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The rapid increase in the manufacturing and application of engineered nanoparticles 

(NPs) is raising concerns on their release into the environment. A large part of the 

released NPs is expected to accumulate in soil, which results in an increasing concern 

about their negative impacts in soil ecosystems, especially in the soil-plant 

system315,30,34. Understanding the impacts of NPs on plants is of utmost importance 

for the ecotoxicity assessment of NPs, since plants can serve as a bridge to connect 

the underground components (e.g. soil bacteria) and higher-level consumers. Within 

this PhD I aimed to investigate the uptake, translocation and impacts of metallic NPs 

in plants and potentially in terrestrial food chains under different exposure scenarios. 

Within these studies there was a specific focus on distinguishing the relative 

contribution of the nanoparticulate versus the released ionic form from metallic NPs 

to the overall toxicity in plants. Importantly, the majority of studies on the NPs and 

plants are short term experiments. We conducted long(er) term exposures in order 

to partially fill up the associated knowledge gap on adverse effects after longer term 

exposure. Within these experiments we incorporated the exposure routes, exposure 

dynamics and physicochemical properties of NPs to study their fate, accumulation 

and phytotoxicity in plants. Finally, we investigated the long-term impacts of NPs on 

the rhizosphere soil bacterial community and their potential transfer and 

biomagnification into a terrestrial food chain. 

In this final chapter I will first answer the research questions formulated in chapter 

1, which have been addressed in Chapters 2-5: 

1. How does the exposure pathway affect the uptake, translocation, and phytotoxicity 

of AgNPs in plants? (Chapter 2 and 4) 

2. How do the shape, size and coating of NPs affect the fate, accumulation and 

phytotoxicity of AgNPs? (Chapter 2 and 3) 

3. What is the relative contribution of the nanoparticulate and the released ionic form 

to the overall toxicity of suspensions of NPs and on metal accumulation in plants? 

(Chapter 2 and 3) 

4. How and to what magnitude does the dynamic dissolution of AgNPs in soil affect 

their bioavailability to plants? (Chapter 4) 
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5. How does the soil rhizosphere bacterial community respond to exposure to AgNPs, 

and does this response change over time? (Chapter 4) 

6. How does a mixture of AgNPs and TiO2NPs affect the transfer of the individual 

NPs along a terrestrial food chain of lettuce-snails and the associated impacts on the 

consumer? (Chapter 5) 

I will first briefly highlight the main findings of my thesis, and subsequently provide 

implications for environmental risk assessment and the agricultural application of 

NPs. I will also give an outlook and recommendations for future research here. 

6.1 Answers to the research questions 

6.1.1 How does the exposure pathway affect the uptake, translocation, and 

phytotoxicity of AgNPs in plants? (Chapter 2 and 4) 

A higher reduction of the biomass of plants and stronger oxidative stress and 

alterations of the activities of enzymatic antioxidants in lettuce were observed 

following root exposure as compared to foliar exposure. This indicates that root 

exposure induced more phytotoxicity than foliar exposure at equal exposure 

concentrations. Additionally, exposure pathway-specific uptake and translocation of 

AgNPs was observed as well. The Ag uptake in the exposed tissue of plants for root 

exposure to AgNPs is higher than in the case of foliar exposure to AgNPs, whereas 

the translocation of Ag inside the plants from the exposed part to the unexposed part 

is more efficient following foliar exposure rather than following root exposure. 

Furthermore, soil exposure of AgNPs to plants was much less toxic compared to 

hydroponic exposure due to the lower bioavailability of AgNPs in soil.   

6.1.2 How do the shape, size and coating of NPs affect the fate, accumulation 

and phytotoxicity of AgNPs? (Chapter 2 and 3) 

The dissolution of AgNPs in Hoagland solution was found to be shape and coating–

dependent but size-independent. The dissolution extent of silver nanospheres was 

higher than for the silver nanowires, and dissolution rates of uncoated silver 

nanowires were higher than dissolution rates of coated Ag nanowires. Additionally, 

the phytotoxicity and accumulation of AgNPs in plants were also shape-dependent. 
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Specifically, exposure to Ag nanospheres resulted in higher phytotoxicity in plants as 

compared to exposure to Ag nanowires. Further, the phytotoxicity and Ag 

accumulation in plants of the tested Ag nanowires was diameter (size) dependent, 

but coating independent. Exposure to the smaller sized silver nanowires induced 

more phytotoxicity and higher Ag accumulation in plants. This could be caused by 

the fact that AgNPs with smaller diameters might easier pass through the pores 

in/between cell walls due to the size exclusion limit of cell walls and/or apoplast, and 

hence induce higher toxicity68.  

6.1.3 What is the relative contribution of the nanoparticulate and the 

released ionic form to the overall toxicity of suspensions of NPs and on metal 

accumulation in plants? (Chapter 2 and 3) 

According to the response addition model, we observed that nanoparticulate Ag 

(NPs(particle)) was the predominant driver/descriptor of the overall toxicity and Ag 

accumulation in the plants rather than the released ionic Ag (NPs(ion)) forms, as 

NPs(particle) accounted for more than 65% of the overall toxicity in all exposure 

scenarios. However, the relative contribution of NPs(particle) versus NPs(ion) to the 

overall effects was influenced by the exposure concentration and the extent of 

dissolution of the Ag nanowires. The contributions of dissolved ions to the overall 

toxicity of AgNPs suspensions showed an increasing tendency upon increasing 

exposure concentration. In addition, the contribution of NPs(ion) to the overall effects 

in AgNPs with a high dissolution ability was higher than in the cases of AgNWs with 

a low dissolution ability. 

6.1.4 How and to what magnitude does the dynamic dissolution of metallic 

NPs in soil affect their bioavailability to plants? (Chapter 4) 

Our results revealed that the extractable Ag from AgNPs amended soil increased with 

the increasing exposure concentration and changed over time as a result of the 

continuous dissolution and uptake of AgNPs by the plants. The pattern of Ag 

concentration in plant roots changing over time was similar to the change of the 

extractable Ag in the rhizosphere soil over time. Furthermore, the Spearman 

correlation demonstrated that the amount of Ag accumulated in the plant root and 
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the shoots were correlated positively with DTPA-extracted Ag in the soil. These 

results show the important role of the dissolution of AgNPs in soil in influencing 

their bioavailability. 

6.1.5 How does the soil rhizosphere bacterial community respond to 

exposure to AgNPs, and does this response change over time? (Chapter 4) 

We found that the alterations in the structure and composition of the rhizosphere 

soil bacterial community varied over time. For the short-term exposure (7d), we did 

not observe any significant impact of AgNPs on the rhizosphere bacterial community 

regardless of exposure concentration. However, after long-term exposure (63d) to 50 

mg/kg AgNPs, the decrease of the Shannon index, the separation of the bacterial 

community from the control and a total of 16 significantly changed featured taxa 

were observed. The alterations in the rhizosphere soil bacterial community were 

potentially associated with the abundance changes in the bacterial groups related to 

element (e.g., N and S) cycling and stress tolerance. 

6.1.6 How does a mixture of AgNPs and TiO2NPs affect the NPs transfer of 

the individual NPs along a terrestrial food chain of lettuce-snails and the 

associated impacts on the consumer? (Chapter 5) 

We found that both Ag and Ti could be transferred from lettuce leaves to snails with 

trophic transfer factors (TTFs) of 0.2 to 1.1 for Ag and 4.7 to 49 for Ti when lettuce 

was exposed to either AgNPs or TiO2NPs via the root. Moreover, the majority of Ag 

captured by snails in the AgNPs-containing treatments was excreted via the feces, 

whereas more than 70 % of Ti was distributed in the digestive gland of snails in the 

TiO2NPs-containing treatments. In addition, treatment of snails with TiO2NPs 

contaminated leaves strongly affected their feces excretion whereas AgNPs strongly 

affected their activity (expressed as the average BSS). Furthermore, the concurrent 

application of AgNPs and TiO2NPs  induced more severe inhibition of the growth 

and activity of snails but did not affect the biomagnification and distribution patterns 

of Ag and Ti in snails as compared to the application of AgNPs or TiO2NPs alone. 
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6.2.1 Implications for environmental risk assessment 

In the public consultation “Towards a Strategic Nanotechnology Action Plan (SNAP) 

2010-2015”, the European Commission highlighted four priority thematic areas of 

nanosafety research in the near future: 1) material identification and classification; 2) 

exposure and transformation; 3) hazard mechanisms including both human 

toxicology and ecotoxicology; and 4) risk prediction tools including databases and 

ontologies316. The observations in this thesis improve the understanding of the 

second and third issues described above by 1) investigating the fate, accumulation 

and impacts of metallic NPs in soil-plant systems and food chain, and 2) 

differentiating the main driver of toxicity of the particulate and the dissolved ionic 

forms. Also, our results can partly contribute to set up the ecotoxicological database 

of NPs, which is associated with the fourth issue of risk prediction tools including 

databases and ontologies as proposed by SNAP. 

Our findings advance the understanding of exposure and transformation of NPs by 

providing novel data on the interactions between metallic NPs and terrestrial biota. 

First, we found that root exposure of AgNPs induced higher toxicity and different 

biodistribution patterns of Ag in plants compared to foliar exposure. The results 

regarding the effects of exposure pathway on plants improve the risk evaluation of 

metallic NPs exposure related to intentionally added applications in agriculture as 

well as unintentionally exposures from air-born emissions and soil emissions. 

Secondly, we incorporated the dynamic exposure processes including the time-

dependent dissolution and sedimentation profiles of NPs in the exposure medium 

into the risk assessment of metallic NPs. The dissolution and sedimentation of NPs 

were found to largely and dynamically affect their effective exposure concentrations 

and hence affect their biological impacts. As a result we showed that the EC25 and 

EC50 values of AgNPs to lettuce based on the time-weighted exposure concentration 

(incorporating the dynamic exposure conditions) were lower than the EC25 and EC50 

values based on the initial exposure concentration (considering exposure as being 

static and hence ignoring dissolution and sedimentation). Therefore, this highlights 
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the importance of incorporating dynamic processes when evaluating the impacts of 

NPs on organisms to gain a more accurate and realistic assessment of NPs toxicity. 

Thirdly, we distinguished the main driver for the impacts of NPs and the mode of 

actions of the nanoparticulate form and the released ionic form. The results 

demonstrate that the toxic effects of AgNPs are dramatically underestimated if there 

is only a focus on the impacts of dissolved ionic forms from metallic NPs alone. Also, 

the findings facilitate the mechanistic understanding of interactions between NPs 

and biological systems. 

Fourthly, we quantified the toxicokinetic parameters of dissolved versus particulate 

forms of Ag nanowires associated with different physicochemical properties. This 

information is valuable for facilitating the establishment of toxicokinetic models to 

predict the accumulation and toxicity of NPs in higher plants. Moreover, we 

demonstrated that it is key to assess the actual time-related process of particles and 

ions in their uptake and toxicity to organisms.  

Finally, we carried out the chronic exposure of NPs under more realistic exposure 

scenarios, such as assessing the transfer and toxicity of NPs in a microcosm consisting 

of the soil-lettuce-rhizosphere bacterial community as well as in a simulated 

terrestrial food chain of lettuce to snails. Our results clearly showed an upwards 

transfer of NPs in the terrestrial ecosystem from soil to plants and to snails, and a 

downward impact on the soil rhizosphere bacterial community. This highlights the 

potential risks of NPs in the terrestrial ecosystem. Importantly, we did not observe 

any significant impact of AgNPs on the rhizosphere bacterial community in short-

term exposure, but long-term exposure to a high concentration of AgNPs indeed 

altered the structure and composition of the rhizosphere bacterial community. This 

indicates the importance of taking the long-term application of nanoparticles into 

account to better understand the ecological risks of nanoparticles in terrestrial 

ecosystems. The confirmed trophic transfer of NPs along the food chain emphasizes 

the importance of considering trophic transfer as a potential pathway for exposure 

of terrestrial herbivores to nanoparticles, especially given the increasing likelihood of 

application of nanoparticles in agriculture and soil remediation.  

Overall, the findings of this thesis highlight the importance of 1) taking the intrinsic 
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properties and exposure modes of the NPs into consideration for accurate assessment of 

their ecotoxicological impacts, 2) considering the long term time-resolved dynamics of 

organisms in response to nanoparticle exposure, and 3) investigating the accumulation 

and translocation of NPs in organisms for environmental risk assessment of NPs. 

6.2.2 Implications for agriculture 

The loss of global crop production induced by pests and diseases and the growing 

food requirements as a result of the burgeoning global population are the major 

challenges faced by the agricultural sector, especially in developing countries2,15. This 

encourages the application of nanotechnology in agriculture to increase crop 

production and prevent the loss of global crop production induced by pest and 

diseases. To date, several metallic NPs have been applied in agriculture as nano-

fertilizer (e.g Cu-based nano-agrochemicals), nano-pesticide (e.g AgNPs) or nano-

carrier for delivery of agrochemicals to improve the use efficiency and to enhance 

crop productivity15,317. However, the application of NPs in agriculture not only brings 

benefits (including increased crop production and decreased application dose of 

pesticides), but potentially also presents adverse effects on the function and stability 

of the terrestrial ecosystem. As revealed by our findings, the impacts of NPs on plants 

depend on the application conditions such as the application dose, exposure 

duration and application method, as well as on the physicochemical properties of 

NPs. For example, we have shown that nanowires and larger sized AgNPs are less 

toxic compared to nanospheres and smaller sized AgNPs. These findings exemplify 

the potential of enabling the industry to optimize the desired properties of AgNPs 

with the aim of reducing unwanted side effects within the environment whilst 

preserving their basic functionalities. This is an important step to achieve “green and 

clean” claims that are a common requirement for novel materials nowadays. In 

addition, the exposure pathway determines how and to what extent the NPs can enter 

and translocate inside plants due to the size limitations of the xylem and the phloem. 

Future design of environmentally friendly nano-agrochemicals should also include 

this information. Moreover, we observed the slow but continuing dissolution of 

AgNPs in soil over a period of 63 days. This information can provide sustained 

antimicrobial effects against plant pathogens. This implies that repeated applications 
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of AgNP are not needed, which likely diminishes the total Ag load applied. However, 

we observed a relatively high amount of Ag in plant roots and the long-term 

disruptions of the composition of the rhizosphere bacterial community by Ag. 

Further, we confirmed the trophic transfer of NPs from lettuce to snails and 

associated negative impacts on snails. The findings highlights the potential risk of 

NPs being transferred to humans through the supply of crops treated with nano-

agrochemicals. All these negative findings call for more attention that should be paid 

to balance between the potential negative effects of nano-agrochemicals and their 

implications in agriculture before their field application. Collaborative research 

among ecotoxicologists, agriculturists, physicists, chemists, material scientists and 

biologists is needed, as well as between the scientific community and industry to 

develop environmentally-friendly, efficient, mass-produced and cost-effective nano-

agrochemicals that can actually get the label “green and clean”. 

6.3 Future research in nanoecotoxicology 

Based on my research  I want to provide advice on key research areas which need to 

be addressed in future studies to move this research field forward. Three of these area 

relate to the development of better analytical techniques, and another three focus on 

improved and more realistic toxicity testing. 

6.3.1 Development in analytical techniques 

The adequate detection and characterization of NPs in environment and biota are 

important for the accurate and comprehensive risk assessment of NPs, this section 

therefore addresses current challenges in the analytical techniques of NPs and the 

necessity of developing advanced analytical techniques. 

1) Knowing the actual NPs concentrations in environmental compartments is a key 

prerequisite for the effective environmental risk assessment of NPs. Unfortunately, 

the current methods for the accurate detection, identification and quantification of 

NPs in environmental samples are still not optimal. ICP-MS based techniques, such 

as single-particle ICP-MS are being developed for quantifying the concentration of 

non-soluble metal-based nanospheres (e.g., AuNPs and CeO2NPs). The dynamic 

nature of nanomaterials in the environment makes the effective extraction from 
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preserving their basic functionalities. This is an important step to achieve “green and 

clean” claims that are a common requirement for novel materials nowadays. In 

addition, the exposure pathway determines how and to what extent the NPs can enter 

and translocate inside plants due to the size limitations of the xylem and the phloem. 
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environmental compartments (such as soil and sewage sludge) however a challenge. 

Moreover, many of the current extraction methods have the potential to modify NPs. 

Although the concentrations of some NPs in the environmental compartments were 

predicted with the help of mathematic modeling, these results need to be further 

validated with appropriate analytical techniques. Therefore, future research is needed 

to improve the methods for sample preparation and to extend more techniques to 

make them suited for the detection of NPs in the environment. 

2) As stated in this thesis, the relative contribution of nanoparticulate and dissolved 

ions to the bioavailability of NPs is important to understanding the toxicity 

mechanism of NPs. Currently, the quantitative analysis of metallic NPs is usually 

focused on the metallic mass concentrations as quantified with the help of ICP-MS 

based techniques. In this thesis, we distinguished the relative contribution of particles 

and ions with the help of modeling based on the total metal concentration in plants 

exposed to NPs and on reference experiments with metal salts (referred to as 

dissolved ions). Directly determining the concentrations of the nanoparticulate form 

and the dissolved ions released from NPs in organisms is a great difficulty, as faced 

by environmental and analytical scientists. The sp-ICP-MS and stable isotope-based 

analytical techniques show great potential in this field. However, these approaches 

are still in their infancy in this field. Much more effort needs to be paid to optimizing 

the performance of these techniques and improving their sensitivity to measure NPs. 

Additionally, to use these two methods NPs need to be extracted first by digestion of 

the samples, which may modify the properties of the NPs. Similarly, NPs 

accumulated inside organisms may also undergo a series of dynamic transformations. 

Therefore, the development of new methods and techniques or the use of a 

combination of multiple techniques that will enable to quantify the in-site and real-

time concentration of NPs in organisms is urgently needed. 

3) In this thesis, we investigated the uptake and translocation of NP in plants and 

snails without considering their subcellular location and the potential speciation 

patterns inside organisms. Such information is very valuable for a better and 

comprehensive understanding of the internalization of NPs inside biota. 

Transmission electron microscopy, confocal laser scanning microscopy or 
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fluorescence microscopy have been used to track the subcellular location of 

dyed/labeled NPs in organisms. But there are important limitations to these methods, 

including detachment of dye/labels attached to the NPs, while some techniques are 

not suitable for undyed/labeled NPs. Microbeam X-ray fluorescence mapping (μ-

XRF) and X-ray absorption near edge structure spectroscopy (μ-XANES) can be used 

to identify the chemical speciation of NPs in organisms. But the lateral resolution of 

most μ-XRF/μ-XAS beamlines in the world is above 1 μm or a few hundred nm111. 

The development of higher spatial resolution techniques is therefore needed to 

further advance our understanding of the subcellular fate of NPs in organisms.  

6.3.2 NPs exposure 

Even though the results presented in this thesis improve the understanding of the 

interactions of NPs with terrestrial biota to a certain extent and provide implications 

for risk assessment of NPs, there is still a long way to go to get a fully clear picture of 

nano-ecotoxicology. Therefore, based on the results of this thesis, I will propose 

several issues that deserve further investigation:  

1) Although we conducted long-term experiments, the results reported in this thesis 

did not cover the full life cycle of plants and snails. As a result, we may underestimate 

or overestimate the impacts of NPs on biota. Also, the growth stages of the tested 

organisms play an important role in affecting the toxicity of NPs. Therefore, full life 

cycle studies of different plants and snails in response to NPs exposure are needed 

for future research, as this may give a more realistic evaluation of the real effects of 

NPs on biota. 

2) We investigated the effects of the exposure pathway, the exposure concentration 

and time, and the physicochemical properties of NPs on their impacts. In addition, 

environmental conditions such as the pH, the NOM content, the ionic strength are 

also needed to be considered in assessing the environmental risks of NPs, and these 

properties are not specifically considered or modified in this thesis. In particular, we 

found that soil exposure of NPs to plants induced less toxicity compared to 

hydroponic exposure. The low bioavailability of metallic NPs in soil may be due to 

reduction of the transport of NPs, as affected by the characteristics of soil including 



 

- 152 - 
 

6 

environmental compartments (such as soil and sewage sludge) however a challenge. 

Moreover, many of the current extraction methods have the potential to modify NPs. 

Although the concentrations of some NPs in the environmental compartments were 

predicted with the help of mathematic modeling, these results need to be further 

validated with appropriate analytical techniques. Therefore, future research is needed 

to improve the methods for sample preparation and to extend more techniques to 

make them suited for the detection of NPs in the environment. 

2) As stated in this thesis, the relative contribution of nanoparticulate and dissolved 

ions to the bioavailability of NPs is important to understanding the toxicity 

mechanism of NPs. Currently, the quantitative analysis of metallic NPs is usually 

focused on the metallic mass concentrations as quantified with the help of ICP-MS 

based techniques. In this thesis, we distinguished the relative contribution of particles 

and ions with the help of modeling based on the total metal concentration in plants 

exposed to NPs and on reference experiments with metal salts (referred to as 

dissolved ions). Directly determining the concentrations of the nanoparticulate form 

and the dissolved ions released from NPs in organisms is a great difficulty, as faced 

by environmental and analytical scientists. The sp-ICP-MS and stable isotope-based 

analytical techniques show great potential in this field. However, these approaches 

are still in their infancy in this field. Much more effort needs to be paid to optimizing 

the performance of these techniques and improving their sensitivity to measure NPs. 

Additionally, to use these two methods NPs need to be extracted first by digestion of 

the samples, which may modify the properties of the NPs. Similarly, NPs 

accumulated inside organisms may also undergo a series of dynamic transformations. 

Therefore, the development of new methods and techniques or the use of a 

combination of multiple techniques that will enable to quantify the in-site and real-

time concentration of NPs in organisms is urgently needed. 

3) In this thesis, we investigated the uptake and translocation of NP in plants and 

snails without considering their subcellular location and the potential speciation 

patterns inside organisms. Such information is very valuable for a better and 

comprehensive understanding of the internalization of NPs inside biota. 

Transmission electron microscopy, confocal laser scanning microscopy or 

 

- 153 - 
 

6 

General Discussion  

fluorescence microscopy have been used to track the subcellular location of 

dyed/labeled NPs in organisms. But there are important limitations to these methods, 

including detachment of dye/labels attached to the NPs, while some techniques are 
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XRF) and X-ray absorption near edge structure spectroscopy (μ-XANES) can be used 

to identify the chemical speciation of NPs in organisms. But the lateral resolution of 

most μ-XRF/μ-XAS beamlines in the world is above 1 μm or a few hundred nm111. 

The development of higher spatial resolution techniques is therefore needed to 

further advance our understanding of the subcellular fate of NPs in organisms.  

6.3.2 NPs exposure 

Even though the results presented in this thesis improve the understanding of the 

interactions of NPs with terrestrial biota to a certain extent and provide implications 

for risk assessment of NPs, there is still a long way to go to get a fully clear picture of 

nano-ecotoxicology. Therefore, based on the results of this thesis, I will propose 

several issues that deserve further investigation:  

1) Although we conducted long-term experiments, the results reported in this thesis 

did not cover the full life cycle of plants and snails. As a result, we may underestimate 

or overestimate the impacts of NPs on biota. Also, the growth stages of the tested 

organisms play an important role in affecting the toxicity of NPs. Therefore, full life 

cycle studies of different plants and snails in response to NPs exposure are needed 

for future research, as this may give a more realistic evaluation of the real effects of 

NPs on biota. 

2) We investigated the effects of the exposure pathway, the exposure concentration 

and time, and the physicochemical properties of NPs on their impacts. In addition, 

environmental conditions such as the pH, the NOM content, the ionic strength are 

also needed to be considered in assessing the environmental risks of NPs, and these 

properties are not specifically considered or modified in this thesis. In particular, we 

found that soil exposure of NPs to plants induced less toxicity compared to 

hydroponic exposure. The low bioavailability of metallic NPs in soil may be due to 

reduction of the transport of NPs, as affected by the characteristics of soil including 
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the pH, soil natural organic matter, the clay and mineral contents in soil, and the 

activity of soil microbes. To better understand the interactions between NPs and 

biota, further efforts should be devoted to studying how the environmental 

conditions influence the toxicity of NPs in plants and how soil components affect the 

behaviors of NPs in soil.  

3) We confirmed the occurrence of mixture toxicity and trophic transfer of NPs 

along a simple two-trophic level food chain. The design of the experiments was 

focused on establishing and maintaining controlled conditions. In a natural 

ecosystem, the exposure conditions are more dynamic and transfer between 

organisms is likely to be more complex as well as due to the changing exposure 

conditions the bioavailable fraction of the NPs will change. Further mesocosm 

studies and even field research including more species and using environmentally 

relevant concentrations of NPs are therefore needed to properly simulate realistic 

exposure scenarios. 
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