
Improved automated CASH optimization with tree parzen estimators for
class imbalance problems
Nguyen, D.A.; Kong, J.; Wang, H.; Menzel, S.; Sendhoff, B.; Kononova, A.V.; Bäck, T.H.W.

Citation
Nguyen, D. A., Kong, J., Wang, H., Menzel, S., Sendhoff, B., Kononova, A. V., & Bäck, T. H. W.
(2021). Improved automated CASH optimization with tree parzen estimators for class
imbalance problems. 2021 Ieee 8Th International Conference On Data Science And Advanced
Analytics (Dsaa), 1-9. doi:10.1109/DSAA53316.2021.9564147

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3246961

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3246961

Improved Automated CASH Optimization with Tree
Parzen Estimators for Class Imbalance Problems

Duc Anh Nguyen∗, Jiawen Kong∗, Hao Wang∗, Stefan Menzel§,
Bernhard Sendhoff§, Anna V. Kononova∗, and Thomas Bäck∗

∗Leiden Institute of Advanced Computer Science (LIACS), Leiden University, The Netherlands
Email: {d.a.nguyen,j.kong,h.wang,a.kononova,t.h.w.baeck}@liacs.leidenuniv.nl

§Honda Research Institute Europe GmbH (HRI-EU), Offenbach/Main, Germany
Email: {stefan.menzel,bernhard.sendhoff}@honda-ri.de

Abstract—The imbalanced classification problem is very rele-
vant in both academic and industrial applications. The task of
finding the best machine learning model to use for a specific
imbalanced dataset is complicated due to a large number of
existing algorithms, each with its own hyperparameters. The
Combined Algorithm Selection and Hyperparameter optimiza-
tion (CASH) has been introduced to tackle both aspects at
the same time. However, CASH has not been studied in detail
in the class imbalance domain, where the best combination of
resampling technique and classification algorithm is searched for,
together with their optimized hyperparameters. Thus, we target
the CASH problem for imbalanced classification. We experiment
with a search space of 5 classification algorithms, 21 resampling
approaches and 64 relevant hyperparameters in total. Moreover,
we investigate performance of 2 well-known optimization ap-
proaches: Random search and Tree Parzen Estimators approach
which is a kind of Bayesian optimization. For comparison, we also
perform grid search on all combinations of resampling techniques
and classification algorithms with their default hyperparameters.
Our experimental results show that a Bayesian optimization
approach outperforms the other approaches for CASH in this
application domain.

Keywords—hyperparameter optimization, algorithm selection,
imbalanced classification, CASH optimization

I. INTRODUCTION

The imbalanced classification problem has caught growing
attention from both academic and industrial fields. Techni-
cally, any dataset with an unequal class distribution is im-
balanced. However, only datasets with a significantly skewed
distribution are traditionally regarded as imbalanced in the
imbalanced learning domain [1]. Academic researchers aim to
propose novel algorithms to handle imbalanced classification
problems in different scenarios, e.g., resampling techniques
and algorithm-level approaches, while industrial researchers
focus on improving imbalanced classification performances for
specific real-life applications, e.g., fault diagnosis or anomaly
detection [2], [3].

The combination of resampling techniques and classification
algorithms is the most commonly used approach for handling
imbalanced data [4]. However, the No Free Lunch (NFL) the-
orem [5] prescribes that there is no universally best algorithm
for all problems. This leads to a challenge for an imbalanced
classification problem on how to choose the best model
(i.e., a combination of a resampling method) and a classifier

(the so-called model selection problem or algorithm selection
problem [6]). Besides, both the resampling techniques and
classification algorithms have their hyperparameters that need
to be tuned in order to achieve better performance [7].

Therefore, two tasks have to be taken into account in this
paper: model selection (MS) and hyperparameter optimiza-
tion (HPO). Usually, these tasks are addressed separately
and sequentially [8], [9], where the practitioner can choose
to handle either task first. Commonly, practitioners proceed
by tuning the hyperparameters for each modeling algorithm
separately and then choosing the best model. However, this
approach is considerably more expensive due to a high number
of combinations operations.Alternatively, the practitioner can
select a suitable model, by training all models with their
default hyperparameters or based on some experience, and
then tune the hyperparameters only for the best model. This
approach might get stuck in a local optimum of the model that
has been initially chosen, based on the default hyperparameter
setting. On the other hand, instead of sequentially solving these
problems, they can be combined into a single problem and
solved at the same time. Such approach is commonly referred
to as the Combined Algorithm Selection and Hyperparameter
optimization (CASH) or Full Model Selection (FMS) [10]
approach.

Approaches for tackling the CASH problem have been
widely proposed in the machine learning domain, especially
in the context of automated machine learning (AutoML),
e.g., Auto-Weka [10], [11] and Auto-Sklearn [11], [12],
TPOT [13], HyperOpt-Sklearn [14]. In addition, [8] demon-
strated that the CASH approach is competitive with the
sequential approach and requires less computational effort.
However, the CASH approach has not been studied yet in
detail in the context of learning from imbalanced data.

Hence, in this work, we introduce CASH in the context of
optimizing the machine learning pipeline of combined clas-
sification algorithms and resampling techniques for the class
imbalance problem. We are particularly interested in studying
which optimization approach for handling the CASH problem
yields the best classification performance. We experiment
with two well-known approaches, Random search and Tree
Parzen Estimators approach (TPE) which is a kind of Bayesian

optimization, on a search space of 64 hyperparameters1 of
5 classification algorithms (Support Vector Machines (SVM),
Random Forest (RF), K-Nearest Neighbors (KNN), Decision
Tree (DT) and Logistic Regression (LR)) and 21 choices of
resampling techniques on a range of 44 imbalanced datasets.

Furthermore, we experiment with dropping the hyperparam-
eter tuning and carrying out only the MS part, as sometimes
done by practitioners. Our results suggest the inferiority of
such approach and demonstrate that applying CASH optimiza-
tion gives better performance, for all test cases considered.
Moreover, we observe that the Bayesian optimization approach
produces better results than Random search. Hence, we rec-
ommend using this approach for handling the CASH problem
for the class-imbalanced classification problem.

The remainder of this paper is organized as follows. In
Section II, the relevant background knowledge on imbalance
classification and hyperparameter optimization are provided,
and Section III lays out the experimental setup. Experimental
results are discussed in Section IV. Finally, the paper is
concluded, and further work is outlined in Section V.

II. BACKGROUND

In this section, we first provide a brief introduction to
imbalanced classification (Section II-A), hyperparameter op-
timization approaches (Section II-B), and the CASH problem
(Section II-C) studied in this paper.

A. Imbalanced Classification

The main problem in imbalanced classification is that the
number of samples of one class is much lower than of
the other classes [1]. Here, the one or more classes being
underrepresented are called minority class(es) and the other
class(es) are called majority classes.

It has been shown that both the data-level (resampling)
approaches and algorithm-level approaches are efficient in
handling class-imbalance problems [16]. The data-level ap-
proaches focus on producing balanced datasets based on
the unbalanced original data, while the algorithmic-level ap-
proaches concentrate on adjusting classification algorithms
to make them appropriate for imbalanced datasets. In the
imbalanced learning domain, resampling techniques can be
further divided into three groups: under-resampling, over-
resampling, and combine-resampling. Under-resampling bal-
ances the class distribution by removing majority samples,
e.g., TomekLinks [17], while over-resampling balances the
class distribution via producing synthetic minority samples,
e.g., SMOTE [18]. The combine-resampling integrates both,
removing the majority samples and creating synthetic minor-
ity samples in order to balance the class distribution, e.g.,
SMOTETomek [19].

Due to recent developments in data storage and manage-
ment, it became possible for practitioners from industry and
engineering to collect a large amount of data in order to
extract knowledge and acquire hidden insights. An application

1Detailed information on these hyperparameters are provided in [15]
(Section I)

example may be illustrated in the field of computational design
optimization [20], where product parameters are modified to
generate digital prototypes and the performances are usually
evaluated through numerical simulations which often require
minutes to hours of computation time. Here, some parameter
variations (minority number of designs) would result in effec-
tive and producible geometric shapes, but the given constraints
are violated in the final step of optimization. In this case,
applying proper imbalanced classification algorithms to the
design parameters could save computation time.

In the class imbalance domain, it is widely known that
accuracy is a deceptive estimate of performance [7], [21].
Instead of accuracy, other metrics such as the area under
the receiver operating characteristic (ROC) curve, F-measure,
or geometric mean (GM) are commonly used to measure
performance [22]. For comparison with previous studies [23],
[24], we use GM as the performance evaluation metric, i.e.:

GM =
√
TPrate · TNrate , (1)

where TPrate = TP
TP+FN and TNrate = TN

FP+TN are the
true positive and true negative rate, respectively, with TP ,
TN , FN and FP denoting the number of true positive, true
negative, false negative and false positive samples.

B. Hyperparameter Optimization

Hyperparameter optimization (HPO) has become increas-
ingly important in the community of machine learning and
optimization [25], [26]. In the context of optimization, HPO is
generally viewed as a black-box optimization problem, which
is aimed at finding the global optimum x∗ of the hyperpa-
rameters, with respect to some real-valued loss function f ,
namely,

x∗ = argmin
x∈χ

f(x) , (2)

where χ stands for the search space of hyperparameters. In the
following paragraphs, we briefly introduce the HPO algorithms
chosen in this study.

1) Grid search and Random search: Grid search is the
most basic HPO algorithm. Given a set of hyperparameters,
each of which has a (finite) set of values, we enumerate all
combinations of these sets and create a list of all candidates.
Grid search evaluates each of these candidates and chooses the
best configuration among them – the number of function eval-
uations is precisely the number of configurations. However,
practitioners are usually restricted by a limited computational
budget, i.e., number of function evaluations, for HPO. Such
limited budget is typically much smaller than the number
of possible configurations to evaluate. Thus, limited budget
restricts the applicability of grid search.

Unlike grid search which assesses all configurations, ran-
dom search [27] evaluates only a subset of available candidate
configurations at random until the given budget runs out and
returns the best of the sampled configurations.

2) Bayesian Optimization: As the HPO task is typically
time consuming, it is preferable to devise/choose an optimizer
that would deliver a good hyperparameter setting with a
relative small computational budget. Built upon surrogate
models, Bayesian Optimization (BO) [28] is designed for
such scenario. Generally speaking, BO iteratively updates a
surrogate model M that aims to learn the probability dis-
tribution of the loss value conditioned on hyperparameter x,
i.e. P (f |x), from the historical information, i.e, the evaluated
hyperparameters and the corresponding loss function values.
The new candidate hyperparameter is chosen by optimizing
the so-called acquisition function [29], which is defined over
the surrogate model M and often balances the exploration and
exploitation of the search.

Many variants have been proposed for BO, including the Se-
quential Model-based Algorithm Configuration (SMAC) [30],
Sequential Parameter Optimisation (SPO) [31], Mixed-Integer
Parallel Efficient Global Optimization (MIPEGO) [32], and
Tree-structured Parzen Estimator (TPE) [33], [34]. They dif-
fer mostly in the initial sampling method, the probabilistic
model, and the acquisition function. Common choices for the
probabilistic model are random forests (RF) [35], Gaussian
process regression (GPR) [36], and TPE. As for the acquisition
function, Expected Improvement (EI), Probability of Improve-
ment (PI) [37], and Upper Confidence Bound (UCB) [38]
are more frequently applied among many other alternatives.
The initial sampling is also an essential consideration with
conventional techniques including random, random sequences
of low discrepancies, and Latin Hypercube Design (LHS) [39].
However, for current study we opted the random sampling. In
this study, we use TPE as the BO approach and EI for the
acquisition function.

C. The Combined Algorithm Selection and Hyperparameter
Optimisation (CASH) Problem

The CASH problem [10] aims to identify the best ma-
chine learning model, e.g., preprocessing techniques, classi-
fication/regression algorithm and their hyperparameters, for
minimizing the loss value of an arbitrary real-valued objective
function f .

More formally, let A = {A(1), . . . , A(n)} denote a set of
algorithms, and χ = {χ(1), . . . , χ(n)} their hyperparameter
spaces. Let D(j)

train and D(j)
valid, for j = 1, . . . ,K, denote

training and validation datasets, generated by applying K-
fold cross-validation on dataset D. Then the CASH problem
is defined as follows:

A∗, x∗ = argmin
A(i)∈A,x∈χ(i)

1

K

K∑
j=1

f(A(i)
x ,D(j)

train,D
(j)
valid). (3)

Here, f(A(i)
x ,D(j)

train,D
(j)
valid) denotes the loss achieved by the

learning algorithm A(i) and its corresponding hyperparameters
x ∈ χ(i) when trained and evaluated on D(j)

train,D
(j)
valid.

Note that most HPO methods in practice can handle the
CASH problem by modeling the choice of algorithms as a

categorical hyperparameter. Each algorithm is mapped to its
locally dependent hyperparameters by the so-called condi-
tional parameter.

III. EXPERIMENTAL SETUP

In this section, we briefly introduce the datasets (Sec-
tion III-A), resampling techniques (Section III-B) and hyper-
optimization approaches (Section III-C) chosen in this work.
Finally, we specify the experimental procedure (Section III-D).

A. Datasets

For this study, 44 binary class imbalanced datasets from the
KEEL repository [40] are used. Their Imbalance Ratio (IR),
i.e., the ratio of the number of majority class instances to that
of minority class instances, ranges here from 1.82 to 129.44.
Figure 1 shows 44 examined datasets presenting the relation
of the imbalance ratio (#IR) on the x-axis and the number of
samples (#samples) on the y-axis; meanwhile colour of the
symbols denotes the number of attributes for each dataset.
The full list of datasets is given in [15] (Section II) of the
supplementary materials file.

100 101 102
102

103

104

5

10

15

20

#IR

#S
am

pl
es

#Attributes

Fig. 1. Overview of the characteristics of the datasets. The scatter plot the
Imbalance Ratio (#IR) and the number of samples (#samples) for all 44
datasets on a logarithmic scale. The color indicates the number of attributes.

B. Resampling Algorithms

The resampling algorithms are designed to handle the class
imbalance scenario by producing balanced datasets. The re-
sampling algorithms used in our experiments can be arranged
into three groups:

1) Over-resampling (7 algorithms): In the imbalanced
learning domain, SMOTE is the most famous resam-
pling technique and it generates synthetic samples based
on the random interpolation between the chosen mi-
nority samples and their K-nearest neighbors. Various
SMOTE-based extensions have been proposed to give
further improvement on the SMOTE basis. For example,
ADASYN [41] focuses on the harder-to-learn sample
and BorderlineSMOTE [42] emphasizes the borderline
samples. Other over-resampling approaches considered
in this paper are KMeansSMOTE [43], SMOTENC [18],
SVMSMOTE [44] and RandomOverSampler [45].

2) Under-resampling (11 algorithms): In a binary classi-
fication problem, a Tomek link is defined as a pair

LabelEncoder,
StandardScaler

Resampler

Classifier

Hyperparameter
Optimization

Stratified K-Fold

Fig. 2. Flowchart of the experimental setup.

of samples from different classes which are the near-
est neighbors for each other [17]. The undersampling
method TomekLinks removes the Tomek links in the
dataset in order to produce a clear decision boundary.
OneSidedSelection [46] first removes noisy and bor-
derline majority samples, then removes the safe major-
ity samples which have limited contribution for build-
ing the decision boundary with the CondensedNearest-
Neighbour Rule [47]. Other under-resampling methods
considered in this paper are CondensedNearestNeigh-
bour, EditedNearestNeighbours [48], RepeatedEdited-
NearestNeighbours [49], AllKNN [49], InstanceHard-
nessThreshold [50], NearMiss [51], Neighbourhood-
CleaningRule [52], ClusterCentroids [53], and Rando-
mUnderSampler [54].
The family of evolutionary under-resampling techniques
(EUS) have been proved powerful to handle instance
reduction [55]. An EUS algorithm tries to optimize the
selected samples in the majority class by performing a
binary search guided by an evolutionary algorithm [56].
Results of the EUS and the most recent research studies
in this family consist of EUS-Windowing (EUSW) [57],
clustering-based surrogate model for EUS (EUSC) [23]
and hybrid surrogate model for EUS (EUSHC) [24]
are also compared with our approach in the followed
section.

3) Combine-resampling (2 algorithms): SMOTETomek first
oversamples the minority class using SMOTE, after
which the Tomek links for the after-sampled samples
are removed. Similar to SMOTETL, SMOTEENN first
oversamples the minority class with SMOTE. After that,
the Wilson’s Edited Nearest Neighbors (ENN) is used to
remove the sample which has a different class from at
least two of its three nearest neighbors [58].

The setup also allows a “no resampling” option. The re-
sampling algorithms are implemented in the Python package
imbalanced-learn2

C. Hyperparameter Optimization

In this study, random search and TPE as implemented in
the Python package HyperOpt3 are used as HPO algorithms.

2https://github.com/scikit-learn-contrib/imbalanced-learn (version 0.7.0)
3https://github.com/hyperopt/hyperopt (version 0.2.5)

Based on the initial experiments, we set the number of
iterations of HPO to 500, after which the algorithms have
shown no significant improvements.

Moreover, to study the effectiveness of the HPO algorithms,
we evaluated all possible combinations of classification and
resampling algorithms with their default hyperparameter set-
tings. On each dataset, we report the combination with the
highest GM. As mentioned in Section I, an experimental study
with 5 classification algorithms and 21 resampling techniques
is conducted, thus making 5×21 = 105 combinations in total.
Evaluating these combinations one by one is referred to as
“Grid-Def” here (grid search HPO algorithm).

D. Implementation details

Algorithm 1: Experimental setup
Input: χ: Search space, r: Random seed, K: Number of

folds , m: Number of iterations , f : Objective
function (see Algorithm 2)

Output: x∗: the best configuration, y∗: GM achieved by x∗

Data: dataset D
1 D← DATAPREPROCESS(D)
/* DATAPREPROCESS includes LABELENCODER,

STANDARDSCALER */

2 {Dtrain,Dtest}Kj=1 ← STRATIFIEDK-FOLD(D,K, r)
3 HPO ← HPO.INIT(χ, f, r,m, {Dtrain,Dtest}Kj=1)

/* initialize optimizer */
4 x∗, y∗ ← HPO.OPTIMIZE()

The overall structure of our implementation is summarized
in Fig. 2. The process begins with data preprocessing on
the input dataset. The 5-fold cross-validation is applied at
this step to overcome the over-fitting problem. The outcome
is fed into the second phase consisting of resampling and
classification processes. Our contribution is emphasized at
this phase, where the hyperparameters of the resampler and
classifier are tuned. This block is highlighted in the blue
rounded rectangle. The complete pseudo-code of this flowchart
is elaborated in Algorithm 1.

Algorithm 1 consists of the following two steps:
• Preprocessing (line 1-2): We need to apply data prepro-

cessing since machine learning models require input and
output data to be numeric. Thus, we use Label encoder4

to encode any categorical data to a number for the input
dataset. Then, we apply Standard Scaler4 on the encoded
dataset to have zero mean and a standard deviation of one
(line 1). Next, Stratified K-fold cross-validation4 using
K = 5, commonly used in the literature, is used.

• Hyperparameter optimization (line 3-4): All parameters
of HPO are initialized (line 3), taking values from the
provided input including search space χ, random seed
r, number of iterations m, objective function f and
K folds of the examined dataset. Then, the algorithm
optimizes the search space χ until the number of function
evaluations reaches 500.

4 Label encoder, Standard scaler and Stratified K-fold cross-validation are
implemented in the python library scikit-learn (version 0.23.2).

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

0 50 0 50 0 50 0 50 0 50 0 50

SVM
RF

KNN
LR

DT
Best value found

Over-resampling
Under-resampling

Combine-resampling
No-resampling

Error

Iteration Count Count Count Count Count Count

TPE Overall SVM RF KNN LR DT
GM

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

0 25 0 25 0 25 0 25 0 25 0 25
Iteration Count Count Count Count Count Count

Random search Overall SVM RF KNN LR DT

GM

Fig. 3. Illustration of the hyperparameter tuning process on dataset “abalone9-18”. Scatter plots show the sequence of observed values vs the number of
function evaluations, the red line shows the current best value, and the black vertical bars indicate the infeasible configurations where GM returns a zero if
an invalid configuration is used. The stacked histogram plot next to the scatter plot shows the distribution of all observed values. Five last stacked histogram
plots to the right indicate the distributions for each of the classification algorithms, namely SVM, RF, KNN, LR and DT.

Algorithm 2: Objective function
Input: Hyperparameter configuration x ∈ χ generated by

HPO; r: Random seed
/* x= xre0 , xre1 , . . . , xreq︸ ︷︷ ︸

RESAMPLER

, xcls0 , xcls1 , . . . , xclsp︸ ︷︷ ︸
CLASSIFIER

*/

Data: {Dtrain,Dtest}Kj=1

1 foreach {D(j)
train,D

(j)
test} ∈ {Dtrain,Dtest}Kj=1 do

/* Build resampler and classifier models */
2 RESAMPLER ← Build RESAMPLER xre0 with the

hyperparameters {xre1 , . . . , xreq} and random seed r
3 CLASSIFIER ← Build CLASSIFIER xcls0 with the

hyperparameters xcls1 , . . . , xclsp and random seed r
4 D(j)

train ← RESAMPLER(D(j)
train)

5 yj ← CLASSIFIER.LEARN(D(j)
train).EVALUATE(D(j)

test)

6 return y ← 1
K

∑K
j=1 yj

The computation of the objective function is presented in
Algorithm 2. It elaborates further steps shown in the circle
in Fig. 2. The input is a parameter setting generated by HPO
consisting of random seed r and hyperparameter configuration
x. The configuration x consists of two parts: the choice of
resampler represented by xre0 , and classifier denoted by xcls0 ,
together with their corresponding hyperparameter settings

{xre1 , . . . , xreq} and {xcls1 , . . . , xclsp}.
For a fold of the examined dataset, the computation of an

evaluation has the following steps:

• Step 1 (line 2-3): Resampler and classifier are initialized,
using values of the configuration x and random seed r.

• Step 2 (line 4-5): The selected resampler is applied to
the fold, followed by the classifier, which is applied to
the balanced result from the resampler. Then, the GM on
each validation fold is calculated.

The final value of the objective function is an average GM
of K folds (line 6). Additionally, since the used algorithms,
i.e., classifiers and resamplers, in the objective function are
stochastic, we fixed 10 random seeds for HPO, classifiers
and resamplers in 10 different runs to make the objective
function deterministic, i.e., to assure the objective function
always returns the same value for identical input values. The
reported result of each dataset for an individual HPO approach
is averaged over 10 executions.

IV. RESULTS AND DISCUSSION

In this section, we report the results and discuss our insights.
The experimental results are summarised in Table I to illustrate

TABLE I
AVERAGE GEOMETRIC MEAN (ROUNDED TO 4 DECIMALS) OVER 10 REPETITIONS FOR THE 44 DATASETS, ORDERED BY INCREASING IR VALUE. THE

LEFT PART SHOWS OUR EXPERIMENTAL RESULTS, I.E., TPE, RANDOM SEARCH (RS), GRID-DEF (GRID), AND THE RIGHT PART (GREY SHADED) THOSE
OBTAINED BY EVOLUTIONARY ALGORITHMS ACCORDING TO [23], I.E., EUS, EUS-WINDOWING, EUSC, EUSHC, RESPECTIVELY. BOLDFACE
HIGHLIGHTS THE BEST PERFORMING METHOD PER DATASET ON EACH GROUP AND UNDERLINE INDICATES RESULTS THAT ARE SIGNIFICANTLY

DIFFERENT FROM THE BEST METHOD IN THAT GROUP ACCORDING TO A WILCOXON SIGNED-RANK TEST (p < 0.05). A VALUE LABELED WITH ∗

INDICATES THAT OUR EXPERIMENTAL RESULT OUTPERFORMS THE RESULTS FROM [23] FOR THE CORRESPONDING DATASET.

Dataset #IR Our experimental results Evolutionary algorithms [23] Overall
TPE RS Grid EUS EUSW EUSC EUSHC Winner

glass1 1.82 ∗0.7989 0.7763 0.7793 0.7773 0.7010 0.7941 0.7367 TPE
ecoli-0_vs_1 1.86 ∗0.9864 ∗0.9864 ∗0.9864 0.9583 0.9312 0.9581 0.9615 TPE | RS | Grid
wisconsin 1.86 ∗0.9814 ∗0.9807 ∗0.9788 0.9690 0.9652 0.9600 0.9590 TPE
pima 1.87 ∗0.7711 ∗0.7651 ∗0.7599 0.6943 0.6749 0.6957 0.7145 TPE
iris0 2.00 1 1 1 1 1 1 1 -
glass0 2.06 ∗0.8749 ∗0.8588 ∗0.8719 0.8009 0.6176 0.8047 0.6595 TPE
yeast1 2.46 ∗0.7324 ∗0.7304 ∗0.7183 0.6533 0.6501 0.6600 0.6600 TPE
haberman 2.78 ∗0.7025 ∗0.6926 ∗0.6678 0.5475 0.5635 0.5521 0.5497 TPE
vehicle2 2.88 ∗0.9915 ∗0.9874 ∗0.9895 0.9259 0.9175 0.9265 0.9173 TPE
vehicle1 2.90 ∗0.8658 ∗0.8429 ∗0.8333 0.6729 0.6624 0.6512 0.6926 TPE
vehicle3 2.99 ∗0.8482 ∗0.8231 ∗0.8108 0.7280 0.7142 0.7165 0.7204 TPE
glass-0-1-2-3_vs_4-5-6 3.20 0.9559 0.9505 0.9483 0.9525 0.9385 0.9647 0.9546 EUSC
vehicle0 3.25 ∗0.9863 ∗0.9809 ∗0.9766 0.9164 0.9027 0.9103 0.9016 TPE
ecoli1 3.36 ∗0.9047 ∗0.8966 ∗0.8999 0.8634 0.8306 0.8554 0.8424 TPE
new-thyroid1 5.14 ∗0.9969 ∗0.9966 ∗0.9944 0.9882 0.9809 0.9859 0.9653 TPE
new-thyroid2 5.14 ∗0.9978 ∗0.9966 ∗0.9910 0.9865 0.9773 0.9831 0.9746 TPE
ecoli2 5.46 ∗0.9361 ∗0.9337 ∗0.9361 0.9000 0.8663 0.9034 0.8772 TPE | Grid
segment0 6.02 ∗0.9993 ∗0.9990 ∗0.9965 0.9881 0.9870 0.9876 0.9858 TPE
glass6 6.38 ∗0.9524 ∗0.9516 ∗0.9381 0.8889 0.9071 0.9156 0.9054 TPE
yeast3 8.10 ∗0.9428 ∗0.9395 ∗0.9290 0.8728 0.8740 0.8752 0.8550 TPE
ecoli3 8.60 ∗0.9061 ∗0.9023 ∗0.9044 0.8348 0.8153 0.8500 0.8097 TPE
page-blocks0 8.79 ∗0.9456 ∗0.9422 ∗0.9401 0.9117 0.9038 0.9096 0.9085 TPE
yeast-2_vs_4 9.08 ∗0.9559 ∗0.9474 ∗0.9401 0.9042 0.8774 0.9156 0.8930 TPE
yeast-0-5-6-7-9_vs_4 9.35 ∗0.8212 ∗0.8063 ∗0.7938 0.7685 0.7663 0.7901 0.7535 TPE
vowel0 9.98 0.9581 0.9483 0.9427 0.9897 0.9719 0.9877 0.9831 EUS
glass-0-1-6_vs_2 10.29 ∗0.8498 ∗0.8216 ∗0.7904 0.6383 0.6164 0.6651 0.5815 TPE
glass2 11.59 ∗0.8516 ∗0.8271 ∗0.7903 0.7194 0.6525 0.7262 0.6173 TPE
shuttle-c0-vs-c4 13.87 ∗1 ∗1 ∗1 0.9960 0.9968 0.9960 0.9960 TPE | RS | Grid
yeast-1_vs_7 14.30 ∗0.8028 ∗0.7926 ∗0.7979 0.7176 0.7079 0.7068 0.6669 TPE
glass4 15.46 ∗0.9323 ∗0.9244 ∗0.9318 0.8700 0.8513 0.8613 0.8531 TPE
ecoli4 15.80 ∗0.9727 0.9551 0.9415 0.8984 0.9362 0.8857 0.9645 TPE
page-blocks-1-3_vs_4 15.86 ∗0.9925 ∗0.9877 ∗0.9884 0.9674 0.9399 0.9471 0.9294 TPE
abalone9-18 16.40 ∗0.8889 ∗0.8752 ∗0.8536 0.7269 0.6772 0.7224 0.6559 TPE
glass-0-1-6_vs_5 19.44 ∗0.9567 ∗0.9530 0.9304 0.9214 0.9151 0.9160 0.9501 TPE
shuttle-c2-vs-c4 20.50 ∗1 ∗1 ∗1 0.9577 0.6449 0.9414 0.7365 TPE | RS | Grid
yeast-1-4-5-8_vs_7 22.10 ∗0.7035 ∗0.6874 ∗0.6650 0.6569 0.6088 0.6604 0.6149 TPE
glass5 22.78 ∗0.9637 0.9555 0.9438 0.8105 0.9076 0.9600 0.9103 TPE
yeast-2_vs_8 23.10 ∗0.8231 ∗0.8031 ∗0.7945 0.7931 0.7496 0.7656 0.7668 TPE
yeast4 28.10 ∗0.8803 ∗0.8664 ∗0.8585 0.8050 0.7799 0.8288 0.7970 TPE
yeast-1-2-8-9_vs_7 30.57 ∗0.7459 ∗0.7402 ∗0.7289 0.6721 0.6078 0.6704 0.6500 TPE
yeast5 32.73 ∗0.9803 ∗0.9790 ∗0.9788 0.9634 0.9494 0.9455 0.9653 TPE
ecoli-0-1-3-7_vs_2-6 39.14 ∗0.9095 ∗0.8770 ∗0.9091 0.6700 0.7048 0.6625 0.6865 TPE
yeast6 41.40 ∗0.8972 ∗0.8905 ∗0.8840 0.8357 0.8080 0.8034 0.8031 TPE
abalone19 129.44 ∗0.7967 ∗0.7942 ∗0.7579 0.6258 0.6061 0.7214 0.6556 TPE

the performance differences between the three integrated opti-
mization approaches used, i.e., TPE, Random search (RS) and
Grid-Def (Grid), and to compare them against the state-of-the-
art Evolutionary under-resampling (EUS) methods [23]. In this
table, our results are presented in the corresponding columns
on the left side (not shaded) and the results from [23] are
presented on the right side (grey shaded) for EUS, EUSW,
EUSC and EUSHC, respectively. In both groups, the highest
performance for each dataset is highlighted in bold. In our

experimental results, the methods performing significantly
worse than the best according to the Wilcoxon signed-rank
test with α = 0.05 are underlined. A value labeled with ∗

indicates that our result outperforms those from [23] for the
corresponding dataset. Additionally, an extra column to the
right summarizes the method that achieves the highest GM
for the corresponding dataset.

The results allow the following insights:
• HPO approaches exhibit better performance compared

gl
as

s1
ec

ol
i-0

_v
s_

1
wi

sc
on

sin
pi

m
a

iri
s0

gl
as

s0
ye

as
t1

ha
be

rm
an

ve
hi

cle
2

ve
hi

cle
1

ve
hi

cle
3

gl
as

s-
0-

1-
2-

3_
vs

_4
-5

-6
ve

hi
cle

0
ec

ol
i1

ne
w-

th
yr

oi
d1

ne
w-

th
yr

oi
d2

ec
ol

i2
se

gm
en

t0
gl

as
s6

ye
as

t3
ec

ol
i3

pa
ge

-b
lo

ck
s0

ye
as

t-2
_v

s_
4

ye
as

t-0
-5

-6
-7

-9
_v

s_
4

vo
we

l0
gl

as
s-

0-
1-

6_
vs

_2
gl

as
s2

sh
ut

tle
-c

0-
vs

-c
4

ye
as

t-1
_v

s_
7

gl
as

s4
ec

ol
i4

pa
ge

-b
lo

ck
s-

1-
3_

vs
_4

ab
al

on
e9

-1
8

gl
as

s-
0-

1-
6_

vs
_5

sh
ut

tle
-c

2-
vs

-c
4

ye
as

t-1
-4

-5
-8

_v
s_

7
gl

as
s5

ye
as

t-2
_v

s_
8

ye
as

t4
ye

as
t-1

-2
-8

-9
_v

s_
7

ye
as

t5
ec

ol
i-0

-1
-3

-7
_v

s_
2-

6
ye

as
t6

ab
al

on
e1

9

0

2

4

6

8

10

KNN SVM RF LR DT
Over-resampling Under-resampling Combine-resampling No-resampling

Re
pe

tit
io

ns

Fig. 4. Resulting combination of classifier and resampler choices for an optimization process using TPE across 10 repetitions on 44 datasets. Figure best
viewed in color.

to the Grid-Def approach which uses static default hy-
perparameters. Moreover, according to the results of the
Wilcoxon signed-rank test, TPE is always the best method
found: it significantly outperforms the Grid-Def in 32/44
datasets, while it significantly outperforms RS in 26/44
tested cases5.

• Overall, TPE shows the highest GM for most of the
datasets, 41/44. Other compared methods win on differ-
ent datasets, e.g., EUSC and EUS achieve the highest GM
on “glass-0-1-2-3_vs_4-5-6” and “vowel0”, respectively.
All approaches get the maximum GM on dataset “iris0”.

• Furthermore, based on our experimental results, we con-
clude that TPE wins over the methods from [23] on
41/44 datasets, RS – on 38/44 datasets and Grid-Def
– on 37/44 datasets. This is surprising since the number
of function evaluations used in our experiment is much
smaller than in [23]: 500 function evaluations for TPE
and RS, 105 function evaluations for Grid-Def vs 10.000
function evaluations for each method in [23]. A possible
explanation for this might be that [23] employs a simple
KNN rule with k = 1 as the mere classifier, while
more complicated classification algorithms are used in
our study. More precisely, according to our experimental
results, tuned KNN wins only in 11% (TPE), 13% (RS),
and 9% (Grid-Def) of all cases.

To investigate the tuning behavior of the methods, we plot
single runs of TPE and RS on the dataset “abalone9-18”6

in Fig. 3. The scatter plots on the left show the observed
GM values over 500 function evaluations. The scatter plots
on the left show the observed GM values over 500 function

5Full details of our experimental results are provided in [15] (Section V)
of the supplementary materials file

6Note that, due to the page limitation, the plots for this dataset over 10
repetitions can be found in Section IV of the supplementary material [15]

evaluations. Six last stacked histogram plots describe the
distribution of the observed values, in which the first plot
shows all observed values, and the five last plots indicate
the distributions for each of the classification algorithms, i.e.
SVM, RF, KNN, LR and DT. We conclude that:
• Configurations generated by TPE can avoid area of infea-

sible parameters better than RS7. In this run, the number
of errors occurring in the TPE and RS runs are 14 and
22, respectively. Based on all datasets and repetitions, the
number of infeasible configurations encountered by TPE
and RS are 4.4% and 5.9%, respectively.

• Apart from zero values, the GM values of TPE are mostly
in the range from 0.8 to 0.9, while the GM of RS are
distributed in the range from 0.6 to 0.7.

Based on the highest results obtained by TPE, Fig. 4 shows
the final combination of choices of classification algorithms
and resampling approaches once the optimization run is over.
Clearly, no dominant algorithm exists over many datasets
but different datasets benefit from different classification al-
gorithms. For example, “glass0”, “yeast1”, “yeast3”, “haber-
man”, “vehicle2”, “ecoli1” and “page-blocks0” achieve the
best results with SVM, “vehicle0”, “vehicle1”, “vehicle3”
with KNN, whereas “abalone9-18” always results in LR.
Besides, 98% of runs yield the best performance by us-
ing some resampling technique. Particularly, over-resampling,
under-resampling and combine-resampling obtain 182, 199,
50 wins over 44 × 10 = 440 runs. Additionally, there is
no classifier/resampler combination providing the best clas-
sification performance over all datasets. Specifically, RF and
SVM obtain 206 and 84 wins, while other algorithms (LR,
KNN, DT) find the best performance in 73, 48 and 29 runs,
respectively.

7Evaluations with infeasible combinations of parameters are marked on the
figure as black dashes with GM = 0.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we applied a special type of Bayesian Op-
timization approach, the Tree Parzen Estimators to optimize
the combined algorithm selection and hyperparameter opti-
mization problem to improve the performance of classification
algorithms for the class imbalance problems. In other words,
we proposed an automated CASH optimization approach for
imbalanced classification problems. Our approach automat-
ically chooses the best set of algorithms, i.e., resampling
technique and classification algorithm, together with their
optimized hyperparameter settings for an arbitrary imbalanced
dataset. The numeric results show significantly improved per-
formance with respect to the state-of-the-art techniques in the
imbalanced classification domain over 44 examined datasets.

Four main conclusions can be drawn from our experimental
results:

1) Use of HPO clearly improves classification performance
compared to using static default parameters.

2) TPE outperforms Random search on 91% of the tested
datasets, while equal performance is found on the re-
maining cases.

3) Overall, the TPE approach produces the best results
among other competitors in various scenarios. Hence, we
recommend using TPE for handling CASH optimization
in imbalanced classification problems.

4) Another finding is that 98% of runs yield the best
performance with the help of resampling techniques.
Thus we recommend researchers to use resampling to
deal with class imbalanced problems.

There are several interesting research directions for extend-
ing this work. Firstly, we intend to apply other Bayesian
optimization variants such as SMAC, SPO, and MIPEGO,
in order to study the performance between variants in this
domain. Secondly, the scope of this study was limited in
terms of classification problems; therefore, our future research
might extend our research for regression problems. Thirdly, in
addition to GM, other commonly used performance evaluation
metrics in this domain will be investigated in our future
work, including the Area Under the ROC Curve (AUC), F-
measure, and recall. Fourthly, the penalty-based methods, e.g.,
penalized-SVM, themselves can efficiently handle imbalanced
datasets in several cases. Thus, we plan to study their effec-
tiveness in the context of CASH optimization. Additionally,
instead of applying hyperparameter tuning on the level of an
individual dataset, we are interested in studying the behavior
of HPO approaches when tuning for a set of datasets. Finally,
besides Bayesian optimization, we will extend our research
with other state-of-the-art HPO approaches such as iRace [59]
and Hyperband [60] for the class-imbalanced problem.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement number 766186 (ECOLE).

REFERENCES

[1] A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, Learning from imbalanced data sets. Springer, 2018.

[2] S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–
443, 2013.

[3] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme,
“Preliminary comparison of techniques for dealing with imbalance in
software defect prediction,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering,
pp. 1–10, 2014.

[4] V. López, A. Fernández, J. G. Moreno-Torres, and F. Herrera, “Analysis
of preprocessing vs. cost-sensitive learning for imbalanced classification.
open problems on intrinsic data characteristics,” Expert Systems with
Applications, vol. 39, no. 7, pp. 6585–6608, 2012.

[5] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
pp. 67–82, April 1997.

[6] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” 2018.

[7] J. Kong, W. Kowalczyk, D. A. Nguyen, S. Menzel, and T. Bäck,
“Hyperparameter optimisation for improving classification under class
imbalance,” in IEEE Symposium Series on Computational Intelligence,
pp. 3072–3078, 2019.

[8] D. Vermetten, H. Wang, C. Doerr, and T. Bäck, “Integrated vs. sequential
approaches for selecting and tuning cma-es variants,” in Proceedings of
the 2020 Genetic and Evolutionary Computation Conference, GECCO
’20, (New York, NY, USA), p. 903–912, Association for Computing
Machinery, 2020.

[9] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?,”
J. Mach. Learn. Res., vol. 15, p. 3133–3181, Jan. 2014.

[10] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” KDD, 08 2012.

[11] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka,” Journal of Machine Learning Research, vol. 18,
no. 25, pp. 1–5, 2017.

[12] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, (Cambridge, MA, USA), p. 2755–2763,
MIT Press, 2015.

[13] R. S. Olson and J. H. Moore, TPOT: A Tree-Based Pipeline Optimization
Tool for Automating Machine Learning, pp. 151–160. Cham: Springer
International Publishing, 2019.

[14] B. Komer, J. Bergstra, and C. Eliasmith, Hyperopt-Sklearn, pp. 97–111.
Cham: Springer International Publishing, 2019.

[15] D. A. Nguyen, J. Kong, H. Wang, S. Menzel, B. Sendhoff, A. V.
Kononova, and T. Bäck, “Supplementary material for improved auto-
mated cash optimization with tree parzen estimators for class imbal-
ance problems.” https://github.com/ECOLE-ITN/CASH4IMBALANCE,
2021.

[16] V. Ganganwar, “An overview of classification algorithms for imbalanced
datasets,” International Journal of Emerging Technology and Advanced
Engineering, vol. 2, no. 4, pp. 42–47, 2012.

[17] I. Tomek, “Two modifications of cnn,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. SMC-6, pp. 769–772, Nov 1976.

[18] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote:synthetic minority over-sampling technique,” Journal of artifi-
cial intelligence research, vol. 16, pp. 321–357, 2002.

[19] G. Batista, A. Bazzan, and M. C. Monard, “Balancing training data for
automated annotation of keywords: a case study.,” the Proc. Of Workshop
on Bioinformatics, pp. 10–18, 01 2003.

[20] J. Kong, T. Rios, W. Kowalczyk, S. Menzel, and T. Bäck, “On the
performance of oversampling techniques for class imbalance problems,”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 84–96, Springer, 2020.

[21] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating learning
algorithms,” IEEE Transactions on knowledge and Data Engineering,
vol. 17, no. 3, pp. 299–310, 2005.

[22] V. López, A. Fernández, S. García, V. Palade, and F. Herrera, “An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics,” Information sciences,
vol. 250, pp. 113–141, 2013.

[23] H. L. Le, D. Landa-Silva, M. Galar, S. Garcia, and I. Triguero, “A
hybrid surrogate model for evolutionary undersampling in imbalanced
classification,” in 2020 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8, 2020.

[24] H. L. Le, D. Landa-Silva, M. Galar, S. Garcia, and I. Triguero, “Eusc:
A clustering-based surrogate model to accelerate evolutionary under-
sampling in imbalanced classification,” Applied Soft Comp., vol. 101,
p. 107033, 2021.

[25] F. Hutter, L. Kotthoff, and J. Vanschoren, eds., Automatic Machine
Learning: Methods, Systems, Challenges. Springer, 2018.

[26] H. H. Hoos, Automated Algorithm Configuration and Parameter Tuning,
pp. 37–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[27] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The Journal of Machine Learning Research, vol. 13, pp. 281–
305, 03 2012.

[28] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global Optimization,
vol. 13, pp. 455–492, Dec. 1998.

[29] J. Močkus, “On bayesian methods for seeking the extremum,” in
Optimization Techniques IFIP Technical Conference Novosibirsk (G. I.
Marchuk, ed.), pp. 400–404, 1975.

[30] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proceedings of the
5th International Conference on Learning and Intelligent Optimization,
pp. 507–523, 2011.

[31] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss, “Sequential parame-
ter optimization,” 2005 IEEE Congress on Evolutionary Computation,
vol. 1, pp. 773–780, 01 2005.

[32] H. Wang, B. v. Stein, M. T. M. Emmerich, and T. Bäck, “A new
acquisition function for bayesian optimization based on the moment-
generating function,” 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 507–512, 2017.

[33] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Proceedings of the 24th International Con-
ference on Neural Information Processing Systems, NIPS’11, pp. 2546–
2554, 2011.

[34] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in ICML, 2013.

[35] L. Breiman, “Random forests,” Machine Learning, vol. 45, p. 5–32, Oct.
2001.

[36] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[37] D. Jones, “A taxonomy of global optimization methods based on
response surfaces,” J. of Global Optimization, vol. 21, pp. 345–383,
12 2001.

[38] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs.,” Journal of Machine Learning Research, vol. 3, pp. 397–422, 01
2002.

[39] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–
245, 1979.

[40] J. Alcalá-Fdez, L. Sánchez, S. Garcia, M. J. del Jesus, S. Ventura,
J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, et al.,

[44] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Borderline over-sampling
for imbalanced data classification,” Int. J. Knowl. Eng. Soft Data
Paradigm., vol. 3, p. 4–21, Apr. 2011.

“Keel: a software tool to assess evolutionary algorithms for data mining
problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009.

[41] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in IEEE International Joint
Conference on Neural Networks (IEEE World Congress on Computa-
tional Intelligence), pp. 1322–1328, IEEE, 2008.

[42] H. Han, W. Wang, and B. H. Mao, “Borderline-smote: A new over-
sampling method in imbalanced data sets learning,” vol. 3644, pp. 878–
887, 09 2005.

[43] F. Last, G. Douzas, and F. Bacao, “Oversampling for imbalanced
learning based on k-means and smote,” 2017.

[45] Imbalanced-learn, “Random over sampler.” https://imbalanced-
learn.org/stable/generated/ imblearn. over_sampling. RandomOverSam-
pler.html. Accessed: 2020-08-30.

[46] M. Kubat and S. Matwin, “Addressing the curse of imbalanced train-
ing sets: One-sided selection,” in In Proceedings of the Fourteenth
International Conference on Machine Learning, pp. 179–186, Morgan
Kaufmann, 1997.

[47] K. Gowda and G. Krishna, “The condensed nearest neighbor rule
using the concept of mutual nearest neighborhood (corresp.),” IEEE
Transactions on Information Theory, vol. 25, pp. 488–490, July 1979.

[48] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-2, no. 3, pp. 408–421, 1972.

[49] I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-6, pp. 448–
452, June 1976.

[50] M. R. Smith, T. Martinez, and C. Giraud-Carrier, “An instance level
analysis of data complexity,” Mach. Learn., vol. 95, p. 225–256, May
2014.

[51] J. Ziang, “Knn approach to unbalanced data distributions: a case study
involving information extraction,” Proc. Int’l. Conf. Machine Learning1
(ICML’03), Workshop Learning from Imbalanced Data Sets, 2003.

[52] J. Laurikkala, “Improving identification of difficult small classes by
balancing class distribution,” pp. 63–66, 06 2001.

[53] Imbalanced-learn, “Cluster centroids.” https://imbalanced-
learn.org/stable/generated/imblearn.under_sampling.ClusterCentroids.ht
ml. Accessed: 2020-08-30.

[54] Imbalanced-learn, “Randomunder sampler.” https://imbalanced-
learn.org/stable/generated/imblearn.under_sampling.RandomUnderSam
pler.html. Accessed: 2020-08-30.

[55] S. García and F. Herrera, “Evolutionary undersampling for classifica-
tion with imbalanced datasets: Proposals and taxonomy,” Evolutionary
Computation, vol. 17, no. 3, pp. 275–306, 2009.

[56] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. USA:
Oxford University Press, Inc., 1996.

[57] J. Bacardit, D. Goldberg, M. Butz, X. Llora, and J. M. Garrell,
“Speeding-up pittsburgh learning classifier systems: Modeling time and
accuracy,” vol. 3242, pp. 1021–1031, 09 2004.

[58] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior
of several methods for balancing machine learning training data,” ACM
SIGKDD explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[59] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari, “The
irace package: Iterated racing for automatic algorithm configuration,”
Operations Research Perspectives, vol. 3, 01 2011.

[60] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” J. Mach. Learn. Res., vol. 18, pp. 6765–6816, Jan. 2017.

