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Abstract
Several anatomical MRI markers for Alzheimer’s disease (AD) have been identified. 

Hippocampal volume, cortical thickness and grey matter density have been used 

successfully to discriminate AD patients from controls. These anatomical MRI measures 

have so far mainly been used separately. The full potential of anatomical MRI scans for 

AD diagnosis might thus not yet have been used optimally. In the current study, we 

therefore combined multiple anatomical MRI measures in order to improve diagnostic 

classification of AD. For 21 clinically diagnosed AD patients and 21 cognitively normal 

controls we calculated i) cortical thickness, ii) cortical area, iii) cortical curvature, iv) 

grey matter density, v) subcortical volumes and vi) hippocampal shape. These six 

measures were used separately and combined as predictors in an elastic net logistic 

regression. We made receiver operating characteristic curves and calculated the area 

under the curve (AUC) to determine classification performance. AUC values for the 

single measures ranged from 0.67 (cortical thickness) to 0.94 (grey matter density). The 

combination of all six measures resulted in an AUC of 0.98. Our results demonstrate 

that the different anatomical MRI measures contain complementary information. A 

combination of these measures may therefore improve accuracy of AD diagnosis in 

clinical practice.

Keywords: Alzheimer’s disease, Anatomical MRI, Cortical thickness, Cortical area, 

Cortical curvature, Grey matter density, Subcortical volumes, Hippocampal shape, 

Classification 
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2.1 Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterised by both 

focal and global grey matter atrophy. Hippocampal atrophy is considered to be the 

hallmark of AD and it is therefore used as a clinical marker (Morra et al., 2009). Grey 

matter atrophy in AD patients frequently extends to other brain regions, including 

subcortical structures and the medial temporal lobe (Seeley et al., 2009; Rombouts 

et al., 2000; Jack et al., 2004). The location and degree of grey matter atrophy can be 

accurately visualised with anatomical magnetic resonance imaging (MRI) scans, which 

is used for the clinical diagnosis of AD (Frisoni et al., 2010). Studies using anatomical 

MRI scans have showed that AD patients have decreased volumes and altered shapes 

of the hippocampi compared to cognitively normal elderly (Thompson et al., 2004; 

Scher et al., 2007) and also the volumes of the putamen and thalamus are reduced in 

AD patients (de Jong et al., 2008). Moreover, reduced cortical thickness (Lerch et al., 

2005) as well as widespread grey matter atrophy have been demonstrated in patients 

with AD compared with controls (Karas et al., 2003).

However, the group differences found in case control studies are not necessarily useful 

in a clinical setting. Many AD markers have also been observed in healthy ageing 

(Salat et al., 1999). AD markers are only helpful in a clinical setting if they can accurately 

discriminate AD patients from non-affected subjects at the individual level. The focus 

of research on anatomical MRI biomarkers for AD has therefore shifted from the 

detection of group differences towards disease classification. Cortical thickness, MRI-

based morphometry (VBM) and the volume and shape of the hippocampus have been 

used to discriminate AD patients from controls with moderate to high classification 

accuracy. (Cuingnet et al., 2010; Davatzikos et al., 2011; Querbes et al., 2009). 

Thus far, these anatomical MRI measures have mainly been used separately to 

classify AD patients. However, the different measures may possess complementary 

information, and the combination of these measures could therefore increase AD 

classification accuracy compared to the separate measures. For example, voxel-based 

cortical thickness (VBCT) and VBM show different aspects of age-associated decline 

in grey matter (Hutton et al., 2009). Also, VBM, cortical folding and cortical thickness 

complement each other in showing neurodegenerative changes related to Parkinson’s 

disease (Pereira et al., 2012). Moreover, the combination of different anatomical MRI 

measures improves AD classification (Wolz et al., 2011; Westman et al., 2013; Bron et 

al., 2015).
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Furthermore, advances in statistical learning have facilitated the integration of different 

sources of information into a single predictive model (Zou & Hastie, 2005). This enables 

the incorporation of many predictors into one predictive model by selecting only the 

relevant information out of these many predictors. These techniques have already been 

applied in order to separate AD patients from controls or to separate MCI converters 

from MCI non-converters. (Cui et al., 2011; Dyrba et al., 2015a; Dyrba et al.; 2015b; 

Schouten et al., 2016; Trzepacz et al., 2014; Teipel et al., 2015; Wee et al., 2013; Zhang 

et al., 2013). It would therefore make sense to combine all anatomical MRI measures 

that have been shown to be discriminative for AD into a single model to improve 

sensitivity and specificity.

In this study we will use anatomical MRI scans from a group of AD patients and a group 

of cognitively normal controls and calculate several commonly used measures that are 

informative for AD. These measures are: i) cortical thickness, ii) cortical surface area, 

iii) cortical curvature, iv) grey matter density, v) the volume of the subcortical structures 

and vi) the shape of the hippocampus. We will combine all these measures into a 

single predictive model and calculate its classification performance. We hypothesise 

that the combination will outperform the separate measures.

2.2 Methods
Participants

Anatomical MRI scans were obtained from 21 probable AD patients (10 females) 

between ages 50 and 87 (M = 71.7, SD = 9.3) and 21 cognitively healthy controls (10 

females) between ages 57 and 80 (M = 68.0, SD = 7.5). The AD patients had an average 

score on the mini-mental state examination (MMSE) of 23 (SD = 2.4) and the cognitively 

healthy controls had an average score of 28 (SD = 1.5). All AD patients underwent a 

standardised dementia screening that included their medical history, informant-based 

history, physical and neurological examination, and an extensive neuropsychological 

assessment including the MMSE. Diagnoses were made in a multidisciplinary 

consensus meeting according to the core clinical criteria of the National Institute on 

Aging and the Alzheimer’s Association workgroup for probable AD (Mckhann et al., 

1984; McKhann, 2011). As control subjects, we included cognitively healthy elderly 

volunteers. This study was approved by the medical ethical committee of the Leiden 

University Medical Center, and all participants provided written informed consent.
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MR image acquisition

All participants were scanned on a Philips 3 Tesla Achieva MRI scanner in the Leiden 

University Medical Center. Three-dimensional T1-weighted structural scans were 

acquired with the following parameters: TR = 9.8 ms, TE = 4.6 ms, flip angle = 8, 140 

slices, voxel size = 0.88 x 0.88 x 1.20 mm.

Cortical thickness, area, and curvature

To calculate cortical thickness, cortical area, and cortical curvature we processed the 

T1-weighted images using the Freesurfer software package version 5.3.0 (Dale et al., 

1999; Fisch et al., 1999). First, intensity normalisation was applied to the brain-extracted 

image to create an image with relatively high contrast to noise ratio. This image was 

used to locate the boundary between grey and white matter. A triangular mesh was 

then constructed around the white matter surface. This triangular mesh consists of over 

160,000 vertices for each hemisphere. To create the grey matter surface, the mesh was 

deformed outwards so that it closely followed the boundary between grey matter and 

cerebrospinal fluid (CSF). Cortical thickness was calculated as the distance between 

the white matter surface and the grey matter surface for each vertex. The image was 

then registered to the Freesurfer common template, using the image’s cortical folding 

pattern. The neocortex was parcellated into the 68 neocortical regions (34 regions for 

each hemisphere) of the Desikan-Killiany atlas (Desikan et al., 2006). The thickness of 

each parcellation unit was calculated as the mean thickness of all the vertices within 

that parcellation. This yielded 68 cortical thickness features per subject. To calculate 

cortical surface area we summed the areas of the grey matter mesh triangles for each 

parcellation, which yielded 68 cortical area features per subject. Cortical curvature was 

calculated as the mean of the curvature values in the two principal directions of the 

surface. The curvature of a vertex in these directions was calculated as the inverse of 

the length of the radius of the osculating circles in these directions (Ronan et al., 2011). 

For each of the parcellations we averaged the curvature values of the vertices, which 

yielded 68 cortical curvature features per subject.

Grey matter density of the cortical structures

We calculated grey matter density using VBM in the FMRIB Software Library (FSL 

version 5.0.7; Ashburner et al., 2000; Smith et al., 2004). First, we segmented the brain-

extracted images into grey matter, white matter, and cerebrospinal fluid. Next, we 

created a study specific grey matter template in two steps. In a first run we affine-

registered the grey matter images to the ICBM-152 grey matter template and we 

averaged the resulting images to create a first-pass template. In a second run we non-
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linearly registered the grey matter images to the first-pass template and we averaged 

these images to obtain the final template at 2x2x2 mm3 resolution in standard space. 

Finally, we non-linearly registered the grey matter images to the final template and 

smoothed these images with a Gaussian kernel with sigma = 3 mm. The voxel values 

in these images range between 0 and 1, representing the percentage of a voxel being 

grey matter tissue. We averaged the voxel wise values within the 48 regions of the 

probabilistic Harvard-Oxford cortical atlas. We calculated the weighted averages of the 

regions, with voxels contributing to the average of a region based on their probability 

of being part of that region. This yielded 48 grey matter density values per subject.

Subcortical volumes

We calculated the volumes of the subcortical structures using the FMRIB’s Integrated 

Registration and Segmentation Tool (FIRST) in FSL (Patenaude et al., 2011). First, the 

whole-head images were affine registered to the non-linear MNI-152 template. In a 

second stage, initialised by the result of the first stage, we used a subcortical mask to 

achieve a more accurate and robust affine registration. The shapes of the subcortical 

structures were then modelled by deformable meshes and the boundary voxels were 

classified as being part of the subcortical structure using structural segmentation 

(Zhang et al., 2001). Finally, we corrected the subcortical volumes for intracranial 

volume as obtained by FSL. This yielded 14 subcortical volume features per subject 

(thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens for 

both hemispheres). 

Hippocampal shape 

To calculate hippocampal shape, we used the vertex analysis in FSL (Patenaude et 

al., 2011). The shape values represent the distance of a vertex on the hippocampal 

mesh of a specific subject to the mean location of that vertex within the whole sample. 

A negative value represents a decrease of the size of the hippocampus on that 

specific location for a subject relative to the mean sample. Vice versa, a positive value 

represents a relative increase of the size of the hippocampus on that location.  In the 

absence of a sufficiently detailed brain atlas of the human hippocampus we used a 

data-driven method to reduce the number of features. We ran a principal component 

analysis on the vertex shape values of both hippocampi and extracted only the 

first ten components, because these alone explained 86 percent of the variance in 

hippocampal shape values. This yielded ten hippocampal shape features per subject.
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Reference measures: whole brain atrophy and hippocampal volume

To provide a reference for the classification performance of the anatomical MRI 

measures, we also calculated two simple measures that are commonly used for clinical 

diagnosis of AD, whole brain atrophy and hippocampal volume (Frisoni et al., 2010). We 

used Freesurfer to calculate the ratio of total brain volume to intracranial volume as a 

measure of whole brain atrophy. We used FSL FIRST to calculate the volumes of the left 

and the right hippocampus. 

Statistical analyses

The features of the six anatomical MRI measures were used in an elastic net logistic 

regression to classify the subjects as either AD or control. Elastic net regression uses 

penalties to hinder the features from entering the regression model (Zou & Hastie, 2005; 

Friedman et al., 2012). Thus, only the most relevant predictors will enter the regression 

model, which is helpful if the number of features outnumbers the number of subjects. 

Elastic net regression uses a combination of an L1 (LASSO) (Tibshirani, 1996) and L2 

(Ridge) (Hoerl and Kennard, 1970) penalty. Therefore, two hyperparameters should be 

set: the α parameter determines the relative weight of the two different penalties and λ 

determines the size of those penalties. Elastic net logistic regression has been used for 

AD classification by Schouten et al. (2016), Trzepacz et al. (2014) and Teipel et al. (2015). 

We used cross-validation to ensure that we are not overfitting the prediction models. 

In our case there are two potential sources of overfitting. We could either include 

too many predictors in our logistic regression model or we could overestimate the 

classification accuracy by looping over all the values of the hyperparameters and only 

pick the best result. To ascertain that we are not subject to any of these two sources of 

overfitting we used a nested cross-validation approach (Krstajic et al., 2014). We used 

the inner loop of the nested cross-validation to fit the logistic regression model and the 

outer loop to tune the hyperparameters. For both the inner and outer loop we used 

10-fold cross-validation, thus using 90 percent of the subjects in the training set and 10 

percent in the test set, and repeating this 10 times such that all subjects were part of 

the test set once.

We plotted receiver operating characteristic (ROC) curves and calculated the area 

under the curve (AUC) as a measure of classification accuracy. We repeated the cross-

validation procedure 50 times to get a more reliable cross-validation error (Krstajic et 

al., 2014). We extracted the median AUC value instead of the mean, because we expect 

that the distribution of AUC values is skewed to the left due to a ceiling effect.
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First, we calculated the classification accuracy for each measure separately. Then we 

calculated the classification accuracy for the combination of all measures and for all 

pairs of two measures. We used two different methods to combine the features of 

different measures. In the first method we concatenated the features and we used 

the concatenated feature set for classification similarly as the single measures. 

Concatenation is commonly used to combine different sets of features for prediction 

(De Magalhães Oliveira et al., 2010; Westman et al., 2012). It might however not be the 

most optimal method for combination, because all sets of features are then weighted 

equally whereas some sets might be more predictive than others. Therefore, in the 

second method we used a weighted average of the single measure predictions in 

order to increase classification performance (Wolpert, 1992; Breiman, 1994). Measures 

that achieved a higher accuracy were given a larger weight. We used the inverse of 

the binomial deviance as a measure of accuracy. Binomial deviance is a continuous 

measure of prediction error and is therefore sensitive for small accuracy differences. 

We determined the measures’ weights for each subject individually. To avoid overfitting 

we used the binomial deviances within the training set to determine the contributions 

of the measures for the left out subjects. The weighted average was calculated for all 

the 50 cross-validation repetitions and the median result was presented.

2.3 Results
Figure 1 shows ROC curves for the classification of AD vs. cognitively normal controls for 

the six anatomical MRI measures separately, and for the combination of all six measures. 

The accompanying AUCs, representing a measure of classification accuracy, are shown 

in Table 1. Table 1 also presents the AUC values for the two reference measures: 

hippocampal volume and whole brain atrophy. The two reference measures perform 

reasonably well. Especially, the hippocampal volumes can discriminate well between 

AD patients and controls. Yet, the grey matter density of the cortical structures and 

the volumes of subcortical structures discriminate better than the reference measures. 

Cortical thickness, cortical area, cortical curvature, and hippocampal shape cannot 

improve over the reference measures. Most importantly however, the combination of 

all six measures outperforms the separate measures. The weighted combination of all 

measures discriminates somewhat better than the concatenated combination
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Figure 1.  ROC curves for discriminating AD patients from cognitively healthy controls. 
ROC curves are plotted for the six anatomical measures separately and for the two 
types of combinations of all six measures. 

Table 1. AUC values discriminating AD patients from cognitively healthy controls 
for the different anatomical MRI measures. Hippocampal volumes and whole brain 
atrophy are added for comparison, because these are fairly simple measures that 
are commonly used by clinicians to diagnose AD.  The other six measures are used 
separately and combined to discriminate the two groups. We used two methods for 
the combination. Both of them outperform the separate measures, and the weighted 
combination works best.

Anatomical MRI measures AUC

Reference: hippocampal volumes 0.87

Reference: whole brain atrophy 0.77

1) Cortical thickness 0.67

2) Cortical area 0.85

3) Cortical curvature 0.73

4) Grey matter density 0.94

5) Subcortical volumes 0.93

6) Hippocampal shape 0.74

All six measures: concatenation 0.95

All six measures: weighted combination 0.98



Chapter 2

26 27

To further investigate the additive value of combining different measures, we calculated 

the AUCs for all pairs of two measures, using both measure concatenation (Figure 2, 

left side) and weighed combinations (Figure 2, right side). The tall bars represent the 

single measure AUCs, like in Table 1. The short bars represent the additive value of a 

second measure. Note that the additive value can also be negative, when the addition 

of a second measure worsens the classification accuracy. Both for concatenation and 

weighted combinations, the AUC of a single measure often improves when a second 

measure is added. When using concatenation, the highest AUC values are obtained 

by combining grey matter density with either subcortical volumes or cortical thickness 

(AUC = 0.98), which is even higher than the concatenation of all six modalities.  Using 

weighted combinations, the highest AUC is obtained by combining grey matter density 

with subcortical volumes (AUC = 0.98), which is equal to the weighted combination of 

all six modalities.

Figure 2. AUC values for all the possible combinations of two measures using feature 
concatenation (left) and weighted combinations (right). The tall bars represent the 
single measure AUCs, which are the same as those in Table 1. The short bars represent 
the additive value of a second measure. The additive values are mostly positive. For 
example, when cortical area is concatenated with cortical thickness, the AUC increases 
from 0.67 to 0.71. However, sometimes the additive value a second measure is negative. 
For example, cortical area is on its self a better predictor (0.85) than concatenated with 
cortical thickness (0.71).
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These statistical models are primarily meant to predict class membership, and not to 

make claims about which features were most important to distinguish AD patients 

from controls. If a statistical model is built for prediction, rather than for explanation, 

one should be careful when interpreting the explanatory part of that model (Shmueli, 

2010). We elaborate more on this in the discussion section. Yet, to illustrate the content 

of the classification models we show the standardised beta values (averaged over the 

50 cross-validation repetitions) for the predictors of the grey matter density measure 

(Figure 3) and the subcortical volumes measure (Figure 4). We used these two measures 

for illustration, because they discriminate best between AD patients and cognitively 

normal controls. For regions with a negative beta value, low grey matter density values 

or low subcortical volumes increase the odds for AD. For regions with a positive 

beta value, high grey matter density values or high subcortical volumes increase the 

odds for AD. This might seem contradictionary, because we do not expect to see 

increased grey matter density values or increased subcortical volumes in AD patients. 

The interpretation of these effects could be something like: if that region is relatively 

unaffected (high grey matter density, or large subcortical volume) while some other 

regions are more affected, this is evidence in favour of AD. We plotted the regions 

in colour coding for the grey matter density measure (Figure 5) and the subcortical 

volumes measure (Figure 6).

The grey matter density classification model was mostly driven by decreased grey 

matter density within the cortical areas in the medial temporal lobes, and to a lesser 

extent in the occipital and frontal lobes. The regions with large weights include 

the orbitofrontal cortex, the subcallosal cortex, the insular cortex, and the inferior 

temporal gyrus. Most regions contribute to the classification model to a certain 

extent, suggesting that a global pattern of atrophy is predictive for AD. The subcortical 

volumes classification model was mostly driven by decreased sizes of the hippocampus, 

putamen and thalamus, and to a lesser extent by decreased sizes of the accumbens 

and the amygdala.
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Figure 3. Beta values for the cortical grey matter density estimates. The beta values 
represent the mean beta values over all the cross-validation folds of all the cross-
validation repetitions. The beta values are ordered according to size. Negative beta 
values are coloured blue, and positive beta values are coloured red. Most beta values 
are negative, and the meaning of those is that low grey matter density predicts 
toward AD. Some beta values are positive, which is counterintuitive, but could mean 
something like: if that region is relatively unaffected (high grey matter density) while 
some other regions are more affected, this is evidence in favour of AD. Note that 
grey matter density was only calculated for the cortical regions. The results for the 
subcortical volumes are presented in Figure 4.
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Figure 4. Beta values for the subcortical volumes. The beta values represent the mean 
beta values over all the cross-validation folds of all the cross-validation repetitions. The 
beta values are ordered according to size. Negative beta values are coloured blue, and 
positive beta values are coloured red. Most beta values are negative, and the meaning 
of those is that a small volume predicts toward AD. Some beta values are positive, 
which is counterintuitive, but could mean something like: if that region is relatively 
unaffected (large volume) while some other regions are more affected, this is evidence 
in favour of AD.
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Figure 5. The beta values from Figure 4 are presented here in colour coding. The 
‘cool’ regions correspond with the blue bars and the meaning of those is that low grey 
matter density predicts toward AD. The ‘hot’ regions correspond with the red bars 
and the meaning of those is that high grey matter density predicts toward AD. This is 
counterintuitive, but could mean something like: if that region is relatively unaffected 
(high grey matter density) while some other regions are more affected, this is evidence 
in favour of AD.

Figure 6. The beta values from Figure 5 are presented here in colour coding. The 
‘cool’ regions correspond with the blue bars and the meaning of those is that a small 
volume predicts toward AD. The ‘hot’ regions correspond with the red bars and the 
meaning of those is that a large volume predicts toward AD. This is counterintuitive, 
but could mean something like: if that region is relatively unaffected (large volume) 
while some other regions are more affected, this is evidence in favour of AD.
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2.4 Discussion
In this study we used different anatomical MRI measures to separate AD patients 

from controls. Our main finding is that the combination of the different anatomical 

MRI measures improves AD classification accuracy over each single measure. The 

combination of different anatomical MRI measures thus captures more information on 

grey matter loss than each of the measures separately, and AD classification benefits 

from this extra information through an automated classification algorithm. 

When used separately, all measures were sensitive to the detection of AD. We 

replicated early findings in which grey matter density values (Cuingnet et al., 2010) and 

the volumes of the subcortical structures (De Magalhães Oliveira et al., 2010) are highly 

discriminative for AD. However, the high classification accuracy of cortical surface area 

compared to cortical thickness is relatively surprising. Previous studies found that 

cortical grey matter atrophy is primarily reflected in cortical thinning rather than in a 

decrease of cortical area (Dickerson et al., 2009; Westman et al., 2012). 

We have used two different methods to combine the measures. The weighted 

combination of the measures showed higher accuracy than the concatenation of the 

measures. Due to a relatively small sample size, it is unclear whether this difference will 

generalise to other data sets, but it does demonstrate that the method that is used for 

the combination of the information can influence diagnostic accuracy.

The classification model for the grey matter density estimates (which were only 

calculated for the cortical regions) was mostly driven by decreased grey matter density 

within the medial temporal lobes, and to a lesser extent in the occipital and frontal 

lobes. These findings are in line with other observations of AD atrophy (Karas et al., 

2004; Frisoni et al., 2010; Risacher et al., 2010). The subcortical volumes classification 

model was mostly driven by decreased sizes of the hippocampus, putamen and 

thalamus, which is also in accordance to previous findings (Leung et al., 2010; de Jong 

et al., 2008). 

It should be noted that we have built predictive models, without the explicit goal 

to make explanatory models. We should therefore be careful when interpreting the 

explanatory part of our models (Shmueli, 2010). For example, we have forced sparsity 

in our models, which hinders potentially relevant features from entering the model. 

Furthermore, the effect of a feature is conditional on the effect of all the other features in 
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the model, and can therefore not be interpreted independently. Also, multicollinearity 

is not an issue for prediction models, but it can be problematic for the explanatory 

part of a model. These constraints should thus be taken into consideration when 

interpreting the content of the prediction models. For these reasons the effects do 

not denote one to one relationships between the feature and the probability of being 

classified as an AD patient, nor do they reflect mean differences between the groups.

We did not use non-linear effects or interaction-effects in our classification algorithm, 

which improves the reproducibility of our results. More complex classification models 

might further enhance the classification accuracy. For example, longitudinal AD studies 

have found that atrophy in some areas in the brain follows a non-linear trend (Chan et 

al., 2003; Fotenos et al., 2005). On the contrary, more complex classification algorithms 

can cause overfitting, resulting in a poorer classification performance (Hastie et al., 

2009). Neither did we use prior feature selection, because feature selection generally 

does not improve AD classification results (Chu et al., 2012) and avoiding this extra 

step eases the reproducibility of our results.

We have used the most up to date versions of Freesurfer and FSL to calculate the 

structural measures. Freesurfer and FSL have both been validated for the analysis of 

anatomical MRI scans for both healthy subjects and AD patients. Freesurfer is sensitive 

to detect cortical thinning in AD patients compared to controls (Redolfi et al., 2015). and 

it has good scan-rescan reproducibility (Tustison et al., 2014). The results of Freesurfer 

analyses do however differ between different Freesurfer versions (Groenschild et al., 

2012), but the most recent Freesurfer versions correspond better with the results of 

manual outlining (Clerx et al., 2015). The shape model that is used by FSL First to 

segment the subcortical structures has been trained on both healthy subjects and 

pathological brains (including AD patients) to reduce bias towards healthy brains 

(Patenaude et al., 2011). Furthermore, FSL First calculation of the subcortical volumes 

is roughly similar to the results of manual outlining for AD patients, MCI patients and 

controls from the ADNI data set (Mulder et al., 2014). FSL voxel-based morphometry 

(VBM) is relatively accurate because it makes use of a non-linear registration tool 

(Callaert et al., 2014). Furthermore, FSL VBM accurately detects hippocampal atrophy, 

but is biased towards detecting medial temporal lobe atrophy in AD patients (Diaz-de 

Grenu et al., 2014).
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In conclusion, we demonstrated that the combination of i) cortical thickness, ii) cortical 

area, iii) cortical curvature, iv) grey matter density, v) subcortical volumes and vi) 

hippocampal shape improves AD diagnosis. The added value of combining different 

anatomical MRI measures should be considered in AD scanning protocols. It is still 

common practice to only use the size of the hippocampus or a single measure of whole 

brain atrophy for AD diagnosis. Our results demonstrate that clinical AD diagnosis 

could benefit from calculating multiple measures from an anatomical MRI scan and 

incorporate these all in an automated analysis. Our results further suggest that the 

grey matter density of the cortical structures and the volumes of the subcortical 

structures are sufficient for optimal AD classification based on an anatomical MRI 

scan. These results might also be relevant to studies of early AD diagnosis and other 

neurodegenerative diseases studies. 
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