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Abstract
Alzheimer’s disease (AD) patients show altered patterns of FC (FC) on resting state 

functional magnetic resonance imaging (fMRI) scans. It is yet unclear which resting state 

fMRI measures are most informative for the individual classification of AD patients. We 

investigated this using resting state fMRI scans from 77 AD patients (MMSE = 20.4 

± 4.5) and 173 controls (MMSE = 27.5 ± 1.8). We calculated i) FC matrices between 

resting state components as obtained with independent component analysis (ICA), 

ii) the dynamics of these FC matrices using a sliding window approach, iii) the graph 

properties (e.g., connection degree, and clustering coefficient) of the FC matrices, and 

iv) we distinguished five FC states and administered how long each subject resided in 

each of these five states. Furthermore, for each voxel we calculated v) FC with 10 resting 

state networks using dual regression, vi) FC with the hippocampus, vii) eigenvector 

centrality, and viii) the amplitude of low frequency fluctuations (ALFF). These eight 

measures were used separately as predictors in an elastic net logistic regression, and 

combined in a group lasso logistic regression model. We calculated the area under the 

receiver operating characteristic curves (AUC) to determine classification performance. 

The AUC values ranged between 0.51 and 0.84 and the highest were found for the FC 

matrices (0.82), FC dynamics (0.84) and ALFF (0.82). The combination of all measures 

resulted in an AUC of 0.85. We show that it is possible to obtain moderate to good 

AD classification using resting state fMRI scans. FC matrices, FC dynamics and ALFF 

are most discriminative and the combination of all the resting state fMRI measures 

improves classification accuracy slightly. 

Keywords: resting state fMRI, Alzheimer’s disease, classification, independent 

component analysis, dual regression, dynamic functional connectivity
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3.1 Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder characterised by widespread 

grey matter atrophy (Jack et al., 2004), specifically hippocampal atrophy is considered 

to be the hallmark of AD (Morra et al., 2009). In order to develop a cure, or to slow 

down the disease progression, it is essential to diagnose AD in an early stage (Prince 

et al., 2011).

AD patients differ in their pattern of functional connectivity (FC) as shown by resting 

state functional magnetic resonance imaging (fMRI) scans. They have decreased FC 

between the hippocampus and several regions throughout the neocortex (Allen et al., 

2007; Wang et al., 2006), reduced FC within the default mode network (Binnewijzend 

et al., 2012; Greicus et al., 2004), and increased FC within the frontal networks (Agosta 

et al., 2012). AD patients also have different large-scale FC matrices (Brier et al., 2012) 

and graph properties derived from these matrices (Sanz-Arigita et al., 2010; Supekar 

et al., 2008). In addition, AD patients differ in the dynamics of their FC and their dwell 

time in specific FC states (Jones et al., 2012). Furthermore, AD patients have less signal 

in the low frequency domain (0 - 0.1 Hz) of their resting state signal (Han et al., 2011).

These FC differences might exist in an early stage of AD, even before the presence of 

brain atrophy and cognitive decline (Buckner et al., 2005; Sheline and Raichle, 2013). 

For instance, cognitively normal elderly with increased amyloid binding, an important 

AD indicator, have decreased FC between the precuneus and several regions within 

the default mode network, and these effects are similar to those observed in AD 

patients (Sheline et al., 2010a). Carriers of the APOE ε4 gene, who are at genetic risk 

for AD, have reduced FC between the precuneus and the hippocampus (Sheline, et 

al., 2010b), and increased FC within the default mode network (Filippini et al., 2009). 

Resting state fMRI might be used for the diagnosis or even early detection of AD and 

it is important to investigate this potential (Buckner et al., 2005; Sperling, 2011). AD 

biomarkers can be evaluated using individual classification studies. Resting state fMRI-

based AD classification studies have progressed through the use of machine learning 

techniques. Machine learning techniques enable the incorporation of many predictors 

into one predictive model and they automatically select the relevant ones. So far, AD 

has been classified moderately to good using FC matrices (Challis et al., 2015; Chen 

et al., 2011; Schouten et al., 2016) and their graph properties (Khazaee et al., 2015), FC 

dynamics (Wee et al., 2016), FC within the default mode network (Koch et al., 2012) and 

the amplitude of low frequency fluctuations (ALFF; Dai et al., 2012). 
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It is not known which of these resting state fMRI measures is best for AD classification. 

Moreover, the combination of different resting state fMRI measures might improve 

AD classification (Dai et al., 2012; de Vos et al., 2016; Mesrob et al., 2012; Schouten et 

al., 2016; Sui et al., 2013). In this study, we will use a wide range of resting state fMRI 

measures in combination with machine learning techniques to classify AD patients and 

controls. These measures include FC with several resting state networks (RSNs), FC with 

the hippocampus, FC matrices and their graph properties, FC dynamics, FC states, 

and the ALFF within the resting state signal. We will determine the most accurately 

predicting measures and combine them to investigate whether this increases the 

classification accuracy.

3.2 Materials and methods
Participants

Our dataset consisted of 77 clinically diagnosed probable AD patients and 173 

cognitively normal elderly controls (see Table 1). The AD patients were scanned at the 

Medical University of Graz as a part of the prospective registry on dementia (PRODEM; 

see also Seiler et al., 2012). The inclusion criteria for PRODEM are: dementia 

diagnosis according to DSM-IV criteria (American Psychiatric Association, 2000), non-

institutionalisation or need for 24-hour care, and the availability of a caregiver who 

agrees to provide information on the patients’ and his or her own condition. Patients 

were excluded if they were unable to sign an informed consent or if co-morbidities 

were likely to preclude termination of the study. We used the baseline scans from 

the PRODEM study, and only included patients that were diagnosed with AD in line 

with the NINCDS-ADRDA Criteria (McKhann et al., 1984), and for which anatomical 

MRI and resting state fMRI scans were available. The controls were scanned at the 

same scanning site, over the same time period, with the same scanning protocol as a 

part of the Austrian stroke prevention study. The Austrian Stroke Prevention Study is a 

community-based cohort study on the effects of vascular risk factors on brain structure 

and function in elderly participants without a history or signs of stroke and dementia 

on the inhabitants of Graz, Austria (see also Schouten et al., 2016).

MR acquisition

All participants were scanned on a Siemens Magnetom TrioTim 3T MRI scanner. 

The anatomical T1-weighted images were acquired with the following parameters: 

TR = 1900 ms, TE = 2.19 ms, flip angle = 9°, and an isotropic voxel size of 1 mm. The 
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resting state fMRI session was conducted, acquiring 150 volumes with TR = 3000 ms, 

TE = 30 ms, flip angle = 90°, 40 axial slices, with an isotropic voxel size of 3 mm. 

The participants were instructed to lie still with their eyes closed, and to stay awake.

MRI preprocessing

The MRI data were preprocessed using the FMRIB Software Library (FSL, version 

5.0) (Jenkinson et al., 2012; Smith et al., 2004). For the anatomical MRI this included 

brain extraction, bias field correction, and non-linear registration to standard MNI152 

template (Grabner et al., 2006). For the resting state fMRI data this included brain 

extraction, motion correction, a temporal high pass filter with a cut-off point of 100 

seconds, and spatial smoothing. The mean framewise displacement as calculated 

by MCFLIRT from FSL (Jenkinson et al., 2002) ranges from 0.02 to 0.42 mm (mean 

= 0.10, SD = 0.06) for the control subjects, and from 0.03 to 0.55 mm (mean = 0.13, 

SD = 0.11) for the AD patients (p < 0.05). To control for head motion, we applied 

motion correction using MCFLIRT (Jenkinson & Smith, 2002), and regressed the 

motion parameters out of the fMRI data. Additionally, we used the FMRIB’s ICA-based 

Xnoiseifilter (FIX, version 1.06) to automatically identify and remove noise components 

from the fMRI data (Salimi-Khorshidi et al., 2014), thereby increasing the signal to noise 

ratio (Griffanti et al., 2016). For the spatial smoothing, we used a smoothing kernel with 

a full width half maximum of 3 mm. We performed minimal smoothing, because this is 

recommended prior to running an independent component analysis (ICA) in order to 

reduce the probability of finding spurious components (Jenkinson, 2015).

Table 1. Sample demographics

Controls AD1 patients X2

Gender (♂/♀) 74/99 (57% ♀) 31/46 (60% ♀) n.s.2

min - max mean ± SD min - max mean ± SD t-test

Age 47 - 83 66.1 ± 8.7 47 - 83 68.6 ± 8.6 p<0.05

Education (years) 9 - 18 11.5 ± 2.8 4 - 20 10.8 ± 3.2 n.s.

Disease duration (months) - - 2 - 156 26.7 ± 24.5 -

MMSE3 22 - 30 27.5 ± 1.8 10 - 28 20.4 ± 4.5 p<0.001

CDR4 - - 0.5 - 2 0.8 ± 0.3 -

GDS5 0 - 11 2.1 ± 2.1 0 - 10 2.6 ± 2.6 n.s.

1AD = Alzheimer’s disease, 2MMSE = mini-mental state examination, 3CDR = clinical dementia rating, 
4GDS = geriatric depression scale.
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Resting state fMRI measures

We calculated eight types of measures from the resting state fMRI data. For most 

of those eight types of measures we calculated more than one variety, resulting in a 

total of 31 measures. These resting state fMRI measures are listed in Table 2, along 

with the number of values they comprise. These values are used as predictors in the 

classification analyses. Figure 1 summarises the procedures used to calculate the 

resting state fMRI measures. A more elaborated description is written below.
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Table 2. List of resting state fMRI measures used for Alzheimer’s disease classifi cation

Resting state measure # of predictors

1: FC1 matrices
1a. 20 X 20 full correlation 190

1b. 70 X 70 full correlation 2415

1c. 20 X 20 sparse partial correlation 190

1d. 70 X 70 sparse partial correlation 2415

FC dynamics
2a. SD2 of 20 X 20 full correlation FC matrix 190

2b. SD of 70 X 70 full correlation FC matrix 2415

2c. SD of 20 X 20 sparse partial correlation FC matrix 190

2d. SD of 70 X 70 sparse partial correlation FC matrix 2415

3: FC states
3a. FC states of 20 X 20 full correlation FC matrix 5

3b. FC states of 70 X 70 full correlation FC matrix 5

3c. FC states of 20 X 20 partial correlation FC matrix 5

3d. FC states of 70 X 70 partial correlation FC matrix 5

4: Graph metrics
4a. Graph metrics of 20 X 20 full correlation FC matrix 124

4b. Graph metrics of 70 X 70 full correlation FC matrix 424

4c. Graph metrics of 20 X 20 partial correlation FC matrix 124

4d. Graph metrics of 70 X 70 partial correlation FC matrix 424

5: FC with resting state networks
5a. FC with visual network 1 190981

5b. FC with visual network 2 190981

5c. FC with visual network 3 190981

5d. FC with default mode network 190981

5e. FC with the cerebellum 190981

5f. FC with sensorimotor network 190981

5g. FC with auditory network 190981

5h. FC with executive control network 190981

5i. FC with frontoparietal network 1 190981

5j. FC with frontoparietal network 2 190981

6: FC with Hippocampus
6a. FC with left hippocampus 190981

6b. FC with right hippocampus 190981

7: Eigenvector centrality
Fast eigenvector centrality mapping 190981

8: ALFF3

8a. ALFF 190981

8b. fALFF4 190981

All resting state fMRI measures combined 2,876,251

1FC = functional connectivity, 2SD = standard deviation, 3ALFF = amplitude of low 
frequency fl uctuations, 4fALFF = fractional amplitude of low frequency fl uctuations.
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Figure 1. The procedures for calculating the eight resting state fMRI modalities.
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Functional connectivity matrices

For each participant, we calculated FC between RSNs. We used temporal concatenation 

ICA in FSL MELODIC (Beckmann & Smith, 2004) to obtain RSNs. First, we registered 

the functional data of all participants to standard space and concatenated them along 

the time dimension. We then performed a low and a high dimensional ICA on the 

concatenated data set, forcing a solution with 20 and 70 components respectively. The 

components of these two ICA solutions are shown in Figure S2 in the supplementary 

materials. We registered the resulting ICA component weight maps back to subject 

space, weighted them by the subject specific grey matter density maps, and multiplied 

them with the functional data. We then calculated the mean time courses for the 

components and used these for the FC analysis. We calculated both full and partial 

correlation matrices. For the partial correlation matrices, we used the graphical lasso 

algorithm (Friedman et al., 2008) implemented in MATLAB (MATLAB 2013a, The 

MathWorks Inc., Natick, MA, 2000).  We set the ƛ parameter at 100, because this setting 

works best in most cases for fMRI functional connectivity (Smith et al., 2011). For each 

participant, we thus calculated four FC matrices.  The two 20 by 20 matrices each 

contain (20 * 19)/2 = 190 unique elements, and the 70 by 70 matrices each contain (70 * 

69)/2 = 2415 unique elements. We used these elements as predictors for classification.

Dynamics of functional connectivity matrices

We also calculated the dynamics of the above-described FC matrices using a sliding 

window approach (Chang and Glover 2011; Hutchinson et al., 2013; Jones et al., 2012). 

We used a window size of 33 seconds, similar to Jones et al. (2012) and Rashid et al. 

(2014), because it was shown that time windows as short as 30 seconds can provide 

reasonably good connectivity estimates (Shirer et al. 2012). We shifted the windows 

one volume at a time, resulting in 140 windows (Jones et al., 2012; Rashid et al., 2014). 

Within each window we calculated the four FC matrices as described in the previous 

paragraph. Then we calculated the standard deviation of the FC matrices over all the 

windows. This resulted in four matrices of standard deviations for each subject, with 

equal size as the FC matrices. We used the elements of these matrices as predictors 

for classification.

Functional connectivity states

For each of the four types of FC matrices we distinguished five ‘FC states’ and 

administered how long each subject resided in each of these five states. Functional 

connectivity states are patterns of FC that reoccur in time across participants (Allen et 

al., 2012; Jones et al., 2012; Rashid et al., 2014). In order to determine the FC states, 
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we clustered the sliding window FC matrices using k-means clustering. So, for each of 

the four types of FC matrices we clustered the 250 (number of subjects) * 140 (number 

of windows) = 35000 sliding window matrices. We created k = 5 clusters like Jones et 

al. (2012) and Rashid et al. (2015) and we used the Manhattan distance criterion like 

Allen et al. (2012). Then, for each participant we counted the number of sliding window 

matrices that were assigned to each of the five FC states. The five frequency values for 

each of the four types of FC matrices were used as predictors for classification.

Graph metrics

For each of the four types of FC matrices we calculated commonly used graph metrics. 

We used both the original and the binarised version of the FC matrices. Binary links 

denote the presence or absence of connections, while the original values contain 

information about the connection strengths (Rubinov & Sporns, 2010). Current network 

methods cannot quantify the role of negative connections in network organisation 

(Rubinov & Sporns, 2010) and therefore we absolutised the negative links. We binarised 

the full correlation matrices by maintaining the 20% largest absolute correlations 

within each matrix (Khazaee et al., 2015). Since the sparse partial correlation matrices 

are sparse from itself, we did not apply a binarisation threshold, but binarised the 

matrices by transforming all values greater than zero to 1. We used the Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010) available for MATLAB (MATLAB 2013a, 

The MathWorks Inc., Natick, MA, 2000) to calculate the graph metrics. For the original 

connectivity matrix, we calculated the connection strength, weighted betweenness 

centrality, and weighted clustering coefficient for every node in the network and the 

weighted characteristic path length and weighted transitivity for the entire network 

(Rubinov & Sporns, 2010). For the binarised connectivity matrix we calculated the 

connection degree, betweenness centrality, and clustering coefficient for every node 

in the network and the characteristic path length and transitivity for the entire network 

(Rubinov & Sporns, 2010). So, in total we calculated 10 different graph measures, six 

measures for every node and four measures for the entire network. This resulted in 

6*20 + 4*1 = 124 predictors for the 20*20 FC matrices and 6*70 + 4*1 = 424 predictors 

for the 70*70 FC matrices.

Whole brain functional connectivity with resting state networks

We calculated whole brain FC with 10 RSNs using the dual regression approach in FSL 

(Filippini et al., 2009). We used templates that were obtained using an independent 

data set to increase the reproducibility of our findings (Griffanti, 2016). We used the 

RSN templates that were obtained using an ICA by Smith et al. (2012). These RSNs 
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are freely available online (http://www.fmrib.ox.ac.uk/analysis/brainmap+rsns/PNAS_

Smith09_rsn10.nii.gz) as spatial maps in standard space. These 10 RSNs include three 

visual networks, the default mode network, the cerebellum, a sensorimotor network, 

an auditory network, an executive control network and two frontoparietal networks. 

Additionally, we included the white matter (WM) and cerebrospinal fluid (CSF) maps 

provided by FSL (Jenkinson et al., 2012; Smith et al., 2004) as confound maps. Those 

12 spatial maps (10 RSNs plus two confound maps) were then used in a dual regression 

analysis. First, for each subject, the 12 spatial maps were regressed (as spatial regressors 

in a multiple regression) into the subjects’ 4D space-time dataset. This results in a set 

of subject-specific time series, one for each spatial map. Next, those time series were 

regressed (as temporal regressors, again in a multiple regression) into the same 4D 

dataset, resulting in 12 subject-specific spatial maps, one for each RSN and one for 

each of the two confound maps. These subject-specific spatial maps represent whole 

brain FC with the RSNs. We used the voxel-wise whole brain FC results for the ten 

RSNs as predictors for classification.

Whole brain functional connectivity with hippocampus

For each participant, we calculated whole brain FC with the left and with the right 

hippocampus (Allen et al., 2007; Wang et al., 2006). We first calculated the time course 

of the hippocampus for each participant. To this end we segmented the hippocampus 

in the anatomical scan using FSL First. We eroded the segmented hippocampus with 

three voxel layers to ascertain that only hippocampus voxels were included. The eroded 

hippocampus was then affine registered to the functional data and we calculated the 

mean time course of the functional data within the hippocampus mask. Then, for each 

participant we regressed the time course of the hippocampus, along with the mean 

WM and CSF time courses as confound regressors, into the functional data using 

multiple regression. This resulted in a whole brain FC map with the hippocampus. We 

performed this analysis for both the left and the right hippocampus and used the two 

resulting whole brain FC maps as predictors for classification.

Eigenvector centrality

For each participant, we calculated an eigenvector centrality map. Eigenvector 

centrality attributes a value to each voxel in the brain such that a voxel receives a large 

value if it is strongly correlated with many other voxels that are themselves central 

within the network (Lohmann et al., 2010). We used the fastECM algorithm (Wink et al., 

2012; Binnewijzend et al., 2014) to calculate a whole brain eigenvector centrality map 

in standard space for each participant.



A comprehensive analysis of resting state fMRI measures to classify individual patients with 
Alzheimer’s disease

46 47

3

Amplitude of low frequency fluctuations

We calculated ALFF (Biswal et al., 2010; Zang et al., 2007) and fractional ALFF (fALFF) 

(Zou et al., 2008) for each participant. We used the REST software package (Song et 

al., 2011) to calculated whole brain ALFF and fALFF maps. ALFF was defined as the 

power within the 0 - 0.1 Hz frequency band and fALFF was defined as the power within 

the 0 - 0.1 Hz frequency band divided by the power of the whole frequency spectrum. 

For standardisation purposes, we divided the voxels’ ALFF/fALFF values by the mean 

ALFF/fALFF within a subjects’ whole brain (Zang et al., 2007).

Statistical analyses

For each of the 31 groups of predictors of the eight resting state fMRI modalities 

we used an elastic net logistic regression model to classify the subjects as either AD 

or control. Elastic net regression is commonly used for neuroimaging classification 

studies (Teipel et al., 2017a; Nir et al., 2016; Trzepacz et al., 2016). We used the glmnet 

package (Friedman et al., 2010; Zou & Hastie, 2005) available for R (R version 3.1.2, R 

Core Team, 2014). Elastic net regression uses penalties to hinder the predictors from 

entering the regression model (Friedman et al., 2010; Zou & Hastie, 2005). Thus, only 

the most relevant predictors will enter the regression model, which is helpful if the 

number of predictors outnumbers the number of subjects. Elastic net regression uses a 

combination of an L1 (LASSO) (Tibshirani, 1996) and L2 (Ridge) (Hoerl and Kennard, 1970) 

penalty. Therefore, two hyper parameters should be set: the α parameter determines 

the relative weight of the two different penalties and λ determines the size of those 

penalties. Elastic net logistic regression has already been used for AD classification (de 

Vos et al., 2016; Schouten et al., 2016; Schouten et al., 2017; Teipel et al., 2015; Trzepacz 

et al., 2014). For the combined classification model, we concatenated the 31 groups 

of predictors, resulting in a combined set containing 2,876,251 predictors. These 

predictors were jointly included in the group lasso model (Simon et al., 2013) and we 

informed the group lasso with an index vector that indicates the group membership of 

the predictors. The group lasso is similar to the elastic net, but sparse with respect to 

groups of predictors. This improves interpretation of the combined model, because a 

modality is either entirely included or excluded from the prediction model. We used 

the SGL package (Simon et al., 2013) available for R (R version 3.1.2, R Core Team, 

2014).

We used cross-validation to ensure that we are not overfitting the prediction models. 

In our case there are two potential sources of overfitting. We could either include 

too many predictors in our logistic regression model or we could overestimate the 
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classification accuracy by looping over all the values of the hyper parameters and only 

pick the best result. To ascertain that we are not subject to any of these two sources 

of overfitting we used a nested cross-validation approach (Krstajic et al., 2014). We 

used the inner loop of the nested cross-validation to tune the hyper parameters and 

the outer loop to fit and test the logistic regression model. For both the inner and 

outer loop we used 10-fold cross-validation, thus using 90 percent of the subjects in 

the training set and 10 percent in the test set, and repeating this 10 times such that all 

subjects were part of the test set once.

We made receiver operating characteristic (ROC) curves and calculated the area under 

the curve (AUC) as a measure of classification performance. The AUC is invariant to 

the class distribution (Bradley, 1997; Fawcett, 2004), which is an advantage since the 

number of control subjects is larger than the number AD patients. We also calculated 

sensitivity, specificity and balanced accuracy values for those classification cut-offs that 

resulted in the highest balanced accuracy. We repeated the cross-validation procedure 

10 times to get a more reliable cross-validation error (Krstajic et al., 2014) and extracted 

the mean AUC value.

In order to statistically compare the AUC values, we used bootstrap tests for paired 

AUCs (Hanley and McNeil, 1983) implemented in the pROC package (Robin et al., 

2011) available for R (R version 3.1.2, R Core Team, 2014). For the comparison of the 

different resting state fMRI measures we used two-sided tests, because we have 

not formulated any directed hypotheses for these comparisons. To compare the 

combined model with the single measures we applied one-sided hypothesis tests, 

because we hypothesised that the combined model would outperform the single 

measures. We present uncorrected p-values and Bonferroni corrected p-values. The 

Bonferroni correction was applied separately to the inter measure comparisons and 

the comparisons of the single measures with the combined model.

3.3 Results
Classification results

Figure 2 shows the AUC values for the 31 different types of resting state fMRI measures 

and the combined model. Table 3 also presents values for sensitivity, specificity and 

balanced accuracy. The AUC values range between 0.51 and 0.84. The functional 

connectivity matrices (AUC values between 0.72 and 0.82) and the FC dynamics 
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(AUC values between 0.72 and 0.84) distinguish AD patients and controls quite well. 

Particularly the sparse partial correlations between the 70 ICA components (AUC = 0.82) 

and the standard deviations of these sparse partial correlations over time (AUC = 0.84) 

have high AUC values. Also, the ALFF measures are discriminative for AD. ALFF has 

an AUC value of 0.82, and fALFF has an AUC value of 0.69. The FC states (AUC values 

between 0.55 and 0.74) and the graph metrics (AUC values between 0.70 and 0.79) have 

reasonable classification accuracies. Functional connectivity with the 10 RSNs (AUC 

values between 0.52 and 0.71) mostly performs poorly, except for FC with the default 

mode network (AUC = 0.70) and the executive control network (AUC = 0.71). FC with 

the left (AUC = 0.59) and right (AUC = 0.51) hippocampus result in poor classification 

performances and Eigenvector centrality mapping results in moderate classification 

performance (AUC = 0.69). As shown in Figure 2 on the right, the combination of all 

the resting state fMRI measures using the group lasso model results in an AUC value 

of 0.85, which is higher than any of the measures used alone. Combining resting state 

fMRI measures thus seems beneficial, although the effect is small.

Figure 2. Area under the receiver operating characteristic curve (AUC) values for all 
the resting state fMRI measures. The wide bar on the right is the AUC value for the 
combination of all resting state fMRI measures. The error bars represent one standard 
error above and below the AUC values.
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Table 3. Alzheimer’s disease classifi cation performance for the resting state fMRI measures.

Resting state measure AUC1 Sensitivity Specifi city Balanced 
accuracy

1: FC2 matrices
1a. 20 X 20 full correlation 0.74 0.73 0.68 0.71
1b. 70 X 70 full correlation 0.72 0.62 0.77 0.69
1c. 20 X 20 sparse partial correlation 0.77 0.68 0.76 0.72
1d. 70 X 70 sparse partial correlation 0.82 0.79 0.71 0.75

FC dynamics
2a. SD3 of 20 X 20 full correlation FC matrix 0.74 0.67 0.74 0.7
2b. SD of 70 X 70 full correlation FC matrix 0.72 0.70 0.69 0.69
2c. SD of 20 X 20 sparse partial correlation FC matrix 0.80 0.76 0.76 0.76
2d. SD of 70 X 70 sparse partial correlation FC matrix 0.84 0.83 0.73 0.78

3: FC states
3a. FC states of 20 X 20 full correlation FC matrix 0.55 0.39 0.75 0.57
3b. FC states of 70 X 70 full correlation FC matrix 0.55 0.54 0.60 0.57
3c. FC states of 20 X 20 partial correlation FC matrix 0.68 0.60 0.71 0.66
3d. FC states of 70 X 70 partial correlation FC matrix 0.74 0.72 0.69 0.70

4: Graph metrics
4a. Graph metrics of 20 X 20 full correlation FC matrix 0.79 0.79 0.68 0.74
4b. Graph metrics of 70 X 70 full correlation FC matrix 0.70 0.74 0.61 0.68
4c. Graph metrics of 20 X 20 partial correlation FC matrix 0.73 0.75 0.65 0.70
4d. Graph metrics of 70 X 70 partial correlation FC matrix 0.74 0.72 0.69 0.71

5: FC with resting state networks
5a. FC with visual network 1 0.52 0.46 0.64 0.55
5b. FC with visual network 2 0.53 0.35 0.77 0.56
5c. FC with visual network 3 0.57 0.48 0.68 0.58
5d. FC with default mode network 0.70 0.67 0.66 0.67
5e. FC with the cerebellum 0.66 0.60 0.68 0.64
5f. FC with sensorimotor network 0.54 0.45 0.67 0.56
5g. FC with auditory network 0.60 0.68 0.52 0.60
5h. FC with executive control network 0.71 0.76 0.62 0.69
5i. FC with frontoparietal network 1 0.61 0.50 0.74 0.62
5j. FC with frontoparietal network 2 0.63 0.60 0.65 0.62

6: FC with Hippocampus
6a. FC with left hippocampus 0.59 0.51 0.66 0.59
6b. FC with right hippocampus 0.51 0.35 0.74 0.55

7: Eigenvector centrality
Fast eigenvector centrality mapping 0.69 0.66 0.66 0.66

8: ALFF4

8a. ALFF 0.82 0.71 0.82 0.76
8b. fALFF5 0.69 0.71 0.61 0.66

All resting state fMRI measures combined 0.85 0.86 0.71 0.79

1AUC = area under the receiver operating characteristic curve, 2FC = functional connectivity, 
3SD = standard deviation, 4ALFF = amplitude of low frequency fl uctuations, 5fALFF = fractional amplitude 
of low frequency fl uctuations.

Table 3. Alzheimer’s disease classification performance for the resting state fMRI 
Figure S1. Correlations between the 31 resting state fMRI measures. For each 
measure, we ran a principal component analysis (PCA) and we cross correlated the 
component scores of all the 31 first components..
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Figure 3. Statistical comparisons between the AUC values. The barplot contains 
the AUC values for the different resting state fMRI measures and the combined 
model, together with their standard errors. The matrix contains the results for the 
statistical comparisons between the AUC’s. The top right half of the matrix contains 
the uncorrected results. The bottom left half of the matrix contains the Bonferroni 
corrected results. The red coloured elements represent p values < 0.05.
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Combined classification model

Figure 4 shows the contribution to the combined model for each of the 31 resting 

state fMRI measures. The y-axis represents the sum of the absolute standardised beta 

values for all the predictors within a resting state measure. A high value represents an 

important role for that group of predictors within the combined model. In order to 

quantify the spread of the contributions we fitted the group lasso model repeatedly 

on 100 bootstrap samples. The 100 results are represented by the boxplots. In line 

with the results of the single modalities, the FC matrices and the FC dynamics largely 

contribute the combined prediction model. There is also some contribution of the 

FC states and the graph metrics. Remarkably, ALFF hardly contributes, despite its 

discriminative power when used alone. There is considerable spread in the contribution 

of the resting state fMRI measures as shown by the 100 bootstrap results. None of the 

resting state fMRI measures contributes to the group lasso model in each bootstrap 

sample. However, it remains clear that the FC matrices and FC dynamics are important 

for the combined prediction model, whereas the other resting state fMRI measures 

contribute minimally or not at all.

Figure 4. Importance of each resting state measure for the combined model. The 
combined model is fitted on 100 bootstrap samples to display the spread of the 
importance’s. The importance is quantified by the sum of the absolute beta weights of 
all the predictors within a resting state measure category.
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Supplementary analyses
Relation between different resting state fMRI measures

To explore relations between the resting state fMRI modalities, we calculated 

correlations between the 31 different resting state fMRI measures. These are presented 

in supplementary Figure S1. Straightforward calculation of correlation coefficients 

between the 31 resting state fMRI measures was not possible, because each resting 

state fMRI measure contains multiple predictors and the number of predictors is 

different for every measure. To overcome this problem, we ran a principal component 

analysis (PCA) for each of the 31 measures and cross correlated the component scores 

of all the 31 first components. Not surprisingly, resting state fMRI measures within the 

same modality are generally highly related. In addition, FC matrices, FC dynamics, FC 

states and ALFF appear to be related to each other.

Functional connections important for classification

To explore which of the ICA components were most important for AD classification, 

we plotted the mean beta values over all cross-validation folds and cross-validation 

repetitions for the FC matrices in supplementary Figure S3. Functional connectivity 

values between higher components have larger beta weights than FC values between 

lower components. Figure S2 shows that higher components are in fact real functional 

networks, whereas some lower components are noise components. This suggests that 

information on real functional networks was contributing to the classifier.

Percentage of non-zero parameters

For each resting state measure, we looked at the percentage of predictors that 

contributed to the classification model. Figure S4 shows the mean percentage of non-

zero parameters over all cross-validation folds and cross-validation repetitions for each 

resting state measure. The percentages are mostly over 20%, indicating that for most 

measures many predictors are included in the classification model.

Voxel-wise vs. averaging over regions

The AUC values for resting state fMRI modalities one to four are mostly higher than 

the AUC values for resting state fMRI modalities five to eight. One notable difference 

between these two groups is the number of predictors. The number of predictors 

within resting state fMRI modalities one to four ranges from five to 2415 per category, 

whereas resting state fMRI modalities five to eight are voxel-wise maps and they 

contain 190981 predictors per category. To explore the possibility that the number 
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of predictors influences the classification performance, we averaged the voxel-wise 

maps over the 70 components as obtained by the high dimensional ICA and reran the 

classification analyses with the reduced number of predictors. Figure S5 shows both 

the original AUC values and the AUC values after averaging over the 70 components. 

The differences are small and the ranges of the different cross-validation repetitions 

are most of the time overlapping. The low classification performance for some of these 

categories seems not to be caused by the large number of predictors.

Optimal value analysis for the number of ICA components

We investigated the optimal number of ICA components for our connectivity analyses. 

We ran ICA analyses for 5 to 100 components with steps of five. For each number 

of components, we calculated connectivity matrices with both full or sparse partial 

correlations, and the dynamics of these connectivity matrices. The results are plotted 

in Figure S6. Calculating only five components seems to be too few, but upwards of 

10 components the results are too diverse to draw conclusions on the optimal number 

of components.

3.4 Discussion
In this study, we determined the accuracy of different resting state fMRI measures for 

the individual classification of AD patients. We used machine learning techniques for 

efficient use of resting state fMRI measures in prediction models. FC matrices, FC 

dynamics, and ALFF show best discrimination between AD patients and control subjects. 

The combination of all the resting state fMRI measures improved the classification 

accuracy slightly, but not significantly. The FC matrices and the FC dynamics largely 

contribute to this combined model, whereas the other resting state fMRI measures are 

mostly redundant. This suggests that only FC matrices and FC dynamics need to be 

calculated to achieve optimal individual AD classification through a resting state fMRI 

scan.

FC matrices have been used successfully for AD classification before (Challis et al., 

2015; Chen et al., 2011). Our results add to this conclusion and furthermore show that 

FC as calculated with sparse partial correlation results in higher classification accuracy 

than FC as calculated with full correlation. Likely, this is due to the fact that sparse 

partial correlations provide better FC estimates than full correlations (Smith et al., 2011). 

In addition, FC between 70 components resulted in somewhat higher classification 
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accuracy than FC between 20 components. This is in line with the observation that 

high dimensional ICA solutions provide a more specific representation of functional 

regions, and consequently FC between these regions results in better AD classification 

(Dipasquale et al., 2015). The dynamics of the FC matrices resulted in higher 

classification accuracy than the FC matrices itself. FC dynamics as opposed to static FC 

is a relatively unexplored domain in AD, but it has been shown that AD patients differ 

in their FC dynamics compared to controls (Chen et al., 2016; Jones et al., 2012; Wee 

et al., 2016). ALFF resulted in good classification accuracy, similar to Dai et al (2012). 

However, it did not provide additive value over the FC matrices and the FC dynamics 

for the combined model. For this reason, ALFF does not seem to be necessary for an 

AD classification model. FC states and graph metrics had reasonable classification 

accuracies, but they did not provide additive value for the combined model either. 

Furthermore, these two measures are derived from the FC matrices and FC dynamics, 

which themselves have higher classification accuracies. Functional connectivity states 

and graph metrics thus require more work to calculate and they do not seem to be 

beneficial over the simpler measures.

FC with the ten RSNs resulted mostly in poor classification accuracies. Exceptions are 

FC with the default mode network and FC with the executive control network. This 

corresponds to studies reporting abnormal FC in these networks in AD patients (Agosta 

et al., 2012; Binnewijzend et al., 2012; Greicus et al., 2004). FC with the hippocampus also 

resulted in poor classification accuracy, despite abnormal hippocampal connectivity 

patterns observed in AD patients (Allen et al., 2007; Supekar et al., 2008; Wang et 

al., 2006). These effects are probably not sufficiently consistent for AD classification. 

Possibly this is due to the fact that the hippocampus is not persistently connected with 

the cortex, but follows a context dependent connectivity pattern (Huijbers et al., 2012).

Some settings we have not explored. We used an ICA to determine regions as input to 

the FC analysis (Allen et al., 2012; Hutchison et al., 2013; Jones et al., 2012; Rashid et al, 

2014), where others have used the automated anatomical labeling (AAL) atlas (Chen et 

al., 2011; Wee et al., 2016). We chose an ICA, because it is a data-driven approach that 

results in spatially independent components well suited for FC analyses. We used a 

group ICA and imposed the group components onto each subject (Dørum et al, 2017; 

Miller et al, 2016), because it is important to strive for the same parcellation in each 

subject in order to compare connectomes across subjects (Smith et al., 2013). We used 

the ICA components directly as nodes for the FC analysis. Others have used a follow up 

procedure to split ICA components into multiple nodes and use these nodes as input 
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to the FC analysis (Shirer et al, 2012; Jones et al., 2012; Shaw et al., 2015). We have 

not explored this option, but we obtained a similar result using the high dimensional 

ICA solution. When extracting a higher number of components, large networks split 

into multiple smaller networks. This can be observed in Figure S2. For example, 

component 1 of the 20 components solution splits into components 1, 6 and 13 of the 

70 components solution. For the calculation of FC dynamics, we used blocked sliding 

windows covering 11 volumes (33 seconds) and we shifted the windows one volume at 

a time (Jones et al., 2012). Other methods have been reported, using tapered windows 

(Allen et al., 2012; Wee et al., 2016), different window sizes (Chen et al., 2016; Wee et al., 

2016) and larger window shifts (Wee et al., 2016). Further, we quantified FC dynamics 

by calculating the standard deviations of the sliding window FC estimates. Alternatives 

are the dwell time in default mode network sub-configurations (Jones et al., 2012), 

graph measures obtained from the sliding window matrices (Wee et al., 2016), or higher 

order FC statistics that capture the covariance of the sliding window FC time series 

(Chen et al., 2016). We have not explored these methodological settings to study their 

effect on classification accuracy. For the analyses, we sticked to the default settings 

for that specific analysis as much as possible, and if there was no clear default setting, 

we based our choices on previous literature. We chose not to optimise the parameter 

settings within our study, because this would be computationally infeasible. Proper 

parameter optimisation must be performed using cross-validation, and in our case this 

would expand the cross-validation analyses considerably, because of the large number 

of predictors (~2 million) and the high number of parameters that can be optimised. 

In addition, the resting state fMRI scans used in this study covered 7.5 minutes, which 

is short for estimation of FC dynamics (Hindriks et al., 2016). It is not known whether 

classification accuracy improves with longer scan times.

For this study, we used only one sample to both train and test our prediction models. 

We have carefully used cross-validation techniques to prevent overfitting and obtain 

realistic accuracy estimates. Nevertheless, when applying these prediction models to 

other samples scanned at different scanner sites, we might find reduced classification 

accuracies, because these models are fine-tuned on the current sample. To evaluate 

the robustness of our classification models they have to be applied to a different 

sample. In addition, the current sample was not the result of random sampling from 

a prespecified population. The conclusions from the statistical tests that we have 

performed therefore only apply to the current sample.
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3.5 Conclusion
In conclusion, we demonstrated the use of resting state fMRI scans for individual AD 

classification. The optimal combination of resting state fMRI measures comprises FC 

matrices and FC dynamics. These results may direct future studies that use resting 

state fMRI scans for the classification of patients with preclinical AD or mild cognitive 

impairment.
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Figure S1. Correlations between the 31 resting state fMRI measures. For each 
measure, we ran a principal component analysis (PCA) and we cross correlated the 
component scores of all the 31 first components.
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Figure S2. The 20 and 70 components extracted from the low and high dimensional 
independent component analysis (ICA).
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Figure S3. Mean beta values for the functional connectivity matrices. Beta values 
are averaged over the multiple cross-validation folds and multiple cross-validation 
repetitions.
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Figure S5. The effect of averaging over regions. The original classification results 
(green) and the results when the voxel-wise data is averaged over the 70 ICA 
components (red). The boxplots represent the different cross-validation repetitions.

Figure S4. Mean percentage of non-zero parameters over all cross-validation folds 
and cross-validation repetitions for the 31 resting state fMRI measures.
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Figure S6. AUC values for the functional connectivity between ICA components (top), and 
functional connectivity dynamics (bottom) for a range of numbers of ICA components. 
The error bars represent one standard error above and below the AUC values.
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