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Abstract

With growing amounts of data available, identification of clusters of persons linked to each 
other by transmission of an infectious disease increasingly relies on automated algorithms. 
We propose cluster finding to be a two-step process: first, possible transmission clusters 
are identified using a cluster algorithm, second, the plausibility that the identified clusters 
represent genuine transmission clusters is evaluated. 

We developed tools to visualise: (i) clusters found in dimensions of time, geographical 
location and genetic data; (ii) nested sub-clusters within identified clusters; (iii) intra-cluster 
pairwise dissimilarities per dimension; (iv) intra-cluster correlation between dimensions. We 
applied our tools to notified mumps cases in the Netherlands with available disease onset 
date (January 2009 – June 2016), geographical information (location of residence), and 
pathogen sequence data (n = 112). We compared identified clusters to clusters reported by 
the Netherlands Early Warning Committee (NEWC).

We identified five mumps clusters. Three clusters were considered plausible. One was 
questionable because, in phylogenetic analysis, genetic sequences related to it segregated 
in two groups. One was implausible with no smaller nested clusters, high intra-cluster 
dissimilarities on all dimensions, and low intra-cluster correlation between dimensions. 
The NEWC reports concurred with our findings: the plausible/questionable clusters 
corresponded to reported outbreaks; the implausible cluster did not.

Our tools for assessing automatically identified clusters allow outbreak investigators 
to rapidly spot plausible transmission clusters for mumps and other human-to-human 
transmissible diseases. This fast information processing potentially reduces workload.
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Introduction

Individual case data originating from routine infectious disease surveillance more and more 
also include genetic sequence information. With increasing availability of different types of 
data (e.g. geographical data, time, genetic sequence), each adding their own dimension, 
and quantities of data rising, transmission-cluster identification of infectious diseases 
progressively relies on automated algorithms. A transmission cluster can be defined as 
several cases of an infectious disease which are connected by transmission of this disease 
from one person to another. A transmission chain is then defined as a series of cases 
connected by transmission events. Much work has been done on developing algorithms 
to identify transmission clusters of cases using large datasets [1]. Existing algorithms focus 
on cluster identification in time [2-9], in space or space-time [10-12], in genetics [13-15], or by 
combining all three data dimensions [16-18].

A major challenge with clustering algorithms is to balance specificity and sensitivity. If an 
algorithm lacks specificity, it finds clusters of cases even though there are no transmission 
events that link them. If it lacks sensitivity, the algorithm does not find genuine transmission 
chains. To be on the safe side, most algorithms have a high sensitivity at the expense of 
specificity and as a result also identify clusters of cases that are not genuine transmission 
clusters. We therefore propose cluster detection using algorithms as a two-step process: 
(i) detecting possible clusters of infectious diseases with an algorithm and (ii) assessing the 
plausibility that an identified cluster represents a transmission cluster.

While there has been much work on the first step, little research attention has been paid to 
methods for improving the plausibility assessment. Currently, identified clusters are usually 
assessed by epidemiologists who assess information and verify it through communicating 
with the municipal health services (MHS). This can be quite labour intensive, especially 
if there are many identified clusters stretching across multiple regions. Only recently, a 
study has been published that introduced a framework for computing epidemiological 
concordance of microbial subtyping data of Campylobacter jejuni [19]. Epidemiological 
cluster cohesion is based on time, geographical location, and environmental source 
distances with adjustable weights. This method requires the computation of a disease 
specific source distance matrix, making it difficult to apply generically. To our knowledge 
no further tools are available for careful plausibility assessment of automatically detected 
clusters.

In order to develop such tools, general characteristics for discriminating transmission 
clusters from non-transmission clusters have to be identified. We propose to assess the 
variation of clusters in their time, geographical location and genetic profile. The variation 
on these dimensions can be visualised by projecting cases on an epidemic curve, map, 
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and phylogenetic tree, respectively, as well as by estimating the relative distance between 
clustered cases on these respective dimensions and comparing the distance to the inter-
case distances from non-clustered cases. It is assumed that clustered cases will have 
smaller inter-case distances on these respective dimensions than non-clustered cases. 
However, there are exceptions: an outbreak may show large variation in time between 
the occurrence of cases (single persistent source, e.g. typhoid [20]), large variation in 
geographical distances between cases (initial cases travel large distances, e.g. severe 
acute respiratory syndrome (SARS) [21]), or include large genetic sequence variation in the 
pathogen causing the outbreak (fast mutating strains, e.g. Ebola [22, 23]). In order to settle 
several of these exceptions, intra-cluster correlation between the data dimensions time, 
geographical location and genetics can be used as another discriminatory characteristic. 
In genuine transmission clusters, variation on one dimension tends to be correlated with 
the other dimension. For example, with tuberculosis, cases within a genuine transmission 
cluster with a larger genetic distance, also tend to have a larger distance in time [24].

The largest hurdle to effectively use algorithms in outbreak investigations is the interpretation 
of their output, rather than the application of the algorithms themselves. As visualisation 
techniques support fast processing of large amounts of information, developing tools 
for visually assessing the plausibility of transmission clusters identified through statistical 
algorithms may help outbreak investigators [25]. Moreover if data are available in a timely 
fashion, this may allow pointing outbreak investigators to the most plausible signals first, 
which, when time is scarce, may facilitate task prioritisation. Finally, outbreak information, 
such as what is obtained with various available tools (e.g. typical cluster size, typical inter-
case distance and correlate estimates between dimensions for a specific disease), might 
contribute to our current understanding of transmission model parameters [26, 27].

To apply and assess the tools that we develop, we use mumps notification and sequence 
data reported between 2009 and mid-2016 in the Netherlands. We specifically chose 
mumps in the Netherlands as it has been intensively studied over the past few years, with 
comprehensive documentation available [28-33]. In the Netherlands, mumps is a notifiable 
disease and symptomatic cases are reported to the MHS by physicians and/or laboratories. 
Cases are either notified when there is a laboratory confirmation or when there is an 
established epidemiological link with a confirmed case. In case of laboratory confirmation, 
the national reference laboratory aims to obtain material from regional laboratories for 
further sequencing. Sequencing provides information on the circulating genotypes and 
helps to assess whether there is endemic circulation or new introductions of mumps viruses 
in the country. 

Currently, epidemiologists mainly rely on epidemic curves (time data dimension) to detect 
mumps outbreaks. We set out to assess whether combining geographical location, 

124

CHAPTER 6

6



567907-L-bw-Soetens567907-L-bw-Soetens567907-L-bw-Soetens567907-L-bw-Soetens
Processed on: 29-10-2021Processed on: 29-10-2021Processed on: 29-10-2021Processed on: 29-10-2021 PDF page: 123PDF page: 123PDF page: 123PDF page: 123

time and genetic information can contribute to mumps cluster identification. We use an 
existing clustering algorithm which can take into account these three data dimensions 
[16, 17] (hereafter: the time-place-type clustering algorithm), and which is already in use 
to identify outbreaks of various diseases in the Netherlands, such as meningococcal W 
disease, meticillin-resistant Staphylococcus aureus (MRSA) [17] and echovirus type 6 [34]. 
We develop and validate visual tools to determine whether identified clusters with this 
algorithm represent transmission clusters. 
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Methods

Data
In this study, we include all notified mumps cases in the Netherlands who were diagnosed 
between 1 January 2009 and 31 May 2016. Notification criteria for mumps include more than 
one related symptom (i.e. acute onset of painful swelling of the parotid or other salivary glands, 
orchitis, or meningitis) and laboratory confirmation of infection or an epidemiologic link to a 
laboratory-confirmed case. The notification criteria did not change during the study period. 

For our analysis, for each case we require data on three factors. The first is the disease onset 
date, which is collected during routine surveillance. The second is the geographical location. 
The geographical location can be any location that is most relevant for the transmission 
pattern of the disease under study. For pragmatic reasons, this is usually the location of 
residence of the case, but this might also be a working address or other place visited. In 
this study, we used more specifically the latitude and longitude of location of residence 
of the cases. In the Netherlands, cases’ four digit postal code of residence is collected 
during routine surveillance. We take the centroids of the four digit postal codes and use 
its latitude and longitude as the input variables for the algorithm. The third required factor 
consists of the sequences of the small hydrophobic (SH) gene (316 bp), the haemagglutinin/
neuraminidase (HN) gene (1,749 bp), and the fusion (F) gene (1,617 bp). Sequences of these 
three genes are used in combination to distinguish between different mumps genotypes 
[35], and clusters within genotype G [33]. Since the algorithm that we use is only able to 
handle cases with data on all three dimensions, cases with missing data on one of the three 
required factors are excluded from our analysis. 

Cluster algorithm
In order to find infectious disease transmission clusters using time, geographical location, 
and genetic information, Ypma et al. [16] have developed an algorithm to combine pairwise 
distances between cases on all three data dimensions into one metric. The algorithm sorts 
cases by relatedness on all three dimensions and subsequently defines a relative distance 
for all possible pairs of cases reflecting the number of cases found in between the two 
cases. The relative distances (dissimilarities) for each dimension are calculated, and the 
combined dissimilarity (dcombi) between every pair of cases is then defined as the product 
of the separate dimension dissimilarities. Next, the cases are joined to form a hierarchical 
tree of related cases, based on dcombi, using single-linkage clustering. For every cluster in 
the tree, statistical significance of each cluster given its height and cluster size is calculated 
using permutation. More details on the algorithm are presented in Appendix A.

To demonstrate the tools in this paper, we choose a p value < 0.001 as cut-off level for 
significance of clusters and consider only the clusters that are not nested within other 
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identified clusters (hereafter ‘highest unnested clusters’) at that cut-off level. Since the p 
value cut-off level is an arbitrary choice, we add flexibility to the tool, by allowing setting 
cut-offs for p value, maximum tree-height and maximum cluster size.

Assessing the plausibility of clusters representing transmission events
We have developed four tools to assess the plausibility that clusters identified by the time-
place-type clustering algorithm represent transmission events. Below we describe each of 
these four tools in detail.

Overview visualisation of the clusters in the time, geographical location, and genetic 

dimensions

To assess the variation in time, geographical location and genetic profile of the identified 
clusters, we visualise the distribution over time by projecting clusters on an epidemic 
curve (a histogram showing the distribution of cases over time). The distribution across 
geographical location is visualised by projecting cases coloured according to their cluster 
membership on a proportional symbol map, in which the point size is proportional to the 
number of cases at that location. In the interactive version of the tool, this map is replaced 
by an interactive dot map, which allows for zooming. The distribution across the genetic 
dimension is visualised by projecting clusters on an arbitrarily rooted maximum likelihood 
phylogenetic tree. Only the significant highest unnested clusters are visualised, using 
different colours for every cluster.

Hierarchical clustering tree to visualise the nesting of clusters

Identified clusters can be nested within larger clusters. The structure of the nesting 
provides valuable information on the strength of the clusters, for example, a cluster that 
contains several significant clusters at a lower nesting level is stronger than a cluster with 
no significant clusters at a lower nesting level. Therefore, the structure of the nesting is 
visualised by providing a hierarchical clustering tree of related cases, a dendrogram, based 
on dcombi. The significant highest unnested clusters are visualised by colouring the end-
nodes, and all significant clusters are visualised using black dots at the significant internal 
nodes.

Intra-cluster pairwise dissimilarity per dimension

To determine the impact of each dimension on dcombi (time, geographical location or 
genetics), we calculate for every significant highest unnested cluster the pairwise 
dissimilarities per dimension (time, geographical location, genetics, and combined). The 
pairwise dissimilarities are a measure for intra-cluster variance for the different dimensions. 
The median dissimilarity is defined as the median of the pairwise dissimilarities (dtime, dgeo, 
dgen and dcombi) per cluster. We visualise these pairwise dissimilarities using notched boxplots 
[36]. In a notched box plot, the notches extend 1.58 x interquartile range (IQR) / sqrt(n), 
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which roughly corresponds to a 95% tolerance interval (assuming a normal distribution). The 
notches are then used to compare medians, i.e. non-overlapping notches for two different 
dimensions suggest that the medians are significantly different.

Intra-cluster correlations between the different dimensions

We visualise the intra-cluster correlation of the pairwise dissimilarities between the different 
dimensions. The intra-cluster correlation provides information on the internal cohesion of 
a significant cluster, for example, if cases within a cluster are close in time (small dtime), 
are also close in geographical space (small dgeo). In addition, the intra-cluster correlation 
coefficient between the separate dimensions and the combined dimension informs us on 
the contribution of each dimension to the combined dimension. For every significant highest 
unnested cluster, we compute the Spearman rank correlation coefficient (r) between the 
pairwise dissimilarities of all dimensions and its p-value [37]. We visualise the strength and 
direction of the correlation coefficients per cluster using a matrix layout. In the interactive 
version of the tool, one can hover over the matrices to allow for the correlation coefficients 
and p-values to pop up.

Epidemiological validation
We use epidemiological information to check the validity of the identified significant highest 
unnested clusters. The gold standard for confirming transmission links is the presence of an 
epidemiological link between cases. However, this information is only available for a very 
small subset of mumps cases and is only described in free text fields, which is difficult to 
analyse. We therefore use mumps outbreaks described in the reports of the Netherlands 
Early Warning Committee (NEWC) as gold-standard-identified clusters and assess whether 
these outbreaks correspond to clusters identified with the algorithm [16]. The clusters that 
do not correspond with the reported outbreaks are considered false positives. In addition, 
we check whether the identified clusters are described in the literature.

Analysis with only two dimensions
Since the algorithm cannot handle missing data and since genetic data are often delayed 
or missing, in Appendix B we show results when using time and geographical location data 
only.

Availability
All analyses are performed in R 3.4.3 [38]. We have developed an R package ClusterViz 
containing an R shiny app to allow users to interactively set parameter values such as cut-
offs for p values, tree heights, and cluster sizes. The R package can be downloaded from a 
github page (https://github.com/lsoetens/ClusterViz). A demo file for testing the tool is also 
available with this package (as described below). Considering the genetic data used in this 
study, all F gene, SH gene and HN gene sequences are submitted to the GenBank database 
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and are available with the accession numbers KJ125045–51, KJ125053–9, KJ125061–7, and 
KU756625-930. 

Ethical statement
Due to privacy concerns, data on date of diagnosis and geographical location are 
not published in any public database. Thus we have slightly obfuscated the time and 
geographical location data and have added the data file as a demo file to the R package. 
In accordance with Dutch law, no informed consent was required for this study using 
anonymised routine surveillance data.
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Results

Between 1 January 2009 and 30 June 2016, 2,039 cases of mumps were reported in the 
Netherlands. A sequenced sample of the SH, HN, and F gene was available for 118 (5.8%) 
of the cases. Of the 118 cases with sequenced data, six had missing geographical data. 
Therefore, 112 (5.5%) cases were included in the analyses. These cases were mainly male 
(n = 65; 58.0%) and had a median age of 24 years (IQR: 20–27 years). In this study period, 14 
mumps related signals were reported by the NEWC (Table 6.1).

Figures 6.1 to 6.4 represent output from our tool. The algorithm identifies 10 clusters with 
p < 0.001 of which five are nested (Figure 6.1). After collapsing the nested clusters into their 
parent clusters, five significant highest unnested clusters remain. Of those five highest 
unnested clusters, cluster 2 (blue, n = 9), 3 (green, n = 12) and 4 (pink, n = 13) contain smaller 
clusters which are also significant, whereas cluster 1 (red, n = 3) and 5 (orange, n = 28) are not 
supported by other significant clusters at a lower nesting level.

Table 6.1. Summary of all mumps outbreak reports by the Netherlands Early Warning Committee 
between January 2009–May 2016 (n = 14)

No
Date 

reported Reported by Covering time period

N cases 
in 

report

Age 
range 

(years) Remark/ source

Cluster 
number 

according 
to current 

study
1 09 Apr RIVM Aug 2007–Apr 2009 171 NR Start of nationwide 

mumps epidemic
4

2 12 Feb RIVM Dec 2009–Feb 2012 1,264 NR Overview of 
nationwide mumps 

epidemic

NL

3 12 Apr GGD Gelderland - 
Midden

Mar 2012 22 15–26 Party 5

4 12 Jul GGD Hollands - 
Noorden

Jul 2012 3 6–8 School NL

5 12 Aug GGD Zaanstreek - 
Waterland

Jul 2012–Aug 2012 21 16–48 Unknown 5

6 13 Feb Utrecht Feb 2013 8 NR Unknown 5
7 13 Jun GGD Hollands 

Noorden
Jun 2013 11 23–29 Unknown NL

8 13 Nov GGD Zaanstreek - 
Waterland

Sep 2013–Nov 2013 16 4–47 All living in 
Volendam

3

9 13 Nov GGD Groningen Sep 2013–Nov 2013 13 17–36 Students NL
10 14 Feb GGD Zaanstreek 

- Waterland, GGD 
Haaglanden

Feb 2014 3 25–30 Work in healthcare 
setting

NL

11 15 Apr GGD Haaglanden Mar 2015–Apr 2015 5 NR Sports club 2
12 15 Jun GGD Haaglanden Apr 2015–Jun 2015 NR NR Students linked to 

school and earlier 
cluster at sports club

2

13 16 Mar GGD Brabant 
Zuidoost

Feb 2016–Mar 2016 6 18–40 Carnival 1

14 16 Apr GGD Hart voor 
Brabant

Mar 2016–Apr 2016 6 17–23 Friends/party 1

GGD: Gemeentelijke GezondheidsDienst (Municipal Health Service); NL: no link to a cluster; NR: not 
reported; RIVM: Rijksinstituut voor Volksgezondheid en Milieu (National institute for public health and 
the environment).
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Figure 6.1. Hierarchical clustering tree of the combined dissimilarities of all dimensionsa for cases of 
mumps in the Netherlands, January 2009–May 2016 (n = 112 cases)
a All dimensions include time, geographical location or genetic dimensions.
The colours represent the cases belonging to significant highest unnested clusters. The black dots 
respresent significant clusters (p < 0.001) at all nesting levels.

To assess the plausibility of the clusters for a specific disease, we focus on the variation 
within clusters across the time, geographical location or genetic dimension. The clusters 
show differences in how the cases and samples are distributed over time (Figure 6.2a), 
geographical location (Figure 6.2b), and sequence space (Figure 6.2c). Compared 
with clusters 4 and 5, cluster 1, 2 and 3 are very compact on all three dimensions (time, 
geographical location, and genetics). While cluster 4 is relatively concentrated in time and 
geographical location, it is distributed across two branches of the phylogenetic tree. For 
mumps this makes it less plausible that all cases belong to the same transmission chain, 
as the mumps virus is characterised by a very low mutation rate [39]. For each of the two 
clusters nested within cluster 4 in the hierarchical tree, cases are located on two branches of 
the phylogenetic tree, suggesting that also the nested clusters contain substantial genetic 
disparity. Cluster 5 is quite dispersed on all three dimensions (time, geographical location, 
and genetics), making this cluster very implausible.
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Figure 6.2. Identified clusters of mumps with cases projected on (a) an epicurve (time), (b) maps of the 
Netherlands (geographical location), and (c) an arbitrarily rooted maximum likelihood phylogenetic 
tree of the pathogen sequences (genetics), Netherlands, January 2009–May 2016 (n = 112 cases). The 
colours indicate the significant highest unnested clusters identified with the time-place-type algorithm 
(cluster 1 is red, 2 blue, 3 green, 4 pink, 5 orange); the unclustered cases are depicted in grey. The 
scale represents the number of nucleotide substitutions per site.

We estimate and visualise for every significant highest unnested cluster the pairwise 
dissimilarities per data dimension (Figure 6.3). We find that the median pairwise dissimilarity 
is significantly lower on the combined dimension in all clusters when compared with the 
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combined pairwise dissimilarity in the unclustered cases. Of the five clusters, cluster 1 has 
the lowest median pairwise dissimilarities on the three individual dimensions and their 
combination and cluster 5 has the highest intra-cluster variance on the three individual 
dimensions and their combination.
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Figure 6.3. Notched boxplots of the pairwise dissimilarities per dimension and cluster of mumps cases, 
Netherlands, January 2009–May 2016 (n = 112 cases)
IQR: interquartile range.
For the unclustered cases and for each cluster (1–5), the first column in each figure shows the pairwise 
dissimilarities in time, the second pairwise dissimilarities in geographical location, the third pairwise 
dissimilarities on genetics, and the fourth shows the combined pairwise dissimilarity. The boxes’ 
height represents the IQR. The horizontal lines in the notches represent the median of the pairwise 
dissimilarities and the lower and upper bounds of the notches can be interpreted as the 95% tolerance 
interval.  The upper whisker extends from the box to the largest value no further than 1.5 * IQR from the 
box. The lower whisker extends from the box to the smallest value at most 1.5 * IQR of the box. Black 
dots indicate outliers.

We visualise the intra-cluster Spearman rank correlation coefficient (r) of the pairwise 
dissimilarities between the different dimensions (Figure 6.4). When looking at the correlation 
coefficients between the data dimensions time, geographical location and genetics, we can 
see that many correlation coefficients either cannot be estimated due to zero variance 
(identical sequences) on the genetics dimension (cluster 1 and 2) or are not statistically 
significant (p > 0.05). Only in cluster 3 the time dimension is significantly correlated with 
the geographical location (r = 0.4) and genetics (r = 0.5) data dimension, and in cluster 4 
and 5 the time dimension is correlated with the genetics dimension only (r = 0.3 and r = 0.2 
respectively). When then looking at the contribution of the individual data dimensions to 
the combined dimension, we can see that in cluster 1, 2 and 3, the dimension of time and 
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geographical location contribute equally and strongly to the combined dimension (r = {0.9, 
0.6, 0.9}), and in cluster 4 and 5 the dimension of genetics contributes the most information 
to the combined dimension (r = {0.8, 0.7}).
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Figure 6.4. Matrix plots of the Spearman intra-cluster correlation between pairwise dissimilarities of all 
four dimensions for cluster 1 – 5
Combi: combined; gen: genetics; place: geographical location; NA: correlation cannot be estimated.
The width of the ellipse indicates the strength of the Spearman rank correlation coefficient r, while the 
slope of the ellipse indicates the direction of r (positive slope, positive r; negative slope, negative r). 
The crossed-out ellipses indicate insignificant correlations (p > 0.05), and an NA indicates a correlation 
could not be estimated due to zero variation on one or both dimensions.

As a measure of validity, we have assessed whether mumps outbreaks described in the 
reports of the NEWC correspond to clusters identified with the time-place-type algorithm. 
Clusters 1–4 are easily linkable to reported mumps outbreaks of the NEWC (Table 6.1). Given 
its time, period, and the spatial distribution, cluster 1 corresponds to outbreaks 13 and 14, 
cluster 2 corresponds to outbreaks 11 and 12, cluster 3 corresponds to outbreak 8, and 
cluster 4 corresponds to outbreak 1. Cluster 5 is the only identified cluster to which no clear 
reported outbreaks can be linked. Outbreaks 3, 5, and 6 might together possibly compose 
cluster 5. In addition to the NEWC reports, clusters 2 and 3 are described in references [33] 
and [32], respectively.

Finally, analysis using time and geographical location data only (Appendix B) shows that our 
visual plausibility tools can also be used when data are only available for two dimensions. 
The cases included in the main analysis are representative for the total notified mumps 
cases from 2013 onwards, as the shape of the epidemic curves is comparable. However, 
before 2013 the shapes of the epicurves differ: in the main analysis the large peaks in 
2010, 2011 and 2012 cannot be observed. In 2013–16, we identify six clusters using only 
two dimensions that are similar to those identified using three dimensions, we miss only 
three minor clusters. In the period before 2013, nine additional clusters are identified in the 
time-place analysis, of which three are very large (n > 40). The lesser plausible pink (cluster 
4) and orange (cluster 5) clusters from the main analysis fall in the less representative 
period before 2013, so it might be due to unrepresentative sequencing in this period that 
transmission cluster detection with this algorithm is more difficult.
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Discussion

In this paper, we have introduced tools in order to assess the plausibility of transmission 
clusters. In the mumps case study, five significant clusters are identified, several of which 
also contain nested clusters. In assessing the plausibility of these significant clusters, the 
tools that we have developed all point in the same direction: clusters 1 (red), 2 (blue), and 3 
(green) can be considered highly plausible; cluster 4 (pink) has moderate plausibility as the 
sequences related to it span across two branches of the phylogenetic tree; and cluster 5 
(orange) has low plausibility. Compared with the other clusters, cluster 5 shows a relatively 
dispersed pattern across time, geographical location, and genetics; contains no nested 
clusters; shows relatively high intra-cluster dissimilarity on all dimensions; and shows 
the lowest intra-cluster correlation between all four dimensions. In our epidemiological 
validation, no clear reported outbreak can be linked to cluster 5. In contrast, the other four 
identified clusters are easily linkable to a reported outbreak.

The major advantage of our tools is that we use visualisation techniques to improve 
assessment of plausibility. Human vision supports fast processing of information [25], allowing 
for quick decision-making and this can therefore facilitate work for outbreak investigators. 
Besides fast processing, visualisation also allows for disease-specific characteristics in 
the assessment of the plausibility. While the first step in cluster detection, which identifies 
possible transmission clusters, can be done by algorithms, as it is a very generic process, the 
second step needs disease-specific considerations which cannot easily be incorporated in 
an algorithm. For example, in the case study our tools show that cluster 4 (pink) and cluster 
5 (orange) span across multiple branches of the phylogenetic tree. A mumps expert knows 
that the mumps virus mutation rate is very low, which decreases the plausibility that these 
clusters represent unique transmission clusters.

An important aspect of our study is that only 5.5% of notified mumps cases had sufficient 
genetic information to be included. There are several reasons for this. First, mumps 
notification does not require laboratory confirmation in the Netherlands, but can also be 
based on the presence of an epidemiological link to a confirmed case. For these cases no 
material is available for testing and sequencing. Second, the obtained material is not always 
suitable for typing; viral loads can be low, which often result in failed sequencing. Third, we 
specifically chose to include only cases with an available sequenced sample of the SH, HN 
and F gene. Instead we could also have included cases with a sequenced sample of the SH 
gene only, as this would have resulted in a higher number of included cases. Nevertheless 
an earlier study [33] showed that the SH gene alone did not provide sufficient resolution 
for finding transmission clusters, whereas the combination of the three genes did. Since we 
aim to find transmission clusters here, including only sequenced samples of the SH gene 
was not an option. Because of these reasons, it is highly likely that the identified clusters in 
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this study are actually larger or that some clusters are completely missed by the algorithm, 
as only one or two cases of a cluster might have a laboratory confirmation. This might 
explain the clusters reported by the NEWC (report 4, 7, 10 and 11), which were not identified 
by our tool (Table 6.1).

Our approach can handle incomplete data, such as cases with missing sequences, by 
performing a partial data analysis as in Appendix B. Complete data analysis is shown in the 
main text. Further work can focus on extending the algorithm to allow for missing data on one 
or more dimensions. Especially considering that genetics information will often be missing 
if sequences are not available, one could replace sequence information by a categorical 
variable with pathogen subtype or other lower resolution indication of the pathogen type. 
Cases with a similar pathogen (sub)type would then have a distance of zero versus a distance 
of  > 0 to cases with another (sub)type. The (sub)type information, however, should still have 
sufficient resolution to be able to contribute to transmission cluster detection. Similarly, 
if geographical location information is not available on the latitude/longitude level, one 
can think of lower resolution solutions. In this study, we use the centroids of the four digit 
postal codes as geographical location information. The information should have sufficient 
resolution to be informative. The tool is not limited by the number or type of dimensions. 
The addition or reduction of dimensions only requires small adaptions in our code and it is 
therefore straightforward to use our tools in combination with other algorithms, for example, 
space-time algorithms [10]. By increasing or decreasing the number of dimensions in the 
algorithm, the relative weight of the included dimensions decreases or increases as well, 
respectively. Depending on the quality of the data from the additional or removed sources, 
this may not be desirable. We have specifically chosen not to put weights on the separate 
dimensions, as determining the size of the weights is a very arbitrary decision. Instead, in 
the current study, we would rather interpret a cluster, which was primarily identified on the 
geographical location dimension, as less plausible, as the geographical location data are 
considered quite unreliable for mumps in the Netherlands. Indeed, information on place 
of residence (geographical location) is of questionable accuracy as mumps mainly occur 
among students who often have more than one living address (near the university and 
their parents’ address). It is then often not clear if the students actually live on the reported 
address at the time of the outbreak. On the other hand, if we would have had reliable 
geographical location information, other or more clusters might have been identified that 
now go undetected. Similarly, for mumps it is very unlikely that a transmission cluster 
is spread across multiple branches in the phylogenetic tree, so for mumps the genetic 
dimension might have more relevance than e.g. the geographical one. Instead of putting a 
weight on this dimension however, we considered cluster 4 and 5 as less plausible. Further 
work could investigate ways of determining the size of the weights, based either on the 
quality of the data (as discussed here) or on the type and transmission routes of the disease 
under investigation. A final issue regarding the internal correlation plots is that they are 
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more useful when cluster sizes are larger. If the algorithm detects very small clusters (n < 4), 
we suggest to rely on the other tools to determine whether an identified cluster is plausible.
To conclude, our proposed tools for assessing plausibility of automatically identified clusters 
in time, geographical location and genetic dimensions can help outbreak investigators 
to focus on the most plausible clusters first. Timely availability of data are a prerequisite 
for this. In addition, using visual tools allow for fast and efficient information processing, 
which facilitates work. Mumps serves as an example in this study, but the algorithm can be 
transferred to other human-to-human transmissible diseases. 
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Appendix A
ALGORITHM TO FIND INFECTIOUS DISEASE CLUSTERS USING TIME, PLACE AND 
GENETIC INFORMATION

In order to find infectious disease clusters using time, place, and genetic information, Ypma 
et al [1] have developed an algorithm to combine into one metric pairwise distances between 
cases on all three data dimensions. The algorithm sorts cases by relatedness on all three 
dimensions and subsequently defines a relative distance for all possible pairs of cases 
reflecting the number of cases found in between the two cases. For the time dimension 
(dtime), this is defined as the number of cases with a disease onset date between the disease 
onset dates of the two cases. For the place (dgeo) and genetic (dgen) dimensions, cases are 
sorted by Euclidean distance and number of point mutations respectively to define pairwise 
relative distances. The relative distances (dissimilarities) for each dimension are calculated, 
the combined (time, place, genetic) dissimilarity (dcombi) between every pair of cases is then 
defined as the product of the separate dimension dissimilarities: dcombi = dtime x dgeo x dgen. 
Next, the cases are joined to form a hierarchical tree of related cases, based on dcombi, using 
single-linkage clustering, i.e. a bottom-up approach that sequentially connects cases with 
the smallest dcombi. We use single-linkage clustering as it very well resembles the chain- like 
structure of transmission clusters [1]. The result of this step is a tree in which the height 
represents dcombi.

Figure A1. Graphical representation of hierarchical clustering (adapted from Ypma et al [1]). Cases (A-E) 
are sequentially connected by smallest distance dcombi (a) to form a hierarchical clustering tree in which 
height represents dcombi (b)

Next, for every cluster (i.e., dissection) in the tree, statistical significance of each cluster 
given its height and cluster size is calculated using permutation as follows: (i) the relative 
dissimilarities between pairs of cases in each dimension are permuted (random sampling 
without replacement), (ii) dcombi for every pair of combinations is computed, (iii) hierarchical 
clustering is repeated, (iv) for every cluster in the original tree, it is recorded whether 
a cluster of same height and size exists in the permuted tree, and (v) steps i to iv were 
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repeated 10,000 times.

Finally, the p-value for each cluster is calculated as the number of times a cluster of the 
same height and at least the same size is found in the permuted trees divided by 10,000.

To demonstrate the tools in this paper, we choose a p-value < 0.001 as cut off level for 
significance of clusters and consider only the clusters that are not nested within other 
identified clusters (hereafter “highest unnested clusters”) at that cut off level. However, the 
p-value cut off level is an arbitrary choice, and we can imagine that the users of the tool 
would like to experiment with other choices. We therefore add flexibility to the tool, by 
allowing setting cut-offs for p-value, maximum tree-height and maximum cluster size.
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Appendix B
ANALYSIS WITH TIME AND GEOGRAPHICAL LOCATION DIMENSIONS ONLY

In the main paper we describe the analysis and results when including three data dimensions: 
time, place and  genetic data. As genetic (sequence) information is often lagging behind or 
missing and to demonstrate the use of the algorithm with only two dimensions, we perform 
a similar analysis in this appendix with time and place data  only.

We have made some minor adaptations to the algorithm: instead of multiplying with three 
dimensions, we multiply with only two dimensions.

Between January 1st 2009 and June 30th 2016, 2,039 cases of mumps were notified in the 
Netherlands. Of those, 103 cases have missing information on location of residence and 
therefore  1,936  cases (94.9%) are included in this analysis (compared to 5.5% in the main 
article).

When repeating the analysis with similar settings as in the main  article  (p-value  cut-
off  <0.001,  clusters at highest nesting level), the results show only one large cluster 
encompassing almost all cases (n= 1,748, 90.3%). Plausibility of this cluster is very low given 
most indicators:  it  shows  a  very  dispersed pattern across time and place, shows a 
high and almost indistinguishable intra-cluster variance on all dimensions compared  to  
the  unclustered  cases,  and  shows  no  intra-cluster correlation between the time and 
geographic dimensions. Since this cluster has many underlying significant clusters at a 
lower nesting level, we decide  to  use  different  cut-off  levels  for  the  maximum tree 
height of the “highest  unnested  clusters”. We gradually lower this maximum height  from 
100% downwards, until we obtain clusters that are plausible considering our indicators.  This 
is at   a maximum tree height of 16% (height = 132) of  the  original tree height (height = 825), 
and these  results are shown in Figure B1.

With these settings 17 possible transmission clusters are detected of various sizes 
(clustersize range: 6-134). These 17 clusters are all quite plausible given most indicators, 
although the intra-cluster correlation coefficient between time and place dimensions is 
relative low or nonexistent for all clusters.

The identified clusters in the main article can also be observed in this analysis. The red 
cluster from the main article corresponds with cluster 3, blue with cluster 11, green with 
cluster 15, pink more or less with cluster 14 and orange more or less with cluster 16. The 
number of cases attributed to the clusters identified in the main article is larger. We notice 
that the lesser plausible clusters in the  main article (pink and orange) do not agree 
completely to cluster 14 and 16 in this analysis. We can also notice that, when we compare 
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the epidemic curve with the epidemic curve in the main article,  from 2013 onwards the 
pattern is roughly similar, which might  indicate  fairly  representative sequencing in that time 
period, but is quite different in the period before 2013. We can see some large peaks in 
2010, 2011 and 2012, which are not depicted  in  the  epidemic  curve  of  the  main  article. 
The lesser plausible  pink and orange cluster fall in this period before 2013, so it might be 
due to unrepresentative sequencing in this period that transmission cluster detection is 
difficult. This might also be the reason that the quite large (n> 40) clusters 12, 13 and 17 are 
not picked up in the main article.

With this additional study we show that it is quite well possible to use these plausibility tools 
with two dimensions only. We have also discovered  that  the  cases  included  in  the  main  
analysis  are  quite representative for the total notified mumps cases from 2013 onwards, 
and that in this period similar clusters are detected if only two dimensions would have 
been used. We conclude that biased sequencing can influence  cluster  detection  with  
this  algorithm,  so  its  therefore  always  important  to  aim  for  a  representative sample 
of the total population for sequencing. In addition, this analysis  also shows that even with 
a small representative sequenced sample of the total population, a great amount of cluster 
information is captured.

a) 
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b) 

c) 

 Tree height cut-off at 16%
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d) 

e) 

Figure B1. Results of the cluster analysis using a p-value cut-off of 0.001 and only considering the 
clusters at the highest nesting level with a maximum tree height of 16% of the total tree height. a) 
epidemic curve, b) map of unclustered and clustered cases, c) hierarchical clustering tree, d) notched 
boxplots of the inter-case distance per dimension and cluster, e) matrix plot of the Spearman intra-
cluster correlation coefficients.
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