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Abstract

Surveillance systems collect information on many infections over long periods. To allow 
interpretation, these time series are summarized. Here we aim to identify the most informative 
summary statistics that capture dynamic patterns across scales in a multivariate time series 
of daily notifications for 45 infectious diseases from 2003 to 2018 in the Netherlands. 

To put different flavors of summary statistics on the same footing, we calculate them as 
instances of the generalized Rényi entropy Hα, with H0 corresponding to presence/absence, 
H1 to epidemic intensity (Shannon entropy), and H2 to the correlation sum. We then rank the 
order in which these statistics capture the dynamic variation across scales using Principal 
Component Analysis. 

The Shannon entropy (H1) is the most informative measure; the difference between 
presence/absence and correlation sum (H0-H2) is an informative orthogonal measure. We 
find a group of infections characterized by outbreaks, a group of infections continuously 
reported, and a group   of infections intermittently reported. A few infections displayed a 
changing dynamic pattern: diphtheria and leptospirosis moved towards outbreaks, mumps 
and hantavirus moved away from outbreaks, and West Nile virus infection and yellow fever 
moved towards continuous reporting. 

Our method for identifying changes in dynamic patterns of infectious diseases discerns 
disease groups sharing similar dynamic properties. By sorting diseases on recent change in 
dynamic properties, an informative overview is given of ongoing changes that might require 
enhanced disease control.
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Introduction

Due to longstanding surveillance, databases containing case-based information on 
infectious disease notifications have expanded over the years. Epidemiologists use this 
information for outbreak detection, monitoring endemic disease trends, and the evaluation 
of intervention programs [1]. To achieve these aims, changes in dynamic patterns need to 
be identified; a change could be related to, for example, a starting outbreak, an increasing 
trend, or the introduction of an intervention program. To identify these changes, the number 
of disease notifications over time needs to be studied. This is often done separately for 
every disease, however, by doing so important relations between diseases dynamics might 
be missed. To allow for comparison of disease dynamics, they can be classified according 
to their dynamic properties. Dynamic properties can include the presence/absence of 
disease, and variation and autocorrelation in disease occurrence. When grouped, changes 
in these dynamic patterns might be more easily identified, enhancing infectious disease 
surveillance. The aim of this study is to provide a method for the identification of changes 
in dynamic patterns in multivariate infectious disease time series. To this end, we study the 
dynamic patterns of infectious diseases by using the complete database of the notifiable 
disease surveillance in the Netherlands, comprising 49 infectious diseases reported daily 
over sixteen years. 

We use exploratory data visualisation to get an overview of large amounts of data [2]. So 
what measure can be used to visualize disease dynamics? The number of notifications can 
be visualized by plotting time series of incidence [3, 4]. However, the representation of 
such a time series is heavily dependent on the choice of the time aggregation scale. Other 
measures of disease dynamics discussed in literature concern measures to quantify the 
presence or absence of disease in a population [5-11]. These are often used to measure 
persistence of a pathogen in the population by counting either the number of or the total 
duration of extinctions in the population. The dynamics of measles have frequently served 
as a case study to investigate these patterns [6-9]. Another measure of disease dynamics 
is Shannon entropy [12]. Applied to infectious disease time series it can serve various 
purposes:   as an early warning measure [13], to quantify epidemic intensity [14] or to forecast 
infectious disease incidence [15]. A final group of measures for capturing disease dynamics 
are measures of (auto)correlation, such as obtained with wavelet or spectral analysis. 
The power of these methods lies in their ability to describe how patterns change across 
aggregation scales [16]. This category has probably been the most frequently applied in the 
infectious disease domain [17-20]. 

All these methods often only cover one aspect of disease dynamics. To capture multiple 
aspects of disease dynamics,  visualizing disease dynamics requires an easy to understand 
measure that is robust to aggregation scale and that can be applied to a large number of 
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infectious diseases. Here, we propose Rényi entropy as this measure [21]. Rényi entropy is 
a family of entropy measures that can be used to quantify diversity of phenomena, a so-
called diversity index [22]. It is a generalisation of the earlier mentioned Shannon entropy. 
We chose this entropy family for various reasons. It is very straightforward to calculate; it 
only uses relative frequencies of notifications occurring at a specific timescale. We can 
therefore easily estimate the entropies along a continuum of aggregation levels. This has 
two advantages; we can examine how patterns change across these levels and separate 
members of the family all quantify another important aspect of time dynamics that may be 
related to measures mentioned in the previous paragraph, such as the presence/absence 
of notifications, uncertainty around the mean (Shannon entropy), and (auto)correlation. 
By calculating this single index, we can therefore capture multiple dimensions of disease 
dynamics. 

We apply our approach to a large database with surveillance data of notifiable diseases 
in the Netherlands from 2003 to 2018, comprising 49 infectious diseases, ranging from 
frequently reported diseases, such as pertussis, to rare diseases, such as botulism.  We 
visualize time series of all 49 diseases included in the database, and group and sort these 
time series according to their similarity. We study changes in the classification of diseases 
over time.
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Methods

Data
We use all infectious disease notifications in the Netherlands between 2003-2018. The date 
of onset is used in our analysis; when this is missing we used date of laboratory confirmation; 
and if that was missing we used the date of diagnosis. We stratify the hepatitis B and C 
notifications into chronic and acute infections, and meningococcal infections into serogroups 
B, C, W and Y. If the hepatitis infection type (i.e., acute vs. chronic) or meningococcal 
serogroup is unknown or classified as ‘other’, the relevant cases are excluded. Cases with 
chronic hepatitis C infection are excluded as this infection was no longer notifiable from 
2003. Cases with influenza A(H1N1)2009  infection are excluded as this infection was only 
notifiable for a short period of time (2009-2010). Dengue or chikungunya virus infections 
are excluded as these are only notifiable in the Dutch Caribbean areas. Only case-based 
notifications are included because a date of notification is needed for every record; 
this means exclusion of notifications of food-borne and MRSA clusters. Not all diseases 
were notifiable from the beginning of the study period (in 2003). For mumps, Hantavirus 
infection, Haemophilus influenzae type b (Hib) disease, pneumococcal disease, listeriosis 
and tuberculosis, cases are included from 2009 onwards; for group A streptococcal (GAS) 
disease cases are included from 2011 onwards; and for tularemia and zika virus infection, 
cases are included from 2017 onwards.  

From time series to discrete frequency distributions
We consider time series (X) of notification counts. These time series can be aggregated at a 
level i (such as days, weeks, months or years). We can then calculate the relative frequencies 
pi of notifications in the ith time window, transforming our time series in discrete frequency 
distributions. For example, if the time series is aggregated by week and in week 4 there are 
10 notifications and the total number of notifications is 100, the relative frequency in week 4 
is p4= 10/100= 0.1. We transform the time series to discrete frequency distributions for every 
disease, at various aggregation levels (as discussed below). The Rényi entropy family can 
then be described by the following formula [21]:

 	    ( )
1

1 log
1

n

i
i

H X paa a =

æ ö
= ç ÷- è ø
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where n represents the total number of time windows in the time series. The order α is 
indicating the family member and can vary from zero to infinity. 
 
H(X) based on each level of α can be interpreted in its own right as a measure corresponding 
to a real phenomenon. In this study, we use particular instances or family members of the 
Rényi entropy:

•	 α = 0 is quantifying the presence/absence of notifications. If all time windows 
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contain notifications this is equal to the maximum entropy (Hmax), which is defined 
as the logarithm of the time series length. 

•	 α→1, better known as Shannon entropy, is quantifying the fluctuations in 
notifications. When there are no fluctuations in the time series, i.e. a similar amount 
of notifications in every time window, this measure equals 1. When there is only one 
time window with notifications, this measure equals zero. 

•	 α= 2 captures the probability that two notifications, taken at random from the time 
series, come from the same time window of length τ. Specifically, H2 is the integral 
over the (auto)correlation function for the time series, taken from 0 to τ. As such, 
it quantifies the autocorrelation in the occurrence of notifications. Again, for time 
series with a constant number of notifications throughout the series this measure 
will equal the maximum entropy. 

•	 α→ ∞ , the entropy then equals the maximum pi value in the time series, the 
proportional frequency of the most frequent time window. This is also called the 
minimum entropy. 

The values of the Rényi entropy of order α, H
α
, are ordered as Hmax≥ H0 ≥ H1≥ H2 ≥ Hmin [21].

Analysis
Overview of the time series

To visualize the time series of diseases, we plot the aggregated number of notifications as a 
heat map, where rows represent diseases, and columns represent time windows. Diseases 
are ordered alphabetically. A color scheme indicates the number of notifications per time 
window. We map this scheme on a log scale as there is large variation in the incidence. 
Time windows without cases (log(0)) are left blank. We construct a heat map per week 
and per year, to show differences in patterns when aggregation scales vary. Second, we 
calculate the Rényi entropies of order 0, 1 and 2 and the maximum and minimum entropy 
based on the time series of every disease for various aggregation levels over the complete 
inclusion range. We aggregate the time series by the following time window sizes: day, 
week, month, 3 months, 6 months, 9 months, year, 1.5 years, 2 years, 3 years and 5 years. 
We plot the results in a multi panel plot, in which the values of the entropies are depicted 
against the natural logarithm of the aggregation level (in days) for every infectious disease.

Grouping of infectious diseases

To identify groups of infectious diseases with similar dynamic patterns, we perform principal 
component analysis on the Rényi entropies of order 0, 1 and 2, on the complete time series 
of all diseases at various aggregation levels. As principal component analysis is applied to 
only three entropy measures, we are able to interpret these components by examining the 
contributions of the individual entropies to the principal components (PC) across the various 
aggregation levels. This is unusual in principal component analysis, which often involves 
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large numbers of variables, making the interpretation of the components impossible. The 
change of the contributions across aggregation levels will then give us an assessment of 
the robustness of the entropy values across aggregation levels. The results of the principal 
component analysis are plotted in a scatterplot per aggregation level to assess which 
diseases are closest to each other and therefore share similar time dynamics. 

Change in dynamic patterns over time

To examine the change in dynamic patterns for the various diseases, entropies of order 
0, 1 and 2 are calculated per disease over three-year moving windows, shifting by year. 
The aggregation level is based on the previous analyses. We use three-year periods to 
be able to take into account multiyear outbreaks and seasonal effects. The results are 
plotted in a graph with the interpretation of the PC in terms of entropies on the x- and y-axis 
and a path through time per disease, showing the change in dynamic patterns over time. 
Diseases with considerable dynamic change in their patterns will therefore show much 
variation and hence a long path, while for relatively stable diseases the path will be much 
shorter. Finally, we compare the dynamic change in the last two time periods (t1= 2015-
2017 versus t2= 2016-2018) between diseases, to assess most recent dynamics. We define 
dynamic change as the Euclidian distance in entropies between (xt1, yt1) and (xt2, yt2) (the 
length of the path between these time periods). We sort diseases in the heatmap of disease 
incidence according to dynamic change in four different panels: one for disease incidence, 
one showing the decreasing dynamic change, and two with the x- and y- components (the 
interpretation of the PC in terms of entropies) to help with the interpretation of the dynamic 
change. In Appendix B, we repeat this analysis for two different time periods. 
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Results

In the period 2003 – 2018, 210,715 infectious disease cases were notified in the Netherlands. 
196,779 cases were included, distributed over 45 infectious diseases (Table 4.1). Pertussis 
cases represent the vast majority (56.6%) of included cases. 

In Figure 4.1a the time series of weekly notifications per infectious disease are shown on a 
log10 color scale. We observe several diseases with large outbreaks in the past 15 years, 
such as measles, rubella and Q fever; diseases with a stable number of cases, such as 
pertussis and chronic hepatitis B; diseases with a more irregular pattern, such as hepatitis A; 
diseases with a strong seasonal component, such as legionellosis; and very rare diseases, 
such as trichinosis, rabies and botulism. In Figure 4.1b the same time series are aggregated 
per year. Here, seasonal patterns are lost. 

For every infectious disease we have calculated Rényi entropies of order 0, 1 and 2 and 
the maximum and minimum entropy based on time series at various aggregation levels 
(Figure 4.2). At a daily aggregation level, a wide gap exists between the curves of Hmax and 
H0 for diseases such as brucellosis (BRUC), rubella (RUBE) and meningococcal C, W and 
Y disease (MCOCC, MCOCW, MCOCY). This means that these diseases have many days 
without reported cases. At a 5-year aggregation level, we can only observe a small gap 
between these curves for very rare diseases, such as rabies (RABI) and anthrax (ANTH). We 
can also observe diseases, such as pertussis (PERT), tuberculosis (TBC), chronic hepatitis 
B (HEPBCH) and shigella (SHIG), for which all orders of the Rényi entropies are close to 
the Hmax across all aggregation levels. These are diseases with a continuous reporting of 
cases (H0), with little fluctuations around the mean number of reported cases (H1) and low 
autocorrelation in the number of reported cases (H2). Finally, we have a group of diseases, 
such as measles (MEAS), Q fever (QFEV), rubella (RUBE) and meningococcal W disease 
(MCOCW), which show a relatively large gap between the curves of order 1 and 2 and the 
curve of order 0, especially at monthly and yearly aggregation levels. These are diseases 
for which if cases are reported, large fluctuations around the mean number of reported 
cases (H1) and a large variation in the number of reported cases throughout the time series 
are shown. We defined this as a typical pattern for outbreak diseases. 
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Table 4.1. Overview of notifiable disease cases 2003 – 2018 included in this study

Disease Disease short Start year
Number of 

notifications
Anthrax ANTH 2003 2
Botulism BOTU 2003 21
Brucellosis BRUC 2003 81
Cholera CHOL 2003 39
Creutzfeldt-Jakob disease CJD 2003 345
Variant Creutzfeldt-Jakob disease CJDV 2003 3
Diphtheria DIPH 2003 16
Hantavirus infection HANTA 2009 239
Hepatitis A HEPA 2003 3,717
Hepatitis B acute HEPBAC 2003 3,489
Hepatitis B chronic HEPBCHR 2003 21,679
Hepatitis C acute HEPCAC 2003 846
Invasive group A streptococcal disease IGAS 2011 1,610
Invasive Haemophilus influenzae type b infection IHIB 2009 253
Human infection with zoonotic influenza virus INFL 2009 1
Invasive pneumococcal disease (in children 5 years or younger) IPNEU 2009 456
Legionellosis LEGI 2003 6,875
Leptospirosis LEPT 2003 843
Listeriosis LIST 2009 1,152
Malaria MALA 2003 4,360
Meningococcal disease, serogroup B MCOCB 2003 2,233
Meningococcal disease, serogroup C MCOCC 2003 158
Meningococcal disease, serogroup W MCOCW 2003 276
Meningococcal disease, serogroup Y MCOCY 2003 168
Measles MEAS 2003 3,246
Mumps MUMPS 2009 2,181
Paratyphoid A fever PARA 2003 263
Paratyphoid B fever PARB 2003 351
Paratyphoid C fever PARC 2003 24
Pertussis PERT 2003 111,360
Psittacosis PSIT 2003 1,018
Q fever QFEV 2003 4,704
Rabies RABI 2003 4
Rubella RUBE 2003 595
Shigella SHIG 2003 7,795
STEC/enterohemorragic E.coli infection STEC 2003 6,605
Tuberculosis TBC 2009 9,298
Tetanus TETA 2009 15
Trichinosis TRIC 2003 3
Tularemia TUL 2017 5
Typhoid fever TYPH 2003 427
Viral hemorrhagic fever VHF 2003 2
West Nile virus infection WNV 2009 5
Yellow fever YFV 2003 3
Zika virus infection ZIKA 2017 13
Total     196,779
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Figure 4.1. A first visualization of the notification data for 45 infectious diseases in the Netherlands, 
2003 – 2018, aggregated by week (a) and by year (b). Grey areas indicate periods in which diseases 
were not yet notifiable.
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Figure 4.2. Rényi entropy for different orders of α against the aggregation level in days of the time 
series of notifications of 45 infectious diseases in the Netherlands, 2003-2018. 
  

Principal Component Analysis reveals that dynamic patterns of infectious diseases can be 
characterized by just two variables, of which the most important variable is the intensity of 
fluctuations (H1), and the lesser important one the sensitivity of this intensity to a change 
in order α (H0-H2) (Appendix A). Together, these two variables explain almost 100% of the 
variance in H0, H1 and H2 of the diseases. Three groups of diseases are identified based 
on these properties: those characterized by outbreaks (high H0-H2, low H1), those which are 
continuously reported (low H0-H2, high H1), and those which are intermittently reported (low 
H0-H2, low H1).

To examine the change in dynamics over time, entropies are calculated for different 
periods (Figure 4.3). Of interest are diseases that were formerly rare but over time are 
more constantly reported (shifting from bottom left to bottom right corner in Figure 4.3). 
Examples of such diseases are West Nile virus infection (WNV) or yellow fever (YFV). Also, 
diseases moving in the other direction on the same axis can be of interest: from being 
continuously reported to more fluctuations in their time series. This always goes together 
with movement along the other axis and indicates a group of diseases that show more 
fluctuations, less autocorrelation and few intervals with no reported cases in their time 

77

MULTI-SCALE ANALYSIS OF SURVEILLANCE DATA

4



567907-L-bw-Soetens567907-L-bw-Soetens567907-L-bw-Soetens567907-L-bw-Soetens
Processed on: 29-10-2021Processed on: 29-10-2021Processed on: 29-10-2021Processed on: 29-10-2021 PDF page: 76PDF page: 76PDF page: 76PDF page: 76

series over the years. These patterns might possibly indicate (starting) outbreaks (diseases 
that shift from the bottom upwards in Figure 4.3). Examples of such diseases are hepatitis 
A (HEPA), leptospirosis (LEPT), and diphtheria (DIPH).  A final group of diseases are those 
with a large range in Figure 3. These diseases show large fluctuations over time, and are 
known for large past outbreaks. Examples are rubella (RUBE), measles (MEAS) and Q fever 
(QFEV). Diseases with constant dynamics over time include acute and chronic hepatitis B 
infection (HEPBAC and HEPBCHR), tuberculosis (TBC), psittacosis (PSIT) and meningococcal 
B infection (MCOCB).  

YFV
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Figure 4.3. Change in entropy dynamics over time per infectious disease. A rolling window of three 
years, shifting per year, was applied on quarterly aggregated time series. 

To get an overview of recent changes in dynamic patterns, we zoom in on the last two 
time periods presented in Figure 4.3 (purple).  We can compare the change in dynamics 
between 2015-2017 and 2016-2018 by computing dynamic distance (the length of the path 
in Figure 4.3) between these periods and sort the heat map according to this distance 
(Figure 4.4).  The largest change in dynamics between these periods was for West Nile virus 
infection (WNV) and yellow fever virus infection (YFV). This is due to an increase in H1 entropy 
(see right panels of Figure 4.4). Previously, we observed that diseases with a decreasing 
H1 and increasing H0-H2 difference possibly indicate starting outbreaks. We observe 
this pattern also in diphtheria (DIPH), Creutzfeldt Jakob disease (CJD) and leptospirosis 
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(LEPT). We observe an opposite pattern, a decrease in outbreak potential (decrease in 
H0-H2 distance, increase in H1 distance), for mumps, meningococcal W disease (MCOCW), 
hantavirus infection (HANTA), hepatitis A (HEPA) and meningococcal Y disease (MCOCY) 
(amongst others). For most diseases, little change in dynamics has taken place between the 
periods 2015-2017 and 2016-2018. This is completely different when we compare two other 
periods, 2010-2012 and 2011-2013 (Figure B1, Appendix B). Here we can see large changes 
in dynamics for measles (MEAS) and rubella (RUBE), due to an increase in outbreak potential  
(H0-H2 distance) and a decrease in H1 entropy, indicating more fluctuating time series. 
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Figure 4.4. Change in disease dynamics according to entropy measures between period t1 (2015-2017) 
and t2 (2016-2018) across notifiable infectious diseases in the Netherlands. The quarterly aggregated 
time series of these periods shown as a heat map (first panel) are sorted by decreasing dynamic 
distance between these periods (second panel).The third and fourth panel show the distance in H0-H2 
and distance in H1  between t1 and t2 for all diseases. Light grey areas indicate diseases for which no 
data was reported as the disease was not yet notifiable (first panel) or that the entropies could not be 
estimated due to no reported cases in one or both periods (second, third and fourth panel). 
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Discussion

We captured the intrinsic dynamic properties of 45 notifiable infectious diseases between 
2003 and 2018 in the Netherlands, using a measure based on the relative incidence of 
infectious diseases. We have used Rényi entropy, a measure for which the outcome is 
consistent across timescales, to classify and order diseases by their dynamic properties. 

Principal Component Analysis identified the most important quantity describing variation in 
dynamic patterns of diseases: H1 (Shannon entropy), which gives a measure of intensity of 
fluctuations in the time series, and H0-H2, describing the difference in the entropy values, 
indicating the sensitivity of the intensity in fluctuations to a change in order. 

Our aim was to provide a method for the identification of changes in dynamic patterns in 
multivariate infectious disease time series. Recent changes requesting further analysis by 
infectious disease epidemiologists include the more continuously reporting of West Nile 
virus and the more fluctuating reporting rate of diphtheria notifications in the Netherlands in 
2018.  In 2018, the incidence of West Nile virus infection was relatively high in South European 
countries [23-25], causing more imported cases in the Netherlands. Diphtheria was acquired 
abroad. Traveling or immigration from high incidence countries, such as Venezuela [26] 
(largest neighbouring country of the Kingdom of the Netherlands) or Indonesia [27] (former 
Dutch colony),  might explain the more fluctuating pattern for this disease.

In this study, we have shown that Rényi entropy can be calculated at multiple aggregation 
scales and that the ranking of diseases on entropy measures is quite similar across different 
aggregation levels. The analysis does therefore not require a choice on the timescale of 
analysis, which is a major advantage in the case that no aggregation level is a priori of 
interest. Another advantage of this measure is that it is very easy to calculate, giving a low 
computational burden even for large datasets. As it relies on relative frequencies, diseases 
with low numbers can also be analysed. A change in the dynamics in the notifications of 
diphtheria in 2018 could therefore be observed, an issue that would otherwise probably 
have gone unnoticed. 

So how can the visualisation of Rényi entropy be used in daily practice? We would advise 
to use this alongside regular surveillance activities, to check on a regular basis whether 
any important changes have occurred in disease dynamics. Hidden intrinsic patterns, that 
currently go unnoticed in regular surveillance activities (for example with rare diseases) can 
then be revealed and further investigated. Entropy might also be useful as a measure for 
early warning of outbreaks as suggested by Brett et al [13]. Our research has additionally 
demonstrated that change in patterns can be detected, but whether this can be done in a 
timely manner, as is requested for early warning, needs further research. 
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This method can be applied to any infectious disease surveillance data, as many developed 
countries have similar surveillance systems yielding similar data [3, 19, 28, 29], it would 
also be interesting to compare grouping of diseases according to their dynamic properties 
across countries. If similar patterns exist, new hypotheses on disease dynamics might be 
generated and typical patters for diseases might be revealed, as in Graham et al [30]. 
Finally, the analysis can also take into account age, sex, specific risk groups, or geography, 
as was done by Dalziel et al [14], to reveal and compare dynamic patterns between these 
subgroups. 

To conclude, we have introduced a multi-scale measure for representing the dynamic 
properties of infectious diseases. By applying this measure on notifications of 45 infectious 
diseases in the Netherlands from 2003 -2018, we were able to discern disease groups 
sharing similar dynamic properties. In addition, by sorting diseases by the amount of 
change in dynamic properties, an informative overview is given of ongoing changes that 
might require the attention of epidemiologists and allow for the generation of hypotheses 
on disease dynamics. 
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Appendix A
PRINCIPAL COMPONENT ANALYSIS RESULTS ACROSS AGGREGATION LEVELS

To identify groups of infectious diseases with similar dynamic patterns, we perform principal 
component analysis on the Rényi entropies of order 0, 1 and 2, based on the complete 
time series of all diseases at various aggregation levels. As principal component analysis 
is applied to only three entropy measures, we are able to interpret these components by 
examining the contributions of the individual entropies to the principal components (PC) 
across the various aggregation levels. This is unusual in principal component analysis, which 
often involves large numbers of variables, making the interpretation of the components 
impossible. The change of the contributions across aggregation levels will then give us an 
assessment of the robustness of the entropy values across aggregation levels. The results 
of the principal component analysis are plotted in a scatterplot per aggregation level to 
assess which diseases are closest to each other and therefore share similar time dynamics.
It can be seen in Table A1 and Figure A1 that the contribution of individual entropies to the 
three principal components is very consistent across time scales: H0, H1, and H2 contribute 
equally to principal component 1 (PC1), H0 for 60% and H2 for 40% to principal component 
2 (PC2) and H1 for 60% and H2 for 40% to principal component 3 (PC3).  Together PC1 and 
PC2 explain almost 100% of the variance in H0, H1, and H2 of the diseases. Based on these 
contributions and since we only have three quantities in the analysis, we can interpret the 
principal components: PC1 can be interpreted as the mean of H0, H1, and H2. As H0 ≥ H1 
≥ H2, the mean of these entropies will be almost similar to H1, the Shannon entropy. This 
justifies the use of Shannon entropy to characterize dynamic patterns by e.g. Dalziel et al 
[14]. PC2 can be interpreted as the difference between H0 and H2, describing the variance 
in entropies. Substituting principal components with the entropy terms yields similar figures 
(Figure A1 and A2). This indicates that the variation between diseases can be explained by (a 
combination of) the individual entropies and that this is robust across different aggregation 
levels of the time series. 

In Figure A2 the results of the principal component analysis are shown for different 
aggregation levels. On the x-axis H1 is depicted, the approximation of principal component 
1, and on the y-axis, the difference between H0 and H2 is shown, the approximation of 
principal component 2. A considerable proportion of infectious diseases cluster together in 
the bottom right corner, indicating diseases with a high mean of the entropies (H1) and low 
H0-H2 . These are continuously reported diseases with little fluctuations in their time series. 
Examples of such diseases are tuberculosis (TBC) and chronic hepatitis B (HEPBCHR). If 
we move from the bottom right corner to the bottom left corner, we move from diseases 
with little fluctuations in their time series, but which are less continuously reported, to the 
most extreme situation with one reported case ever of human infection with zoonotic 
influenza virus (INFL). If we move from the bottom right corner upwards, we come across 
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diseases with larger fluctuations in their time series, such as mumps, rubella, measles and 
Q fever, indicating outbreaks. The ratios between diseases across aggregation levels do 
not differ too much: with increasing aggregation level, the variation in H1 between diseases 
decreases and the variation between diseases in H0-H2 peaks at the 3-month aggregation 
level after which it decreases again (Figure A1). It can also be observed that with increasing 
aggregation level, diseases are arranged on parallel diagonals. These diagonals represent 
periodicity. When considering the five year aggregation level, ZIKA and INFL are on the 
diagonal of one period of reported data, and for example, MCOCW and HEPBAC on the 
diagonal of four (all) periods of reported data. 

Table A1. Relative contributions of H0, H1 and H2 to the principal components at various aggregation levels.
Contribution (%)

Aggregation level Alpha PC1 PC2 PC3
day 0 35.42 53.61 10.97

1 33.31 1.05 65.63
2 31.27 45.34 23.39

week 0 35.75 58.23 6.02
1 33.18 3.85 62.98
2 31.07 37.93 31.00

month 0 35.41 60.33 4.27
1 33.33 5.49 61.18
2 31.26 34.19 34.55

3 months 0 33.88 62.54 3.58
1 33.73 5.83 60.44
2 32.39 31.62 35.98

6 months 0 31.97 64.82 3.21
1 34.31 5.72 59.98
2 33.72 29.47 36.81

9 months 0 31.67 65.60 2.73
1 34.44 6.28 59.27
2 33.89 28.12 38.00

year 0 30.61 66.83 2.56
1 34.74 6.17 59.09
2 34.65 27.00 38.35

18 months 0 31.50 65.78 2.72
1 34.58 6.28 59.14
2 33.92 27.94 38.14

2 years 0 31.37 65.81 2.82
1 34.60 6.09 59.32
2 34.03 28.10 37.86

3 years 0 31.72 65.93 2.36
1 34.64 6.95 58.40
2 33.64 27.12 39.24

5 years 0 38.40 59.03 2.57
1 32.57 9.06 58.37

  2 29.02 31.91 39.07
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Figure A1. Results of the principal component analysis on H0, H1 and H2 at various aggregation levels.
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Figure A2. Results of the principal component analysis of H0, H1 and H2 across different aggregation 
levels and for all diseases.
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Appendix B
CHANGE IN DISEASE DYNAMICS ACCORDING ENTROPY MEASURES BETWEEN 
PERIOD T1 (2010-2012) AND T2 (2011-2013)
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Figure B1. Change in disease dynamics according entropy measures between period t1 (2010-2012) 
and t2 (2011-2013) for all notifiable infectious diseases in the Netherlands. The quarterly aggregated 
time series of these periods shown as a heat map (first panel) are sorted by decreasing dynamic 
distance between these periods (second panel).The third and fourth panel show the distance in H0-H2 
and distance in H1 between t1 and t2 for all diseases. Light grey areas indicate diseases for which no 
data was reported as the disease was not yet notifiable (first panel) or that the entropies could not be 
estimated due to no reported cases in one or both periods (second, third and fourth panel).
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