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Abstract
Anatomical magnetic resonance imaging (MRI), diffusion MRI and resting state 

functional MRI (fMRI) have been used for Alzheimer’s disease (AD) classification. 

These scans are typically used to build models for discriminating AD patients from 

control subjects, but it is not clear if these models can also discriminate AD in diverse 

clinical populations as found in memory clinics. To study this, we trained MRI-based 

AD classification models on a single-centre data set consisting of AD patients (N = 

76) and controls (N = 173), and used these models to assign AD scores to patients 

with subjective memory complaints (SMC, N = 67), mild cognitive impairment (MCI) 

patients (N = 61), and AD patients (N = 61) from a multi-centre memory clinic data 

set. The anatomical MRI scans were used to calculate grey matter density, subcortical 

volumes and cortical thickness, the diffusion MRI scans were used to calculate fractional 

anisotropy, mean, axial and radial diffusivity, and the resting state fMRI scans were used 

to calculate functional connectivity between resting state networks and amplitude of 

low frequency fluctuations. Within the multi-centre memory clinic data set we removed 

scan site differences prior to applying the models. For all models, on average, the AD 

patients were assigned the highest AD scores, followed by MCI patients, and later 

followed by SMC patients. The anatomical MRI models performed best, and the best 

performing anatomical MRI measure was grey matter density, separating SMC patients 

from MCI patients with an AUC of 0.69, MCI patients from AD patients with an AUC 

of 0.70, and SMC patients from AD patients with an AUC of 0.86. The diffusion MRI 

models did not generalise well to the memory clinic data, possibly because of large 

scan site differences. The functional connectivity model separated SMC patients and 

MCI patients relatively good (AUC = 0.66). The multimodal MRI model did not improve 

upon the anatomical MRI model. In conclusion, we showed that the grey matter density 

model generalises best to memory clinic subjects. When also considering the fact that 

grey matter density generally performs well in AD classification studies, this feature is 

probably the best MRI-based feature for AD diagnosis in clinical practice.

Keywords: Alzheimer’s disease, Mild cognitive impairment, Subjective memory 

complainers, Anatomical MRI, Diffusion MRI, Resting state fMRI, Classification 
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4.1 Introduction
Early diagnosis of Alzheimer’s disease (AD) is important, because it enables patients and 

caregivers to prepare for disease progression (Prince et al., 2011). It is also beneficial 

for drug research, because early phase AD patients are more likely to be susceptible to 

medication (Cummings et al., 2016). Whereas the diagnosis of progressed AD is feasible 

(Frisoni et al., 2010), early identification of AD is still problematic (Frisoni et al., 2017).

Amyloid and tau pathology are hypothesised to occur early in AD (Jack et al., 2011) 

and tau-PET and amyloid-PET are hypothesised earliest AD biomarkers (Blennow and 

Zetterberg, 2018). However, for clinical studies magnetic resonance imaging (MRI) scans 

are advantageous, because they are often available, they are non-invasive and they are 

relatively cheap. Further, functional MRI (fMRI) measures have been hypothesised to 

change in early AD as well (Buckner et al., 2005; Sperling et al., 2011). 

MRI has been used to characterise brain changes that occur in AD. Most prominently, 

AD is characterised by grey matter atrophy, starting in the hippocampus (Morra et al., 

2010), and later extending to other brain regions, including subcortical structures and 

the medial temporal lobe (Jack et al., 2004; Seeley et al., 2009). The location and extent 

of grey matter atrophy can be determined using anatomical MRI. Brain alterations in 

AD patients also involves white matter integrity (Douaud et al., 2011), which can be 

shown by diffusion MRI. In addition, AD patients show altered functional connectivity 

(FC) between brain regions (Agosta et al., 2012; Binnewijzend et al., 2012), measured 

using resting state functional MRI (fMRI). 

However, these group differences are not necessarily useful in a clinical setting, since 

many AD markers have also been observed in healthy ageing (Salat et al., 1999). AD 

markers are only helpful in a clinical setting if they can accurately discriminate AD 

patients from non-affected subjects at the individual level. The focus of research on 

MRI biomarkers for AD has therefore shifted from the detection of group differences 

toward disease classification. MRI-based classification studies have progressed by 

using machine learning techniques, in which many predictors can be combined into 

one predictive model. This has led to good AD classification results for anatomical MRI 

(Cuingnet et al., 2011; Davatzikos et al., 2011; de Vos et al., 2016), diffusion MRI (Dyrba 

et al., 2013; Schouten et al., 2017) and resting state fMRI (Challis et al., 2015; Chen et al., 

2011; de Vos et al., 2018). Moreover, combining these three MRI modalities can further 

improve the classification accuracy (Schouten et al., 2016). 
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Although these results are promising, MRI-based classification models still have to 

surmount at least two problems. First, most MRI-based AD classification studies have 

used scans of AD patients and healthy elderly controls, and other studies have used 

scans of mild cognitive impairment (MCI) patients to predict AD conversion (see for 

an overview Rathore et al., 2017). These models are trained specifically for these 

classification problems, but it is not clear whether these models can also discriminate 

AD in diverse clinical populations as found in memory clinics. It is thus important to 

evaluate the generalisability of MRI-based AD classification models to diverse clinical 

populations. Second, MRI scans are susceptible to scanner effects (Ewers et al., 2006; 

Takao et al., 2014; Zhu et al., 2011). This is problematic when a classification model 

is trained with MRI scans from one scanner, and applied to MRI scans from another 

scanner. To be clinically useful, AD classification models should be robust to scanner 

effects.

We will study to which extent MRI-based AD classification models generalise to a 

diverse patient population. This study is novel on 2 important points. Firstly, we will 

apply an AD classification model to a group of memory clinic patients, who are prone 

to AD. This is more clinically relevant than classifying AD from healthy controls, but also 

much more challenging. Second, we will use both anatomical MRI, diffusion MRI and 

resting state fMRI scans. This enables a comparison between these imaging modalities, 

and the use of a multimodal MRI classification model. We will use two different data 

sets. The first data set consists of AD patients and healthy controls, and will be used for 

training MRI-based AD classification models. These classification models will then be 

applied to the second data set, that consists of a diverse patient population collected 

in four different memory clinics. The memory clinic data set contains AD patients, 

MCI patients and patients with subjective memory complaints (SMC). We expect that 

AD patients will have a higher likelihood of being classified as AD patient than both 

other groups. Furthermore, we expect this to be higher for MCI patients than for SMC 

patients, because MCI is often an early stage of AD.
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4.2 Methods
Participants

Training data

The training data were collected at the medical university of Graz in Austria, and 

consisted of 76 clinically diagnosed probable AD patients and 173 cognitively normal 

elderly controls (see Table 1). The AD patients were part of the prospective registry on 

dementia (PRODEM; see also Seiler et al., 2012). The inclusion criteria for PRODEM are: 

dementia diagnosis according to DSM-IV criteria (American Psychiatric Association, 

2000), AD diagnosis according to the NINCDS-ADRDA Criteria (McKhann et al., 2011), 

non-institutionalisation or need for 24-h care, and the availability of a caregiver who 

agrees to provide information on the patients’ and his or her own condition. Patients 

were excluded if co-morbidities were likely to preclude successful completion of the 

study. Informed consent was obtained from all patients and their caregivers. We only 

included patients for which anatomical MRI, diffusion MRI and resting state fMRI were 

available. The controls were scanned at the same scanning site, over the same period, 

with the same scanning protocol as the AD patients as a part of the Austrian stroke 

prevention study. The Austrian Stroke Prevention Study is a community-based cohort 

study on the effects of vascular risk factors on brain structure and function in elderly 

participants without a history or signs of stroke and dementia on the inhabitants of 

Graz, Austria (Schmidt et al., 1994; Freudenberger et al., 2016). Informed consent was 

obtained from all participants.

Memory clinic data

The memory clinic data (see Table 1) are part of the Leiden-Alzheimer research 

Nederland (LeARN) project (Handels et al., 2012; Jansen et al., 2017), and consisted 

of 61 possible or probable AD patients, 61 MCI patients and 67 SMC patients. The 

AD diagnosis was according to the NINCDS-ADRDA Criteria (McKhann et al., 2011), 

and the MCI diagnosis was according to the core clinical criteria for MCI due to AD 

(Albert et al., 2011). Subjects that did not meet the criteria for either AD or MCI were 

included in the SMC patient group. LeARN is a multi-centre collaboration of four 

memory clinics in the Netherlands; Leiden, Maastricht, Nijmegen and Amsterdam 

(see suppl. Table 1 for the demographics stratified over centre). The inclusion criteria 

for LeARN are: subjective and/or objective memory complaints, suspicion of having 

a primary neurodegenerative disease, a mini-mental State Examination ≥ 20, clinical 

dementia rating between 0 and 1 and the availability of a reliable informer or proxy 
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who visits or contacts the patient at least once a week. We only included patients 

for which anatomical MRI, diffusion MRI and resting state fMRI were available and 

excluded patients diagnosed with MCI not due to AD or dementia not due to AD (e.g., 

vascular dementia or frontotemporal dementia). Informed consent was obtained from 

both the patient and the informal caregiver.

MR acquisition

The subjects in the training data were scanned on a Siemens TrioTim 3T scanner at the 

Graz medical centre. The memory clinic subjects were scanned on a Philips Achieva 3T 

scanner at the Leiden University Medical Center, a Philips Achieva 3T scanner at the 

Maastricht University Medical Center, a Siemens TrioTim 3T scanner at the Nijmegen 

University Medical Center and a GE Signa HDxt 3T scanner at the VU university medical 

center in Amsterdam. The MRI sequence parameter settings are listed in Table 2.

Table 1. Sample demographics.

Training data Memory clinic data

Controls AD patients SMC MCI AD patients

N 173 76 67 61 61

Sex (♂/♀) 74/99 30/46 48/19 35/26 34/27

Age 66.1 ± 8.7 68.6 ± 8.6 63.2 ± 10.3 69.7 ± 8.3 72.5 ± 9.2

Years of education 11.5 ± 2.8 10.8 ± 3.2 11.2 ± 3.4 11.2 ± 3.4 10.6 ± 3.5

MMSE 27.5 ± 1.8 20.4 ± 4.5 28.2 ± 1.6 26.9 ± 2.3 24.0 ± 2.7

CDR - 0.82 ± 0.34 0.34 ± 0.25 0.53 ± 0.15 0.78 ± 0.25

GDS 2.0 ± 2.4 2.7 ± 2.6 3.7 ± 2.8 3.0 ± 2.4 3.2 ± 2.8

Descriptives are presented as frequencies for the categorical variables and as mean ± standard 
deviation for the other variables. AD = Alzheimer’s disease, SMC = Subjective memory 
complaints, MCI = Mild cognitive impairment, MMSE = mini-mental state examination, 
CDR = clinical dementia rating, GDS = geriatric depression scale.



Pre-trained MRI-based Alzheimer’s disease classification models to classify memory clinic patients

70 71

4

Ta
b

le
 2

. M
R

I s
eq

ue
nc

e 
p

ar
am

et
er

 s
et

tin
g

s 
p

er
 s

ca
n 

si
te

.

Sl
ic

es
TR

 
(m

s)
TE

 
(m

s)
Fl

ip
 a

ng
le

 
(°

)
M

at
ri

x 
si

ze
 

(v
ox

el
s)

Vo
xe

l s
iz

e 
(m

m
)

an
at

om
ic

al
 M

R
I

G
ra

z
17

6
19

00
2.

2
9

25
6 

x 
25

6
1.

00
 x

 1
.0

0 
x 

1.
00

Le
id

en
18

0
9.

8
4.

6
8

28
8 

x 
28

8
0.

78
 x

 0
.7

8 
x 

1.
00

M
aa

st
ric

ht
18

0
8.

2
3.

7
8

24
0 

x 
24

0
1.

00
 x

 1
.0

0 
x 

1.
00

N
ijm

eg
en

19
2

23
00

4.
7

12
25

6 
x 

25
6

1.
00

 x
 1

.0
0 

x 
1.

00

A
m

st
er

d
am

17
6

7.
8

3.
0

12
25

6 
x 

25
6

0.
94

 x
 0

.9
4 

x 
1.

00

d
iff

us
io

n 
M

R
I

D
ire

ct
io

ns
a

b
0 

sc
an

s

G
ra

z
50

67
00

95
90

12
5 

x 
12

5
2.

00
 x

 2
.0

0 
x 

2.
50

12
b

4

Le
id

en
70

82
50

80
90

12
8 

x 
12

8
2.

00
 x

 2
.0

0 
x 

2.
00

61
1

M
aa

st
ric

ht
70

82
50

80
90

12
8 

x 
12

8
2.

00
 x

 2
.0

0 
x 

2.
00

61
1

N
ijm

eg
en

81
13

00
0

10
2

90
12

8 
x 

12
8

2.
00

 x
 2

.0
0 

x 
2.

00
30

1

A
m

st
er

d
am

45
13

00
0

94
90

12
8 

x 
12

8
2.

00
 x

 2
.0

0 
x 

2.
40

30
1

re
st

in
g

 s
ta

te
 f

M
R

I
Vo

lu
m

es

G
ra

z
40

30
00

30
90

64
 x

 6
4

3.
00

 x
 3

.0
0 

x 
3.

00
15

0

Le
id

en
38

22
00

30
80

80
 x

 8
0

2.
75

 x
 2

.7
5 

x 
3.

00
20

0

M
aa

st
ric

ht
38

22
00

30
80

11
2 

x 
11

2
2.

00
 x

 2
.0

0 
x 

2.
50

20
0

N
ijm

eg
en

49
23

80
30

90
64

 x
 6

4
3.

50
 x

 3
.5

0 
x 

3.
50

11
0

A
m

st
er

d
am

34
18

00
35

80
64

 x
 6

4
3.

30
 x

 3
.2

0 
x 

3.
00

20
2

a A
ll 

d
iff

us
io

n 
d

ire
ct

io
ns

 w
er

e 
ac

q
ui

re
d

 w
ith

 a
 b

 v
al

ue
 o

f 1
00

0
b
Th

e 
d

iff
us

io
n 

d
ire

ct
io

ns
 w

er
e 

ac
q

ui
re

d
 fo

ur
 t

im
es



Chapter 4

72 73

MRI preprocessing

The MRI data of all subjects were preprocessed using the FMRIB Software Library (FSL 

version 5.0; Jenkinson et al., 2012; Smith et al., 2004). For the anatomical MRI scans, 

we applied brain extraction and bias field correction. For the diffusion MRI scans, we 

applied brain extraction and eddy current correction. For the resting state fMRI data, 

this included brain extraction, motion correction, a temporal high pass filter with a cutoff 

point of 100 seconds, 3 mm FWHM spatial smoothing, and non-linear registration to 

standard MNI152 space. Additionally, we used ICA-AROMA to automatically identify 

and remove noise components from the fMRI time course (Pruim et al., 2015). ICA-

AROMA adequately removes motion related noise from fMRI data, without the need 

for removing volumes with excessive motion (Parkes et al., 2017).

Anatomical MRI features

We used both the FSL and Freesurfer software packages to analyse the anatomical 

MRI scans, because they have different approaches to calculate measures of grey 

matter atrophy. These approaches are complementary to each other, and combining 

them improves the accuracy of AD classification (de Vos et al., 2016).

Grey matter density

We used MRI-based morphometry (VBM; Ashburner et al., 2000) in FSL (Jenkinson et 

al., 2012; Smith et al., 2004) to calculate grey matter density. This includes segmentation 

of the brain-extracted images into grey matter, white matter, and cerebrospinal fluid 

(CSF), and non-linear registration of the grey matter images to the ICBM-152 grey 

matter template. We then calculated weighted averages of the voxel-wise grey matter 

density values within the 48 regions of the probabilistic Harvard-Oxford cortical atlas, 

yielding 48 grey matter density values per subject.

Subcortical volumes

We used the FMRIB’s Integrated Registration and Segmentation Tool (FIRST; 

Patenaude et al., 2011) to calculate the volumes of the subcortical structures and we 

corrected the volumes for intracranial volume. This yielded 14 subcortical volume 

features per subject (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, 

and accumbens for both hemispheres).

Cortical thickness

We used the Freesurfer software package (Dale et al., 1999; Fisch et al., 1999) to 

calculate cortical thickness. This includes intensity normalisation of the brain-extracted 
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image to obtain an image with high contrast to noise ratio. This image is used to locate 

the boundaries between grey matter, white matter and CSF. Subsequently, a triangular 

mesh is constructed around the white matter surface, and this mesh is deformed 

outwards to create a grey matter surface that closely follows the boundary between 

grey matter and CSF. Cortical thickness is defined as the distance between the white 

matter surface and the grey matter surface. The image is registered to the Freesurfer 

common template using the image’s cortical folding pattern, and the neocortex is 

parcellated into the 68 neocortical regions (34 regions for each hemisphere) of the 

Desikan-Killiany atlas (Desikan et al., 2006). This yielded 68 cortical thickness features 

per subject.

Diffusion MRI features

We used the diffusion MRI scans to calculate fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (DA), and radial diffusivity (DR). First, we used DTIFIT in FSL 

(Jenkinson et al., 2012; Smith et al., 2004) to fit a diffusion tensor model at each voxel to 

calculate voxel-wise FA, MD, DA and DR images for each subject. Then we projected 

subjects’ FA, MD, DA and DR images onto the FMRIB58_FA mean FA image using 

tract-based spatial statistics (TBSS; Smith et al., 2006). Finally, we calculated weighted 

averages of the FA, MD, DA and DR values within the 20 regions of the probabilistic 

JHU white-matter tractography atlas, yielding 20 features for FA as well as MD, DA 

and DR.

Resting state fMRI features

Functional connectivity

Functional connectivity (FC) was calculated between resting state networks (RSNs) 

as obtained by an independent component analysis (ICA). First, we used only the 

training sample to obtain 70 RSNs using temporal concatenation ICA in FSL MELODIC 

(Beckmann & Smith, 2004). Then, for all subjects we registered the ICA component 

weight maps to subject space, weighted them by the subject specific grey matter density 

maps, and multiplied them with the functional data. Subsequently, we calculated the 

mean time courses for the 70 components and used these for the FC analysis. We 

calculated sparse partial correlations using the Graphical Lasso algorithm (Friedman et 

al., 2008), with ƛ = 100 (Smith et al., 2011). For each participant we thus calculated a 70 

by 70 sparse partial correlation matrix yielding (70 * 69)/2 = 2415 features.
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Amplitude of low frequency fluctuations

To calculate the amplitude of low frequency fluctuations (ALFF; Biswal et al., 2010; Zang 

et al., 2007), we used the REST software package (Song et al., 2011). ALFF was defined 

as the power within the 0 - 0.1 Hz frequency band. For standardisation purposes we 

divided the voxels’ ALFF values by the mean ALFF within a subjects’ whole brain (Zang 

et al., 2007). The whole brain voxel-wise ALFF maps consist of 139,712 values.

Correction for age

We regressed out the age effects from the features. To this end we first used the healthy 

controls from the training sample to estimate ‘normal’ age effects for all features. Then 

we used these estimated age effects to regress out the age effects for all subjects.

Correction for scan site within the memory clinic data

We corrected for scan site effects within the memory clinic data using ComBat (Johnson 

et al., 2007). ComBat is validated for anatomical MRI data (Fortin et al., 2018), diffusion 

MRI data (Fortin et al., 2017), and resting state fMRI data (Yu et al., 2018). ComBat fits 

a linear model of location and scale for each feature, making the assumption that sites 

have both an additive and multiplicative effect on the data. It uses empirical Bayes to 

improve the estimation of the model parameters. The model furthermore makes the 

assumption that the expected value of a feature can be modelled by both the site 

Table 3. MRI features

# of features

Anatomical MRI features

Grey matter density 48

Subcortical volumes 14

Cortical thickness 68

Diffusion MRI features

Fractional anisotropy 20

Mean diffusivity 20

Axial diffusivity 20

Radial diffusivity 20

Resting state fMRI features

Functional connectivity 2,415

Amplitude of low frequency fl uctuations 139,712
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effect, and biological and demographical factors. ComBat thus removes the unwanted 

site effects, while it preserves the variation that is associated with the biological and 

demographical factors. We included age, sex, years of education, clinical label, and 

MMSE score as factors in the ComBat model. 

We did not correct for scan site differences between the training data and the memory 

clinic data, because the training data consists of different clinical labels (healthy controls 

and probable AD) than the memory clinic data (SMC, MCI and possible/probable AD). 

It is therefore not possible to decide whether differences between these data sets 

should be attributed to scan site differences, or to differences in clinical groups.

Statistical analyses

The nine different MRI feature groups, along with the number of features per group 

are listed in Table 3. These feature groups were used separately in nine different AD 

classification models, and combined into an anatomical MRI, diffusion MRI, resting 

state fMRI and multimodal AD classification model. All features were normalised prior 

to the statistical analyses.

Penalised logistic regression within the training data

The training data was used to fit AD classification models. We used logistic regression 

to predict the true class of the subjects. In logistic regression, the outcome variable is 

dichotomous (0 for healthy controls and 1 for AD patients), and the predicted scores 

are continuous between 0 and 1. The subjects’ predicted scores are adopted as AD 

scores. To prevent overfitting, we used penalised logistic regression techniques that 

put penalties on the regression weights, such that only the most relevant features enter 

the regression model. For the separate feature groups, we used elastic net logistic 

regression (Friedman et al., 2010; Zou & Hastie, 2005), that uses a combination of an 

L1 (LASSO; Tibshirani, 1996) and L2 (Ridge; Hoerl and Kennard, 1970) penalty. The L1 

penalty tends towards sparse models, including only few features. The L2 penalty tends 

to include all features, but limits the size of their contributions. Two hyperparameters 

need to be tuned: the α parameter determines the relative weight of the two different 

penalties, and λ determines the size of those penalties. For the combined models we 

used group lasso logistic regression (Simon et al., 2013), which uses an L1 penalty on 

feature groups and an L2 penalty within the feature groups. The group lasso thereby 

improves interpretation of the AD classification model, because the L1 penalty on 

feature groups either entirely includes or excludes feature groups. For the group lasso 

we only need to tune λ: the size of the penalties.
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Cross-validation within the training data

To determine the performance of the AD classification models within the training 

data, we used nested cross-validation (Krstajic et al., 2014). Nested cross-validation 

takes into account two potential sources of overfitting. One could either include 

too many predictors, or overestimate accuracy by looping over all the values of the 

hyperparameters and only pick the best result. To ascertain that one is not subject 

to any of these two sources of overfitting, nested cross-validation uses an inner loop 

to tune the hyperparameters and an outer loop to train and test the AD classification 

model. For both the inner and outer loop we used 10-fold cross-validation. We 

repeated this procedure 10 times to reduce the variance resulting from the random 

partitioning of the subjects into folds.

Application to memory clinic data

To determine the performance of the AD classification models on the memory clinic 

data, we fitted AD classification models on the entire training data using optimal 

hyperparameter settings. These optimal hyperparameters were determined using a 

single tenfold cross-validation. The resulting regression models were directly applied 

to the MRI features of the memory clinic subjects. This yielded AD scores for the 

memory clinic subjects.

Model evaluation

To evaluate the results, we made receiver operating characteristic (ROC) curves and 

calculated the area under the curve (AUC) as a measure of classification performance. 

The AUC is invariant to the class distribution (Bradley, 1997), which is an advantage, 

because within the training data the number of control subjects is larger than the 

number of AD patients. Within the training data we compared the healthy controls 

with the AD patients, and within the memory clinic data we pairwise compared the 

SMC patients, MCI patients and AD patients. The four different patient comparisons, 

for the nine feature groups plus four combined models, yielded 52 comparisons in 

total. To test the AUC values against chance, we used a permutation procedure with 

10.000 permutations. We combined all 52 comparisons within the same permutation 

procedure to correct for multiple comparisons. For each permutation we permuted 

the subjects’ labels, and calculated the AUC value for all 52 comparisons. We only 

registered the maximum of those 52 AUC values, resulting in a permutation distribution 

of maximum AUC values. The 52 observed AUC values were compared with this 

distribution, yielding family-wise error corrected p-values.
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In addition, we calculated sensitivity, specificity, positive predictive values and negative 

predictive values. We used a cut-off score of 0.5, such that Subjects with Alzheimer’s 

scores below 0.5 were classified as the less severe disease category, and subjects with 

Alzheimer’s scores above 0.5 were classified as the more severe disease category. 

For example, in the comparison of SMC patients and MCI patients, the former is 

regarded as the less severe disease category and the latter is regarded as the more 

severe disease category. To evaluate the classification models in the memory clinic 

data, 0.5 is not necessarily the optimal cut-off score. For example, the SMC patients 

and MCI patients are not expected to receive Alzheimer’s scores close to either 0 or 1. 

Consequently, a cut-off score of 0.5 sometimes yields high sensitivity values and low 

specificity values, or the other way around. In these cases, other cut-off scores might 

result in a better balance between sensitivity and specificity. We have nevertheless 

used a fixed cut-off score of 0.5, because it eases the interpretation.

4.3 Results
Correction for scan site

We applied scan site correction to the four memory clinic centres (Fig. S1). Before 

correction, there are large site effects for the diffusion MRI features, moderate site 

effects for the anatomical MRI features, and no visible site effects for the resting state 

fMRI features. These site effects have been removed using the ComBat procedure, 

leaving no visible site effects between the four memory clinic centres afterwards. We 

did not correct for scan site differences between the training data and the memory clinic 

data, because the training data consists of different clinical labels (healthy controls and 

probable AD) than the memory clinic data (SMC, MCI and possible/probable AD). It is 

therefore not possible to decide whether differences between these data sets are due 

to scan site differences, or to differences in clinical groups. The differences between 

the training data and the corrected test data are largest for the diffusion MRI measures.

 

Classification results

The single feature classification models and the multiple feature classification models 

yielded individual AD scores for all participants (Fig. 2 and Fig. 3 respectively). To 

evaluate these classification models, we calculated AUC values (Table 4), sensitivity 

and specificity values (Table 5) and positive predictive values and negative predictive 

values (Table S2).
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Training data classification using single features

The median AD score for the AD patients is higher than those of the healthy controls 

for all single feature classification models (Fig. 2, top row). The AUC values for 

discriminating between AD patients and controls range between 0.79 for FC and 0.92 

for cortical thickness. These AUC values are all above chance level, showing that the 

classification models work well within the training data itself (Table 4, left side).

Memory clinic data classification using single features

All models, except for the ALFF model, assigned the highest median AD score to the 

AD patients, followed by the MCI patients and later followed by the SMC patients 

(Fig. 2, bottom row). The AUC values for the pairwise discrimination between these 

three groups are depicted in the right side of Table 4. The discrimination between 

SMC patients and MCI patients is above chance level for grey matter density and FC. 

The discrimination between MCI patients and AD patients is above chance level for 

grey matter density, subcortical volumes, and cortical thickness. The discrimination 

between SMC patients and AD patients is above chance level for grey matter density, 

subcortical volumes, cortical thickness, FA, MD, DA, and FC (Table 4, right side).

Training data classification using multiple features

In order to increase classification accuracy, the feature groups were combined into an 

anatomical MRI, diffusion MRI, resting state fMRI, and multimodal MRI model. For all 

combined classification models, the median AD score for the AD patients is higher 

than those of the healthy controls (Fig. 3, top row). The AUC values for discriminating 

between AD patients and controls are higher for the combined models than those for 

the single feature models. The multimodal model does however not improve upon the 

combined anatomical MRI model (Table 4, left side).

Memory clinic data classification using multiple features

The combined classification models were also applied to the memory clinic data. All 

models assigned the highest median AD score to the AD patients, followed by the 

MCI patients and later followed by the SMC patients (Fig. 3, bottom row). In contrast 

to the training data, the AUC values of the combined models are most often not higher 

than the AUC value of the best discriminating single feature group. The AUC only 

increases when combining the diffusion MRI features in order to classify SMC patients 

and MCI patients. For all other combined models, the AUC is either the same or lower 

(Table 4, right side).
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4Figure 1. Alzheimer’s disease scores for the feature groups. The top row shows the 
results on the training data, and the bottom row shows the results on the memory clinic 
data. The error bars represent the median AD score and the interquartile range. SMC 
= subjective memory complaints, MCI = mild cognitive impairment, ALFF = amplitude 
of low frequency fluctuations.

Figure 2. Alzheimer’s disease scores for the combined models. The top row shows 
the results on the training data, and the bottom row shows the results on the memory 
clinic data. The error bars represent the median AD score and the interquartile range. 
SMC = subjective memory complaints, MCI = mild cognitive impairment, ALFF = 
amplitude of low frequency fluctuations.
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Table 4. AUC values for the different MRI-based AD classifi cation models.

Training data Memory clinic data

MRI measure HC vs AD SMC vs MCI MCI vs AD SMC vs AD

Grey matter density 0.91*** 0.69** 0.70** 0.86***

Subcortical volumes 0.82*** 0.62 0.66* 0.76***

Cortical thickness 0.92*** 0.64 0.66* 0.76***

Combined anatomical MRI 0.94*** 0.69** 0.70** 0.85***

Fractional anisotropy 0.83*** 0.60 0.57 0.65*

Mean diffusivity 0.84*** 0.62 0.55 0.66*

Axial diffusivity 0.81*** 0.63 0.58 0.72***

Radial diffusivity 0.85*** 0.58 0.57 0.64

Combined diffusion MRI 0.87*** 0.65* 0.57 0.71***

Functional connectivity 0.79*** 0.66* 0.54 0.71**

ALFF 0.81*** 0.49 0.56 0.55

Combined resting state fMRI 0.85*** 0.62 0.56 0.68**

Multimodal MRI 0.94*** 0.68** 0.69** 0.84***

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory complaints, 
MCI = Mild cognitive impairment, ALFF = amplitude of low frequency fl uctuations. 
*p<0.05, **p<0.01, ***p<0.001
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Feature group importance

In order to inspect the contribution of the feature groups to the combined models, we 

plotted their beta values (Fig. 4). The anatomical MRI model takes all three anatomical 

feature groups into account, and the largest weight is assigned to cortical thickness. 

The diffusion MRI model takes FA, DA and DR into account, and disregards MD. The 

largest weight is assigned to DR. The resting state fMRI model takes both FC and ALFF 

into account, but weighs FC more heavily. The multimodal MRI model relies mostly on 

the anatomical MRI features, but also includes the DR features.

Table 5. Sensitivity / specifi city values for the different MRI-based AD classifi cation models.

Training data Memory clinic data

MRI measure HC vs AD SMC vs MCI MCI vs AD SMC vs AD

Grey matter density 0.66 / 0.96 0.39 / 0.84 0.69 / 0.61 0.69 / 0.84

Subcortical volumes 0.51 / 0.91 0.46 / 0.78 0.70 / 0.54 0.70 / 0.78

Cortical thickness 0.70 / 0.95 0.25 / 0.91 0.54 / 0.75 0.54 / 0.91

Combined anatomical MRI 0.88 / 0.89 0.51 / 0.81 0.74 / 0.49 0.74 / 0.81

Fractional anisotropy 0.61 / 0.90 0.28 / 0.75 0.46 / 0.72 0.46 / 0.75

Mean diffusivity 0.57 / 0.92 0.11 / 0.96 0.20 / 0.89 0.20 / 0.96

Axial diffusivity 0.41 / 0.92 0.59 / 0.69 0.69 / 0.41 0.69 / 0.69

Radial diffusivity 0.62 / 0.94 0.11 / 0.90 0.21 / 0.89 0.21 / 0.90

Combined diffusion MRI 0.75 / 0.87 0.56 / 0.63 0.61 / 0.44 0.61 / 0.63

Functional connectivity 0.34 / 0.94 0.52 / 0.64 0.59 / 0.48 0.59 / 0.64

ALFF 0.39 / 0.96 0.25 / 0.79 0.25 / 0.75 0.25 / 0.79

Combined resting state fMRI 0.67 / 0.86 0.69 / 0.45 0.82 / 0.31 0.82 / 0.45

Multimodal MRI 0.84 / 0.88 0.56 / 0.81 0.84 / 0.44 0.84 / 0.81

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory complaints,
MCI = Mild cognitive impairment, ALFF = amplitude of low frequency fl uctuations. 
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Figure 3. Content of the combined classification models that were fitted on the training 
data and applied to the memory clinic data. The top panel shows the standardised 
beta values of the features, and the bottom panel shows the sums of the absolute 
standardised beta values per feature group. These plots illustrate the importance of 
the feature groups for the combined models. The anatomical MRI model takes all 
three anatomical feature groups into account, the diffusion MRI model takes FA, DA 
and DR into account, the resting state fMRI model takes both functional connectivity 
and ALFF into account, and the multimodal MRI model relies mostly on the anatomical 
MRI features. ALFF = amplitude of low frequency fluctuations. 
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4.4 Discussion
In this study, we evaluated the generalisability of MRI-based AD classification models. 

To this end, we used a single-centre training data set consisting of AD patients and 

healthy controls, and a multi-centre application data set consisting of AD patients, 

MCI patients and SMC patients. First, we showed that within the training data there 

is good classification performance for both the anatomical MRI, diffusion MRI and 

resting state fMRI models. When a model was trained on one part of the training data, 

it generalised well to the other part of the training data. Second, we fitted models on 

the entire training data, and applied those models to the memory clinic data, resulting 

in AD scores for the memory clinic subjects. As expected, for all three MRI modalities, 

the AD patients were on average assigned higher AD scores than MCI patients, and 

the MCI patients were on average assigned higher AD scores than SMC patients.

There is however large variation in the performance of the different MRI models. The 

anatomical MRI models generalised best to the memory clinic data. Especially the 

grey matter density model could differentiate well between all three clinical groups. 

The cortical thickness model and the subcortical volumes model could differentiate 

between the AD patients and the other two groups, but not between the SMC patients 

and MCI patients.

The diffusion MRI models did not perform as well as the anatomical MRI models. 

Although classification performance was excellent within the training data for all 

diffusion MRI measures, there was limited generalisation to the memory clinic data. 

Possibly, this is due to the fact that white matter alterations in AD mostly occur in the 

late phase of the disease (Clerx et al, 2012). So, white matter changes might be already 

present in the probable AD patients from the training data, but these changes might 

not yet be as large in the MCI patients or possible AD patients from the memory 

clinic data. Another explanation might lie in the scan site differences for the diffusion 

MRI measures. It is known that technical variabilities across scan sites can have large 

effects on diffusion MRI scans (Zhu et al., 2011), and also in the current study the 

four memory clinic centres largely differed on the diffusion MRI measures. These site 

differences were removed as much as possible using the ComBat procedure (Fortin 

et al., 2017; Johnson et al., 2007), but they cannot be removed entirely. Furthermore, 

we did not remove scan site differences between the training data and the memory 

clinic data, because the subjects within the training data are not comparable with the 

memory clinic subjects with regard to their clinical labels. It is therefore not possible to 
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decide whether differences between these data sets should be attributed to scan site 

differences, or to differences in clinical labels. Yet, it is likely that scan site differences 

exist between the training data and the memory clinic data, and that possibly they have 

affected the AD scores of the memory clinic subjects. Diffusion MRI have nevertheless 

been used successfully in a multi-centre AD classification study (Dyrba et al., 2013). 

However, this study only used probable AD patients and healthy elderly controls, for 

which differences in white matter are expected to be larger. Furthermore, they used 

subjects from nine different scan sites, and they achieved the highest accuracy when 

training and testing was partly done on subjects from the same site. When they trained 

the model on subjects from eight scan sites, and applied this model on subjects from 

the ninth scan site, this resulted in lower accuracy.

Regarding the resting state fMRI models, there is a large difference between the FC 

model and the ALFF model. The FC model is somewhat inferior compared to the 

structural and diffusion MRI measures within the training data, but it generalises 

reasonably well to the memory clinic data. This model can differentiate between SMC 

patients and MCI patients, and between SMC patients and AD patients. The reasonably 

good generalisation performance of the FC model might partly be explained by the 

absence of large scan site differences. In addition, alterations in FC likely start in an early 

phase of AD (Buckner et al., 2005; Sperling et al., 2011), and this might explain why this 

model could distinguish reasonably well between SMC patients and MCI patients. FC 

has previously been shown to be successful for the classification of AD patients, MCI 

patients and controls in a multi-centre setting. However, this was only achieved after 

employing strict quality measures, including visual inspection of all the data (Teipel 

et al., 2017b). In the current study this was not much of an issue, possibly because we 

automatically removed noise components with ICA-AROMA (Pruim et al., 2015), and it 

has been shown that removing ICA based noise components from resting state fMRI 

data reduces scan site differences substantially (Feis et al, 2015). In contrast to the FC 

model, the ALFF model showed very poor generalisation performance. Although the 

classification performance was good within the training data, this model could not 

differentiate between any of the three groups within the memory clinic data. This result 

corresponds to the results of another multi-centre study, in which ALFF showed poor 

classification performance to classify SMC patients, amnestic MCI patients and AD 

patients (Teipel et al., 2018).

Combining the MRI features improved the accuracy within the training data, which is 

a replication of other studies that improved AD classification by combining different 



Pre-trained MRI-based Alzheimer’s disease classification models to classify memory clinic patients

84 85

4

MRI measures from the same imaging modality (de Vos et al., 2016, 2018; Westman et 

al., 2013), or combining multiple imaging modalities (Dai et al., 2012; Schouten et al., 

2016). More importantly, however, this improvement did not translate to the memory 

clinic data. Some features contributed largely to the combined models, because they 

had a beneficial effect on AD classification within the training data, but they worsened 

the results of the combined model on the memory clinic data, because those features 

did not generalise to the memory clinic data. For example, the combined resting state 

fMRI model included both FC and ALFF. Within the training data, this combination 

increased accuracy compared to both of these features alone. However, within the 

memory clinic data, this combination decreased accuracy compared to using only FC. 

Probably, this is caused by the poor generalisation performance of ALFF.

The classification accuracies within the memory clinic data were substantially lower 

than those within the training data for all MRI models. These differences can be caused 

by multiple factors, and we cannot explicitly attribute these differences to any of these 

different factors. A factor that has likely been important is the difference in clinical 

populations. It is easier to distinguish AD patients from healthy elderly controls, as in 

the training data, than to distinguish AD patients from MCI patients and SMC patients, 

as in the memory clinic data. In addition, the AD patients in the training data had lower 

average MMSE scores than the AD patients in the test memory clinic data. The AD 

patients in the training data were thus clinically more progressed than the AD patients 

in the memory clinic data. Other factors that might have caused a drop in accuracy 

from training to test set are scan site differences, differences caused by confounding 

variables (e.g., age, sex or education) and overfitting on the training data.

We have focused on MRI scans for the AD classification models, although MRI-visible 

structural and volumetric brain abnormalities occur relatively late in AD (Jack et al., 

2010). Amyloid and tau pathology are observable in AD patients well before any 

pathological change is detectable on a anatomical MRI scan (Jack et al., 2010). For 

clinical studies however, anatomical MRI scans are advantageous, because they are 

non-invasive and often available. In addition, there is evidence that functional changes 

as can be seen on a resting state fMRI scan might already occur in an earlier phase of 

the disease (Buckner et al., 2005; Sperling et al., 2011). Therefore, resting state fMRI 

might be sensitive for early detection of AD.

We have only studied AD classification, while memory clinics are confronted with non-

AD types of dementia as well. In future efforts, to create clinically valuable classification 
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models for more dementia types, it is important to also include non-AD types of 

dementia.

In conclusion, we studied the generalisation performance of single-centre MRI-based 

AD classification models to a multi-centre memory clinic data set. The anatomical 

MRI models generalised best to the memory clinic data, and grey matter density 

was the best performing anatomical MRI measure. The diffusion MRI models did not 

generalise well, possibly due to large scan site effects on the diffusion MRI measures, 

or because white matter alterations mostly occur in progressed AD (Clerx et al, 2012). 

The FC model showed reasonable performance for identifying prodromal AD stages, 

but it was still inferior to the grey matter density model. Moreover, the multimodal MRI 

model did not improve upon the anatomical MRI model.
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Supplementary table 1. Sample demographics for the memory clinic centers.

Memory clinic data

Leiden Maastricht Nijmegen Amsterdam

N 40 68 43 38

SMC / MCI / AD 12 / 13 / 15 31 / 24 / 13 16 / 13 / 14 8 / 11 / 19

Sex (♂/♀) 20 / 20 42 / 26 25 / 18 30 / 8

Age 70.9 ± 9.0 66.6 ± 11.6 71.6 ± 9.0 65.0 ± 7.5

MMSE 26.4 ± 2.5 27.5 ± 2.6 25.7 ± 2.8 25.4 ± 3.1

CDR 0.59 ± 0.30 0.52 ± 0.17 0.49 ± 0.37 0.63 ± 0.33

GDS 3.9 ± 3.3 3.3 ± 2.6 2.8 ± 1.8 3.5 ± 2.9

Descriptives are presented as frequencies for the categorical variables and as mean  _ standard 
deviation for the other variables. SMC = Subjective memory complainers, MCI = Mild cognitive 
impairment, AD = Alzheimer’s disease, MMSE = mini mental state examination, CDR = 
clinical dementia rating, GDS = geriatric depression scale.

Supplementary table 2. Positive predictive values / negative predictive values for the 
different MRI-based AD classifi cation models.

Training data Memory clinic data

HC vs AD SMC vs MCI MCI vs AD SMC vs AD

Grey matter density 0.81 / 0.88 0.61 / 0.69 0.65 / 0.64 0.76 / 0.79

Subcortical volumes 0.71 / 0.72 0.62 / 0.65 0.62 / 0.61 0.74 / 0.74

Cortical thickness 0.83 / 0.85 0.58 / 0.71 0.65 / 0.69 0.73 / 0.85

Combined anatomical MRI 0.88 / 0.78 0.66 / 0.70 0.61 / 0.59 0.77 / 0.78

Fractional anisotropy 0.75 / 0.73 0.51 / 0.50 0.59 / 0.62 0.60 / 0.62

Mean diffusivity 0.74 / 0.76 0.53 / 0.70 0.54 / 0.63 0.58 / 0.80

Axial diffusivity 0.67 / 0.70 0.64 / 0.63 0.55 / 0.54 0.69 / 0.67

Radial diffusivity 0.77 / 0.81 0.51 / 0.50 0.55 / 0.65 0.55 / 0.65

Combined diffusion MRI 0.81 / 0.71 0.59 / 0.58 0.52 / 0.52 0.62 / 0.60

Functional connectivity 0.63 / 0.69 0.58 / 0.57 0.53 / 0.53 0.62 / 0.60

ALFF 0.68 / 0.82 0.52 / 0.52 0.50 / 0.50 0.52 / 0.52

Combined rs-fMRI 0.76 / 0.67 0.57 / 0.53 0.57 / 0.54 0.63 / 0.57

Combined multimodal MRI 0.86 / 0.76 0.68 / 0.72 0.64 / 0.60 0.82 / 0.80

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory complainers, 
MCI = Mild cognitive impairment, ALFF = amplitude of low frequency fl uctuations.
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Figure S1. The effect of scan site correction within the four Dutch memory clinic 
centres. The top row shows the feature values before scan site correction, the middle 
row shows the amount of scan site correction, and the bottom row shows the feature 
values after scan site correction. The matrix rows represent the features, and the 
matrix columns represent the subjects. Before correction there are large site effects, 
but after correction these site effects have largely disappeared. We did not apply 
scan site correction to the training data from Graz, because that data set consists of 
different clinical labels (healthy controls and probable AD) than the memory clinic data 
(SMC, MCI and possible/probable AD). It is therefore not possible to decide whether 
differences between these data sets should be attributed to scan site differences, or to 
differences in clinical groups.




