the allowed HNL lifetimes is conservative. HNLs with
larger lifetimes do change Neff and rates. However, the net effect of this impact is an
increase of the 4He abundance [64, 170], and therefore the predictions of our approach in
the increase of the 4He abundance, which does not include changes in these quantities, are
conservative.

3.B.2 Numeric approach for long-lived HNLs

The total system of equations for HNLs, mesons, SM plasma and nuclei reads




nN =
(aN,dec

a

)3
nN,dec · e−t/τN ,

ȧ(t) = a(t) ·H(t),
dTEM

dt
+HTEM = ΓEM↔ν

ρEM

dρEM/dTEM
+ ρN εEM

τN
,

dTν
dt

+HTν = −ΓEM↔ν
ρν

dρν/dTν
+ ρN εν

τN
,

Ẋi =
∑

j,kNi

(
Γj→ki

∏
j

Y
Nj
j

Nj !
− Γki→j

∏
k

Y
Nk
k

Nk!

)
(3.B.16)

Here, Xi ≡ ni/nB, Ni denotes the stoichiometric coefficient, j → kl is the shortland
notation for

j1 + · · ·+ jp → i+ k1 + · · ·+ kq, (3.B.17)

and
∏

k

Y
Nk
k

Nk!
is the shortland notation for

∏

k

Y Nk
k

Nk!
≡
Y
Nk1
k1

. . . Y
Nkq
kq

Nk1 ! . . . Nkq !
(3.B.18)

Γj→ik are the reaction rates of SBBN reactions governed the evolution of d, t,3 He,4 He,7 Be,7 Li,
as well as weak p↔ n rates from from [48], and meson-driven dissociation rates, which
we use from [182].21 The number density of mesons evolve due to Eqs. (3.B.10), where
in addition to p ↔ n rates there are now also nuclear dissociation rates. Our results for
nuclear abundances in SBBN are in perfect agreement with predictions from [48].

We neglect the change of weak SM rates, since in presence of long-lived HNLs with
τN � 1 s they do not change at temperatures T ' O(1 MeV) at which weak interaction
processes are important.

21We of course do not include the inverse reactions in which mesons occur, since these reactions are
endotermic and practically impossible.
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3.C Temperature Evolution Equations

Here we provide the relevant equations for the time evolution of the neutrino and photon
temperatures in the presence of decaying FIPs. Assuming a Fermi-Dirac distribution for
neutrinos, the equations read [184, 198]:
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dTν
dt

+ 4HTν =
(1− ξEM,eff)

ρFIP
τFIP

+ Γν↔EM(Tν , TEM)

dρν/dTν
(3.C.1)

dTEM

dt
+

(4Hργ + 3H(ρe + pe))

dρe/dT + dργ/dT

=
ξEM,eff

ρFIP
τFIP
− Γν↔EM(Tν , TEM)

dρe/dT + dργ/dT
(3.C.2)

dρFIP

dt
+ 3HρFIP = −ρFIP

τFIP
, (3.C.3)

where ξEM,eff is given in Eq. (3.2.6), ρi is the energy density of particle i, τFIP is the FIP
lifetime and Γν↔EM(Tν , TEM) =

(
Γνe↔EM + 2Γνµ↔EM

)
/3 is the energy density exchange

rate averaged over neutrino flavours, given by Eqs. (2.12a) and (2.12b) in [198].

3.D Comment on “Massive sterile neutrinos in the early universe:
From thermal decoupling to cosmological constraints” by Mas-
trototaro et al.

After our work was submitted, the paper [197] appeared that studies the impact of HNLs
with masses mN < mπ on Neff. The authors of this work used numerical simulations in
order to obtain Neff and disagree with our conclusion that Neff can decrease even if most of
the HNL energy is injected into neutrinos. They have presented an analytic argument in
their Appendix C which aims to demonstrate that our conclusion on Neff is wrong. They
start with a toy model in Eq. (C.1) that describes the evolution of the distribution function
of neutrinos fν :

x∂xfν(Eν , x) =
1

H

[
S(x,Eν) + ς2G2

FT
4Eν(feq − fν)

]
, (3.D.1)

where x = ma (with a the scale factor and m = 1 MeV), H is the Hubble rate, ς is a con-
stant and S(x) > 0 is the source term from decays of HNLs. The second term in the brackets
describes the interactions between neutrinos and EM particles, where feq is the equilibrium
distribution function resulting from the interaction dynamics of neutrinos and EM particles
in the presence of HNLs.
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Their argument as to why Neff cannot decrease goes as follows: as far as the source
injecting rate S(x,Eν) and the collision rate G2

FT
4Eν are much higher than the Hubble

rate, the solution of Eq. (3.D.1) may be given in terms of the quasi-static solution:

fν ≈ feq +
S

G2
FT

4Eν
. (3.D.2)

In the limiting case S � G2
FT

4Eν , the solution is just fν = feq, while in the opposite
case fν � feq. The authors conclude that in any case fν ≥ feq and thus ∆Neff ≥ 0.
However, while this argument may be applicable at very early times when neutrinos are in
perfect equilibrium, it is no longer valid at temperatures T = O(1 MeV), when they start
to decouple. During the decoupling process, the dynamics of the equilibration between
neutrinos and EM particles, i.e., the energy transfer between the two sectors, becomes very
important and is not captured by Eq. (3.D.1).

We reiterate our argument as to why Neff can decrease when FIPs inject most of their
energy into neutrinos, but now from the point of view of the neutrino distribution function
(see also the right panel of Fig. 4 and the surrounding text for a similar discussion). Before
the decay of the FIP, the neutrino distribution function is the same as the equilibrium
distribution, fν = feq. Right after the decay of the FIP, the neutrino distribution at
high energies becomes fν > feq, while at low energies it is still fν = feq. During the
thermalisation, high-energy neutrinos interact with both low-energy neutrinos and EM
particles. In this process, the temperature of the equilibrium distribution function feq

increases. Now, neutrinos in the high-energy tail of fν interact efficiently, see Eq. (3.2.5),
and fν −→ feq for such neutrinos. But at low energies, neutrinos do not interact efficiently
anymore to catch up with the increase of feq, which eventually leads to fν < feq in this
energy range. Given that these low-energy neutrinos contribute the most to Neff, it means
that ∆Neff can become negative.
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